| mplementing the Verified Software I nitiative

Benchmar ks using Perfect Developer

Yan Xu

Final Year Project — 2010

M.Sc. in Computer Science and Softwar e Engineering

il
NUI MAYNOOTH

Oliscail na hEireann M& MNuad

Department of Computer Science,

National University of Ireland, Maynooth (Ireland)

Supervisor: Rosemary Monahan

A thesis submitted in partial fulfillment of thegqu@rements for the M.Sc. Computer Science and
Software Engineering

Declar ation

| hereby certify that this material, which | nowbsnit for assessment on
the program of study leading to the award of MasikrScience in

Software Engineering, is entirely my own work aras mot been taken
from the work of others save and to the extent shieh work has been

cited and acknowledged within the text of my work.

Signed: Date:

Acknowledgments

| would like to take this opportunity to thank mypervisor, Rosemary
Monahan, for giving me a lot of help during theientproject. | also
would like to thank Dr. Diarmuid O' Donoghue, whels me on work

placement and dissertation.

| mplementing the Verified Software I nitiative

Benchmar ks using Perfect Developer

Yan Xu

Department of Computer Science,
National University of Ireland, Maynooth (Ireland)
YAN.XU.2009@nuim.ie

Supervisor: Rosemary Monahan

Abstract

This paper describes research on the Perfect Deelwol and its
associated programming language, Perfect. We fooos seven
verification benchmarks that have been presentgohdsof the Verified
Software Initiative (VSI), proposing their specdton, implementation
and verification in the Perfect language and thdéeeeDeveloper tools.
To the best of our knowledge this is the first mip¢ to meet these
benchmarks using the Perfect Developer tools arel first full
presentation of solutions to these benchmarks yrvanfication support
tool. Our aim is to implement the benchmarks aralyse how well the
Perfect language can be used to express theserbarksh Furthermore,
we provide suggestions on how to make the Perdacjiiage and Perfect
Developer better.

Table of Contents

I [1 0T [T 1T o PSP 1
2. BaCKgrOUNGo e ——————————————— 1
2.1 Introduction of Perfect LanQUAaQE........ o eeeerrrrrrmmmnianaiaaaaeaaeeeeeeeeeeeseeeenns 1

2.2 Introduction of Perfect DeVeIOPEer ... 3

2.3 Comparison between Perfect Language and SptguBge..........cccooeeeeeeeee.
3. Benchmarks and SOIULIONScoooiiiiiiii e 6

3L BeNChMArK L.....ooei e e e 6
3.2 BeNChMArK 2.......eei e e 10
3.3 BenNChmark 3.....ooee e e 14
A BENCRMAIK 4. e e e 18
3.5 BeNChMArK 5. .o e 21

3.6 BENCAMAIK B e 26

3.7 BENCNMAIK 7.t er e e eeeeees 29
A ANAIYSIS ..ot a e e e aaaae e e e e e e eaeeaarre 32
4.1 Analysis of the implementations of benchmarks............ccccciiiiiiinn. 32
4.2 Analysis of the Perfect Language.........cccuuuuueiiiiiiiiiiiieiiieeeeeeeii e 33
4.3 Analysis of the verifier of Perfect Developer..............iiiiiiiiiiiieeeneen, 34.

I 0T [od (1] o] o 1RO USRRTUUPPRUPPRRRR 35
RETEIENCES ...t et e e e aa e e e e e e e e e e e e eeees 36
Appendix A: Main Program of Benchmark3 ..., 37
Appendix B: Result Screenshot of Benchmark 3. ..., 38
Appendix C: The Generated Java Codes of Benchmark.3..................oooooee. 39

1. Introduction

This paper describes research on the Perfect Deselool for programming
verification language. A number of verification-lobmark programs have been
proposed inthe Clemson University Researchers’ paper [1] waitty one solution
suggested. This single solution is written in tHES®LVE [2] specification language.
In this paper we target seven of these benchmaokdetermine how they can be
expressed in the Perfect langud8k The benchmark problems cover several classic
algorithms such as binary search, queue sortinggpeésent some complicated data
structures like Queue, Map and Linked-List. Thdgerithms and data structures are
all very useful in assessing the expressivenesiseoPerfect language and the power
of the Perfect Developer verification tools.

Perfect is a specification language and also arem@ntation language. In this
paper, we present our solutions to seven of thesehmark problems. They show
that we could implement and verify the benchmark®erfect. And we also discuss
the solutions’ advantages and drawbacks in Perfect.

The structure of this paper:

= Section 1 provides an overview of this paper.

= Section 2 introduces the Perfect Language andabieRerfect Developer. It

also compares the Perfect language with the Spegftgmming language.

= Section 3 presents the work we have done on thesehimarks. In each

benchmark subsection, we will give the requiremantl the design idea,
process and solutions. It also includes the problemm met during the work
and how we dealt with these problems.

= Section 4 summaries assessment of the expresssvehté®e Perfect language

and the power of the Perfect Developer verificatmols.

= Section 5 summarizes our work and presents ourlesinos and suggests

some future work for improving verification tools.

2. Background

In this chapter, we introduce the Perfect languagd the Perfect developer.
Furthermore, we discuss the difference betweenRbdect language and Spec#
language [4].

2.1 Introduction of Perfect Language

Perfect language is a specification language base@bject-Oriented Paradigm
[5]. It acts both as a specification language andiraplementation language. It
defines some basic types which can be used tofgpsustract data types. It also

1

supports the object oriented features like classggects and inheritance. The primary
strategy of Perfect language is Design by Contrdth uses contracts to specify the
input-output relationship of features of a class.

We develop and verify Perfect language by usingeeebDeveloper. The code can
be generated automatically from Perfect languag€+te, Ada, Java and C# by
Perfect Developer. Now we introduce the Perfeajl@age as follows:

Type, Expression: In Perfect, identifiers are case sensitive and nugdef letters,
digits or underscores. The first character of tentifier cannot be a digit. There is no
limit length for an identifier, so users can use &ngth identifier. There are 208
reserved words [6] in Perfect language, such aarigl”, “name”. They cannot be
used as an identifier. Perfect Language has masig lolata typesanything, bool,
byte, char, int, real, void, rank, nat, string. The first 8 types are predefined classes;
the last 2 types are predefined types.

Collection: There are another three types which called catlectlasses: set of X,
bag of X and seq of X. The parameter X stands foatever class you wish to have a
collection of, like set of in or set of Person (tiser defined class). An object of class
set of X is an unordered collection of objects lass X and this collection does not
allow duplicates. Class bag of X is similar withas$ set of X, but it permits
duplicates. An object of class seq of X is like thess bag of X, but it is ordered.

Class: The class is used to mean a set of allowed vallshwis neither a proper
subset of any other Perfect class nor a union pégy[7]. The class is the basic
element which is used to do the object-orienteceibgment. The class in Perfect has
certain structure, class constructor, variablesanants and kinds of method. But
there is no destructor in Perfect Language. Indéertlasses are usually divided into
several sections: abstract section, internal sectionfined section and interface
section [8]. The abstract section and interfacéi@@@re the common used sections.

An example of a sample Person class is shown below.
class Person "=

abstract
var personname: string,
age: int,
gender: gendertype,
interface
build { Ipersonname: string, !age: int, !gender: gendertype};
end;

The above code defines a new class Person. Théfigleafter “class” is the
class name:"Person”. The symbol “*=" is pronoun¢eddefined as” and means
something is defined as something. Here it meaasldss Person is defined as the
notations which are after it and before the “enithé class Person has three attributes:
personname, age and gender. They are declareteasvtiriables afterar. The colon
between personname and string is pronounced “a”tyip is followed by a type
expression and it declares the entity before id®f that type. Here “personname’ is
of typestring, “age” is of typeint and “gender” is of type gendertype which is a user

defined type. The class Person has a constructochws the declaration that starts
with the keywordbuild. In Perfect, the exclamation markneans that a change of
value occurs in the entity (variable, parametesadf) that precedes it (or occasionally
follows it) [8]. Because of giving each parametee same name as each attributes
and before parameter with an exclamation markattrdutes of the class Person will
be initialized directly from the corresponding paeders. More examples of class are
shown in the section 3.

Function and Schema: In Perfect, there are three kinds of methods: coaotir,
function and schema [9]. A constructor defines Howuild an object of the class. A
function takes one or more parameters and yieldssalt; it has no side-effect. A
schema changes the state of the runtime objecteX&mples of function and schema
in Perfect Language are shown in the section 3.

Precondition and Postcondition: We can define the precondition for the
constructor, function and schema. The preconditamisas restriction, which are the
one or more (comma-separated) Boolean expressftarstiae key wordpre. These
preconditions must be satisfied whenever the meithodlled. We also can define the
postcondition for the constructor and schema. Wethis postcondition to define the
objects created by constructors, to define the ghaumade by a schema, and in after
expressions to express the value that some expnegsiuld have if we made some
changes to it [8]. In Perfect, the postconditiofirges two things: a frame, which is a
set of variables (or parts of variables) that mayghanged; a condition to be satisfied.

The basic form of postcondition isHange frame sati sfy conditon ”. When we
want to change a single variable by making its &aqual to some expression, we
abbreviate the formchange var satisfy var' = expr " to be *varl =expr ". In

Perfect, the postcondtion specifies precisely whiahables have changed and the
conditions satisfied by the final values of thosariables. The examples of
precondition and postcondition are shown in the¢iced.

There are more features of the Perfect Language.e¥y#ain them in the
implementations of benchmarks in section 3.

2.2 Introduction of Perfect Developer

Perfect Developer is a software development toal developing formal
specifications and refining them to code [10].upports the formal development of
object-oriented programs by refinement and incluttesal verification of code.
Perfect Developer from Escher Technologies Limited powerful software tool. It
can generate ready-to-compile code in c++ or Jawen fthe specifications and
refinements in Perfect Language [7]; it can alspegate the verification conditions
for the software system and automatically proveeheerification conditions. Perfect
Developer is based around object-oriented desigause it is the popular paradigm
which wildly used in the industry today.

Perfect Developer can be used for the safetyeatitepplications or other
applications, and also be used for teaching formathods or doing research in
universities. Because Perfect Developer is a higlyctivity software tool and uses

3

advanced automated reasoning in the prover [10lotAof specifications can be

automatically refined to code, which reduce the miaf code has to be written. In

addition, Perfect Developer uses a powerful autmmaterence engine and theorem
prover to reason about the requirements, spedoditstand code [11]. So users don’t
need to have advanced mathematic knowledge. TliedP&eveloper tool can import

UML models to generate specifications and finakynerate the code in Java or C++.
These are of great benefit to teaching softwareldgment in Java and modeling by
using UML in universities. Perfect Developer rutanslard PCs under both Windows
and Linux. The interface to use Perfect Developeiia the Project Manager. (When
the Project Manager runs under windows, it will @gpas shown below (Fig.1))

IPerfect Developer deef=ifr o)
File Project Build Ophions Wiew Help
ail-3= 1) =l %+ =700 BHvv2e O
i~ Files -
~Results -

;Read;f.

Fig.1 Project Manager

Through this interface, users can create projéitds, import UML models, build
or verify files and users can see the output inrdsilts area. The building result
example is shown in the Appendix B.

The powerful tool Perfect Developer supports wgtispecifications, verifying
these specifications, refining them to code witthia same notation, verifying these
refinements, and translating them automaticallyade in C++ or Java language [12].
When using Perfect Developer to do projects, userge code in the Perfect
Language and then verify this code using the \arifthich is included in the Perfect
Developer. Perfect Developer also includes a cangdibr compiling the Perfect

Language code and generating the Java, C++ or Aca®s

Perfect Developer does not have its own source eaier, so users need to
make configuration in Perfect Developer’s projeenager to choose the source code
editor which you installed in your PC. There aréotof editors suitable for the
Perfect Developer. So you can choose one whichligeuPerfect Developer neither
includes C++ compiler nor Java compiler. So usemsdnto configure it in Project
Manager and use the Java JDK or C++ compiler iestah their PCs.

2.3 Comparison between Perfect Language and Spec# L anguage

In this subsection, we compare the Perfect language Spec# language and
discuss the good points and drawbacks of them.

The Perfect Language provides the Verified Designntract [13] while the
spec# language supports the Design By Contract [ld¢y are both specification
language [15]. They both specify the Object-Oridrifeogram and they have verifiers
to check the programs whether satisfy their speations.

But there are many differences between the Perf@rtguage and Spec#
Language.

First, the Perfect Language is not only a spedificalanguage but also an
implementation language. This makes the Perfecgliage more complete, which
means that the Perfect Language can specifie ptgaighat variables are changed
and how they are changed. In contrast, the spegtiéage only specifies something
that must be true when the method returns. For pkarthe postcondition in Perfect
language defines what variables are changed aoddalfénes the way of changing
them.

Second, the Perfect Language can implement theentrolgram. In contrast, the
Spec# language is used to add assertions to thErdgtamming language [16]. The
Perfect language has its own class, methods, Vitaad the rules of programming.
The Spec# language is based on the C# languagéh&ptogramming of the Perfect
language is not very flexible. In some conditiotisge Perfect Language can not
implement the requirements. For example, the Petfasguage doesn't support the
pointer or reference which are commonly supportedther language.

Third, the Perfect Language could be automagicaéinslated to code in Java,
C++, Ada and C# (which is a new features in thddeeiDeveloper version 4.0) by
using Perfect Developer. When the program of Perleanguage is verified
successfully, it can be changed to the prograndava, C++ and Ada. The generated
programs are also verified by the specification. i can generate the bug-free
program by using the Perfect Language.

3. Benchmarks and Solutions

This section presents all the benchmark probleors BBenchmark 1 to Benchmark 7
and the solutions of them. This section also gihesresults of the verifications of
each benchmark. In addition, we give the analysie@solution for the benchmark at
the end of each subsection.

3.1 Benchmark 1

Problem Requirements: Using Perfect Language, implement and verify an
operation that adds two numbers by repeated inere@nge Then implement and
verify an operation that multiplies two numbersrbpeated call the adding operation
which is implemented before.

Solution: In this benchmark, there are two parts of theirequent. One is
addition specification; the other is the multiptica based on the definition of
addition in the first specification.

First we need to implement the addition. The rezuent said implementing the
adding by repeated incrementing. So the basiciglgainput the two numbers x, y as
parameters into the add function and do the loagetdhe result. In each loop, we
increment 1 to the old result. The first resulthie number x. After y times loop, the
return result will be the addition of x and y. Ndlve problem we need to solve is how
to realize the loop process in Perfect languageoAting to the material of Perfect
language, there are two ways to do the loop. Ot use the loop statement; another
is to call the recursive function. Here we choosiagithe loop statement in our
solution. The add function code is as follows:

function add(x,y:int):int
A=x+y
via
var addresult:int!=x, addy:int!=([y>=0]: y,[]: -y);
loop
var j: nat!=0;
change addresult
keep addresult'=([y>=0]: x+",[]: X-}"
until j'=addy
decrease addy-j';
addresult!=([y>=0]:addresult+1,[]: addresult-1)
j'=j+1,
end;
assert addresult=x+y;
value addresult
end;

In the code above, we define a function named “adttich has two input
parameters x and y. The type of x and y both @egar. The add function will return
an integer value, and we define the return valualscgo the result of “x+y” by using
the token #=". To implement the addition by repeated incremantive need refine
the add function. The refinement codes are betweemwordvia and the lasénd.

First we define two integer type valuables “addi#sund “addy”. The “addresult” is
initialized to the value of x, and the “addy” istialized to the absolute value of y.

Then we define the loop process, which is betvibe wordoop and the firsend.
In perfect language, there is a certain structoreife loop statement. First we use the
var to define the temp valuable in the loop. Here efng a valuable named “j” and
initial it to 0. Second we use the warldange to show which valuable could be
changed during the loop. Here we let the “addréseltchangeable. The temp
valuable “” doesn’t need to declare to be chan@gediecause it is an inner valuable
of the loop. Then we declare the invariant statemdch should be maintained
during the whole loop. The invariant statemenbiifving the wordkeep. Here the
invariant code means that new value of addresoltlshequal to the result ok¥j ”

(if y>=0) or the result ofX-j " (if y<0). Next we set the condition for when tlo®p
should be stopped, by using the wardil. When the value of j equals to the value of
addy, the program will run out of the loop. And aleo use decr ease addy-j " to
make sure that the loop is not an infinite loope Tdop will be stopped after

“addy-j " times looping. After decrease statement, we ¢gineloop body which has
two statements here. One igldresult != ([y>=0]: addresult+1, []:

addresult-1) ", which means the new value of addresult will ddadhe result of its
old value plus one when the y>=0 or equal to tiseltef its old value minus one; the
other is set the value of j increase one.

After the loop process, we use the word assetettare the invariant statement
“addresult=x+y " which should be maintained during the refineméutthe end of
the refinement, we set the return value to be “esklyit” by following the wordralue.
Now the add function for addition is completed.

In the code above, there are many condition statesier checking the value of
y is less than 0 or not. We use these statemestste the problem which is: the
input number y may be less than 0. In our algorifbnrepeated incrementing, we
want the loop will run y times. But if the value pfs less than 0, there will be a
problem. So we improve the algorithm to let theploon |y| times. |y| means the
absolute value of integer y. The return resulhed tunction will be the addition of
the two input numbers x and y, no matter y is thas 0 or not.

Now we have the adding function and we need togdesbolutions to implement
the multiplication by using the adding function wiiwe just built. The main idea is
using the loop to perform repeated calling the faddtion. We define a multiply
function which accept two input numbers x and finegethis function to calculate the
product of these two input numbers by repeatedngaihe add function. The product
of x and y equals to the value of repeated addifuy ¥y| times (if y>=0) or the
inverse number of it (if y<0). In the end, this é&mon will return the value of the
product. The multi function code is as follows:

function multi(x,y:int):int
A=xry
via
var produ:int!=0, muly:int!=([y>=0]: y,[]: -y);
loop
var j:nat!=0;
change produ
keep produ'=x*j'
until j'=muly
decrease muly-j';
produ!=add(produ,x),
j'=j+1
end;
assert ([y>=0]: produ=x*y,[]: produ= -(x*y));
if
[y>=0]: value produ;
[]: value -produ
fi
end;

In the multi function above, we input two integ&rand y into the function as the
parameters and set the type of return value toteger. The return value of the
function is defined to be the product of x and lgefi we do the refinement of the
multiplication by repeated calling the adding fuaotbetween the wordia and the
lastend.

First we define two valuables “produ” and “mulyfdainitial their value to be O
and |y|. The loop structure is similar to the anthe add function. We define a temp
value “j” and initial it to be 0. And we only lethé¢ “produ” to be changeable during
the loop. The invariant which we should maintairach step of the loop is the new
“produ” must equal to the product of the x andiegv value of “j”. The loop exits
when the value of “j” equals to the “muly”. We ube sentence “decrease muly-j”” to
make sure the loop will not be infinite. Here thep body also has two sentences.
One is ‘produ!=add(produ,x) ". It sets the new value of “produ” by calling add
function to add the old value of “produ” and “x”nAther is same to the one in the
add function which is just increasing the j by o8e.in the loop process, the program
sets the valuable “produ” to be the result of tlievalue of “produ” plus “X” in each
time and exit the loop after running |y| timestha end, we use assert sentence to
make sure the invariant is always maintained dfftedoop and set the return value
depending on whether the “y” is less than 0 or 8otthe return value of the multi
function will be the product of the input number ‘and “y” and the refinement is
completed.

So now we give the main parts of the solution lfer benchmark 1. We build the
code in the Perfect Developer and generate thectaleato run.

Verification: So far we've focused on how to structure a cladshamw to write

method specifications. In Perfect language, we ia¢ssal to focus on how to use
preconditions to specify what needs to hold wheme¢ghod is called and how to use
the verification facility of Perfect Developer taake sure that the specification

doesn't involve for something untoward
end of a sequence [8]. In this subsectio

such asdilng by zero or indexing off the
n we venfiyPerfect language program and

give the result of it here. The Perfect Developbrclv we used to verify is of the

version 3.12.

The screenshot of the verifying the “add” functeord “multi” function is as

follows:

Results

werifying file 'D:\Program Files\Escher Technologies\Perfect Developerishixi\benchmark 12\Benchmark1.pd' ...
Generating verification conditions ... 25 verification conditions generated

Proving verification conditions ... confirmed 25 {100% confirmed, longest 0.0 seconds)

0 seconds

D:\Program Files\Escher Technologies|Perfect Developerishixbenchmark12\Benchmark1.pd {18,14): Information! Confirmed: Variant non-negative.

D:\Program Files\Escher Technologies\Perfect Developerishixibenchmark12\Benchmarkl.pd (21,5): Information! Confirmed: Variant decreases (defined at D:\Program Files\Escher Technologies\Perfect Developerishix\benchmarkl12iBer
D:\Program Files\Escher Technologies|Perfect Developerishixbenchmark12yBenchmark1.pd {21,15): Information! Confirmed: Precondition of ‘front’ satisfied (defined at built in declaration) in context of dass Benchmark1 [D:\Program Fi
D:\Program Files\Escher Technologies\Perfect Developerishixibenchmark12\Benchmarkl.pd (21,32} Information! Confirmed: Precondition of 1ast’ satisfied (defined at built in declaration) in context of dlass Benchmarkl [D:\Pragram File
D:\Program Files\Escher Technologies|Perfect Developerishixbenchmark12\Benchmark1.pd {31,9): Information! Confirmed: Loop initialisation establishes end condition or 3 valid variant (defined at D:\Program Files\Escher Technologies!,
D:\Program Files\Escher Technologies\Perfect Developerishixibenchmark12\Benchmarkl.pd (31,9): Information! Confirmed: Loop initialisation establishes loop invariant (defined at Dr\Program Files\Escher TechnologiesiPerfect Develope

D:\Program Files\Escher Technologies|Perfect Developerishix\benchmark12iBenchmark1.pd (34,21);
D:\Program Files\Escher Technologies\Perfect Developerishix\benchmark12iBenchmarkl.pd (39,10):
D:\Program Files\Escher Technologies|Perfect Developerishixbenchmark12iBenchmark1.pd (39,10):
D:\Program Files\Escher Technologies\Perfect Developerishix\benchmark12iBenchmarkl.pd (39,10):
D:\Program Files\Escher Technologies|Perfect Developerishixbenchmark12iBenchmark1.pd (39,10):
Di\Program Files\Escher Technolagies\Perfect Developerishixibenchmark12\Benchmarkl.pd (40,14}

i

i

D:\Program Files\Escher Technologies\Perfect Developerishiibenchmark12\Benchmarkl.pd (43,10

Infarmation! Confirmed:
Information! Confirmned:
Infarmation! Confirmed:
Information! Confirmned:
Infarmation! Confirmed:
Information! Confirmned:
Infarmation! Confirmed:
Information! Confirmned:

Type constraint satisfied (defined at built in declaration) in contesxt of class Benchmark [D:4Program Files\Esc
Loop body establishes end condition or decreases wariant (defined at D:\Program Files\Escher TechnologiestF
Loop body establishes end condition or preserves validity of variant (defined at D:\Program Files\Escher Techi
Loop body preserves loop invariant (defined at D:\Program Files\Escher Technologies!Perfect Developershixi
Loop body only modifies ohiects in 'change' list (defined at D:YProgram Files\Escher TechnologiesPerfect Der
Type constraint satisfied (defined at buitt in declaration) in context of class Benchmark1 [0:\Pragram Files\Est
Assartion valid in context of dass Benchmark1 [D:\Program Files\Escher Technologies\Perfect Developershix
Return value satisfies specification (defined at D:\Pragram Files\Escher Technalogies\Perfect Developerlshixilt

D:\Program Files\Escher Technologies|Perfect Developerishixbenchmark12\Benchmark1.pd (50,9): Information! Confirmed: Loop initialisation establishes end condition or 3 valid variant (defined at D:\Program Files\Escher Technologies!,
D:\Program Files!Escher TechnologiesiPerfect Developerishivitbenchmark12Y8enchmark1.pd (50,3): Information! Confirmed: Loop initialisation establishes loop invariant (defined at D:\Program Files\Escher TechnologiesiPerfect Develope

D:\Program Files\Escher Technologies\Perfect Developerishix|benchmark12iBenchmark1.pd (51,20):
D:\Program Files!Escher TechnologiesiPerfect Developerishivitbenchmark12y8enchmarkl.pd (56,13):
D:\Program Files\Escher Technologies\Perfect Developerishix|benchmark12iBenchmarkl.pd (56,13):
D:\Program Files!Escher TechnologiesiPerfect Developerishivitbenchmark12y8enchmarkl.pd (56,13):
D:\Program Files\Escher Technologies\Perfect Developerishix|benchmark12iBenchmarkl.pd (56,13):
D:\Program Files!Escher TechnologiesiPerfect Developerishivitbenchmark12Y8enchmarkl.pd (57,17):
D:\Program Files\Escher Technologies\Perfect Developerishix|benchmark12iBenchmarkl.pd (59,16):
D:\Program Files!Escher TechnologiesiPerfect Developerishivitbenchmark12y8enchmarkl.pd (61,17):
D:\Program Files\Escher Technologies\Perfect Developerishix|benchmark12iBenchmarkl.pd (62,13):
Generating verification output files ... 0 seconds

0 errars, 0 warnings found,

Compacting memary ... 0 seconds

t
(
(
(
(
(
(
(
(
(
(
{
D:\Program Files\Escher Technologies!Perfect Developerishid|benchmark12|Benchmark1.pd (42,26
{
{
{
{
{
(
{
(
{
(
{
(

Information! Confirmed:
Information! Confirned:
Information! Confirmed:
Information! Confirned:
Information! Confirmed:
Information! Confirmed:
Information! Confirmed:
Information! Confirmed:
Information! Confirmed:

Type constraint satisfied (defined at built in declaration) in contesxt of class Benchmark [0:4Program Files\Esc
Loop body establishes end condition or decreases watiant (defined at D:\Program Files\Escher TechnologiestF
Loop body establishes end condition or preserves validity of variant {defined at D:\Program Files\Escher Tech
Loop bady preserves loop invariant (defined at D:\Program Files\Escher TechnalogisstPerfect Developershisi
Loop body only modifies objects in 'change' list (defined at D:\Program Files\Escher Technologies!Perfect De'
Type constraint satisfied (defined at built in declaration) in context of dass Benchmark1 [D:\Program Files\Es
Aszertion valid in context of dass Benchmarkl [D:\Program Files\Escher Technologies\Perfect Developerishix
Return value satisfies specification (defined at D:\Program Files\Escher Technologies\Perfect Developershisilt
Return value satisfies specification {defined at D:\Program Files\Escher Technologies\Perfect Developerlshizilt

Fig.2 Verification Result of Benchmark 1

From the screenshot, we can see that all thecagidn conditions are confirmed
which are showed by green color. This means th#talconditions of the “add”
function and “multi” function can be proved.

Summary: In this sub section, we use table to show the gumiaits and

drawbacks of this benchmark’s solution

Summary of Benchmark 1’s Solution

Good points

Drawbacks

1. The add function solves the problem
that one number adds a negative numb

1. The running time of add function is too

dong. This is due to using the loop process
for adding. This problem can not be
solved, because the benchmark requires
the implementation of adding should be
the repeated increment.

2. The multi function also solves the
problem that one number multiplies a
negative number.

2. The running time of multi function is
too long. This is due to using the loop
process for multiplying. This problem can
not be solved, because the benchmark
requires the implementation of

multiplying should be the repeated
calling the add function.

3. The add function and multi function
are both proved ok in the verification.

Table 1: Summary of Benchmark 1's Solution

3.2 Benchmark 2

Problem Requirements. Implement and verify an operation by using binary
search algorithm [17] to find the entry of an ingata in a sorted sequence in Perfect
language.

Solution: According to the requirements of this benchmani,nged to perform
the binary searching in Perfect language. The pisearch algorithm is explained
very clearly in the reference article. So in thibsection we just focus on the
implementation of binary search in Perfect. Firstgive an array which contains N
elements, and the array is increasingly orderetthevalues of its elements. Then we
use the binary search algorithm to find the indiethe element whose value equals to
the input parameter “b”. In the end we get the xidi¢he input parameter “b” is in
the array or return -1 if “b” is not in there. Theaare several types of implementing
the binary search, like iterative, recursive eterédwe use the recursive to implement
the binary search which is the most straightforwarplementation. A recursive
function named “bisearch” is built to perform thiedry search algorithm. The
“bisearch” function code is as follows:

function bisearch(a: seq of int, b:int, low:int, hi gh:int):int
pre #a~=0, forall i::(1..((#a)-1)) :- a[i-1]<=a]i]
O<=low<=high<=(#a-1), forall e::a :- e#a=1
decrease (high-low)
A=([b in a]:a.findFirst(b),[]: -1)
via
if

[(high~=low)&a[(low+high)/2]>b]: value bisearch(a, b,
low, (low+high)/2);
[(high~=low)&a[(low+high)/2]<b]: value bisearch(a, b,

((low+high)/2)+1,high);
[a[(low+high)/2]=b]: value (low+high)/2;
[(high=low)&a[(low+high)/2]~=b]: value -1
fi

end;

In this function, it takes four input parametees’ is a sequence of integer which
is used to perform the array in Perfect; “b” isimteger valuable for searching; “low”
is an integer valuable which presents the mosindx of the ordered sequence “a”;
“high” is an integer valuable which presents thestm@ght index of the ordered

10

sequence “a”.

Before running this function, these parameters reeatisfy some preconditions
which are following the worg@re. First the input sequence “a” must not be an empty
sequence, which also means the length of the segufahishould not be 0. In Perfect,
it can be expressed as*=0". Second the elements of the sequence are sortheé i
increasing order on their value, which can be esgwéd as each element in the
sequence is larger than the previous one. To aehies precondition, we use the
Perfect’s built-in expression for the operationcofiection which is in the form like:

foral | identifier::collection : - condition
This expression yields true is all the elementsadiection satisfy the condition, or
the collection is empty. To ensure each elemelarger than the previous element in
the sequence, we use the expressiaflfi:(1..((#a)-1)):- afi-1]<=ali] ”
Here the collection is the integers from 1 to (#a)he #a means the length of the
sequence “a”. This expression yietdae if each integer “i” from 1 to #a-1 satisfies
the condition 4[i-1]<=a[i] ”. So if this expression yieldsue, it ensures that each
element is larger than the previous element irstpience “a”. Next the value of
input “low” should be less than the value of influgh”, and they are both in the
domain of sequence “a”. At the end of the precoowljtwe use the expression
“forall e::a :- e#a=1 " to ensure that each element in the sequencedsi@nThe
condition “e#a=1" means the the frequency of edetment “e” in the collection “a”
equals to one. In another words, each elements“ahique in the collection “a”.

After precondition, keywordecr ease and the expressionhigh-low) "
followed compose the variant part which is useduarantee termination in this
recursive function. The expressiapigh-low) " is guaranteed to decrease on every
recursion but never to become negative. Then wiheetturn value of the function
to be the index of the element which has the saahes\as “b” in the sequence “a” if
“b” is an element of “a”, or to be -1 if “b” is n@in element of “a”.

In Perfect language, the recursive function is alsplemented by the refinement.
The refinement part is from the wovdh to the lasend. In the recursive version of
binary search, it recursively searches the subrbeteeen “low” and “high”. If the
middle element of the subrange equals to the ifigutunction will return the index
of this element. Otherwise, the function will détlelf recursively and set the new
parameters. If the middle element is larger thanwe set the new “high” to be the
index of the middle element which igow+high)/2 ”; if the middle element is less
than “b”, we set the new “low” to be the index bétmiddle element. And if the value
of “low” equals to the value of “high”, we will retn -1 to indicate that the key word
“b” cannot be found in the collection “a”. To pemfo this in Perfect, we use the
conditional expressions in refinement. There atg éomnditions of the refinement of
this post-condition.

a) If “low” isn’t equal to “high” and the middle elemeis larger than the input

“b”, then call the bisearch function and pass thew parameters which
replaces the “high” with the(iéw+high)/2 ”. The code in Perfect is as
follows:

“[(high~=low)&a[(low+high)/2]>b]: value bisearch(a, b, low,

11

(low+high)/2); K

b) If “low” isn’t equal to “high” and the middle elemeis less than the input
“b”, then call the bisearch function and pass thew parameters which
replaces the “low” with the(fow+high)/2 ”. The code in Perfect is as
follows:

“[(high~=low)&a[(low+high)/2]<b]: value bisearch(a, b,
((low+high)/2)+1, high); "

c) If the middle element equals to the input “b”, thiba function return the
value of ‘low+high)’2 " which is the index we are searching for. And the
function will stop recursively calling. The codeRerfect is as follows:
“[a[(low+high)/2]=b]: value (low+high)/2; K

d) If “low” equals to “high” and the middle elementnst equal to “b”, then
return value -1 which means the input “b” is nothe sequence. And the
function stop recursively calling. The code in Retfis as follows:
“[(high=low)&a[(low+high)/2]~=b]: value -1 K

The problem we met during the implement is houdettme the return value of

this function before its refinement. We want thiadtion return the index of the
element which equals to the input “b” or -1. Howus® the input parameters to define
this return value is a problem. The built-in metloddPerfect collection solves this
problem. The input parameter “a” is type of seqeenbich has a method named
“findFirst(x)”. This method returns the index oktheftmost occurrence of x in
sequence. So the return value of bisearch functonbe defined by using this
method. And now we have given the solution of bematk for binary search in
Perfect.

Verification: Here we verify the solution program in the Perfeevelop to

prove all the conditions in it. The result screerish as follows:

Results

EE=nvy
D:\Program Files\Escher Technologies\Perfact Developer\shixibenchmark 12\Benchmark2.nd (16,45): Information! Confirmed: Precondition of '[]' satisfied (defined at buit in declaration),

D:\Program Files\Escher Technalogies\Perfect Developerishixiibenchmark12\Benchmark2.pd (16,47): Information! Canfirmed: Type constraint satisfied (defined at built in declaration).

D:\Program Files\Escher Technologies\Perfect Developer\shixibenchmark12\8enchmark2.pd (16,53): Information! Confirmed: Precondition of '[]' satisfied {defined at buit in declaration)

D:\Program Files\Escher Technalogies\Perfect Developerishixitbenchmark12\Benchmark2.pd (16,54): Information! Confirmed: Type constraint satisfied (defined at built in declaration).

D:\Program Files\Escher Technologizs\Perfect Developer\shixberchmark 124Benchmarkz.pd (17,14): Information] Confirmed: Variant non-regative.

D:\Program Files\Escher Technologies\Perfact Developer\shixfbenchmark 12\Benchmarkz.pd (22,3): Information! Confirmed: At least one guard is true in context of dlass Benchmark [D:\Program Files\Escher Technologies\Perfect Develap
D:\Praogram Files\Escher Technologiss\Perfect Developer\shixitbenchmark 12\Benchmark2. pd (22,23); Information! Confirmed: Precondition of '[]' satisfied (defined at buit in declaration) in cantext of class Benchmark2 [D:\Programn Fles\Esc
D:\Program Files\Escher Technologies\Perfect Developer\shixfibenchmark 12\Benchmarkz.nd (22,34): Information! Confirmed: Precondition of '/* satisfied {defined at built in declaration) in context of diass Benchmark2 [Dr\Program Fles\Esc]
D:\Program Files\Escher Technologies\Perfect Developerishixiibenchmark 12\Benchmark2, pd (22,34); Information! Confirmed: Type constraint satisfied (defined at built in declaration) in context of dass Benchmark2 [D:\Program Files\Esche
D:\Program Files\Escher Technologies\Perfect Developer\shixiibenchmark 12\Benchmarkz.pd (22,43): Information! Confirmed: Return value satisfies specification (defined at D:\Program Flles\Escher TechnoiogiestPerfect Developer\shix\ber
D:\Program Files\Escher Technologies\Perfect Developerishixi|benchmark 12\Benchmark2.pd (22,49); Information! Confirmed: Precondition of ‘bisearch’ satisfied (defined at D:\Program Files\Escher Technologies!Perfect Developer\shixi\ber
D:\Program Files\Escher Technologiss\Perfect Developer\shixiberchmark 12\Benchmarkz.pd (22,49): Information] Confirmed: Precoindition of bisesrch’ satisfed (defined at D\Program Fles\Escher Technoiogies\Perfect Developer\shid\ber
D:\Program Files\Escher Technologies\Perfact Developer\shixfbenchmark 12\Benchmarkz.pd (22,49); Information! Confirmed: Precondition of ‘bisearch’ satisfied (defined at D:\Program Flles\Escher TechnoiogiestPerfect Developer\shixiber
D:\Program Files\Escher Technalogies\Perfect Developerishixibenchmark 12\Benchmark2.pd (22,48): Informatian! Canfirmed: Precondition of ‘bisearch’ satisfied (defined at D:\Pragram Files\Escher Technologies\Perfiect Developerishixiiber
D:\Program Files\Escher Technologies\Perfect Developer\shixfibenchmark 12\Benchmarkz.nd (22,49): Information! Confirmed: Variant decreases (defined at Dr\Program Flles\Escher TechnalogiesiPerfiect Developershixiibenchmark12\Benc!
D:\Program Files\Escher Technologies\Perfect Developerishixi|benchmark 12\Benchmark2,pd (22,79); Information! Confirmed: Precondition of 'f* satisfied (defined at built in declaration) in context of class Benchmarka [DYProgram Files\Escl
D:\Program Files\Escher Technologies\Perfect Developer\shixiibenchmark 12\Benchmarkz.pd (23,23): Information! Confirmed: Precondition of ‘[satisfied (defined at buit in declaration) in context of class Benchmark2 [D:\Program Flles\Est
D:\Program Files\Escher Technologies\Perfect Developer\shixi\benchmark 12\Benchmark2.nd (23,34): Information! Confirmed: Precondition of '/* satisfied {efined at built in declaration) in context of dass Benchmarka [D:\Program Files\Escl
D:\Program Files|Escher Technologiss\Perfect Developer\shixibernchmark 12\Benchmarkz.pd (23,34): Information] Confirmed: Type constraint satisfied (defined 3t bt in declaration) in context of class Benchmarkz [D:\Program Fles\Esche
D:\Program Files\Escher Technologies\Perfect Developer\shixfbenchmark 12\Benchmarkz.nd (23,43): Information! Confirmed: Return value satisfies specfication (defined at D:\Program Flles\Escher TechnoiogiesiPerfect Developer\shixi\her
D:yProgram Files\Escher Technalogies\Perfect Developerishixibenchmark 12\Benchmark2.pd (23,48): Informatian! Canfirmed: Precondition of ‘bisearch’ satisfied (defined at D:\Pragram Files\Escher Technologies\Perfect Developerishixiiber
D:\Program Files\Escher Technologies\Perfect Developer\shixfibenchmark 12\Benchmarkz.pd (23,49): Information! Confirmed: Precondition of ‘bisearch’ satisfied (defined at D:\Program Flles\Escher TechnoiogiesiPerfect Developer\shixiher
D:\Program Files\Escher Technalogies\Perfect Developerishixi|benchmark 12\Benchmarka,p (23,49); Information! Confirmed: Precondition of bisearch’ satisfied (defined at D:\Program Files\Escher Technologies!Perfect Developershixi\ber
D:\Program Files\Escher Technologies\Perfect Developer\shixiberchmark 12\Benchmarkz.pd (23,49): Information] Confirmed: Precoindition of bisearch’ satisfied (defined at D\Program Fles\Escher Technoiogies\Perfect Developer\shi\ber
D:\Program Files\Escher Technologies\Perfact Developer\shixiibenchmark 12\Benchmark2.pd (23,49); Information! Confirmed: Variant decreases (defined at D:\Program Files\Escher Technalogiss\Perfiect Develapertshixi\benchmark12\Benc]
D:\Praogram Files\Escher Technologiss\Perfect Developer\shixitbenchmark 12\Benchmark2.pd (23,74): Information! Confirmed: Precondition of 'f* satisfied (defined at built in declaration) in context of dass Benchmark2 [DiiProgram Fles\Esc|
D:\Program Files\Escher Technologies\Perfact Developer\shixfbenchmark 12\Benchmarkz.nd (24,11): Information! Confirmed: Precondition of '[]' satisfied (defined at buit in declaration) in context of class Benchmark2 [D:\Program Flles\Est
D:\Program Files\Escher Technalogies\Perfect Developerishixibenchmark 12\Benchmark2. pd (24,22): Informatian! Canfirmed: Precondition of '/ satisfied (defined at built in declaration) in context of dass Benchmark2 [D:\Program Files\Escl
D:\Program Files\Escher Technologies\Perfect Developer\shixfibenchmark 12\Benchmarkz.nd (24,22): Information! Confirmed: Type constraint satisfied (defined at buit in declaration) in context of class Benchmark2 [D:\Program Files\Esche
D:\Program Files\Escher Technologies\Perfect Developerishixi\benchmark 12\Benchmark2.pd (24,30); ¥Warning! Exceeded boredom threshold proving: Retum value satisfies specification {defined at 0:\Program Files\Escher Technologies\Per
D:\Program Files\Escher Technologies\Perfect Developer\shixiberchmark 12\Benchmarkz.pd (24,46): Information] Confirmed: Precoindition of 'f* satisfied (defined at built in declaration) in cortest of dass Benchmark2 [Dn\Program Fles\Escl
D:\Program Files\Escher Technologies\Perfact Developer\shixiibenchmark 12\Benchmark2.nd (25,22); Information! Confirmed: Precondition of ‘[satisfied (defined at buit in declaration) in context of class Benchmark2 [D:\Program Files\Est
D:\Praogram Files\Escher Technologiss\Perfect Developer\shixitbenchmark 12\Benchmark2.pd (25,33): Information! Confirmed: Precondition of /" satisfied (defined at built in declaration) in context of dass Benchmark2 [Di\Program Fles\Esc|
D:\Program Files\Escher Technologies\Perfect Developer\shixfibenchmark 12\Benchmarkz.pd (25,33): Information! Confirmed: Type constraint satisfied (defined at buit in declaration) in context of class Benchmark2 [D:\Program Files\Esche
D:\Program Files\Escher Technologies\Perfect Developerishixiibenchmark 12\Benchmark2.pd (25,42); Warning! Unable to prove; Retumn value satisfies specification (defined at Di\Program Files\Escher Technologies\Perfect Developerishixilt
Generating verification output files ... 0 secands

0 erars, 2 warnings found.

Compacting memary ... 0 seconds

Fig.3 Verification Result of Benchmark 2

The verification result has two warnings:

12

The first warning is b:\Program Files\Escher Technologies\Perfect

Developer\shixi\benchmark12\Benchmark2.pd (24,30): Warning! Exceeded
boredomthresholdproving:Returnvaluesatisfiess pecification(defined

at D:\Program Files\Escher Technologies\Perfect
Developen\shixi\benchmark12\Benchmark2.pd (18,7)) i n context of class
Benchmark? [D:\Program Files\Escher Technologies\Pe rfect
Developen\shixi\benchmark12\Benchmark2.pd (7,1)] (s ee D:\Program
Files\Escher Technologies\Perfect
Developer\shixi\benchmark12\Benchmark2_unproven.htm #5), cannot prove:
((low + high) / 2) = ([b in a]: a.findFirst(b), []: -1). 7

This warning means the code in the line 24 pasi80 of the Benchmark2.pd can
not be proved. The code in that position jsf(fow+high)/2]=b]: value
(low+high)/2 ”. The prover said it cannot provgléw+high)/2)=([bina]:

a.findFirst(b),[]:-1) ”. But we can see the function returns tkiew'+high)y2 ”
only when %4[(low+high)/2]=b " is satisfied. So the problem here is the prover
thinks the condition&[(low+high)/2]=b " doesn’t equal to the condition(lgw +
high) / 2) = [b in a]: a.findFirst(b) ”. This warning still cannot be solved.
The second warning i®*Program Files\Escher Technologies\Perfect
Developer\shixi\benchmark12\Benchmark2.pd (25,42): Warning! Unable to
prove: Return value satisfies specification (define d at D:\Program
Files\Escher Technologies\Perfect
Developer\shixi\benchmark12\Benchmark2.pd (18,7)) i n context of class
Benchmark? [D:\Program Files\Escher Technologies\Pe rfect
Developer\shixi\benchmark12\Benchmark2.pd (7,1)] (s ee D:\Program

Files\Escher Technologies\Perfect
Developer\shixi\benchmark12\Benchmark2_unproven.htm #1), cannot prove:
-1 = ([b in a]: a.findFirst(b), []: -1). K

This warning means the code in the line 25 pasiid of the Benchmar2.pd can
not be proved. The code in this position [ghigh=low)&a[(low+high)/2]~=b]:
value-1 . The problem is like the first one. The proveinththe condtion fb~ina]:
-1 " not equal to the condtiorj(high=low)&a[(low+high)/2]~=b]: value -1 ”
This warning still cannot be solved.

Summary: We list the good points and drawbacks of the smiufor the
benchmark 2 in the following table.

Summary of Benchmark 2’s Solution

Good points Drawbacks

1. Directly implement the binary search| 1. Not all the conditions can be proved jn
in the Perfect language and it works fingthe program.

2. The binary search is only for the
integer type sequence.

Table 2: Summary of Benchmark 2’s Solution

13

3.3 Benchmark 3

Problem Requirements: Sort an ordered queue in Perfect language. Spacify
gueue ADT which is generated by the built-in typeRerfect language. Verify and
implement the sort method for this queue.

Solution: In this benchmark, the main job is to realizegbd algorithm for a
gueue in Perfect language. There are two parts®benchmark. One is building a
gueue class by the other built-in types in Perfactther is implementing the sort
algorithm on the queue ADT in Perfect.

First we solve the problem of building the quewsssl A queue ADT [18] is a
collection of elements and has some operations asitiead (return head element),
enqueue(input a new element into the queue), defreenove the head of the queue)
and isempty(check whether the queue is empty)letperform this in Perfect, we
need to use the built-in types to generate a nassatamed Queue and implement the

methods for it. The “Queue” class code is as folow
class Queuen=

abstract
var myqueue: seq of int;
interface
function myqueue;
function head:int
pre #myqueue>0
A=myqueue.head,;
function getLength:int
A=#myqueue;
function findmax:int
pre #myqueue>0
A=myqueue.max;
schema |IEnqueue(input:int)
post([input~inmyqueue]:myqueue!=myqueue.append(input),
[]: pass);
schema IDequeue
pre #myqueue>0
post myqueue!=myqueue.tail;
build{}
post myqueue!=seq of int{};
build{inputseq: seq of int}
post myqueue!=inputseq;
end;

Class Queue has a variable nameghtieue” which is used to store the elements
of Queue. It is a sequence of integer elementss@aieue also has four functions,
two schemas and two constructors. The functioyytieue” makes the variable

14

“myqueue” accessible. The functiorméad” returns the value of the first element of
the Queue by using the built-in method head. Thetfan “getLength " gets the
value of the length of the Queue. The functiémdinax " yields the maximum
element of the Queue by calling the built-in methogqueue.max ”. The schema
“Enqueue ” appends the input element to the sequence éldment is not in it. This
schema calls the method append of the collectiqnesece to add the input element.
The schema “Dequeue” removes the head elementtfremueue. The method
“myqueue.tail” returns the sequence “myqueue” whih “myqueue.head” removed.
There are two constructors for the Queue class.Haseno input parameters; the
other has one parameter for assigning the valueygiieue.

Next we need to build a function to sort the Quetech we just defined. This
function should sort the input Queue and returrstiréed Queue. There are several
sort algorithms [19]. The main idea of the sortadgorithm we used here is: First find
the max element in the input Queuel and comparbkdhéd element of Queuel with
the max element. If they are not equal, removeéhttaa element of Queuel and then
add it to the end of Queuel,; if they are equal awsrthe head of Queuel and add it
to the end of Queue2. Repeat this process unttieuel only left one element and
then return the Queue2. Now we build a recursinetion named “SortQueue” to

implement the above sort algorithm. The code otfiom “SortQueue” is as follows:
function SortQueue(Q1: Queue, Q2:Queue):Queue

pre Ql.getLength>0

decrease Q1.getLength

satisfy

forall i::(0..((Q1.getLength)-2)):-result. myqueue[i] <=
result.myqueue[i+1]

via

let max*=Q1.findmax;

let temp”=Q1.head;

let Q2T "=Q2;

let QT"=Q2 after it'Enqueue(Q1.head);

let Q1T "=Q1 after it'Dequeue;

let Q1TT ~=Q1 after it'Dequeue then ittEnqueue(tem p);
if
[Q1.getLength >1 & temp=max]: value SortQueue(Q1 T,QT);
[Q1.getLength>1&temp~=max]:value SortQueue(Q1 TT,Q2T);
[]: value QT
fi

end;

The function “SortQueue” has two parameters Q1Q@Bdavhich are both in the
type of the class Queue defined above. The retalurevof function “SortQueue” is
also in the type of class Queue. The preconditfdhefunction is the length of the
Q1 is above 0. And we also use the statem#mtéase Q1.getLength " to
guarantee the function’s termination. One problamehs how to define the return

15

value of the function. The return value should s®@@ed queue, but express it by the
input parameters is a little difficult. In Perfetitere are two options for defining a
function: one is using*s" statement; another is usinggtisfy " statement. Here we
use the Satisfy " statement to define the return value of this fimcshould satisfy
what conditions. A sorted queue in increasing ordeans each element in the queue
is less than the next element. In Perfect, it caexpressed astofall
i:(0..((Q1.getLength)-2)):-result. myqueue[i] <=re sult.myqueue[i+1]
The “result” in the statement is instead of theimetvalue of the function which
should be a sorted queue.

To perform the sort algorithm, we also do thenefinent to this function. First we
define six variables: “max” is the max elementled Q1; “temp” is the head element
of the Q1; “QT" is equal to the Q2 adding the he&®@1; “Q1T” is equal to the Q1
removing the head; “Q1TT” is equal to the Q1 remguihe head and then adding the
head element again. Next we use conditional exjgressvhich are between the “if”
and “fi".

a) If the length of Q1 more than 1 and “temp” equalsmax”, call the function

again and pass the parameters with “Q1T” and “QT".

Ql Max q2 Q1 Q2

Mz

head

head

Fig.4 The First Condition of Processing the Sortihgeue.

b) If the length of Q1 more than 1 and “temp” is nquial to “max”, call the
function again and pass the parameters with “Q1and “Q2T".

Ql Max q2 Q1 Q2

Mz

head

head

Fig.5 The Second Condition of Processing the Spi@neue.

c) Otherwise the function returns the QT.

16

aL Max Q2 a1 Mz 02

head

head

Fig.6 The Third Condition of Processing the Sorfugue.

So the benchmark 3 has been solved by this solufi@ncan generate a queue
ADT by the class Queue and sort this queue obpepials it into the function
“SortQueue” which will sorting the queue and rettira sorted one.

Verification: Here we give the result screenshot of verifyingghegram in
Perfect Developer as follows.

werifying file '0n\Program Files'\Escher Technologies\Perfect Developerishixibm3ibm3.pd' ...

Generating verification conditions ... 20 verification conditions generated

Proving werification conditions ... confirmed 15, unprovable 4, too hard 1 (75.0% confirmed, longest 0.0 seconds)
204 seconds

O:yProgram Files\Escher Technologies\Perfect Developershixiibrnzibm2. pd
D:4Program FileshEscher TechnologieshPerfect Developershixibrmabma, pd
[:YProgram Files\Escher Technologies\Perfect Developershixiibrm3ibm3. pd
D:YProgram Files\Escher Technologies\Perfect Developershixibrm3ibm3. pd
[:YProgram Files\Escher Technologies\Perfect Developershixiibrm34bm3. pd
[:YProgram Files\Escher Technologies\Perfect Developershixiibrm34bm3. pd
[:\Program Files\Escher Technologies\Perfect Developershixibm3ybm3. pd
[:\Program Files\Escher Technologies\Perfect Developershixibm3ybm3. pd
[:YProgram Files\Escher Technologies\Perfect Developershixibm3ibm2. pd
OnyProgram Files\Escher Technologies\Perfect Developershixibrn2ibm2. pd
OiyProgram Files\Escher Technologies\Perfect Developershixi\brn2ibm2. pd
OiyProgram Files\Escher Technologies\Perfect Developershixiibrn2ibm3. pd
OiyProgram Files\Escher Technologies\Perfect Developershixiibrn2ibm3. pd
O:yProgram Files\Escher Technologies\Perfect Developershixi\brnzibms. pd
O:yProgram Files\Escher Technologies\Perfect Developershixiibrnzibm2. pd
D:4Program FileshEscher TechnologieshPerfect Developershixibrmabma, pd
[:YProgram Files\Escher Technologies\Perfect Developershixiibrm3ibm3. pd
[:YProgram Files\Escher Technologies\Perfect Developershixiibrm3ibm3. pd
[:YProgram Files\Escher Technologies\Perfect Developershixiibrm34bm3. pd
[:YProgram Files\Escher Technologies\Perfect Developershixiibrm34bm3. pd

Generating werification output files ... 0 seconds
0 errors, 5 warnings found.

15,17
17,56
17,57
17,75
17,77
19,17
20,18
22,36
23,27
24,268
26,40
26,46
26,46
27,40
27,496
27,46
28,13
44,15
51,15
58,27

1 Information! Confirmed: Yariant non-negative.

1 wWarning! Unable to prove: Precondition of '[]' satisfied (del
¥ Information! Canfirmed: Type constraint satisfied (defined :
) wWarning! Unable to prove: Precondition of '[]' satisfied (del
¥ Information! Canfirmed: Type constraint satisfied (defined «
¥ Information! Canfirmed: Precondition of findmax' satisfied (
¥ Information! Canfirmed: Precondition of 'head' satisfied (de
¥ Information! Canfirmed: Precondition of 'head' satisfied (de
¥ Information! Confirmed: Precondition of 'Dequeue’ satisfied
1 Information! Confirmed: Precondition of 'Dequeus’ satisfied
1 wWarning! Exceeded time limit proving: Return value satisfies
1 Information! Confirmed: Precondition of 'SortQueus’ satisfie
1 Information! Confirmed: Yariant decreases (defined at Di\P
1 wWarning! Unable to prove: Return value satisfies specificatic
1 Information! Confirmed: Precondition of 'SortQueus’ satisfie
1 wWarning! Unable to prove: Variant decreases (defined at O:
) Information! Canfirmed: Return value satisfies specification 1
) Information! Confirmed: Precondition of 'head' satisfied (de
¥ Information! Canfirmed: Precondition of 'max’ satisfied (defi
¥ Information! Canfirmed: Precondition of 'tal' satisfied (defin

Fig.7 Verification Result of Benchmark 3

The result shows that there are 0 errors and &ings being found. We are
trying to fix all the warnings of this benchmarkddater ones now. So each warning
will not be described here. We just give the curkamification’s result.

Summary: We list the good points and drawbacks of the smiufor the
benchmark 3 in the following table.

17

Summary of Benchmark 3’s Solution

Good points Drawbacks

1. Directly implement the queue sorting 1. Not all the conditions can be proved n
in Perfect language and it works fine. | the program.

2. Generate the class Queue in Perfect, 2. The running time is too long for sorting
and use it for sorting. the queue.

3. The queue is not generic for collectign
of other types

14

4. Don'’t give the find max function while
just using the built-in method to find it.

Table 3: Summary of Benchmark 3’s Solution

3.4 Benchmark 4

Problem Requirements. Implement and verify a mgg0] data type which is
made by the other built-in types in Perfect languddis new type should have the
common map's features and functions.

Solution: In the map ADT, a value is mapped to a unique Remap object has
two collections to store key and value pairs. Amel thap object also has methods to
add key and value, find value by key or remove &eag value. In this benchmark, we
need to build a map class by the other built-iresym Perfect. To perform this in
Perfect language, the map’s two collections of &eg value are represented by two
sequences and the map’s methods are implementie hiynctions and schemas. The

class Map’s code is as follows:
class Map”=

abstract
var Keys: seq of int,
Values: seq of string;
interface
schema ladd(key:int, inputvalue: string)
post ([key in Keys]: (let index*=FindIndex(key);
Values[index]!=inputvalue), []: Keys!=Keys.append (key) &
Values!=Values.append(inputvalue));
schema Iremove(key:int)
post ([key in Keys]: (let index*=FindIndex(key);
Keys!=Keys.take(index)++Keys.drop(index+1), Values I=
Values.take(index) ++Values.drop(index+1)), []:pa SS);
function ISEmpty: bool
"=([#Keys>0]:false,[]:true);
function FindIndex(key:int):nat //linear? or Binar y?
pre #Keys >0
A=([key in Keys]: Keys.findFirst(key), []: -1);
function Findkey(key:int): string

18

pre #Keys>0
A=([Keys.findFirst(key)~=-1]:Values[Keys.findFirst (key)],
[:"-17);

build{}
post Keys!= seq of int{}, Values!=seq of string{};

build{inputkeys : seq of int,inputvalues: seq of s tring}
pre #inputkeys=#inputvalues
post Keys!=inputkeys,Values!=inputvalues;

end;

In the abstract section of class Map, we declacevialuables Keys and Values
which are both in the type of sequence. One seguanttains the key data of the
map; another sequence contains the value dat& ohép. Each pair of key and value
has a mapping relationship. Here this mappingioziahip is represented as the same
index of them in the two sequences.

In the interface section of class Map, we defime schemas: one is named “add”,
the other is named “remove”.

The “add” schema adds the input parameters “kag’“@putvalue” into the map.

In Perfect we use a conditional postcondition tecthwhether the key is in the map
before adding. If the key is in the map, then fine index of Key in the sequence
“Keys” and change the value to the input valuenm sequence “Values” which has
the same index. If the key is not in the map, vet add the key and value at the end
of each sequence. They have the same index inseagcience.

The “remove” schema removes the key and valueamtap if the input “key” is
in the map. We also use the conditional postcomdlitd perform it.

a) If the input “key” is in the map, we do the follavg steps to remove the

“key” and the value which the “key” is mapping tarst, find the index of
“key” and store it to value “index”. Next, mergeetelements before the
element in “index” and the elements after the elenme“index”. Then
change the “Keys” to be the new sequence. The ssime

“Keys.take(index) " returns a sequence comprising the first inderelets
of Keys and the expressioreéys.drop(index+1) " returns a sequence with
the first index elements of seql removed. So coethiese two returns, we
can get the sequence which removes the elemenfkelyalso we do it
again to remove the mapping value in the “Values”.

b) If the input “key” is not in the map, the functidoeesn’t do anything.

We also have defined three functions in the didag: ISEmpty, Findindex and
Findkey.

a) The function “ISsEmpty” returns a bool value to shewvether the map is
empty. The function “FindIndex” has one input \alltey”. It finds the
index of the “key” in the map. If the “index” is the map, the function
“FindIndex” returns the index; otherwise it returdswhich means the “key”
is not in the map.

b) The function “Findkey” find the value which is maggpby the “key”. If the

19

“key” is in the map, the function “Findkey” returtige value; if not, the
function returns -1 which means the key is nohmmap and nothing is
found.

The class Map has two constructors. One has na pgrameter; anther has two
parameters which are the sequence of integer ansktijuence of string. The previous
constructor just initials the values “Keys” to ey sequence of integer and
“Values” to be empty sequence of string.

So now the solution implements the benchmarkd4itamals been tested ok in the
main program.

Verification: Here we give the result screenshot of verifyingghegram in
Perfect Developer as follows.

wertifying file 'D:\Program Files\Escher TechnologiesPerfect Developeryshixibrndibrd.pd' ...

Generating verification conditions ... 15 verification conditions generated

Proving verification conditions ... confirmed 10, unprovable 3, too hard 2 (66.6% confirmed, longest 0.0 seconds)
358 seconds

O:yProgram Files\Escher Technologies\Perfect Developershixitbm4ibms.pd (23,34): Information! Confirmed: Precondition of 'Findlndex’ satisfie
CnyProgram Files\Escher Technologies,Perfect Developershixibr4ibmd.pd (23,56): Warming! Unable to prove: Precondition of '[]' satisfied (dh
D:YProgram Files\Escher TechnologiesiPerfect Developershixibrm4ibrn4.pd (23,57): Information! Confirmed: Type constraint satisfied (defined
CnyProgram Files\Escher Technologies,Patfect Cevelopershixibrm4ibma.pd (26,34): Information! Confirmed: Precondition of ‘Findlndex’ satisfie
D:\Program Files\Escher TechnologiesiPerfect Developershixibrm4ibrmd.pd (26,61): Information! Confirmed: Precondition of 'take' satisfied (d:
O:yProgram Files\Escher Technologies\Perfect Developershixitbm4ibm.pd (26,66): Information! Confirmed: Type constraint satisfied (defined
CnyProgram Files\Escher Technologies,Perfect Developershixibr4ibmd.pd (26,790 Information! Confirmed: Precondition of 'drop’ satisfied (dh
D:YProgram Files\Escher TechnologiesiPerfect Developershixibrmdibrn4.pd (26,89): Information! Confirmed: Type constraint satisfied (defined
CryProgram Files\Escher Technologies,Parfect Developershixibrm4ibms.pd (26,109): warning! Excesded boredom threshold proving: Preconc
D:\Program Files\Escher TechnologiesiPerfect Developershixibrm4dibrmd. pd (26,114) Information! Confirmed: Type constraint satisfied (define
CnyProgram Files\Escher Technologies,Parfect Developershixibrm4ibmd.pd (26,129): warning! Excesded time limit proving: Precondition of 'd
D:\Program Files\Escher TechnologiesiPerfect Developershixibrm4dibrmd. pd (26,139): Information! Confirmed: Type constraint satisfied (define
O:yProgram Files\Escher Technologies,Perfect Developershixibm4ibm.pd (34,3 Warning! Unable to prove: Type constraint satisfied (define
CryProgram Files\Escher Technologies,Perfect Developershixibr4ibmd.pd (40,260 Warming! Unable to prove: Precondition of '[]' satisfied (dh
D:YProgram Files\Escher TechnologiesiPerfect Developershixibrmdibrm4.pd (40,42): Information! Confirmed: Type constraint satisfied (defined

Generating verification output files ... 0 seconds
0 errors, 5 warnings found,

Fig.8 Verification Result of Benchmark 4

The result shows that there are 0 errors and 5imgsibeing found. We are
trying to fix all the warnings of this benchmarkddater ones now. So each warning
will not be described here.

Summary: We list the good points and drawbacks of the smiufor the
benchmark 4 in the following table.

Summary of Benchmark4’s Solution

Good points Drawbacks

1. Successfully implement the map ADT 1. Not all the conditions can be proved n
by using the other built-in types in the program.

Perfect..

2. The map is not generic for other types
besides integer mapping to string.

Table 4. Summary of Benchmark 4’s Solution

20

3.5Benchmark 5

Problem Requirements: Implement a linked-list Queue [2ADT in Perfect
language. This Queue ADT is represented by usimked data structure.

Solution: In other languages, the linked-list queue can bfopeed in several
ways. In C language, the linked-list queue is Hwlusing pointers to get the
valuable’s memory location. In Java language, itieed-list queue can be performed
by using the reference valuables to link each otBet in Perfect, there is not pointer
and only has reference which is used for heap §pehe difficulty of this
benchmark is how to perform the link relationshgivizeen nodes.

First we build a class named “Node” which is usete the element in the
linked-list queue. The “Node” object contains twaluables. One is the value of this
node; the other one is used to link the next ndde.code of the class “Node” is as
follows:

class Node "=
abstract
var data: int, next: seq of Node;
interface
selector data;
selector next;
schema !setnext (nextnode: Node)
post ([#next=0]: next!=next. append(nextnode), []: next[0]!=nextnode) ;
build{}
post data!= 0, next!= seq of Node{};
build{dt: int}
post data!=dt, next!= seq of Nodef{}:

end;

The class “Node” has two valuables in the abssaction. The “data” stores the
value of current node. The “next” is of the typed<f Node”, which means it is a
sequence of Nodes. The “next” is used to link et mode. In Perfect language if a
class is referred twithin a type expression in one of its own membssiarations, ,
the reference must be conditional either by theafigsewhen-clause or a union of
types or a suitable templdtd. This is used to avoid the infinite recursi@u here
we use the “seq of Node” instead of the “Node”, pradl use the “next[0]” to link to
the next node.

In the interface section, we declare the valuatid¢éa” and “next” to be writable
by using the key woreelector. The class Node also has a schema named “setnext”
which is used to set the next node to the currbjgab. The input next node object is
stored in the first element of sequence “next”.r€here two constructors to initial the
Node object with no parameter or one parameter.

Now we come to build the class ListQueue whichtaims the Node objects as
elements. The linked data structure should be pedd for the class ListQueue. The

21

class also should have the basic features of Qileuadd Node, remove Node and
get the first Node. The difficulty here is how tesiyn the data structure. First we give
the basic structure of the class ListQueue. The te®ds follows:
class ListQueue "=
abstract
var head: Node, spine: seq of Node;
interface
function Isempty: int ~=([#spine>0]:1, []:0):
function findtail (headnode : Node) :Node

function getnewhead(headnode : Node, newnode: Node) :Node
schema !Enqueue (data:int)
schema !Dequeue

function Front: int "= ([#spine>0]: head. data, []:0):
function End: int "= ([#spine>0]: findtail (head). data, []:0);
build{}

post (head!=Node{}, spine!=seq of Node{}):

end;

The definitions of the function and schema aregiatn here. In the structure of
the class ListQueue, there are two member valualilead” and “spine”. The “head”
contains the first Node in the List-Queue. The figficontains all of the elements in
the List-Queue. And in the interface section, thaeefive functions to perform basic
capabilities of Queue. The function “Isempty” cheekhether the ListQueue is empty.
The function “Front” returns the first element bétList Queue which is the valuable
“head”. The function “End” returns the last elemehthe List by calling the function
“findtail”. The function “findtail” returns the laslement of the list. It travels through
the List Queue from the head element. The mainaddais function is using loop or
recursive to find the current Node object’s nextiBolf the next Node exists, the
function continues the process. If not, it meamsdiwrent Node object is the last
element in the List Queue. The code of the functimtail” is as follows:

function findtail (headnode : Node) :Node

pre #spine =0

decrease #spine

satisfy #result.next = 0

via
if
[#headnode. next >0]: value findtail (headnode. next[0]);
[1: value headnode
fi

end;

22

The function “findtail” has one parameter whisththe head node of the list. The
refinement performs the recursion of find the ¢édément. If the current node’s next
is not empty, the function will check the next nodehe current node’s next node
doesn't exist, the function returns the currentenadhich is the tail element of the
list.

Now we come to solve the most difficult problemwhim add a new node to the
ListQueue. There are some limitations in the Pét&agguage. First we can not use
the pointer or reference. To solve the first probleve use the valuable refer to the
Node object directly. Second, the link relationshif) be changed if we change the
next object. When a new node is added into the thstlast node’s “next” will be set
to refer to the new node. The last node is chamdedh breaks the old relationship.
To solve the second problem, we have five idedetdecided at the beginning. The
five ideas are as follows:

1) We use the index of spine as the pointer. Each hade¢he next node’s index in
the sequence spine. But this is not a really ListGg.

2) We use a function to find the tail of the list ahén add the new node to it. This
will have the problem which breaks the relationgbgpwveen the last node and the
second last node.

3) We use the map in the benchmark 4 to perform tiv@groand value. But this is
not really List Queue and very complicated.

4) We use a function to find the tail’'s index of three and add the new node to the
last element in the spine. This is also breakimgréhlationship between the last
two nodes.

5) Inthe above four ideas, the major problem is tienge of the object will break
the referring relationship of last two nodes. Thare cannot be avoided. So we
generate a solution which uses the change. Tlreidi#a is that we use a function
to find the tail of the list, add the new nodettand then add each node to the
previous node again when the function recursivernstback.

The fifth idea is the solution we choose in the endolve the adding new node
problem. We build a function namegktnewhead” which returns the new head of the
new list. The code is as follows:

function getnewhead(headnode : Node, newnode: Node) :Node
pre #spine =0
decrease #spine
satisfy #result.next = 0
via
if
[#headnode. next >0]: let newhead = headnode after
it!setnext (getnewhead (headnode. next[0], newnode)); value newhead;
[]: let newhead = headnode after it!setnext(newnode); value newhead
fi

end;

23

The function “getnewhead” has two parameters whrehboth in the type of
Node. “headnode” is the current node to check aresvhode” is the node which need
to be added. We use the refinement to performebersion for adding the add node
to the list. In each time of recursion, we check ththe current node has next node
then set the next node of current node be to tiuerr@alue of passing next node to
the function and return the changed current nodelwiamed “newhead”; if the
current node doesn’t have the next node then setdtv node to be the next node of
current node “headnode” and return the change@wcunode which named
“newhead”. The function will call itself recursiweuntil find the tail node of the list
then it adds the new node to the tail node. Wherfuhction returns back recursively,
the return value “newhead” would be added to tle¥ipus node in each time of
recursion.

So the schema “Enqueue” just calls the functicetrigwhead” and changes the
current head to the new head. The code of the szieeimple as follows:

schema !Enqueue (data:int)

post ([#spine=0]: (let newnode = Node{data}; head!=newnode then
spine!=spine. append (newnode)),

[1:(let newnode = Node{data}; head!=getnewhead (head, newnode) then

spine!=spine. append (newnode)))

The schema “Enqueue” has one parameter “data’hwhithe data for building
the new node. If the list queue is empty, we craatew node and assign it to be the
head node. If the list queue is not empty, we &dchew node to the last node by
calling the “getnewhead” function and assign tharrevalue of the function to be the
head. The whole process of adding a new node tlisthie showed in the following
graphs:

head (tail)

datal| next :ﬁdataE next :Hdatﬂ LRSS newmode

data | next

Firzt time function return back
newnode

datad| next :ﬁda‘ta next

Second time function return back

neynode
data?| next |l [}da‘taS next I::%data next
Third time function return back newnode

new head

)

datal | next I data?| next I:I}datﬂ next I::}data next

Fig.9 The Process of Adding a new Node to the List

24

The schema “Dequeue” removes the head node distlgpieue. The main idea is
just let the head to be the next node of curreatthde. The code of it is as follows:
schema !Dequeue
pre #spine>0
post ([#spine>l & #thead. next>0] : (head!=head. next[0] , spine!=spine. remove (0))
[]: (head. data!=0 then head. next!=seq of Node {} then spine!=spine. remove(0)));

So now we have the solution which can performinif@ementation of
Linked-List queue in Perfect language.

Verification: Here we give the result screenshot of verifyinggbleition of
benchmark 5 in Perfect Developer as follows.

werifying file '0\Program Fles\Escher Technologies,Perfect DevelopershixitbrmSiListQueue. pd' .
Generating verification conditions ... 24 verification conditions generated

Proving verification conditions ... confirmed 22, refuted 2 (91.6% confirmed, longest 0.0 seconds)
0 seconds

D:\Program Files'Escher TechnologiesiPerfect DeveloperishixitbrmSiListQueue pd (21,14 Information! Confirmed: Variant non-negative,
OeyProgram FilestEscher TechnologiesiPerfect DevelopershixitbrmSiListQueue. pd (25,260 Information! Confirmed: Return valle satisfies <
D:yProgram FilestEscher Technologies\Perfect DeveloperishizibrmSiListQueus, pd (259,320 Information! Confirmned: Precondition of 'findta
OnvProgram FilestEscher TechnologiesiPerfect DeveloperyshixibrmS4ListQueus.pd (25,320 Errarl Refuted; Wariant decreases (defined at C
OeyProgram Files\Escher TechnologiesiPerfect DevelopershixitbrmSiListQueue. pd (25,54) Infarmation! Confirmed: Precondition of '[]' sat
D:YProgram Files'Escher Technologies'Perfect DeveloperishixitbmSiListQueue, pd (29,551 Information! Confirmmed: Type constraint satisfic
OevProgram FilestEscher TechnologiesiPerfect DevelopershixitbrmSiListQueue. pd (26,9 Information! Confirmed: Return value satisfies sp
D:yProgram FilestEscher TechnologiesiPerfect DeveloperishixitbrnSiListQueus pd (32,141 Information! Confirmed: Variant non-negative,
OnvProgram FilestEscher TechnologiesiPerfect DeveloperyshixibrmSiListQueus. pd (36,660 Information! Confirmed; Precondition of 'getne
OeyProgram Files\Escher TechnologiesiPerfect DeveloperyshixitbrmSiListQueue. pd (36,660 Errarl Refuted: Wariant decreases (defined at C
D:YProgram FilestEscher Techrnologies!Perfect DeveloperishixitbmSiListQueues, pd (36,90 Information! Confirmmed: Precondition of '[1' sat
OevProgram FilestEscher TechnologiesiPerfect DevelopershixitbrmSiListQueue. pd (36,910 Information! Confirmed: Type constraint satisfi
D:yProgram FilestEscher Technologies\Perfect DeveloperishizibrmSiListQueus, pd (36,1060 Information! Confirmed: Return value satisfies
OnvProgram FilestEscher TechnologiesiPerfect DeveloperyshixibrmS4ListQueus.pd (37,590 Information! Confirmed; Return valle satisfies <
OeyProgram Files'Escher TechnologiesiPerfect DevelopershixitbrmSiListQueue. pd (47,42 Infarmation! Confirmed: Precondition of 'getne
D:WProgram Files'Escher Technologies'Perfect DeveloperishixitbmSiListQueue, pd (51,54)% Information! Confirmned: Precondition of '[]' sat
OevProgram FilestEscher TechnologiesiPerfect DevelopershixitbrmSiListQueue.pd (51,550 Information! Confirmed: Type constraint satisfi
D:yProgram FlestEscher TechnologiesPerfect DeveloperishizibrmSiListQueus, pd (51,730 Information! Confirmned: Precondition of ‘rermos
OnvProgram FilestEscher TechnologiesiPerfect DeveloperyshixibrmS4ListQueus.pd (51,800 Information! Confirmned; Type constraing satisfi
OeyProgram Files\Escher TechnologiesiPerfect DevelopershixitbrmSiListQueue. pd (51,151) Information! Confirrned: Precondition of 'remnc
D:WProgram Files'Escher Technologies'Perfect DeveloperishixitbmSiListQueue, pd (51,158): Information! Confirmed: Type constraint satis'
OeProgram FilestEscher TechnologiesiPerfect DevelopershixitbrmShListQueue.pd (62,171 Information! Confirmed: Precondition of 'findta
D:yProgram FilestEscher TechnologiesPerfect DeveloperishizibrmSiListQueus, pd (81,54 % Information! Confirmned: Precondition of '[1° sat
OnvProgram FilestEscher TechnologiesiPerfect DeveloperyshixitbrmS4ListQueus.pd (81,55) Information! Confirmed; Type constraint satisfi
Generating verification output files ... 0 seconds

2 errors, O warnings found,
Compacting mermary ... 0 seconds

Fig.10 Verification Result of Benchmark 5

There are o warning and 2 errors in the verifaatwhile the program of solution
for the benchmark 5 is working fine. The first @n®"“D:\Program Files\Escher

Technologies\Perfect Developer\shixi\om5\ListQueue. pd (25,32): Error!

Refuted: Variant decreases (defined at D:\Program F iles\Escher
Technologies\Perfect Developer\shixi\om5\ListQueue. pd (21,5)), cannot

prove: #self.spine < #self.spine. " It shows the error occurs at the line 25 and

position 32 which is refuted by the code at the Biand position 5 in the
ListQueue.pd file. The code at that positiondscfease #spine ” in the function

“findtail”. And the second error is3*\Program Files\Escher
Technologies\Perfect Developer\shixi\bom5\ListQueue. pd (36,66): Error!

25

Refuted: Variant decreases (defined at D:\Prog

Technologies\Perfect Developer\shixi\om5\ListQueue.
" It show the error occurs at the line 36 and

prove: #self.spine < #self.spine.

iles\Escher
pd (32,5)), cannot

ram F

position 66 which is refuted by the code at the B2and position 5 in the

ListQueue.pd file. The code at that posi
“getnewhead”. So we can see that thes
The function “findtail” and “getnewhead

tiondsctease #spine " in the function
e two eroaos @ue to the same problem.
" are botcursive functions. They go

through the list from the head. In the recursivection, the variant decrease

expression decrease #spine

" doesn’t change during the recursion. So the prove

think the each time the “#spine” is not less tHamprevious one, which causes the

error. We know the recursive function “findtail” dfunction “getnewhead” wouldn’t
cause the infinite recursion. But the prover doesnow it. So we need to find some

variant which will decrease itself at eac
solution of removing the errors is add a

h timealling the recursive function. The
new inparameter “count” to the function

“findtail” and function “getnewhead”. Each time tbfe recursion, the “count”
decreases itself. Then we change the variant dexeegression to be “decrease

count”. But this solution doesn’t have an effecttba program’s running and makes

the function look complicated. So we don’t changefunctions and let the error

remain in the verification.

Summary: We list the good points and drawbacks of the smiufor the

benchmark 5 in the following table.

Summary of Ben

chmark 5’s Solution

Good points

Drawbacks

1. Successfully performs the linked-list
Perfect language without using pointer
and reference.

irl. Two errors in the verification of the
solution in Perfect Developer.

2. Develops a new algorithm to add noc
to the list in Perfect.

j@. The List Queue ADT is not generic fq
other types besides integer type.

3. A good example of class own membg

er

referring to the class self.

Table 5: Summary of Benchmark 5’s Solution

3.6 Benchmark 6

Problem Requirements. Implement the iterator and verify a program whisikes

the iterator for some collection type.

Solution: Iterator is an object that allows a programmerawdrse through all
the elements of a collection in unordered fashiegardless of its specific
implementatiorj22]. In Perfect, there is not no single iteratgd or class, besides

the forall() expression. In this benchma
iterator and test it in a program. We wa
can go through the collection by calling

rk, we nieckalize the implementation of
nt thealter for the certain collection type
the nextimod of the iterator class. The

26

=

class also should be able to show the current eleafehe collection and could
check whether the collection has the next elemenbb After we have the iterator
class, we need to use it for some collection type program. So this benchmark has
two parts: one is implementing the iterator clasBerfect; another is using the
iterator object in a program. Here we first give #iolution for the class Iterator. The

code of class lterator is as follows:
class lterator =

abstract
var collection: seq of int, count:int;
interface
function currentvalue: int
pre O<=count< #collection
A= collection[count];
function hasnext: int
A= ([count<#collection]:1,[]:0);
schema Inext
pre O<=count<#collection & #collection >0
post count!= count+1;
build{coll:seq of int}
post collection !=coll, count!=0;
build{coll:seq of int, cot: int}
post collection !=coll, count!=cot;
end;

In the abstract section, we declare two valuablgsliection” and “count”. The
“collection” is in the type of sequence of integehich stores the collection to travel
through. The value “count” is used to count the@nirindex in the collection.

In the interface section, there are defining twanctions. The function
“currentvalue” returns the value of current elemienthe collection when the iterator
travels through the collection. The function “hadihehecks whether the collection
has the next element. One schema also is definddsirsection. The schema “next”
change the value of count to perform the traveltimpugh the collection. There are
two constructors. One constructor only passesmpetiparameter “coll” which is the
collection for traveling through. The other constor passes two parameters “coll”
and “cot”. The input “cot” is used to initial th@lable “count”.

One problem here is that the schema in Perfectatareturn value. We want to
use the next method of Iterator to go through thiéection and return each element.
But the next method will change the Iterator obgatl in Perfect only schema can
change the object’s valuables. Because the nexXtadetan only change the valuable,
we need another function “currentvalue” to retune value of current element. So
when iterator travels through the collection, iticahe function “currentvalue” and
schema “next” together.

Now we have the lterator class, and the next ttordp is building a program to
use the Iterator for collection of integer. Thegram of Perfect language is based on

27

the class. So we need to build a class and udeetla¢or in the methods of the class.
Here we have a class named “testlterator” andsitehschema named “next5time”.
This schema will use the Iterator to travel throagtollection 5 times. The code of
class “testlterator” is as follows:
class testlterator =
abstract
var stringseq: seq of string, It: Iterator;
interface
schema !nextbtime
pre #It.collection>b & It.count=0
post stringseq!=stringseq. append (It. currentvalue. toString)then It!next
then stringseq!=stringseq. append(It. currentvalue. toString)then It!next
then stringseq!=stringseq. append(It. currentvalue. toString)then It!next
then stringseq!=stringseq. append(It. currentvalue. toString)then It!next
then stringseq!=stringseq. append (It. currentvalue. toString) then It!next;
build{inputit: Iterator}
post stringseq != seq of string{}, It!=inputit;

end;

The class “testlterator” has two valuables: “gs@eq” is a string type valuable;
“It” is in the type of Iterator. The class also lmaschema named “next5time”. This
schema lets the Iterator “It” go through the cdilee five times and appends the
value of element to the value “stringseq” each tikve intend to perform a loop to let
Iterator “It” go through the collection. But thegimiem is that the schema cannot
perform a loop in Perfect. So we have to writewi®le process of traveling through
the collection five times into the code. The camstor of this class has one parameter
“inputit” which is an object of class Iterator.itiitials the value “It” to be the Iterator
object “inputit”. To run this schema, we also n@ethain progranto create a
collection, an Iterator and generate a “testltefaibject by the Iterator. Then we run
schema of the “testlterator” object to show thengof Iterator in Perfect.

Verification: Here we give the result screenshot of verifyingdlass Iterator of
benchmark 6 in Perfect Developer as follows.

werifying file 'Di\Program Files\Escher Technologies\Perfect Developershixi\brmelIteratorg.pd' ...

Generating verification conditions ... 2 werification conditions generated

Praving verification conditions ... confirrned 2 (100% confirmed, longest 0.0 seconds)

0 seconds

DiYProgram Files\Escher Techhologies!Perfect DevelopershixibmelIteratoré.pd (17,12): Information! Confirmed: Precondition of '[1' satisfied [t
DnyProgram Files\Escher TechnologiesPerfect DevelopershixbmeIteratort.pd (17,19): Information! Confirrmed: Type constraint satisfied (defi
Generating verification output files ... 0 seconds

0 errors, 0 warnings found.

Compacting memary ... 0 seconds

Fig.11 Verification Result of the Class IteratorBanchmark 6

There is no warning or error found. Next we give tesult screenshot of
verifying the class testlterator as follows:

28

Werifying file 'Dn\Program Files\Escher Technologies\Perfect Developershixi\brmal teratortest.pd’ ...

Generating verification conditions ... 10 werification conditions generated

Proving werification conditions ... confirmmed 10 (100% confirmed, longest 0.8 seconds)

3 seconds

D' Program Files\Escher Technologies!Perfect DevelopershixibrnelIteratortest.pd (14,41} Information! Confirmed:
D:%Program Files\Escher Technologies!Perfect DevelopershixtbrnelIteratortest.pd (14,72): Information! Confirmed:
Dri\Program Files\Escher TechhologiestPerfect DevelopershixiibrmelIteratortest. pd (15,450 Information! Confirrned:
O:YProgram Files\Escher Technologies!,Perfect DevelopershixitbmelIteratortest.pd (15,76): Information! Confirmed:
D' Program Files\Escher Technologies!Perfect DevelopershixibrnglIteratortest.pd (16,45): Information! Confirmed:
D:'Program Files\Escher Technologies!Perfect DevelopershixibrnglIteratortest.pd (16,76): Information! Confirmed:
D:%Program Files\Escher Technologies!Perfect DevelopershixbrmelIteratortest.pd (17,45): Information! Confirmed:
D:YProgram Files\Escher Technologies!,Perfect DevelopershixitbmelIteratortest.pd (17,76): Information! Confirmed:
O:YProgram Files\Escher Technologies!,Perfect DevelopershixitbmelIteratortest.pd (18,45): Information! Confirmed:
D' Program Files\Escher Technologies!Perfect DevelopershixibrnelIteratortest.pd (18,76): Information! Confirmed:

Generating verification output files ... 0 seconds
0 errors, O warnings found.
Compacting memory ... 0 seconds

Fig.12 Verification Result of the Class testlteratoBenchmark 6
There is no warning or error found in the conditi®f class testlterator.

Summary: We list the good points and drawbacks of the smiufor the
benchmark 6 in the following table.

Summary of Benchmark 6’s Solution

Good points Drawbacks

1. Successfully performs the Iterator in| 1. Cannot perform traveling through the
Perfect language by using the other Iterator by loop or recursion, which is due
built-in type. to the schema'’s features in Perfect.

2. Shows the result of the using Iterator.

3. All the conditions of class Iterator and
class testlterator are proved ok in the
verification.

Table 6: Summary of Benchmark 6’s Solution

3.7 Benchmark 7

Problem Requirements: Specify simply input and output streg®3] such as
character input streams and output streams. Use #teeams in an application
program to verify them.

Solution: In this benchmark, we don’t need to implement thebh 1/0 system
for Perfect language. We just perform the streaaascihich can be used as input and
output stream. The main idea is using the sequieniéerfect to store the data of the
stream object. A class Stream is built which camded in application programs to
perform as an input stream or output stream. Tthems) class also has basic stream
capabilities which are implemented as member fonstor schemas. The code of the
class Stream is as follows:

29

class Stream "=
abstract

var InputStream: seq of int, Count: int, IsOpen: int;

invariant Count=#InputStream;
interface

function getlLength:int "= Count;

function IsOpen;

function getchar:int

"= ([#InputStream ~=0]:InputStream. head, []: 0);
schema !open
post ([IsOpen =0]: IsOpen !=1, []: pass);
schema !close
post ([IsOpen =0]: pass, []: IsOpen !=0);
schema !putchar (pc:int)
post ([IsOpen =1]: (InputStream!=InputStream. append(pc),
Count!=Count+1), []: pass);
schema !remove
pre #InputStream ~=0
post ([IsOpen =1]: (InputStream != InputStream. tail, Count!= Count-1),
[1: pass);
build{}
post InputStream!= seq of int{}, Count!=0, IsOpen!=1;
build{instr: seq of int}
post InputStream!= instr, Count!=#instr, IsOpen!=1;

end;

In the abstract section of this class, we firstaecthree valuables:
“InputStream”, count and “IsOpen”. The valuableginStream” stores the Stream
elements. The valuable “IsOpen” stores the stattiseoStream object. If “IsOpen”
equals to 0, it means the Stream is closed fonigt or output process. If “IsOpen”
equals to 1, it means the Stream object is opeddmyg the input or output operation.
Here we also declare an invariant expressi@mfiant Count=#InputStream;”. It
declares the invariant expressi@adht=#InputStream” Should always be satisfied in
the class. When we do any change to the objedas$ Stream, the valuabletint”
should equal to the length of “InputStream” whishepresented by “#lnputStream”.

In the interface section, we declare three funstidine first function “getLength”
returns the value of the valuable “Count”. The secfunction “IsOpen” makes the
valuable “IsOpen” readable to the users. The thurtttion “getchar” returns the head
element of the stream or O if the stream has noe.

We also declare four schemas for the class. Thedthema “open” changes the
valuable “IsOpen” to be 1, which means letting obgect be able to do the input or
output operation. The second schema “close” chatigegaluable “IsOpen” to be 0,
which means closing the object’s capability of @ging input or output operations.
The third schema “putchar” is used to put the nalue into the Stream object and

30

also increase the value of “Count”.

After the class has the “putchar” schema, we catihdanput processing to the
Stream object. But we also need the Stream bet@lole the output operation which
means doing output of each element in the Streamth® same problem here as in
the benchmark 6 is that: The Schema cannot retiermdlue in Perfect. When we
want do some change and store the change in tketpisje need use the schema. But
the schema doesn't permit to have a return vatuandther words, the schema can
only do the operation which change the object®istdt cannot return a value as the
function. However the function also cannot chargestatus of the object. To solve
this problem, we need to use the function “getclaad schema “remove” together.

Verification: Here we give the result screenshot of verifyingdlass Stream of
benchmark 7 in Perfect Developer as follows.

Werifying file 'DnyProgram Files'Escher Technologies!Perfect Developershixibr@bm7.pd' ..

Generating verification conditions ... & verification conditions generated

Proving werification conditions ... confirmed 8 (100% confirmed, longest 0.0 seconds)

0 seconds

OvProgram Files\Escher Technologies!Perfect Developershixtibrm?\brm7 pd (14,44) Information! Confirmed: Preconditi
D' Program Files\Escher Techhologies!Perfect Developer shixibrn?\bm? pd (16,14 Information! Confirrmed: Class invar
D' Program Files\Escher Techhologies!Perfect Developer shixibrn?\bm? pd (18,14 Information! Confirmed: Class invar
D:'Program Files\Escher Technologies!Perfect Developershixibrn?\bm? . pd (20,60 Information! Confirmed: Class invaria
D:'Program Files\Escher Technologies!Perfect Developershixibrn?bm? . pd (23,6): Information! Confirmed: Class invaria
D:'\Program Files\Escher Technologies!Perfect Developershixibrn?bm? pd (23,4287 Information! Confirmed: Preconditi
D:'\Program Files\Escher Technologies!Perfect Developer shixi\brn@bm7 pd (25,143 Information! Confirrmed: Class invar
D:'Program Files\Escher Technologies!Perfect Developershixi\brn7\bm7 . pd (27,143 Information! Confirmed: Class invar

Generating verification output files ... 0 seconds
0 errars, O warnings found,

Fig.13 Verification Result of the Benchmark 7

There is no warning or error found in the condifi@f class Stream. All the
conditions are confirmed in the verification of bamark 7.

Summary: We list the good points and drawbacks of the smiufor the
benchmark 7 in the following table.

Summary of Benchmark 7’s Solution

Good points Drawbacks

1. Successfully performs the Input/Outpdt. Lack of generic. Can't let the Stream
Stream in Perfect language by using thedo the input or output processing for thg
other built-in type. elements in the other types besides
integer.

D

2. All the conditions of class Iterator an@d?2. The solution could use the Queue type
class testlterator are proved ok in the | which is built in the solution of
verification. benchmark 3.

3. Limited capabilities of Stream.

Table 7: Summary of Benchmark 7’s Solution

31

4. Analysis

This section presents the analysis of Perfect Laggubased on how it performed
on the benchmarks. We summarize the good points drad/backs about the
implementation of these Benchmarks. And we als® dhe suggestion of how to
improve the benchmarks and Perfect Language.

4.1 Analysis of theimplementations of benchmarks

In this subsection, we discuss the question: “Carmake the implementations of
benchmarks better?” We give some suggestions ofrowmy the current
implementations of benchmarks.

Generic: According to the summary of each benchmark iniese@, we can find
most implementations of benchmarks are not gen&hese implementations only
deal with one type of input valuable, like add fumie, queue type, map type, iterator
and stream. These benchmarks would be more u$e¢hdyi are generic to more than
one type. So now the problem is: Can we use thée®ekanguage to generate a
generic class or function? The answer is “yes”. Peefect Language supports the

generic class. If we define a queue which is gerdass, the code is as follows:
class Queue of X "=

abstract

var queue: seq of X, size:int;
interface

function head:X

schema Enqueue(y:X)
schema !Dequeue

end;

The above class Queue accepts type parametenizii® can use it to build the
Queue of the built-in type or self defined type.iSthe further research, we continue
to change the implementations of these benchmarke generic.

Reusable: The benchmark implemented here can be reused rnerae new
benchmark. We can build the benchmark 6 by usirg lthked-list queue in
benchmark5. And we also can build the benchmark7using the queue in the
benchmark3. Build the new benchmark from the eabienchmarks can show the
capabilities of the earlier benchmarks. So in thether research, we will focus on
how to generate the benchmark from the earlier trmacks.

Functional: Some implementations of benchmarks have littletionality. The
benchmark 3 sorts the queue in the decreasing.diecan also add the option to

32

sort the queue in the user defined order. The breadh7 has few methods of class
stream. We can add more methods for the classnstteamake it have more
capabilities. So in the further research, we wdlll anore features to these benchmarks
to improve their functionality.

4.2 Analysis of the Perfect Language

In this subsection, we discuss the question: “Camveke the Perfect Language
better for expressing benchmarks?” We give someyestgpns of improving the
Perfect Language.

Schema: There are two things can be improved in the scheffeerfect language.
One is the schema doesn’t have return value; ther @ the schema doesn’t support
the loop or recursion.

In the benchmark 6, we want to show we can trédwelugh the collection by
iterator. We try to display each element of thelemtion by calling the iterator’s
“next” method. But the schema “next” can not retarnalue. So we have to add a
new function “currentvalue” to return the currenément value. This makes the
program more complicated. During the traveling tigto the collection by the iterator,
we have to call the schema “next” and the functmmrentvalue” both in each time.
In other language, we just call the “next” methokiak can return the current value
and travel to the next element. In the benchmanke€r also have this problem. The
Steam cannot remove the current element and rétaraurrent element’s value in the
same schema. We suggest the Perfect language iemiennew method which can
return the value and also change the status aflijest.

In the schema of Perfect, we cannot use the regmé to do the loop or recursion
operation. We often need to do the loop operatmithe class object which may
change the status of the object. But we have tahesschema if we want to change
some status of the object in Perfect. However,sttfeema isn’'t permitted to do the
loop operation by refinement. Currently the solatto solve this problem is using a
function. The function returns a new object whishhe result of changing the current
object. This method makes the function complicaliée, the binary search function
in the benchmark 2. This method cannot solve tbhblpm in the benchmark 6 which
is using the iterator. In benchmark 6, we want datlyyough the collection by using
the iterator's schema “next” which would change sta&tus of the member valuable
“It” of the object. We cannot perform the loop ecursion in the schema “test5time”.
So we have to writes the entire process of calfimgxt” schema five times. This
schema “test5time” can only be used to show theelirg 5 times by the iterator. We
suggest the Perfect language implement a new methadh can change the status of
the object and also can do the loop operationcursgon.

Main program: The biggest trouble in main program is that we camall the
schema of an object separately. In the main progveamust call the schema of the
object behind its initialization as follows: let testom4’= Map{} after
ittadd(2,stringl) then itladd(45,string2) then it!r emove(2) then
ittadd(78,string3); " The map object must call its schema only in teatence

33

which create the map. It cannot call its schemanather sentence. This makes the
program not flexible. If we want to use the schemanother sentence, the only way
is copying the object to a new object and thenirgalthe schema. The code of the

main program for benchmark 5 is as follows:
lettestbm5”=ListQueue{}afterittEnqueue(4)then ittEnqueue(9)then

ittDequeue then it'Enqueue(13);

lettestbm517=testbmb5 after ittEnqueue(79) thenit IEnqueue(92) then
ittEnqueue(192) then it'Enqueue(4992) then it'Deque ue then it'Dequeue
then it'Dequeue;

The object testbm5 is of class ListQueue. We cbpytéstbm5 to testbm51 to use
the schema in another sentence. But this methadtigood. The code here is more
complicated and confusion. So we suggest the Rddieguage should permit calling
the schema separately in main program.

Pointer and Reference: The most difficult problem in this paper is to merh the
lined-list queue in benchmark5. Usually we use foior reference to implement it.
But in Perfect, there is no pointer and the refeeas only used for heap. To solve this
problem in benchmark 5, we have to recreate a msvamd return the new head at
each time of adding node to the list queue. Thist®m has a big problem is that it
costs a longer time to run and uses more spacéote than using the pointer or
reference. It also has the problem which we neeshsure that the new list contains
all the nodes in the old list and the new node.w#&osuggest the pointer or the
reference should be supported in the Perfect Lagggua

4.3 Analysis of the verifier of Perfect Developer

In this subsection, we discuss the question: “@&nimprove the verifier of
Perfect Developer?” We analyze the problem in thdfication of these benchmarks’
solution and give the suggestion of improving teefier of Perfect Developer.

The one thing we suggest the verifier of Perfeet@oper should be improved is
comparing the condition “a[x]=b” and the conditiow=a.findFirst(b)”. If the
elements in the collection “a” are unique, thersthavo conditions should be proved
by each other. But in the benchmark 2 for implenmgnthe binary search, the verifier
of the Perfect Developer gives two warnings. Thefiee thinks the condition ((low
+ high) / 2) = ([b in a]: a.findFirst(b), []: -1) ” cannot be proved by the
condtion fa[(low+high)/2]=b]: value (low-+high)/2; " It's hard to cover these
two warnings. We think the problem is the verif@am not compare the conditions
with considering the certain context. In the benaha®, the context is the elements
are unique and sorted in the queue. In this conteese two conditions should be
proved by each other. So we suggest the Perfect|®@er improving the verifier to
let it be able to prove the conditions under theéade context.

34

5. Conclusion

This paper proposes the solutions of implementimay\erifying seven VSI
benchmarks in Perfect language, which are not pedd by others before. This
paper shows these seven benchmarks can be perforiRedect language. And
these proposed solutions describe how to impletmesse benchmarks. After
implement each benchmark, we also verify the smhuséind analyze how well the
Perfect language can be done in these benchmarks.

All the programs of these benchmarks are built essftilly in the Perfect
Developer and the java .jar files which are gemer&br testing. The test results
satisfy the expected results. In the implementagpiam, all the goals are achieved.

In the verification part, there are three benchrsaklutions can be proved
successfully without warnings or errors. Anotheethbenchmark’s solutions have
several warnings which are reported in the reduledfication. Some of them are
due to the verifier of Perfect Developer; othees due to the program’s algorithm.
The verification result of Benchmark 5 has two esr@hese two errors are also due
to the algorithm chosen which is used to solveptiodlem of lacking for pointer and
reference.

This paper also gives the suggestion for how toanh& Perfect language and
Perfect Developer better. We suggest these ben&hsohartions could be more
generic and plan to add more features on benchéarkl benchmark 7. And the
earlier benchmarks can be used to perform the mewhHmark’s solution.

This paper also proposes some suggestions to tfecPlanguage. We suggest
the Perfect language should support pointer oreatee, and also want it to provide
some kind of method which can change the classohajel have return value. The
loop operation or recursion can only be perfornmefilinction now. We suggest the
Perfect language provide a new way of implemenp loeration or recursion which
could change the class object’s members.

The specification, implementation and verificat@rprograms in our work will
assist the Verified Software Initiative by providisolutions to the proposed
verification benchmarks. It is hoped that otherls provide their solutions in their
“favourite” verification languages and tools sotthacomparison on tools and
languages for verification can be made. The ovel is the improvement of
verification tools. We will continue to do more easch on these benchmarks,
optimize the implementation of them and use thelmuitd a Perfect application
program in the future.

35

References

[1] Bruce W. Weide, Murali Sitaraman, Heather Kartdn, Bruce Adcock, Paolo Bucci, Derek
Bronish, Wayne D. Heym, Jason Kirschenbaum and d&vazier (2008).: Incremental
Benchmarks for Software Verification Tools and Tagies. Technical Report
RSRG-08-02

[2] Edwards, S.H., Heym, W.D., Long, T.J., Sitasam M., Weide, B.W.: Specifying
components in RESOLVE. Software Engineering Na&g) (1994) 29-39

[3] Gareth Carter.: Introducing the Perfect LarggiaMay 4, 2005

[4] K. Rustan M. Leino, Rosemary Monahan.: Prograerification Using the Spec#
Programming System (ETAPS Tutorial). March 29, 2008

[5] Sinan Si Alhir.: The Object-Oriented Paradigbttober 23, 1998

[6] Tony Mullins. Lectures on Formal Specificatiamd Design, University of Shanghai for
Science and Technology (ppt), June, 2004.

[71 Escher Technologies. The Perfect Developemguage Reference Manual.
http://www.eschertech.com/product_documentationgLage%20Reference/LanguageRef
erenceManual.htm

[8] Escher Technologies. Perfect Developer: thsi®autorials.
http://www.eschertech.com/tutorial/tutoriatenh

[9] Gareth Carter, Rosemary Monahan, Joseph M.ris1¢R005).: Software Refinement with
Perfect Developer. ISBN:0-7695-2435-4

[10] David Crocker. Perfect Developer: A tool f@bject-Oriented Formal Specification and
Refinement. In FME 2003, Tools Exhibition Notes.

[11] Escher Technologies. Perfect Developer Used&u

http://www.eschertech.com/product_documentationf4@0Guide/UserGuide.htm

[12] David Crocker. Teaching Formal Methods withfBet Developer. Escher Technologies Ltd.

[13] Escher Technologies. What is Verified Designrontract?

http://www.eschertech.com/products/verified_dbp.ph

[14] Wikipedia. http://en.wikipedia.org/wiki/Desighy contract

[15] Wikipedia. http://en.wikipedia.org/wiki/Spewiftion_language

[16] The C# Language. http://msdn.microsoft.comishrcsharp/aa336809.aspx

[17] Wikipedia. http://en.wikipedia.org/wiki/Binangearch_algorithm

[18] The ADT Queue. http://www.maths.abdn.ac.ukétich/mx4002/notes/node51.html.

[19] Queue Sort (Selection sort). http://www.csdousa/~morey/cs27a02/queueSort.html.

[20] The Map Data Type. http://www.panix.com/~ettlécpp/stdlib/map.html.

[21] Queue - Linked-List Implementation. http://wves.bu.edu/teaching/c/queue/linked-list/

types.html

[22] Wikipedia. http://en.wikipedia.org/wiki/lterat.

[23] Wikipedia. http://en.wikipedia.org/wiki/Standh streams.

36

Appendix A: Main Program of Benchmark3

Here we show the main program of the Perfect swigtias an example, which is for
testing benchmark3. The code of “Main.pd” is shasrfollows:

import "bm3.pd";
schemamain(context!:limited Environment,args:se gofstring,
ret!: out int)
pre #args >0
post
(
let sequencel”= seq of int{422,6,34,56,12,87,3};
let queuel"=Queue{sequencel};
let emptyqueue”=Queue{};
let sorttest*=bm3({};
let
sortedqueue”=sorttest.SortQueue(queuel,emptyqueue);
let sequencesorted”=sortedqueue.myqueue;
contextlprint("sequence sorted is:
"++sequencesorted[0].toString++" "++
sequencesorted[1].toString++"
"++sequencesorted[2].toString++"
"++sequencesorted[3].toString++" ")
),

ret! = 0;

37

Appendix B: Result Screenshot of Benchmark 3.

Here we give the screenshot of the building resf@iliBenchmark 3 as example
(Figure.14) and also show the screenshot of thergesd java jar file’s running result
of Benchmark 3 as Example (Figure.15):

Files

D:A\Program Files\Escher Techrnologies\Perfect Developershixibr=\Main,pd
OnYProgram Files\Escher Technologies!Perfect Developer'shixbm3ibrm3.pd

pestic

Building program dictionary ... 0 seconds - -
Elindingg S’DE? hames ... 0 Syeconds \!) Job completed with no problems detected.

Evilding rember dictionaries ... O seconds
Binding other names ... O seconds
Standardising ... O seconds

Analysing ... O seconds

Frocessing input file 'D:yProgram Fles\Escher TechnologiesPerfect DevelopershixiybrnaiMainpd' ...
Refining ... O seconds

Producing output files ... 0 seconds

0 errors, O warnings found.

Processing input file 'D:\Program Fles\Escher Technologies\Perfect Developershixibrm3ibm3.pd' ...
Refining ... O seconds

Producing output files ... O seconds

0 errors, 0 warnings found,

2%, of capacity used

Total of 0 errars, O warnings found,
FD: Running post-build step...
Comnpiling Java files

Copying library
EEH 1Tt

Creating JAR file

Build successful

FD: Job completed with no problemns detected.

Figure.14 The program building result of benchnark

AWINDOWS\system32\cmd.exe

D:“\Program Files“Escher Technologies“Perfect DevelopersshixisbmIsoutput>java —ja
1 Sort.jar

sequence sorted is: 422 87 56 34

D:“Program Files“Escher Technologies“Perfect Developersshixisbm3>output>

Figure.15 The Sort.jar file running result of bemark 3.

38

Appendix C: The Generated Java Codes of Benchmark 3

Here we present the generated Java codes of bericHBnas Example. These
following codes contain the class bm3 which hassbgQueue function and the class
Queue.

Class bm3’s Java codes:
class _n_bm3 extends _eAny

{
public Queue _n_SortQueue (Queue _n_Q1, Queue _ n_Q2)
{
if (_eSystem.enablePre && _eSystem.currentC heckNesting <=
_eSystem.maxCheckNesting)
{
_eSystem.currentCheckNesting ++;
try
{
if (1((0 < _n_Ql.getLength ()))) th row new _xPre
("bm3.pd:14,21");
}
catch (_xCannotEvaluate _|Exception)
{
}
_eSystem.currentCheckNesting --;
}
int_vLet max 19 9= _n_Q1.findmax ();
int_vlLet temp 20 9= _n_Ql.head ();
Queue vlet Q2T 21 9= _n_Q2;
Queue vit 22 13 =((Queue) _n_Q2. IClone ();
_vit 22 13. n_Enqueue (_n_Q1.head ());
Queue vlet QT 22 9= vit 22 13;
Queue vit 23 15 =((Queue) _n_Q1. IClone ();
_vit 23 15. n_Dequeue ();
Queue vlet Q1T 23 9= vit 23 15;
Queue vit 24 16 = ((Queue) _n_Q1. IClone ();
_vit 24 16. n_Dequeue ();
_vit 24 16. n_Enqueue (_vLet temp_20_9);
Queue vlet Q1TT 24 9= vit 24 16;
if (1 < _n_QlgetLength ()) && (_vLet max 199 ==
_vLet temp_20_9)))
{
return _n_SortQueue (_vLet_Q1T_23 9, v Let QT_22 9);
}

39

else if (((1 < _n_Ql.getLength ()) && (I(_v
_vlLet_temp_20_9))))

{
return _n_SortQueue (_vLet Q1TT 24 9,

}

else
{
return _vlLet QT 22 9;
}
}
public _n_bm3 ()
{
super ();

}

public boolean _|Equal (_n_bm3 _vArg 8 1)
{

if (this == _vArg_8 1) return true;

return true;

}

public boolean equals (_eAny _lArg)
{
return _IArg == this || (_IArg !'= null && _
_n_bm3.class && _|Equal ((
_n_bm3) _IArg));

Class Queue’s generated Java code
class Queue extends _eAny

{
public _eSeq myqueue;
public int head ()
{
if (_eSystem.enablePre && _eSystem.currentC
_eSystem.maxCheckNesting)
{
_eSystem.currentCheckNesting ++;
try
{
if (/((0 < myqueue. oHash ()))) thr

("bm3.pd:43,17");

40

Let max_19 9 ==

vLet_Q2T_21 9);

IArg.getClass () =

heckNesting <=

ow new

_XxPre

}
catch (_xCannotEvaluate _|IException)
{
}

_eSystem.currentCheckNesting --;

}
return ((_eWrapper_int) myqueue.head ()).va

}
public int getLength ()

{

return myqueue._oHash ();

}

public int findmax ()
{
if (_eSystem.enablePre && _eSystem.currentC
_eSystem.maxCheckNesting)
{
_eSystem.currentCheckNesting ++;
try
{
if (/((0 < myqueue. oHash ()))) thr

("bm3.pd:50,17");

}

catch (_xCannotEvaluate _|IException)
{

}

_eSystem.currentCheckNesting --;

}

return ((_eWrapper_int) myqueue.max ()).val

}

public void _n_Enqueue (int input)
{
if (!myqueue._ovin (((_eAny) new _eWrapper

{

myqueue = myqueue.append (((_eAny) new
(input)));
}

else

{
}
}

public void _n_Dequeue ()

41

lue;
heckNesting <=
ow new _xPre
ue;
_int (input)))))

_eWrapper_int

{
if (_eSystem.enablePre && _eSystem.currentC

_eSystem.maxCheckNesting)
{
_eSystem.currentCheckNesting ++;
try

{
if (/((0 < myqueue. oHash ()))) thr

("bm3.pd:57,17");

}
catch (_xCannotEvaluate _|IException)
{
}
_eSystem.currentCheckNesting --;
}
myqueue = myqueue.tail ();
}
public Queue ()
{
super ();
myqueue = new _eSeq ();
}
public Queue (_eSeq inputseq, int _tOinputseq)
{
super ();
myqueue = inputseq;
}
public boolean _|Equal (Queue _vArg_37_5)
{

if (this == _vArg_37_5) return true;
return _vArg_37_5.myqueue._|Equal (myqueue)
}

public boolean equals (_eAny _lArg)

{
return _IArg == this || (_IArg !'= null && _

Queue.class && _IEqual ((
Queue) _lArg));

42

heckNesting <=

ow new _xPre

IArg.getClass () ==

