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Abstract 

Modified Condition/Decision Coverage (MC/DC) is a structural coverage criterion 

widely used in testing aviation software. Aviation software has a high level of 

state-based behavior, typically implemented with complex Boolean expressions. 

MC/DC was developed to provide the benefits of exhaustive testing of the Boolean 

expressions, without the overhead. Web servers are also state-based systems, and 

the purpose of this research is to determine whether the benefits of MC/DC also 

apply to these systems. In this paper, a unit-testing case-study on a typical web 

server Culture Object Management Web Server (COMWS) was performed to 

evaluate the effectiveness of MC/DC in this context. For each method in COMWS, 

Black-Box testing was carried out first, followed by MC/DC testing. The Black-Box 

testing was used as a control group for MC/DC testing. The comparison focuses on 

three criteria: Testing Cost, Faults Found and Program Coverage. Based on the 

experimental results and comparative evaluation, two main conclusions were 

obtained: MC/DC is an additional effective testing technique to complement 

Black-Box testing for testing web servers, and it provides extra test capability where 

some of the variables used in Boolean expression are not directly derived from the 

input parameters. 
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1. Introduction 

1.1  Motivation 

In recent years, the number of web applications has grown extraordinarily on a 

worldwide basis. As web applications become more complex, their quality and 

reliability become crucial, especially for back-end web servers. Web servers are 

software programs that operate essentially independently from the clients (e.g. from 

the specific browser) to offer services over the Internet [LiH00]. If a web server has 

low quality, the web server may provide incorrect information to a client user or 

cause data loss in the back-end. However, relatively little attention has been paid to 

research on web server testing. 

 

Different testing approaches can be used to test web servers, such as unit testing, 

integration testing, and system testing. This project focuses on unit testing, used to 

check the correctness of methods or classes in the web server. 

 

When performing unit testing on a web server, two types of measurement can be 

considered: requirements coverage measurement (Black-Box testing) and structural 

coverage measurement (White-Box testing). Requirements coverage measurement 

aims to check whether the tested web server method meets its specification (which 

describes its behavior and features) or not, while structural coverage measurement 

provides a means to confirm that "the requirements-based test procedures exercised 

the code structure of the tested method". Requirements coverage analysis should be 

accomplished and reviewed before structural coverage analysis begins [HVC+01].  

 

Modified Condition / Decision Coverage (MC/DC) is a structural coverage criterion 

requiring the basic requirement for Decision/Condition Coverage (DCC), and also  

needing that each condition within a decision is shown by execution to 

independently and correctly affect the outcome of the decision [ChM94]. 

 

This criterion is widely used in aviation software testing. To be certified by the FAA 

(Federal Aviation Administration), aviation software must satisfy standard DO-178B 

[HaV01]. Software development processes are specified in this standard for software 

of varying levels of criticality. With respect to testing, the most critical (Level A) 

software, which is defined as that which could prevent continued safe flight and 

landing of the aircraft, must satisfy MC/DC. 

 

The importance of MC/DC in aviation software testing field arises from the nature of 

current flight control programs where the actuator commands depend on the state 

of the system [Whi01]. The state of system is controlled by up to several hundred 

very long Boolean expressions. Testing such software by using multiple-condition 
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coverage is infeasible, which is due to the large number of tests. MC/DC reduces the 

number of test cases while providing similar test coverage. It was developed to 

provide many of the benefits of exhaustive testing of Boolean expressions without 

requiring the cost of exhaustive testing [ChM94, HaV01]. 

 

Web servers are also state-based systems. They indentify the next state of a web 

application based on the current state and the user input. So based on the role 

MC/DC plays in testing aviation software (as a stated-based system), MC/DC was 

selected as a good candidate for testing web servers in this project. 

 

The motivation of this project is to evaluate MC/DC by assessing its effectiveness in 

testing a typical web server. The effectiveness is defined by measuring the additional 

cost and the additional benefits of MC/DC compared to Black-Box testing. 

1.2  Software under Test 

An Foras Feasa proposed a project called Cultural Objects Management Project 

(COMP) which aims to help users to manage their cultural objects and reduce the 

difficulty in contributing cultural data to professional data repositories.  

 

In order to better maintain and research culture objects, national museums 

cooperate with these large repositories to store and manage different metadata 

(such as Europeana [DGH+10], DC [Dub03]) to record these objects’ information. But 

for private providers, such as small museum curators and private collectors, the 

procedure of contributing cultural data is more difficult and they have to learn how 

to exchange the data and understand different data structures to represent their 

cultural objects. So it is necessary to create a bridge between these private providers 

and large data repositories. COMP was designed to provide such service and give 

convenience to those private providers. It is intended that COMWS will be used by 

various national bodies, so it is important that it operates correctly. 

 

Cultural Object Management Web Server (COMWS) is the core of COMP and it 

provides three services: 

- Acts as the back-end server to communicate with the front-end cultural objects 

management website.  

- Includes servlet, which is used to communicate with mobile application in order 

to help users to manage their cultural objects by using their mobile phone. 

- Acts as the intermediate software to connect with these large repositories to do 

the cultural objects data exchange. 

1.3  Method 

In order to evaluate whether MC/DC is actually effective in testing web server, a 

related experiment - testing COMWS, was implemented to verify the proposed 
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viewpoint. Testing such web server includes 2 parts: 

 

- Black-Box Testing: testing whether the code of COMWS meets the specification 

or not (focus on the specification) 

Result data collected: 

1. BB tests number 

2. The work (cost time) to write these BB tests 

3. Faults found number 

4. Branch coverage of tested program 

5. Code coverage of tested program 

 

- MC/DC Testing: using MC/DC coverage criterion to test the implementation of 

COMWS (focus on the inner structure of the code) 

Result data collected: 

1. MC/DC tests number 

2. The work (cost time) to write these MC/DC tests 

3. Faults found number 

4. Branch coverage of tested program 

5. Code coverage of tested program 

6. Extra MC/DC tests number to find faults which BB testing didn’t find 

 

Result data of Black-Box Testing was compared with that of MC/DC Testing to 

evaluate the effectiveness of MC/DC in testing COMWS. The evaluation focused on 

three criteria: 

- Testing Cost: aims to find whether MC/DC Testing required more works than 

Black Box Testing 

- Faults Found: aims to find whether MC/DC Testing found extra faults or not 

- Coverage Area: aims to find the influence MC/DC Testing had on the branch 

coverage and code coverage 

 

By doing such evaluation, the comparison result can provide the evidence to verify 

whether MC/DC is actually effective in testing web server or not. 

1.4  Report Overview 

The rest of this report is organized as follows: 

- Section 2 provides background into the problems of evaluating the effectiveness 

of MC/DC for testing the COMWS. It gives the explanation of MC/DC and 

proposes the testing solution to these problems. 

- Section 3 describes the software and tools used in the testing solution. 

- Section 4 gives an overview of COMWS (functionality and a description of 

classes). 

- Section 5 details the testing design for COMWS and the implementation of the 

testing solution. 
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- Section 6 describes and draws conclusions from the testing results. 

- Section 7 gives the evaluation based on these testing results. 

- Section 8 provides a critical analysis, presents conclusions, and makes 

suggestions for future work. 

2. Background & Proposal 

This section describes the background details, explaining why MC/DC was selected as 

a good candidate test technique for testing a web server. It describes the 

fundamental software testing concepts used, and provides a detailed explanation of 

MC/DC. It analyzes the reasons for using MC/DC to test a web server (COMWS) and 

also describes previous work on MC/DC testing. Finally, it describes the proposal of 

my project. 

2.1  Related Software Testing Concepts 

Some essential related Software Testing Concepts are shown as below: 

 

 Software Quality 

 

With the advancement and development of new software product, a major 

process, which needs to be systematic scrutinize is the quality aspects. In the 

world of competitive business market, a company has to make sure that the user 

or clients are getting competitive and effective software products all the time. 

Customers are not going to buy any low quality software products, and the only 

way to promise that the software products are ready for the market is to make 

sure that they pass the professional quality evaluation process. 

 

Software Quality refers to: 

The degree of conformance to explicitly stated functional and performance requirements, 

explicitly documented development standards, and implicit characteristics that are expected 

of all professionally developed software. [Gal04] 

 

This definition indicates that high quality software needs to meet the following 

three requirements: 

- Specific functional requirements, which refer mainly to the outputs of the 

software system. 

- The software quality standards mentioned in the contract. 

- Good Software Engineering Practices (GSEP) [Gal04], reflecting 

state-of-the-art professional practices that are not explicitly mentioned in 

the contract. 

 

In order to produce high quality software (meets the three requirements above), 
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a series of professional activities are proposed. Software testing is one of these 

activities and has a close relationship with software quality. Software testing is 

the first step applied to control the software product ’s quality before its 

shipment or installation at the customer’s premises. Suitable test procedures can 

bring the tested software to an acceptable level of quality after correction of the 

identified errors and retesting [BTL+11], by contraries, unreasonable test 

procedures may leads to poor software quality, which will cause more failures, 

increase development costs and delay in attaining product stability [BTL+11]. So 

software testing provides a great impact on software quality and developing 

suitable software test procedures is really necessary. 

 

 Testing Techniques 

 

- Black-Box (Functional) Testing and White-Box (Structural) Testing: 

Black-Box Testing is based on the program specification only (Software 

function) and doesn’t consider the inner code of the tested program. All the 

test cases are generated from specification. The goal of Block-Box Testing is 

to verify that the program meets the specified requirements. 

 

White-Box Testing is based on the inner program code (structure) & the 

specification and all the test cases are designed to exercise the 

implementation. The goal of White-Box Testing is to ensure that executing 

the components (software can be viewed as a set of components) always 

results in the correct output value. White-Box Testing is used to enhance 

Black-Box testing and try to improve coverage of the internal components 

that form the program. 

 

- Decisions and Conditions: a decision is a compound Boolean expression that 

controls the flow of the program (always exists in the ‘if’, ‘for’ and ‘while’ 

statements). A condition is a leaf-level Boolean expression (cannot be 

broken down into a simpler Boolean expression) that can be used to make 

up a decision. A decision consists of one or more conditions. 

 

- Decision/Condition Coverage (DCC): The test cases for this white-box 

testing technique ensure that every decision in the program is true and false 

at least once, and that every condition is true and false at least once. By 

checking whether every test execution of DCC satisfies the program 

requirement or not, testers can achieve 100% coverage of every decision 

and 100% coverage of every condition in the program. 

 

- Multiple Condition Coverage (MCC): The test cases for this white-box 

testing technique ensure that every possible combination of conditions for 

every decision to be tested. Each decision with n conditions has 2n MCC test 

cases. So although the test result is very precise, the cost will be really 
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expensive if n is very large. By checking whether every test execution of MCC 

satisfies the program requirement, testers can understand whether every 

possible combination of conditions in a decision works properly or not. 

2.2  Modified Condition/Decision Coverage 

This section explains MC/DC [ChM94, Whi01, HaV01] and identifies its key strengths. 

It also indicates what the role it plays in software testing area and finally gives the 

reason why it is widely used in testing avionics systems. 

2.2.1 Understanding of MC/DC 

The standard MC/DC definition is shown as below:  

 

Every point of entry and exit in the program has been invoked at least once, every 

condition in a decision in the program has taken all possible outcomes at least once, 

every decision in the program has taken all possible outcomes at least once. Each 

condition in a decision has been shown to independently affect that decision's 

outcome. A condition is shown to independently affect a decision's outcome by varying 

just that condition while holding fixed all other possible conditions .[HVC+01] 

 

This can be summarized as follows: 

 

Modified Condition/Decision Coverage (MC/DC) is an enhanced version of Decision 

Condition Coverage (DCC), it includes the basic requirements of DCC and also has its 

own extra requirements. 

 

For the basic requirements part (DCC): 

1) Test cases set should be able to consider all the entrance and exit situations of 

the program. It is the fundamental requirement of DCC and makes sure the test 

cases consider all the conditions and decisions in the program. This requirement 

is related to ‘Every point of entry and exit in the program has been invoked at least once’ 

in the standard MC/DC definition. 

 

2) Test cases set should be able to cause every decision to be taken all possible 

outcomes (true and false) at least once. This requirement satisfies ‘every decision 

in the program has taken all possible outcomes at least once’ in the standard MC/DC 

definition and makes sure all possible values of every decision are under 

consideration. 

 

3) Test cases set should be able to cause every condition in a decision to be true 

and false at least once. This requirement is related to ‘every condition in a decision in 

the program has taken all possible outcomes at least once’ in the standard MC/DC 

definition and makes sure all possible values of every condition in every decision 
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are under consideration. 

 

For its own extra requirement part: 

4) Test cases set should make sure that each condition in a decision should affect 

the outcome of that decision independently. That means the outcome of the 

decision should be changed if only a single condition was changed. This 

requirement is related to the last two sentences in the standard MC/DC 

definition and is the kernel of MC/DC coverage criterion. 

2.2.2 MC/DC Example 

I have developed the following example to show how MC/DC is used. Figure 2.1 

indicates a section of code in COMWS that checks whether the profile session is 

correct or not. This piece of code is an instance of a decision in the form A && (B || 

C). 

 

 

 

 

The truth table of decision A && (B || C) is shown as below: 

 
Table 2.1 truth table for A&& (B||C) 

Independent Condition A B C A&&(B||C) 

 T T T T 

B T T F T 

A,C T F T T 

 F T T F 

B,C T F F F 

 F T F F 

A F F T F 

 F F F F 

 

Test Cases 

 

I use a list in the format {A, B, C} to indicate the MC/DC test cases for this decision:  

 

1. {T, T, F} => T 

2. {T, F, F} => F 

if(session.getAttribute("ID") != null &&  

     (session.getAttribute("Email") == null || 

session.getAttribute("Password") == null)){ 

              result = "{'err': 'session_profile_error'}"; 

} 

Figure 2.1 an instance of decision A && (B || C) in COMWS 
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3. {T, F, T} => T 

4. {F, F, T} => F 

 

To provide complete MC/DC test coverage on a decision of the form A && (B || C), 4 

tests are required. 

 

Explanation 

 

A truth Table is a good way to find suitable MC/DC test cases. That’s because the 

truth table indicates the relationship (especially the independency relationship)  

between conditions and decision, and can help tester to find suitable combinations 

of tests to meet the MC/DC requirement. Let’s take the decision A && (B || C) for 

example, based on the truth table 2.1 shown above, the set {TTF, TFF, TFT, FFT} is a 

good choice. The reason is that this set meets the basic requirement 1 and 2 and also 

can make each condition (A, B and C) to affect the outcome of the decision 

independently (See the first row). 

2.2.3 The Advantages of MC/DC 

A comparison of different white-box testing techniques shows the advantages of 

MC/DC. The detailed comparisons among MC/DC, DCC and MCC together with the 

result are shown below: 

 

 Comparison on the number of tests 

1. DCC: For a decision with N conditions, Decision Condition Coverage needs at 

least 2 test cases to finish the test. This is shown in Figure 2.2. 

 

 

Based on the truth table of the tested decision, one Boolean value of each 

condition was combined to make the decision equals to true, at the same time, 

the reverse Boolean value of each condition was joined to make the decision 

equals to false, then these two test cases can satisfy DCC requirement. 

 

2. MC/DC: If the decision has N uncoupled conditions, then MC/DC needs at 

T  F T  F T  F ……………

. 

T  F T  F 

N B C N-1 A 

T F T … F F F T F … T T 

Decision: True Decision: False 

Conditions: 

Values: 

Test Cases: 

Figure 2.2 the way to obtain at least number test cases for DCC 
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least (N + 1) tests by varying one condition of each of the first N tests (For 

example: test cases {TTT, FTT, TFT, TTF} for decision (A && B && C)). If the 

decision has coupled conditions, then MC/DC needs at most 2N tests by 

selecting unique tests for each condition [ChM94]. So the range of MC/DC tests 

number is [N+1, 2N].  

 

3. MCC: From the definition in 2.1, if the decision has N conditions, then MCC 

need 2N test cases to complete the test. 

 

Conclusion for this comparison: Figure 2.3 concludes the growth of test cases 

for DCC, MC/DC and MCC when testing a decision with different number of 

conditions.  

 

Figure 2.3 the growth of test cases for DCC, MC/DC and MCC 

 

    As Figure 2.3 shows, the number of DCC test cases has no relationship to the 

number of conditions in the tested decision, always stands at 2; the number of test 

cases for MC/DC grows slightly (linear growth) as the number of conditions in the 

tested decision increases. On the contrary, the number of MCC test cases increases 

significantly (exponential increase) with the growth of the number of tested 

decision’s conditions. 

 

 Comparison on finding faults: 

1. DCC: DCC can find many faults, but it is not very sensitive to logical operator. 

Table 2.2 shows such one example. 

 

Table 2.2 DCC test cases for A &&B and A || B 

Decision DCC test cases 

A && B 1. {T, T} 2. {F, F} 

A || B 1. {T, T} 2. {F, F} 

 

The DCC test cases for decision ‘A && B’ and ‘A || B’ are the same, which means 
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DCC is not sensitive to distinguish logical operators ‘&&’ and ‘||’. So by using 

DCC technique, it is not easy to find such miswritten fault. 

 

2. MC/DC: MC/DC can find more faults than DCC, that’s because MC/DC focuses 

more on the relationship between logical operator and operands. Table 2.3 

shows the same example to DCC. 

 
Table 2.3 MC/DC test cases for A && B and A || B 

Decision MC/DC test cases 

A && B 1. {T, T} 2. {T, F} 3. {F, T} 

A || B 1. {T, F} 2. {F, T} 3. {F, F} 

 

MC/DC is sensitive to distinguish logical operator ‘&&’ and ‘||’ by using the 

special test cases {T, F} and {F, T}, which means MC/DC has stronger ability in 

finding faults than DCC. 

 

3. MCC: Although MC/DC considers the most part in testing complex decisions, it 

still doesn’t reach the same level as MCC. MCC considers every possible 

combination of conditions for every decision in the tested program, so it has the 

strongest ability in finding faults among these three techniques. 

 

Conclusion for this comparison: the ability in finding faults: DCC<MC/DC <≈

MCC (<≈ means smaller but similar ability) 

 

 Final Comparison Conclusion: 

By combining the conclusions of these two comparisons above, the final 

comparison conclusion can be shown in Table 2.4. 

 
Table 2.4 comparisons of MCC, MC/DC and DCC 

Comparison Item DCC MC/DC MCC 

Number of tests for N conditions 

within a decision 

2 N + 1 2N 

Ability in finding faults  DCC<MC/DC <≈MCC 

     

Table 2.4 indicates that MC/DC has a low increase in test cases when compared 

with DCC and at the same time, has a similar ability to find faults when 

compared with MCC. So when using MC/DC to test complex software, it can 

obtain a high accuracy testing result (finding almost all the faults) by only writing 

acceptable number of tests. 

2.2.4 MC/DC in Software Testing 

Software has become the medium of choice for enabling advanced automation in 

aircraft, and also in ground and satellite-based systems that manage communication, 
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navigation, and surveillance for air traffic control. As the capability and complexity of 

software-based systems increases, so does the challenge of verifying that these 

systems meet their requirements, including safety requirements. For systems that 

are safety and mission critical, extensive testing is required. However, the size and 

complexity of today's avionics products prohibit exhaustive testing [HaV01]. 

 

The RTCA/DO-178B document Software Considerations in Airborne Systems and 

Equipment Certification [HaV01, RTC92] is the primary means used by aviation 

software developers to obtain Federal Aviation Administration (FAA) approval of 

airborne computer software [HaV01, USF93]. DO-178B describes software life cycle 

activities and design considerations, and enumerates sets of objectives for the 

software life cycle processes. For level A software (that is, software whose 

anomalous behavior could have catastrophic consequences), DO-178B requires that 

testing achieve MC/DC of the software structure. MC/DC criteria were developed to 

provide many of the benefits of exhaustive testing of Boolean expressions without 

requiring exhaustive testing [HaV01, ChM94]. 

 

In the context of DO-178B, MC/DC serves as a measure of the adequacy of 

requirements-based testing-especially with respect to exercising logical expressions. 

In that regard, MC/DC is often used as an exit criterion (or one aspect of the exit 

criteria) for requirements-based testing [HaV01]. 

2.2.5 MC/DC on Avionics Systems 

A more detailed analysis of avionics systems shows the fundamental reasons why 

MC/DC is a suitable technique for testing these systems. Avionics systems typically 

have a large number of complex Boolean expressions. Table 2.5 shows the number of 

Boolean expressions with n conditions for all of the logic expressions taken from the 

airborne software (written in Ada) of five different Line Replaceable Units(LRUs) from 

level A systems [HVC+01, Chi01]. 

 

Table 2.5 Boolean Expression Profile for 5 Line Replaceable Units 

 Number of Conditions, n 

1 2 3 4 5 6-10 11-15 16-20 21-35 36-76 

Number of 

Boolean 

expressions with n 

conditions 

16491 2262 685 391 131 219 35 36 4 2 

 

Table 2.5 shows that the number of complex expressions is really large and these 

systems even have more than 36 conditions Boolean expressions. It is difficult to test 

them by using MCC (36 conditions need 236 tests), but for MC/DC, it is not the case. 

Two reasons are listed below: 
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 As shown in section 2.2.3, MC/DC can achieve many of the benefits of MCC 

testing while has a low increase in required test cases. 

 

 The other subtle reason: avionics systems are typically example of state-based 

systems and MC/DC has a good performance when testing these systems. When 

designing avionics systems, programmers have to consider a lot of factors such 

as height, weight, high atmospheric pressure, humidity level and so on. These 

factors are actually conditions inside complex expressions and the combination 

of different values of these factors is related to the different state of the running 

system.  

 

It is important to make sure that every factor inside the system works properly 

because even a small change on a factor may lead the system from good state to 

disastrous state. Fortunately, by using the technique MC/DC, this requirement 

could be satisfied. The essence of MC/DC is that each condition should affect the 

outcome of the decision independently, which means MC/DC can help testers to 

check whether each condition in each decision in the source code has the proper 

effect or not (Whether the changes on each factor can lead the system to correct 

state or not). So MC/DC is really suitable for testing those complex stated-based 

systems. 

2.3  Problem Analysis 

A similar approach, as used for avionics systems, is used to analyze the web server. 

Table 2.6 indicates the number of Boolean expressions with n conditions for all of the 

logic expressions taken from the COMWS. 

 
Table 2.6 Actual Boolean Expression Profile for COMWS 

 Number of Conditions, n 

1 2 3 4 5 6 

Number of Boolean expressions with n conditions 138 11 3 2 0 0 

 

As the table data shows, COMWS does not have many complex Boolean expressions. 

But from an analysis of the COMWS source code, this web server has many special 

code structures as indicated in Figure 2.4 (one piece of such style code in COMWS is 

shown in Figure 2.6). Such code is named as the Equivalent complex Boolean 

expression shown in Figure 2.5. 
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Figure 2.6 one piece of such structure code in COMWS 

 

After the equivalent substitution for all such code structures in COMWS, the 

equivalent complex Boolean expression profile for this web server is shown in Table 

2.7 and the comparison between the percentage of number of Boolean expressions 

with n conditions in COMWS and avionics systems is shown in Figure 2.7. 

 

Table 2.7 equivalent complex Boolean expression profile for COMWS 

 Number of Conditions, n 

1 2 3 4 5 6 7 8 9 

Number of Boolean expressions with n conditions 77 19 7 6 1 1 1 0 1 

if(A){ 

if(B){ 

   if(C){ 

      … 

} 

} 

} 

Figure 2.4 special structure codes 

 

if(A && B && C){ 

… 

} 

Figure 2.5 Equivalent complex Boolean expressions 
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At the same time, in order to show the complex Boolean expressions distribution 

difference between Avionic systems and other Java programs, another analysis is 

performed on Qualitas Corpus1. The Qualitas Corpus is a curated collection of Java 

software systems intended to be used for empirical studies of code artifacts. 14 

different software systems together with their class file in Qualitas Corpus are 

randomly selected to be analyzed (the technique used to calculate the number of 

Boolean expression with n conditions for these different software systems is shown 

in Appendix B), and the result is shown in Figure 2.8 (The reason why the number of 

conditions starts with 2 is because for almost all the software systems, the number of 

decision with 1 condition is substantial larger than the others, so if this diagram 

starts with 1 condition, the complex Boolean expressions distribution difference for 

this software is hard to distinguish). 

 

                                                           
1
 Qualitas Corpus: http://www.qualitascorpus.com/ 
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As Figure 2.7 and Figure 2.8 shows, different software has different complex Boolean 

expressions distribution. COMWS has a very similar distribution pattern of complex 

Boolean expressions to Avionics Systems (COMWS even has more the percentage of 

complex Boolean expressions with more than 1 condition than that of Avionics 

Systems). At the same time, MC/DC seems suitable to test other Java programs, it 

will be explored in ‘Conclusions’ chapter. Based on the analysis in section 2.2.5, MCC 

is also not a good candidate for testing COMWS. 

 

In common with Avionics Systems, web servers are also state-based systems. They 

have to identify the correct next state based on the current state and user ’s input. 

For example, for the update user’s profile method in COMWS (the code is shown in 

Figure 2.6), the web server should select the unique 1 of 4 states (-2 -> wrong format, 

0 -> exist user's email, 1-> update succeed, -1 -> update failed) to identify which one 

should be responded to the front-end web application.  

 

In conclusion, based on the two points above (MCC not well suited and both 

state-based systems), a better test technique to test web servers is MC/DC. It is not 

0.00% 

5.00% 

10.00% 

15.00% 

20.00% 

25.00% 

th
e 

p
er

ce
n

ta
ge

 o
f 

n
u

m
b

er
 o

f 
B

o
o

le
an

 e
xp

re
ss

io
n

s 
w

it
h

 n
 c

o
n

d
it

io
n

s 
 

Number of Conditions, n 

Comparisons of the percentage of number 
of Boolean expressions with n conditions in 

Qualitas Software and Avionics Systems 

ant 

antlr 

aspectj 

axion 

castor 

cayenne 

checkstyle 

displaytag 

emmma 

findbugs 

freemind 

informa 

jmeter 

junt 

Avionics Systems 

Figure2.8 comparisons of the percentage of number of Boolean expressions with n conditions in 

Qualitas Software and Avionics Systems 



 22 
 

only because MC/DC can achieve approximately the same level of effectiveness as 

MCC with significantly fewer test cases, but also the reason that MC/DC can check 

whether each condition in each decision in the source code has the proper effect in 

order to ensure the web server can jump to the correct state. 

2.4  Previous Work 

This section provides an overview of previous work. The previous work is divided into 

two parts: literature-based theory work and software-based real testing work.  

Literature-based theory work focus on the research on MC/DC while software-based 

real testing work focus on evaluating the effectiveness of MC/DC in testing the 

avionics related software. 

2.4.1 Literature-Based Theory Work 

MC/DC is a white-box testing technique in software testing area, many scientists and 

academic institutions have researched on it. 

 

 Characteristics of MC/DC: 

 

(1) In an investigation of the applicability of MC/DC to software testing, the 

modified condition/decision coverage criterion together with its properties 

and areas for further work were described [ChM94]. It first described the 

definition of MC/DC, its properties and relationship to other criteria. Then it 

identified problems posed by coupled conditions and the Ada short-circuits 

operators and proposed approaches for each. Finally, an analysis of 

comparing the sensitivity of the MC/DC with that of decision, 

condition/decision and multiple-condition testing in detecting errors in 

Boolean expressions was proposed. The conclusion was “The MC/DC was 

shown to be significantly better than either the decision or 

condition/decision criterion and to compare favorably with the often 

impractical multiple-condition criterion.” [CHM94] 

 

(2) In a study of finding how good a randomly selected test-set is in exposing 

errors according to a given test criterion, an empirical evaluation of 

effectiveness of three main control-flow test criteria (DC (Decision Coverage), 

FPC (Full Predicate Coverage), MC/DC) has been performed [KaB03]. The 

study was based on exhaustive generation of all possible test-sets against 

ENF, ORF, VNF and ASF faults. It also analyzed the variation in effectiveness 

of test criteria (which is used to determine its fault detection reliability) and 

the influence of the number of conditions on average fault detection 

effectiveness and standard deviation of effectiveness for each test criteria.  

 

The experiment results indicated that: 
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(1) MC/DC was found to be effective in detecting faults, but its test-sets had 

a large variation in fault detection effectiveness for ASF faults. 

(2) The average effectiveness for DC, DC/R (DC/R is a variation of DC that is 

used to ensure that it is the test-set property that influences the 

effectiveness and not the test-set size) and FPC was found to decrease 

with the increase in the number of conditions, while that of MC/DC 

remained almost constant. 

(3) The standard deviation of the effectiveness showed variation in DC, 

DC/R and FPC but remained constant for MC/DC. 

 

Thus, the conclusion of this experiment is: “MC/DC criterion is more reliable 

and stable in comparison to DC, DC/R and FPC”. [KaB03] 

 

 Test-Suite Reduction for MC/DC: 

 

(1) In an investigation of test-suite reduction and prioritization problem for 

MC/DC, new algorithms for test-suite reduction and prioritization were 

proposed that can be tailored effectively for use with MC/DC [JoH01]. Test 

suite always grows when the tested software is modified (Because new test 

cases will be added into test suite). Researchers developed test-suite 

reduction algorithms and test-suite prioritization algorithms to solve 

test-suite size problem. But existing reduction and prioritization techniques 

may not be effective in reducing or prioritizing MC/DC-adequate test suites 

because they do not consider the complexity of the criterion. Because of this, 

new algorithms were proposed and some evaluation was performed on 

these two algorithms. The evaluation conclusion was "The algorithms show 

the potential for substantial test-suite size reduction with respect to MC/DC" 

and "the test-suite prioritization efficiently orders a test suite for MC/DC". 

[JoH01] 

 

(2) In an investigation of test-suite reduction problem for MC/DC, a new 

test-suite reduction technique that using bi-objective model for MC/DC was 

proposed to address this problem [PZL+05, PMG+10]. MC/DC is an effective 

verification method that can help to detect safety faults, but its cost is a little 

bit expensive. In regression testing, it is quite costly to rerun all of test cases 

in test suite. Therefore, it is necessary to reduce the test suite to improve 

test efficiency and save test cost. However, many existing test-suite 

reduction techniques are not effective to reduce MC/DC test suite. Because 

of this, a new algorithm was presented that has two characteristics from 

traditional reduction algorithm:  

(1) Constructing a bi-objective model that considers both coverage degree 

and fault-detection ability of test cases 

(2) The reduced test suite satisfies adequate coverage for test-requirement 

suite no matter when the algorithm is terminated. 
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Some experiments were performed on this algorithm and the results 

indicated that "this test-suite reduction algorithm is effective for both 

reducing test suite and ensuring fault-detection ability of reduced test suite." 

[PZL+05] 

 

 Variants of MC/DC:  

 

(1) Observable Modified Condition/Decision Coverage (OMC/DC) [WGY+13] 

Structural coverage metrics, such as MC/DC, are commonly used to measure 

the adequacy of test suites. Such criteria require only certain code structures 

(such as a particular Boolean assignment of a decision) to be exercised, 

without requiring the resulting value to affect an observable point in the 

program. As a result, test suites satisfying these criteria can produce 

corrupted internal state without revealing a fault, resulting in wasted testing 

effort. In order to solve this problem, Observable MC/DC, a combination of 

traditional MC/DC testing with a notion of observability (an additional path 

constraint) was proposed to help ensure that faults will be observed through 

a non-masking path from the point the obligation is satisfied to a variable 

monitored by the test oracle. Some experiments were performed to test 

OMC/DC and the result indicated that "OMC/DC test suites locate a median 

of 17.5% more faults than MC/DC test suites when paired with an oracle 

observing only the output variables" and "OMC/DC is less sensitive to the 

structure of the program under test than MC/DC and also provides the 

benefits of using a very strong test oracle with MC/DC coverage". [WGY+13] 

 

(2) Reinforced Condition/Decision Coverage (RC/DC) [ViB06] 

The MC/DC criterion is used mainly for testing of safety-critical avionics 

software. The main aim of MC/DC is testing situations when changing a 

condition implies a change in a decision. But this criterion has one 

substantial shortcoming - the deficiency of requirements for testing of the 

false actuation (The false actuation of a system could be invoked by a 

software error in situations when changing a condition should not imply 

changing a decision) type of failures. Such situation could make MC/DC 

insufficient for many safety-critical applications. To eliminate this 

shortcoming, a new criterion RC/DC was proposed. Testing according RC/DC 

should include test cases according MC/DC and additional test cases for 

testing important situations when a false actuation of a system is possible. In 

that way, all requirements of MC/DC are valid and a new requirement for 

keeping the value of a decision when varying a condition is added to the 

testing regime. RC/DC can make the testing process more effective and it 

could be important in the testing of safety-critical applications. 
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2.4.2 Software-Based Real Testing Work 

(1) An empirical evaluation of MC/DC coverage criterion was performed on the 

HETE-2 Satellite Software [DuL00]. In order to be certified by the FAA, aviation 

software must satisfy a standard labeled DO-178B and the most critical (Level A) 

software must satisfy MC/DC. But this standard is controversial in the aviation 

community, partially because of perceived high cost and low effectiveness. In 

order to shed some light on this issue, an evaluation was performed on the 

attitude control software (ACS) of the HETE-2(High Energy Transient Explorer) 

scientific satellite being built by the MIT Center for Space Research for NASA.  

 

Functional testing and functional testing augmented with test cases were 

compared to satisfy MC/DC coverage on the ACS. For black-box testing part, 

three-step testing process was executed for each mode: switching logic testing, 

parameter testing and functional testing. For white-box testing part, the 

coverage evaluation was firstly performed to identify the parts of the code that 

have been left unexplored by black-box testing and then the MC/DC additional 

test cases were designed to find additional errors. 

 

After the experiment, two points were summarized: 

(1) The test cases generated to satisfy the MC/DC coverage requirement 

detected important errors not detectable by functional testing. These 

additional tests corresponded to four kinds of limitations of the black-box 

testing process: 

- Something was forgotten during black-box testing. 

- The software has a complex logic mechanism requiring in-depth 

understanding and precise, customized testing. 

- Some feature of the software was not included in the specification and 

could not give rise to a test case in a black-box testing context. 

- The effects of some errors were too small to be detected by black-box 

testing. 

 

(2) Although MC/DC coverage testing took a considerable amount of resources 

(about 40% of the total testing time), it was not significantly more difficult 

than satisfying condition/decision coverage and it found errors that could 

not have been found with that lower level of structural coverage. 

 

(2) An evaluation of MC/DC testing was performed on an industrial PLC logic 

networks [Bis03]. Coverage measurement has been used to estimate residual 

faults in program code. The same concept can also be applied to PLC logic 

networks. Other than the normal coverage concept, a PLC logic network has its 

equivalent logic coverage - input-output pair coverage (I-O pair coverage), which 

means that input values are selected such that change of a given binary input i 

can "toggle" the state of a binary output j. There is a strong relationship between 
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input-output pair coverage and the MC/DC test method, so it is really deserve to 

research whether MC/DC can maximize such coverage growth and improve fault 

detection efficiency or not on a PLC logic network.  

 

The PLC logic network used in this paper was taken from an industrial example 

that had 36 binary inputs and 10 binary outputs. There were also 6 known faults 

in the initial logic implementation. For the experiment, I-O pair coverage was 

compared against faults found using three different test strategies: MC/DC 

random testing, uniform random input testing and a set of 486 systematic tests 

developed for the original industrial logic implementation. The experiment result 

indicated that the MC/DC test appears to out-perform the other rest strategies, 

finding the first 4 faults in 10 random tests and all 6 in 486 tests, while the 

systematic tests had only detected 4 faults at this stage, and random input 

testing had found none. 

 

After the experiment, two conclusions were summarized: 

(1) I-O pair coverage was strongly correlated with the faults found in the logic 

network. 

(2) MC/DC random testing was more effective than random input testing and an 

existing systematic test set-probably because coverage growth was faster. 

2.5  Proposal 

The similar pattern of complex Boolean expressions as shown in section 2.3 indicates 

that MC/DC is a suitable coverage criterion for testing web servers. The proposal of 

this project is to evaluate the effectiveness of MC/DC for testing the COMWS. In 

order to implement this task, four steps were proposed:  

 

1) Select representative java files 

 

Figure 2.9 below shows the java files list about the COMWS. Those important 

functional-related java files were selected (such as CultureObject_Interface.java, 

SymbolTransfer.java and so on, detailed function description of COMWS is shown 

in Chapter 4) to do the experiment in order to obtain useful evaluation data. 
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2) Implement the Black-Box testing on selected java files 

 

Three Black-Box testing techniques (Equivalence Partitioning, Boundary Value 

Analysis and Combinations of Inputs) were used in testing each method in each 

selected java files. The items listed below should be calculated after the 

Black-Box testing: 

1. Black-Box tests number 

2. The work (cost time) to write these Black-Box tests 

3. Faults found number 

4. Branch coverage of tested program 

5. Code coverage of tested program 

 

3) Implement the MC/DC testing on selected java files 

 

First generated the test cases based on the equivalence conditions mentioned in 

section 2.3 and truth table for each decision and then wrote and executed the 

tests to do the MC/DC testing. The items listed below should be calculated after 

the MC/DC testing: 

1. MC/DC tests number 

2. The work (cost time) to write these MC/DC tests 

3. Faults found number 

4. Branch coverage of tested program 

5. Code coverage of tested program 

6. Extra MC/DC tests number to find faults which BB testing didn’t find 

 

4) Compare Black-Box testing results with MC/DC testing results and draw 

conclusions 

 

Compared the Black-Box testing with MC/DC testing based on the calculated 

Figure 2.9 java file list of COMWS 
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items list above and focused on the following three criteria to draw the 

conclusion: 

- Testing cost: 

Comparison was based on two areas: the number of tests and the time 

taken to write tests for Black-Box testing and MC/DC testing 

- Faults found:  

Focused on whether MC/DC found extra faults when compared with 

Black-Box testing. If it was, counted how many MC/DC tests were executed 

to find these extra faults. 

- Program coverage: 

Comparison was based on two areas: branch coverage and code coverage of 

the tested programs. 

3. Software & Tools Used 

This section provides a brief description of the software and tools that were used in 

the implementation and testing of the COMWS. 

3.1  Tomcat and MySQL 

Tomcat [CBE+04] is an open source web server and servlet container, it implements 

the Java Servlet and the JavaServer Pages(JSP) specifications from Sun Microsystems, 

and provides a 'pure Java' HTTP web server environment for Java code to run in. 

 

MySQL [MyS01] is an open-source relational database management system (RDBMS) 

that runs as a server providing multi-user access to a number of databases, it is 

always used in web application development and can be accessed and managed by 

some GUI tools such as phpMyAdmin, DBEdit and so on. 

 

In this project, Tomcat was used as the web server and MySQL was used as the way 

to store users' and cultural objects' information. Meanwhile, phpMyAdmin (as shown 

in Figure 3.1) was used as the GUI tool to manage the MySQL database (such as 

create database, modify the structure of different tables and view detailed data in 

order to check whether the related operation is correct or not). 

 

 

Figure 3.1 phpMyAdmin to manage project database 
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3.2  Customized JUnit Test Runner 

When doing the unit testing and MC/DC testing of the COMWS, instead of viewing 

where was wrong inside the code, detailed testing results and the reason why errors 

occurred should be collected. The traditional JUnit cannot satisfy this requirement, 

so customized JUnit test runner should be implemented to run those test cases. 

 

Implementing customized JUnit test runner includes two steps [BTL+11]: 

 

1. Define my own annotation (as shown in Figure 3.2) 

 

 

Figure 3.2 my own annotation 

 

The ‘retention policy’ makes sure that the annotation is kept at runtime, the ‘target’ 

means the annotation is used on a method and the ‘interface’ indicates the name of 

the annotation is ‘MyTest’. By defining my own annotation, test cases can be 

annotated by this new annotation so that test runner can find and execute them to 

collect test results. 

 

2. Write the test runner to find and execute the annotated methods from a class (as 

shown in Figure 3.3) 

 

 

Figure 3.3 customized JUnit test runner 
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The most important method in customized JUnit test runner is runTests(), which 

accepts the name of a test class as its parameter, finds the test methods (annotated 

with ‘MyTest’) by using Java Reflection and execute these test methods by calling 

invoke(). 

The test results are stored in the variables runs, successes, fails and executionFailures 

and the detailed failure reason is shown in the variable reason. 

 

By using customized JUnit test runner, my own format of test results can be 

generated and the detailed failure reason can be viewed through the reason variable. 

What’s more, the test results can be saved to a log file so that these data can be used 

in the later analysis and evaluation phase. 

3.3  Eclemma 

Eclemma [Hof11a, Hof11b] is an open-source tool for measuring and reporting code 

coverage of Java programs. Testers always focus on two aspects to analyze the 

coverage result: 

 

1. Coverage overview: 

As shown in Figure 3.4, the coverage view lists coverage summaries for the tested 

project, including the information about 'coverage ratio', 'Items covered', 'Items not 

covered' and 'total items'. This coverage view provides a brief and clear way for 

testers to understand the basic statement coverage of java programs – which line is 

executed and which line is not. 

 

 

Figure 3.4 coverage overview 

 

2. Source highlighting: 

As shown in Figure 3.5, the result of a coverage session is also directly visible in the 

Java source editors. A customizable color code highlights fully, partly and not covered 

lines (green - fully covered lines, yellow - partly covered lines, red - lines that have 

not been executed at all). So by analyzing this source highlighting, testers can 

understand the statement coverage and branch coverage of the tested Java program. 
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Figure 3.5 sources highlighting for coverage 

4. COMWS Overview 

This section focuses on the overview of COMWS. It describes what the COMWS is 

and shows what functions this web server has. It also gives the class diagram of 

COMWS to show which classes are important and to be worth testing. 

4.1  Cultural Objects Management Web Server 

COMWS is a web server which is used to help users to manage their cultural objects 

in different data formats (such as Europeana [DGH+10], DC [Dub03]) and acts as 

intermediate software to connect with large repositories to do cultural objects data 

exchange. COMWS is the core of the whole Cultural Objects Management Project 

(COMP). To convey an abstract overview of COMWS, the COMP architecture diagram 

(To show what role the COMWS plays in COMP) and COMWS Use Case diagram (To 

show what functions the COMWS has) are presented in section 4.1.1 and 4.1.2. 

4.1.1 COMWS in COMP 

The architecture of COMP is shown as below: 
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Figure 4.1 indicates that the COMWS plays three roles in COMP: 

1. Acting as the back-end server to communicate with the front-end website. When 

user uses the website to manage cultural objects, all the back-end operations 

such as insert new cultural objects into database, count user ’s current cultural 

objects number are done by COMWS. 

2. Using Servlet to communicate with mobile side. User can use the mobile app to 

communicate with COMWS through Servlet. It helps user to record and upload 

their cultural objects information rapidly.  

3. Doing data exchange with different data format repository. COMWS can 

generate data format-related storing file (for example, generating Europeana 

XML file of cultural objects so that it can be collected by Europeana staff) and 

obtain data information from these repository. 

4.1.2 User Case Diagram 

The COMWS's UML Use Case diagram is shown in Figure 4.2 to manifest what users 

will be able to do with this server. 

 

COMWS 

Local Database 

Servlet 

Europeana DB 

DRI DB 
…
…. . 

(Different data format repository) 
Front-end website 

Android 

(Mobile side) 

Provider 
Data Exchange 

Person Access 

Figure 4.1 the architecture of COMP 
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Figure 4.2 COMWS use case diagram 

 

These use cases help to convey the functionality provided by COMWS. 

4.1.3 COMWS Functionality Summary 

Based on the user cases above, a summary of the entire functionality of COMWS is 

presented as below: 

 

 Provider’s Account and Personal Info Part: 

- Register: Focus on doing the user’s register operation, including check user ’s 

input register information, store information to database and return back 

the register result. 

- Login: Focus on connecting with database to check the user ’s login 

information (email and password) in order to identify whether user can login 

the system or not 

- Modify: it has three separate parts. 

1. Modify personal info: check the reasonableness of modified username or 

phone number value, update information in database and return back 

modify result. 

2. Modify account information: check the reasonableness of modified email 

value (format and whether it is duplicate or not), update information in 

database and return back modify result. 

3. Modify password (safety part): check the reasonableness of modified 

password value, update information in database and return back modify 

result. 
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 Provider’s Cultural Objects Part: 

- Upload new cultural object: 

1. Create Metadata: receive metadata from user ’s side and store them into 

corresponding table in the database based on the data format selected by 

user. 

2. Upload Images: receive images from user ’s side; store them in the cultural 

object-related folder and insert images’ link into the database. 

 

- View cultural objects list: 

Receive user ’s requirement and search from the database to select user ’s 

current cultural objects, return these objects information back to the 

front-end 

 

- View single cultural object: 

1. View Metadata information: receive user ’s different data format request, 

search the database and send back the corresponding metadata information 

of the selected cultural object to the front-end 

2. View Images: receive user’s request and search all images’ link of selected 

cultural object in the database and send back them to the front-end 

 

- Update cultural object info: 

1. Update metadata info: receive user’s request (including the selected data 

format and update data), update the database and send back the result to 

the front-end 

 

2. Update images info: 

For delete image: receive user’s request about which image should be 

deleted, remove the selected image from the folder and delete the record in 

the database 

 

For upload single image: receive user’s request, store the new image into 

the correct folder and insert this image record into the database 

 

For upload multiple images: receive user ’s request, store all the new images 

into the correct folder one by one and insert these images record into the 

database 

 

 Generating Data-Format Related File Part: 

Based on the data-format, generating corresponding file (For example, 

Europeana XML file) and store it into a selected folder. 
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4.2  COMWS Classes Overview 

The class diagram of COMWS is shown in Figure 4.3.  

 

 

Figure 4.3 Class Diagram of COMWS 

 

As shown in Figure 4.3, COMWS has four main levels: Database Operation Level, 

Objects Level, Interface Level and Servlet Level. 

 

 Database Operation Level: DBPool class is acted as the bottom level of COMWS. 

It provides the database connection, executes the requirements from high level 

and return back data or operation result. 

 

 Objects Level: this level contains three parts: Provider, CultureObjects and 

RelatedFunction. 

- Provider:  

The Provider class builds the connection between database and Provider 

objects. It includes the basic data storage functions, such as insert the 

provider’s personal information into database, modify provider ’s email 

address and so on. 

- CultureObjects:  

For a single cultural object, it contains two types of information: 

1. Common information: it records web resources (images, videos and so on) 

and ownership information of the cultural object. Figure 4.4 indicates the 

package and classes used to represent such information.  
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Figure 4.4 Common Information 

 

The class CultureObjects_HighLevelInfo is used to handle ownership 

problem of the cultural object, such as search the cultural object belongs to 

which user, obtain a user’s cultural objects list and so on. The class 

CultureObjects_WebResource manages the web resources of the cultural 

object and makes sure the web resources storage process is correct. 

 

2. Metadata information: user can use different metadata types (Europeana, 

EAD and so on) to represent the cultural object. Each metadata type has its 

own data format and related functions. For example, Figure 4.5 indicates the 

package and classes used to represent Europeana metadata type and 

related functions. 

 

 
Figure 4.5 Europeana Related Metadata and Functions 
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The class Europeana_MetaData represents the Europeana data format to 

describe the cultural object. Both the classes Europeana_Aggregation and 

Europeana_XML are used in the cultural objects data exchange between 

COMWS and Europeana repositories. 

 

- RelatedFunction: 

This part includes those classes that are used to help COMWS works 

properly. 

1. Encode Class: it is used to encrypt and decrypt user's password in order to 

improve the safety of COMWS 

2. DeleteFile Class: it is used to delete user’s web resources on the server 

3. SymbolTransfer Class: it is used to handle some special symbols such as ‘, “, 

\r\n and so on. 

4. FileRename Class: it is used to rename user’s upload files 

 

 Interface Level: this level contains two interfaces: Provider_Interface and 

CultureObject_Interface. Provider_Interface provides the services that are 

related to user's operation, such as login, register and so on. 

CultureObject_Interface provides the services that are related to cultural objects, 

for example, insert web resources of cultural object, insert metadata info of 

cultural object and so on. 

 

 Servlet Level: this level is used to provide services to mobile application. All the 

servlet classes will call Provider_Interface and CultureObject_Interface to 

perform their tasks. 

 

Among these four levels of COMWS, the most important one is Interface Level. That ’s 

because it has direct relations with the main functions of COMWS, which means this 

level is worth to be tested. 

5. Testing 

This section gives a brief description of the unit testing on COMWS. It shows the 

experimental methodologies and gives detailed information on how MC/DC testing 

was designed to test this web server. It also provides examples to show the MC/DC 

testing processes in detail, describes the problems encountered during the 

implementation, and indicates how solutions work to overcome them (The detailed 

Black-Box testing design and implementation are shown in Appendix A). 

5.1  Experimental Methodologies 

When testing a web server, Black-Box testing is performed first to check whether 

these server methods meet their specifications or not. Such testing is the foundation 
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of whole web server testing (Failed to pass Black-Box testing means that the tested 

method is not succeed to be realized, so there is no need to do other testing) and is 

used to find those small and obvious faults. But Black-Box testing has shortcomings. 

Black-Box tests are generated based on specifications, so such tests may not be 

available to detect faults inside the implementation code. In order to find these 

faults, MC/DC was selected to provide additional support. 

 

When measuring the effectiveness of MC/DC in testing COMWS, three criteria were 

used: Testing Cost, Faults Found and Program Coverage. The reasons for selecting 

such three criteria are: 

 

(1) Testing Cost: No matter what testing technique is selected and used, its testing 

cost needs to be considered. If a testing technique has a strong ability to detect 

faults but needs huge number of tests, or takes a great deal of time, the 

technique is less useful in practice. For example, MCC has a strong ability to 

detect faults because it considers the combination of each condition inside the 

tested decision, but it is limited because of its incredible number of  tests. For a 

decision with n inputs, MCC requires 2n tests. In cases where n is small, running 

2n test may be reasonable; running 2n tests for large n is impracticable. So the 

use of this criterion in this project aims to evaluate whether MC/DC was actually 

cost-effective in testing COMWS. 

 

(2) Faults Found: this criteria directly reflects how strong a testing technique is in 

detecting faults in the tested program. Based on the theoretical analysis 

mentioned in Chapter 2, MC/DC should demonstrate a similar ability to find 

faults when compared with MCC. Such ability reflects that it ought to detect 

some faults that Black-Box testing doesn’t find. So the use of this criterion in this 

project aims to evaluate the fault finding ability of MC/DC. 

 

(3) Program Coverage: criteria code coverage and branch coverage are used to 

identify untested code or untested branches in the tested programs. Generally 

speaking, insidious faults are often found in such untested code or untested 

branches, so higher code coverage and branch coverage may indicate less faults 

remained in the tested programs. So the use of this criterion in this project aims 

to evaluate the program-coverage ability of MC/DC in testing COMWS (whether 

MC/DC can actually improve code coverage and branch coverage of the tested 

programs in COMWS).  

 

It is worth noting that the branch coverage here is not the same to traditional 

branch coverage. Traditional branch coverage is actually ‘source code’ level 

branch coverage. For example, Figure 5.1 shows a Boolean expression to check 

whether fis is file or not and Figure 5.2 shows its ‘source code’ level branch 

paths. 
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if(!fis.isFormField() && fis.getName().length()>0) 

{ 

     …… 

} 

 

 

 

 

As shown in Figure 5.2, for ‘source code’ level branch coverage, there is no need 

to consider the inner conditions of the decision, just focus on whether the 

decision (branch) takes True or False at least once or not. Such branch coverage 

is not available to show the strength of MC/DC testing. 

 

The branch coverage used in this project is actually the ‘byte code’ level branch 

coverage and the branch coverage calculated by ‘Eclemma’ is also such type 

coverage. It considers the inner conditions of the decision and checks whether 

each condition takes True or False at least once or not. Such coverage actually 

focuses on the byte code of the tested method. Each jump situation (jump 

succeed or not) of each jump instruction in the byte code is under consideration.  

 

By measuring ‘byte code’ level branch coverage, MC/DC testing can show its 

strength in testing complex Boolean expression. For example, the Figure 5.3 and 

5.4 indicates the ‘byte code’ level branch coverage results for Black-Box testing 

and MC/DC testing on the special complex Boolean expression in method 

Login(). 

 

 

Figure 5.3 ‘byte code’ level branch coverage results for Black-Box testing 

 

!fis.isFormField() && fis.getName().length()>0 

True handle code False handle code 

T 

Figure 5.1 source codes to explain different branch coverage 

Figure 5.2 source code level branch paths 



 40 
 

 

Figure 5.4 ‘byte code’ level branch coverage results for MC/DC testing 

 

As shown in Figure 5.3 and 5.4, Black-Box testing missed one ‘byte code’ level 

branch while MC/DC testing covered all of them. This different is due to the 

special code plist == null. Such code equals to True if and only if there is a 

database error inside the execution of this method. But database error has no 

relations to these values of input parameters, so Black-Box testing did not cover 

this branch. But it is not the case for MC/DC testing. One special MC/DC test case 

focused on this situation and the related test replaced correct database with an 

error-inside database to manually making a database error, which finally made 

this branch been covered. 

 

By measuring ‘byte code’ level branch coverage, it is possible to measure the 

MC/DC test coverage criteria on tested programs. 

 

The experimental methodologies above concludes the reason why Black-Box testing 

was performed first in testing COMWS and why used Testing Cost, Faults Found and 

Program Coverage (also explain the ‘byte code’ level branch coverage) to evaluate 

the effectiveness of MC/DC in testing COMWS. 

5.2  Test Design 

5.2.1 Test Procedure 

The detailed COMWS test procedure is shown in Figure 5.5. 

 

 
 

Tested 

Java 

File 

Method_1 () {…} 

Method_2 () {…} 

Method_3 () {…} 

       …. 

Each Single File 

1. Write specifications for each method 2. Black-Box testing on each method: 

- Equivalence Partitioning 

- Boundary Value Analysis 

- Combinations of Inputs 

3. MC/DC testing on each method 

4. Result collection and 

comparison to evaluate the 

effectiveness of MC/DC 

Figure 5.5 COMWS test procedure 
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Figure 5.5 indicates that the test procedure includes 4 steps: specifications 

generation, black-box testing, MC/DC testing and result collection and comparison. 

The detailed descriptions of these 4 steps are listed as follows. 

5.2.2 Specifications Generation 

Specifications play a key role in testing. In order to be tested, the correct behavior of 

software must be known. Specifications meet this requirement and describe both 

normal and error behavior of the tested software, which makes it easy for testers to 

design related tests [BTL+11]. 

 

In this project, for each method in each tested java file, a related specification should 

be given. Generating specifications for these tested methods are based on two items: 

specification template and COMWS functionality description. 

 

(1) Specification template 

 

The specification template used in this project is shown in Figure 5.6. 

 

/*Specification of Method_Name(): 

Function: 

   describe the function of this method 

 

Program Inputs: 

   parameter 1: the range 

   parameter 2: the range 

   ...... 

 

Program Outputs: 

   return value: 

   possible return value 1 - the condition 1 to cause this return value 

   possible return value 2 - the condition 2 to cause this return value 

   ...... 

*/ 

  

 

Explanation of this specification template 

 

 The ‘Function’ field describes the function of the tested method and indicates 

the role it plays in the whole software.  

 

 The ‘Program Inputs’ field describes the ranges of values for each parameter of 

the tested method. Understanding the ranges of values for each parameter is 

Figure 5.6 specification template 
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really necessary because the output of the method is always affected by the 

values of these parameters. If the method’s realization doesn’t meet the 

parameter range requirements, then the return value of the method will not be 

correct, which can help testers to create tests to find these errors.  

 

 The ‘Program Outputs’ field describes the ranges of the output values of the 

tested method. By considering this field, testers can understand the relationship 

between program inputs and outputs (what values of inputs will cause related 

outputs) so as to help them to design reasonable tests to find errors. 

 

(2) COMWS Functionality Description 

 

COMWS functionality description (the summery version is mentioned in section 4.1.3) 

gives all the detailed information about the tested methods. It includes these 

methods’ definition, possible input value of these methods’ parameters and possible 

output values of these methods. It indicates the role of these methods play in the 

whole web server. 

 

By combining the COMWS functionality description and specification template, the 

specifications of all the tested methods in COMWS are generated, which makes a 

good preparation for the next testing stage. 

5.2.3 Black-Box Testing 

In black-box testing stage, for each tested method, three steps were required to 

check whether it meets specification requirement or not. 

 

1. Three Techniques Test Cases Analysis and Test Generation 

Three techniques were used to do Black-Box testing on COMWS: Equivalence 

Partitioning (EP), Boundary Value Analysis (BVA) and Combinations of Inputs (CI).  

Different test analyses were performed on these three techniques to generate 

their own tests set. 

 

2. Test Realization 

Based on the test data for these three techniques generated in step 1, the 

detailed source code for each test was realized in this stage. 

 

3. Test Execution 

In this stage, tests were executed using customized JUnit test runner and the 

Black-Box testing results were collected. 

 

The detailed description for each Black-Box testing step is shown in Appendix A. 
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5.2.4 MC/DC Testing 

In MC/DC testing stage, for each tested method, a four steps procedure is required. 

Such test procedure is shown in Figure 5.7. 

 

 

 

1. Boolean Expression Transformation 

Because COMWS has so many such special codes mentioned in section 2.3, the first 

step is doing a transformation on the code of tested method to change all such codes 

to the equivalent complex Boolean expressions. This is the basic step to do the 

MC/DC testing on COMWS. 

 

2. Test Cases Analysis and Tests Generation 

The second step is doing the test cases analysis on these equivalent complex Boolean 

expressions and generating the related MC/DC tests. The analysis template is shown 

in Figure 5.8. 

 

// Analysis: 

// 

//   Conditions: 

1. Boolean Expression Transformation 

2. Test Cases Analysis and Tests 

Generation 

3. Tests Realization 

4. Tests Execution 

Figure 5.7 4 steps procedure for MC/DC testing 
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//        A: Line xx: ... 

//        B: Line xx: ... 

//        C: Line xx: ... 

//        ..... 

//  

//   Equivalent Complex Boolean Expression: 

//        ...... 

// 

//   Truth Table: 

//        A        B        C     ...    Complex Boolean Expression 

//       ...      ...      ...   ...    ... 

//       ...      ...      ...   ...    ... 

// 

//   Test Cases: 

//       CASE    A          B          C       ...      Test 

//       =====   =============================     ===== 

//       MCDC1   ...       ...       ...      ...      Test1 

//       MCDC2   ...       ...       ...      ...      Test2 

//       ...     ...       ...       ...      ...       ... 

 

 

As Figure 5.8 indicates, the conditions and equivalent complex Boolean expression 

fields show which conditions and decision are under consideration. The truth table 

gives the relationship between the output value of decision and the truth value of 

each condition. Then, based on the truth table, the test cases set can be generated 

(Selecting from the truth table to make the test cases set satisfies the MC/DC 

requirement) and each test case is related to one test. 

 

Based on the MC/DC test cases generated from the analysis stage, combined with 

the tested method’s inputs, the MC/DC test data of this method can be produced, 

just as shown in Figure 5.9.  

 

//  Test Data: 

//          Test Cases                 Inputs              Expected Outputs 

//    ID    Covered             xxx   xxx   xxx  ...       return value 

//    Test1 MCDC1               ...   ...   ...  ...       ... 

//    Test2 MCDC2               ...   ...   ...  ...       ... 

//    Test3 MCDC3               ...   ...   ...  ...       ... 

//    ...   ...                 ...   ...   ...  ...       ... 

 

 

3. Tests Realization 

Based on the test data generated in step 2, the detailed code for each test can be 

realized in this stage. The code template of MC/DC test method is same to that of the 

Figure 5.9 MC/DC Test Data Generation 

Figure 5.8 analysis template for MC/DC 
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black-box test method except the method name is changed to 

testMethod_MDCC_Txx (xx means the test data ID). 

 

4. Test Execution 

In this stage, just use customized JUnit test runner to run these MC/DC tests and the 

result together with some useful data are collected to prepare for the final analysis 

and comparison. 

5.2.5 Result Collection and Comparison 

The data collected from Black-Box testing and MC/DC testing on each tested COMWS 

method is listed in table 4.1. 

 

Table 4.1 result data needed to be collected 

Black-Box (BB) testing MC/DC Testing 

The number of BB tests The number of MC/DC tests 

The work (cost time) to write BB tests The work (cost time) to write MC/DC tests 

The number of faults found by BB The number of faults found by MC/DC 

Branch coverage of tested program Branch coverage of tested program 

Code coverage of tested program Code coverage of tested program 

 Extra number of MC/DC tests to find faults 

which BB testing didn’t find 

 

Three comparison criteria were used: Testing Cost, Faults Found and Program 

Coverage. Testing Cost (the number of tests and the time taken to write these tests) 

aims to find out whether MC/DC testing needed more tests and cost more time in 

writing the tests than Black-Box testing or not; Faults Found aims to find out whether 

MC/DC testing found extra faults that Black-Box testing didn’t find; Program 

Coverage (Branch Coverage and Code Coverage) aims to find out whether MC/DC 

testing improved the coverage or not in testing the COMWS. 

 

The comparison on these three criteria between Black-Box testing and MC/DC 

testing gives enough data in evaluating whether MC/DC is effective or not for testing 

the COMWS, so it makes a good preparation for final evaluation and conclusion. 

5.3  Test Implementation 

An example of MC/DC testing on the method Login() in the class 

Provider_Interface is shown below to indicate how this test implementation was 

carried out (the implementation of Black-Box testing on the method Login() is 

shown in Appendix A). 

 

Login() is a fundamental method in COMWS that check whether user’s input 

(email address and password) is correct to login the system. Its specification and 
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source code is shown in Figure 5.10 and 5.11, respectively. 

 

/*Specfication of Login(): 

    Function: 

       Login the system 

      

    Program Inputs: 

       Email: 

       Originally we should consider 4 situations:  

       1. length error email string (null, "" and too long string) 

       2. wrong format email string (including symbols such as "'", ";" and so on) 

       3. correct format but not existing email string 

       4. correct format and existing email string 

      

       But for situation 1: 

       it will be checked in the front-end js file 

       For situation 2: 

       it will be checked by using the regular expression: 

       "^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\\.[a-zA-Z0-9-.]+$" in the front-end js 

file 

       so in this case, we only consider 3 and 4 

      

       Password:  

       Originally we should consider 4 situations: 

       1. length error password string(null, "" and too long string) 

       2. wrong format(Malicious) password string(including symbols such as ",", 

";" to do the Database Injection) 

       3. correct format but not 'correct' password string 

       4. correct format and 'correct' password string 

      

       But for sutuation 1: 

       it will be checked in the front-end js file, so in this case, we only consider 

2,3 and 4 

   

    Program Outputs: 

       return value: 

       "{'result': 0}" - wrong email or password 

       "{'result': 1, 'id': .., 'username': ..}" - correct email and password 

       (first .. means the id of the user, second .. means the user's name) 

*/ 

 

 

public static String Login(String Email, String Password) 

{ 

Figure 5.10 Specification of Login() 
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 String query = "SELECT * FROM provider WHERE Email = '"+Email+"'"; 

 ArrayList<Provider> plist = Provider.Search_Query(query); 

 String jsondata = null;  

 

 if(plist == null || plist.size() == 0){ // no such account 

  jsondata = "{'result': 0}"; 

 }else{ 

  if(!Encode.authenticatePassword(plist.get(0).GetPassword(), 

Password)){ //wrong password 

   jsondata = "{'result': 0}"; 

  }else{ //correct email and password 

   jsondata = "{'result': 1, 'id': " + plist.get(0).GetID() + ", 

'username': '"+plist.get(0).GetUserName() +"'}"; 

  } 

 } 

 return jsondata; 

} 

 

5.3.1 Black-Box Testing on Login() 

The detailed implementation of Black-Box testing on the method Login() is shown 

in Appendix A. 

5.3.2 MC/DC Testing on Login() 

1. Boolean Expression Transformation 

Based on the definition of ‘equivalent complex Boolean expression’ mentioned in 

section 2.3, the original Boolean expression shown in Figure 5.12 can be transformed 

into the complex Boolean expression shown in Figure 5.13. 

 

 
 

 

if(plist == null || plist.size() == 0){ 

//no such account 

}else{ 

if(!Encode.authenticatePassword( 

plist.get(0).GetPassword(),Password)){ 

//wrong password 

}else{ //correct email and password } 

} 

Figure 5.12 original Boolean expression code in Login() 

Figure 5.11 Source Code of Login() 
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2. Test Cases Analysis and Tests Generation 

Based on the MC/DC analysis template and equivalence complex Boolean expression 

for Login(), the detailed analysis process is shown in Figure 5.14. Besides the 3 

same tests to Black-Box testing, one new test (T005) was generated to handle 

database error. 

 

// Analysis: 

// 

// Conditions: 

//   Line 37: plist == null 

//   Line 37: plist.size() == 0 

//   Line 43: (!Encode.authenticatePassword(plist.get(0).GetPassword(),  

//              Password)) 

// 

//    Based on the if-else relations, we can obtain a complex decision: 

//    !(plist == null || plist.size() == 0) && 

//          Encode.authenticatePassword(plist.get(0).GetPassword(), Password) 

//    it equals to: 

//    plist != null && plist.size() != 0 &&  

//          Encode.authenticatePassword(plist.get(0).GetPassword(), Password) 

// 

//    plist != null -> A 

//    plist.size() != 0 -> B 

//    Encode.authenticatePassword(plist.get(0).GetPassword(), Password) -> C 

// 

//    Test Cases: 

//       CASE    A          B          C                Test 

//       =====   =======================           ===== 

//       MDCC1   T          T          T                T002 

//       MDCC2   T          T          F                T004 

//       MDCC3   F          T          T*               T005 

//       MDCC4   T          F          T*               T001 

//     

//   Note: 

//       the * under C means don't care items 

//     

if(!(plist == null || plist.size() == 0) &&  

Encode.authenticatePassword( 

plist.get(0).GetPassword(),Password)){ 

                //focus on correct email and password 

}else{//other situations} 

Figure 5.13 equivalent complex Boolean expression  
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// [Test Data] 

//          Test Cases            Inputs                   Expected Outputs 

//    ID    Covered   Email                  Password     return value  

//    T001  MDCC4     linanpp01@gmail.com 12345678     "{'result': 0}" 

//    T002  MDCC1     linanpp09@gmail.com 123456 

"{'result': 1, 'id': 1, 'username': 'Li Nan'}" 

//    T004  MDCC2     linanpp09@gmail.com 1234567      "{'result': 0}" 

// 

//  For MDCC3, in order to make plist == null equals to true, I changed the correct 

//  database DBPool into ErrorDBPool. By doing this, we can test whether plist 

//  == null is true or not when using wrong database operation or information 

// 

//    T005  MDCC3     linanpp09@gmail.com 123456       "{'result': 0}" 

//                      (Using error database) 

  

 

3. Test Realization 

Based on the code template of MC/DC test method and the MC/DC test data for 

Login() generated in step 2, the detailed code for each MC/DC test of Login() 

method can be realized. Because the tests for test case MCDC1, MCDC2 and MCDC4 

already exist in the Black-Box testing phase (T001, T002 and T004, see Appendix A), 

so there is no need to write these tests again. The test code (T005) for test case 

MCDC3 is shown in Figure 5.15. The detailed technique used in realizing this test is 

introduced in section 5.4.2. 

 

@MyTest 

public static boolean testLogin_MDCC_T005() { 

 DBPool.closePool(); 

 ErrorDBPool.setupPool(); 

 DBSelect.select = 1; 

 String result = Provider_Interface.Login("linanpp09@gmail.com", "123456"); 

 DBSelect.select = 0; 

 ErrorDBPool.closePool(); 

 DBPool.setupPool(); 

 if(result.equals("{'result': 0}")) 

  return true; 

 else{ 

  reason=new String("Expected {'result': 0}, actual result :"+result); 

  return false;} 

} 

 

 

4. Tests Execution 

Figure 5.14 MC/DC analysis and test generation for Login() 

Figure 5.15 new test to handle the database error 
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Finally, just use my test runner to run these MC/DC tests (the same code to the tests 

execution phase of Black-Box testing). As the same to Black-Box testing, the console 

gives the execution result and the Eclemma gives the coverage result of this method, 

just shown in figure 5.16, 5.17 and 5.18. 

 

 

Figure 5.16 MC/DC testing result on Login() 

 

 

Figure 5.17 MC/DC testing code coverage on Login() 

 

 
Figure 5.18 MC/DC testing branch coverage on Login() 

 

Figure 5.16 indicates that all 4 MC/DC tests passed. The red exception hint means 

MC/DC actually finds out the database error. Figure 5.17 and 5.18 indicate its 

coverage result: 100% code coverage and 100% branch coverage, which means 

MC/DC can improve the branch coverage of Login() when comparing with 

Black-Box testing. These two points together with other data (for example: the 

number of MC/DC tests is 4 and extra tests number is 1) can be collected to prepare 
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for the final evaluation on Login() method. 

 

The above testing on Login() is an example to show how to implement MC/DC 

testing on a single COMWS method. By using the same test procedure on other 

COMWS methods, useful result data can be collected to prepare for the final 

evaluation stage. 

5.4  Test Problems 

During the Black-Box testing and MC/DC testing on COMWS, there were two difficult 

points that need to be overcome: 

(1) Because Servlet classes are used to communicate with mobile application, it is 

not easy to call these Servlet methods directly in Java application. So the way to 

test the Servlet side is the first difficult point. 

(2) It is difficult to execute database error processing code if the server runs under 

correct database with correct commends. So testing these codes is the second 

difficult point. 

This section focuses on how to use different techniques to solve these two problems. 

5.4.1 Servlet Testing 

Servlet in COMWS is acted as a bridge to connect between mobile application and 

back-end data processing functions. It receives the request from mobile application 

and returns back the result to complete the required task. But unfortunately, it is not 

easy to test Servlet directly in the Java application, which is due to two reasons. 

 

(1) Servlet is not a simple class that its methods can be called directly in the Java 

application. It looks like a service that needs to be run in the Servlet container. 

(2) Servlet can return back result only when it receives some requests from mobile 

application, but there is no mobile side to send different requests, that ’s the 

main reason why it is difficult to be tested.  

 

Technique Solution: 

Two steps were proposed to overcome the difficult listed above. 

 

 Using Tomcat to run Servlet 

Tomcat is a Servlet container that can make Servlet works. So just put the COMP 

under the ‘webapps’ folder of the Tomcat Server and start Tomcat Server to run 

it. By doing this, these COMWS Servlet classes are activated and are available to 

response different requests at any time. This technique provides the 

fundamental requirement in testing Servlet of COMWS. 

 

 Write ‘Client’ class (acted as a mobile application) to send request 

Because there is no mobile side application to send different requests to tested 



 52 
 

Servlet, so writing ‘Client’ class to simulate mobile side’s role is really necessary. 

The source code of ‘Client’ class is shown in Figure 5.19. 

 

import java.io.BufferedReader; 

import java.io.IOException; 

import java.io.InputStreamReader; 

import java.io.PrintWriter; 

 

public class Client { 

     public static void sendGet(String url, String parameter){ 

  //no need to write} 

  

     public static String sendPost(String url, String parameter){ 

       String result = ""; //store the servlet return result 

       BufferedReader in = null; 

       PrintWriter out = null; 

   

       try{ 

        java.net.URL connURL = new java.net.URL(url); //connect url 

   java.net.HttpURLConnection httpConn =  

                        (java.net.HttpURLConnection)connURL.openConnection(); 

        // set attribute 

        httpConn.setRequestProperty("Accept", "*/*"); 

        httpConn.setRequestProperty("Connection", "Keep-Alive");   

                   httpConn.setRequestProperty("User-Agent", "Mozilla/4.0 

(compatible; MSIE 8.0; Windows NT 6.1)");  

                   // Set post method 

                   httpConn.setDoInput(true); 

                   httpConn.setDoOutput(true); 

             

        out = new PrintWriter(httpConn.getOutputStream()); 

        out.write(parameter); //send request parameter 

        out.flush(); 

        //get the return back stream from servlet 

in = new BufferedReader(new 

                        InputStreamReader(httpConn.getInputStream(), "utf-8")); 

        String line; 

        //get the return back result 

        while((line = in.readLine())!=null){ 

         result += line; 

        } 

      }catch(Exception e){ 

       e.printStackTrace(); 

      }finally { 
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       try{ 

        if(out!=null){ 

         out.close(); 

        } 

        if(in != null){ 

         in.close(); 

        } 

       }catch(IOException ex){ 

        ex.printStackTrace(); 

       } 

      } 

      return result; //return the return back result from servlet 

     } 

} 

  

 

As shown in Figure 5.19, the key method is sendPost() (because all the Servlets in 

COMWS handle post request, so there is no need to realize sendGet() method), 

which receives Servlet url and post parameter as parameters to simulate the process 

of sending post request to the tested Servlet. The return value of this method is the 

feedback from Servlet, which can be used to check whether the tested Servlet works 

properly or not.  

 

By using such technique, testing Servlets of COMWS in Java application becomes 

available. For example, the LoginLet test template is shown in Figure 5.20. Just call 

the sendPost() method with ‘link of LoginLet’ and ‘login tested data (post 

parameter)’ and then compare the ‘result’ with the expected value to check whether 

LoginLet works properly or not. 

 

@MyTest 

public static boolean testLoginServlet_Txx(){ 

 String parameter = "{'email':'tested email', 'password':'tested password'}"; 

String result =  

Client.sendPost( 

"http://localhost:8080/InternshipProject/Servlet/LoginLet",parameter); 

if(result.equals("expected value")) 

     return true; 

 else{ 

     reason = new String("Expected value, actual result:" + result); 

     return false; 

 } 

} 

 

Figure 5.19 source code of Client class 

Figure 5.20 LoginLet test template 
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5.4.2 Handle Database Error 

Some methods in COMWS has if-condition code to handle database error, for 

example, as shown in Figure 5.21, for the method ModifyProfile_Initial(), 

the piece of code with red color is used to handle ‘cannot get user name’ database 

error. 

 

public static String ModifyProfile_Initial(int UserID)  

{ 

  String jsondata = null; 

   

  if(UserID <=0) 

  { 

   jsondata = "{'err':'ID_error'}"; 

  }else{ 

Provider p = new Provider(UserID); 

          p.Search_ID(); 

       

          if(p.GetUserName() == null) 

          { 

              jsondata = "{'err':'DB_error'}"; 

          } 

          else if(p.GetUserName().equals("")) 

          { 

              jsondata = "{'err':'ID_error'}"; 

          } 

          else 

          { 

              jsondata = "{'username':'"+p.GetUserName()+"',  

'phonenumber':'"+p.GetPhoneNumber()+"',  

'password':'"+p.GetPassword()+"',  

'email':'"+p.GetEmail()+"'}"; 

           } 

  } 

  return jsondata; 

} 

 

 

When using MC/DC to test this method, the analysis process is shown in Figure 5.22. 

The test case MDCC4 is related to the database error occur situation 

(p.GetUserName() actually equals to null), but unfortunately, it is difficult to 

write test for this test case by only consider the input parameter UserID because 

there is actually no wrong inside the database operation. So the result of such 

condition is the test for MDCC4 is hardly to be written and this piece of code is 

Figure 5.21 red color code to handle database error 
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unreachable. 

 

// Analysis: 

//  Conditions: 

//       Line 76: UserID <= 0 

//       Line 85: p.GetUserName() == null 

//       Line 89: p.GetUserName().equals("") 

// 

//  Based on the if-else relations, we can obtain a complex decision: 

//  !(UserID <= 0) && !(p.GetUserName() == null) && !(p.GetUserName().equals("")) 

// 

//  !(UserID <= 0) -> A 

//  !(p.GetUserName() == null) -> B 

//  !(p.GetUserName().equals("")) -> C 

// 

//    Test Cases: 

//       CASE    A          B          C                Test 

//       =====   =======================           ===== 

//       MDCC1   T          T          T                T002 

//       MDCC2   T          T          F                T003 

//       MDCC3   F          T          T                T001 

//       MDCC4   T          F          T*               difficult! 

//     

//   Note: 

//       the * under C means don't care items 

  

 

Technique Solution: 

Two steps were proposed to overcome this writing test difficult. 

 

 Create Error Database 

In order to write tests for those database error-related test cases, using error 

database instead of original database to make error manually is a good way to 

satisfy it. So the first step is creating error database, which is shown in Figure 

5.23. 

 

Figure 5.22 MC/DC analysis on ModifyProfile_Initial() 
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Figure 5.23 Error Database 

 

The error database dri_at_an_foras_feasa_test is almost the same as original 

database except some table attributes are changed. For example, in order to 

realize test for MDCC4 mentioned above, the attribute ‘Username’ in the original 

database is changed to ‘User_name’ in the error database so that an error would 

be caught during the execution of ModifyProfile_Initial(), which 

makes ‘p.GetUserName()’ equals to null and satisfy MDCC4 requirement. 

 

 Using parameter to select which database is under used 

The second step is writing code to control the selection of database. For example, 

when testing ModifyProfile_Initial() method, the tests for MDCC1, 

MDCC2 and MDCC3 should be executed under the correct database, while that 

for MDCC4 should be executed under the error database. In order to realize such 

selection, a static parameter called ‘select’ is used to perform the exchange 

between correct database and error database. The parameter code and one 

example are shown in Figure 5.24 and 5.25. 

 

public class DBSelect { 

public static int select = 0; // correct database 

} 

 

 

public void Search_ID(){ 

if(DBSelect.select == 0){ 

DBPool db = null; 

try{ 

db = new DBPool(); 

String query = "SELECT * FROM provider WHERE ID = '"+ID+"'"; 

ResultSet rs = db.execute_Result(query);    

if(rs.next()){ 

this.SetID(rs.getInt("ID")); 

Figure 5.24 ‘select’ parameter 
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this.SetUserName(rs.getString("UserName")); 

this.SetEmail(rs.getString("Email")); 

this.SetPassword(rs.getString("Password")); 

this.SetPhoneNumber(rs.getString("PhoneNumber")); 

} 

}catch(Exception e){ 

UserName = null; 

Email = null; 

Password = null; 

PhoneNumber = null; 

e.printStackTrace(); 

}finally { 

try{ 

if(db != null) 

db.close(); 

}catch(Exception e){ 

e.printStackTrace(); 

} 

} 

} 

else // which is used for test 

{ 

ErrorDBPool db = null; 

try 

{ 

db = new ErrorDBPool(); 

String query = "SELECT * FROM provider WHERE ID = '"+ID+"'"; 

ResultSet rs = db.execute_Result(query);   

if(rs.next()){ 

this.SetID(rs.getInt("ID")); 

this.SetUserName(rs.getString("UserName")); 

this.SetEmail(rs.getString("Email")); 

this.SetPassword(rs.getString("Password")); 

this.SetPhoneNumber(rs.getString("PhoneNumber")); 

} 

}catch(Exception e){ 

UserName = null; 

Email = null; 

Password = null; 

PhoneNumber = null; 

e.printStackTrace(); 

}finally { 

try{ 

if(db != null) 
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db.close(); 

}catch(Exception e){ 

 e.printStackTrace(); 

} 

} 

} 

} 

 

 

As shown in Figure 5.24, the rule for parameter ‘select’ is: 

1. Equals to 0 -> select correct database 

2. Equals to 1 -> select error database 

 

Figure 5.25 indicates an example to show how this parameter is used. The 

method search_ID() is called inside ModifyProfile_Initial(), it 

directly decides whether the database error code will be executed or not. Based 

on the MC/DC analysis shown in Figure 5.22, the tests for MDCC1, MDCC2 and 

MDCC3 should be executed under the correct database, so the parameter ‘select’ 

should be equal to 0 so that method search_ID() will execute correct 

database (DBPool) -related code. On the contraries, the test for MDCC4 should 

be executed under the error database, so in such situation, the parameter ‘select’ 

should be equal to 1 so that method search_ID() will execute error database 

(ErrorDBPool) -related code. 

 

By using parameter ‘select’ together with its related methods, it is available to 

write tests for those database error-related test cases. For example, the source 

code for ModifyProfile_Initial() MDCC4 is shown in Figure 5.26. 

 

@MyTest 

public static boolean testModifyInitial_MDCC4_T010() { 

DBPool.closePool(); 

ErrorDBPool.setupPool(); 

DBSelect.select = 1; 

String result = Provider_Interface.ModifyProfile_Initial(2); 

DBSelect.select = 0; 

ErrorDBPool.closePool(); 

DBPool.setupPool(); 

if(result.equals("{'err':'DB_error'}")) 

return true; 

else 

{ 

reason=new String("Expected {'err':'DB_error'}, actual 

result :"+result); 

return false; 

Figure 5.25 an example of using parameter ‘select’ 
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} 

} 

 

 

The procedure of this test code is: 

(1)  Close correct database pool (DBPool.closePool() ) and start error 

database pool (ErrorDBPool.setupPool()) 

(2)  Using the ‘select’ parameter to select the error database 

(DBSelect.select = 1) 

(3)  Run the tested method (ModifyProfile_Initial) and obtain return 

result 

(4)  Recover to the original correct database set (DBSelect.select = 0; 

ErrorDBPool.closePool() and DBPool.setupPool()) 

(5)  Compare the return result with the expected return value to check whether 

the tested method (ModifyProfile_Initial()) executed properly or 

not. 

(6)  Finish the test. 

5.4.3 Summary 

The technique listed in section 5.4.1 and 5.4.2 provides a good environment for 

MC/DC to test COMWS. The ‘Servlet Testing Technique’ in section 5.4.1 makes it easy 

for MC/DC to test Servlet classes and the ‘Handle Database Error Technique’ in 

section 5.4.2 makes it possible for MC/DC to cover those database-error codes and 

improve the precision of testing results. 

6. Test Results 

This section provides the test results data collected from the test implementation 

stage. It shows the Black-Box testing and MC/DC testing data for each tested class 

and servlet and compares this data in three areas: Testing Cost, Faults Found and 

Program Coverage. 

 

The tested classes and servlets are: 

(1) Provider_Interface class: this class is used to provide user-related 

operation services (such as Login, Register, Modify Profile and so on) to the 

front-end website and mobile side users. 

(2) SymbolTransfer class: this class is used to provide normal string-json string 

symbol transfer service to the back-end metadata storage method. 

(3) DeleteFile class: this class is used to provide delete images service to the 

back-end web resource storage method. 

(4) Servlets, includes: 

- LoginLet: it aims to response the ‘login’ request from mobile side and 

Figure 5.26 source code of ModifyProfile_Initial() 
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returns login result 

- RegisterLet: it aims to response the ‘register a new account’ request from 

mobile side and returns register result 

- ViewMetaDataListLet: it aims to response the ‘view current user’s objects’ 

request from mobile side and returns information of those cultural objects 

- ViewSingleObjectLet: it aims to response the ‘view info of a single cultural 

object’ request from mobile side and returns information of the selected 

single cultural object 

6.1  Class ‘Provider_Interface’ 

Table 6.1 test results for class ‘Provider_Interface’ 

 

Criteria 

Methods 

Login() ModifyProfile_Initial() Register() ModifyProfile() 

The 

Number of 

Tests 

BB 4 9 3 12 

MC/DC 4 4 5 6 

Time Costs 

(Minutes) 

BB 63 60 57 86 

MC/DC 20 22 34 56 

Faults 

Found 

BB 0 0 0 1 

MC/DC 0 0 2 1(not the same 

to BB) 

Branch 

Coverage 

BB 83.3% 83.3% 75% 91.67% 

MC/DC 100% 100% 100% 100% 

Code 

Coverage 

BB 100% 94.6% 96.1% 96.0% 

MC/DC 100% 100% 100% 100% 

Extra Test for 

MC/DC 

1 1 3 2 

 

Table 6.1 shows the extra cost and coverage for MC/DC, along with the extra faults 

found for the class Provider_Interface. Those results can be summarized into 

three factors: Testing Cost, Faults Found and Program Coverage. These are now 

considered in more detail. 
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 Testing Cost 

 

 

Figure 6.1 testing cost comparison on Provider_Interface 

 

Figure 6.1 indicates the testing cost factor (the number of tests and time costs) 

results data for the class Provider_Interface. These results show two points: 

 

1. For all 4 methods, developing Black-Box tests took significantly longer 

(almost twice longer time) than MC/DC tests. 

2. For most Provider_Interface methods, the number of Black-Box 

tests was greater than (ModifyProfile_Initial() and 

ModifyProfile()) or equal to(Login()) that of MC/DC tests, but it is 

not the case for method Register(). This special method needed two 

more tests to complete MC/DC testing when compared with Black-Box 

testing.  

 

 Faults Found 

 

 
Figure 6.2 faults found vomparison on Provider_Interface 
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Figure 6.2 indicates the faults found factor results data for the class 

Provider_Interface. These results indicate two points: 

 

1. For method Login() and ModifyProfile_Initial(), both the 

Black-Box testing and MC/DC testing did not find any errors.  

2. For method Register() and ModifyProfile(),MC/DC testing 

found extra errors that Black-Box testing didn’t find. Register() passed 

Black-Box testing while two errors were found by MC/DC testing. Although 

Black-Box testing found one error in ModifyProfile(), another one was 

still missed and detected by MC/DC testing. 

 

 Program Coverage 

 

 

Figure 6.3 program coverage comparison on Provider_Interface 

 

Figure 6.3 indicates the Program Coverage factor (code coverage and branch 

coverage) results data for the class Provider_Interface. These results indicate 

2 points: 

 

1. MC/DC testing reached 100% code coverage for all 4 methods. Although 

Black-Box testing reached 100% code coverage for method Login(), the 

rest three methods were not the case. 

2. For all 4 methods, MC/DC testing also reached 100% branch coverage 

while only average 83.3% reached by Black-Box testing. 
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6.2  Class ‘SymbolTransfer’ 

Methods in class SymbolTtansfer: 

(1) isLetter() 

(2) isDigit() 

(3) isHexLetter() 

(4) isLetterOrDigit() 

(5) isHexDigit() 

(6) StringToJson() 

(7) JsonToString() 

 

Table 6.2 test results for class ‘SymbolTransfer’ 

 

Compare Criteria 

Methods 

(1) (2) (3) (4) (5) (6) (7) 

The 

Number 

of Tests 

BB 15 9 15 21 21 9 22 

MC/DC 5 3 5 3 3  7 

Time 

Cost 

(Minutes) 

BB 80 45 90 120 120 96 125 

MC/DC 35 15 25 15 14  47 

Faults 

Found 

BB 0 0 0 0 0 0 2 

MC/DC 0 0 0 0 0  1 

Branch 

Coverage 

BB 100% 100% 100% 100% 100% 100% 75% 

MC/DC 100% 100% 100% 100% 100%  75% 

Code 

Coverage 

BB 100% 100% 100% 100% 100% 100% 94.8% 

MC/DC 100% 100% 100% 100% 100%  96.9% 

Extra Test for 

MC/DC 

0 0 0 0 0  1 

 

Table 6.2 shows the extra cost and coverage for MC/DC, along with the extra faults 

found for the class SymbolTtansfer. Those results can be summarized into three 

factors: Testing Cost, Faults Found and Program Coverage. These are now considered 

in more detail. 
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 Testing Cost 

 

 

Figure 6.4 Testing Cost Comparison on SymbolTransfer 

 

Figure 6.4 indicates the testing cost factor (the number of tests and time costs) 

results data for the class SymbolTransfer. These results show three points: 

 

1. Method StringToJson() has no MC/DC tests. 

2. for the other 6 methods: 

(1) Developing Black-Box tests took significantly longer than MC/DC tests. 

(2) The number of Black-Box tests was greater than MC/DC tests. 

3. isHexDigit() had the maximum gap both in number of tests and 

time cost while isDigit() had the minimum gap both in these two areas. 

 

 Faults Found 

 

 

Figure 6.5 Faults Found Comparison on SymbolTransfer 
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Figure 6.5 indicates the faults found factor results data for the class 

SymbolTransfer. These results indicate two points: 

 

1. For all methods except JsonToString(), both the Black-Box testing 

and MC/DC testing did not find any errors.  

2. For method JsonToString(),MC/DC testing found extra errors that 

Black-Box testing didn’t find. Although two errors were detected by 

Black-Box testing, one more was still missed and found by MC/DC testing.  

 

 Program Coverage 

 

 

Figure 6.6 Program Coverage Comparison on SymbolTransfer 

 

Figure 6.6 indicates the Program Coverage factor (code coverage and branch 

coverage) results data for the class SymbolTransfer. These results indicate three 

points: 

 

1. StringToJson() reached 100% branch coverage and code coverage 

for Black-Box testing but had no coverage data for MC/DC testing. 

2. For the other methods except JsonToString(), both Black-Box 

testing and MC/DC testing reached 100% branch coverage and code 

coverage. 

3. JsonToString() had the same branch coverage (75%) for both 

Black-Box testing and MC/DC testing. Meanwhile, MC/DC testing (96.9%) 

reached a little bit higher code coverage than Black-Box testing (94.8%). 
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6.3  Class ‘DeleteFile’ 

Table 6.3 test results for class ‘DeleteFile()’ 

 

Compare Criteria 

Methods 

delFolder() delAllFile() 

The Number of Tests BB 3 3 

MC/DC  6 

Time Costs (Minutes) BB 10  10 

MC/DC  45 

Faults Found BB 0 0 

MC/DC  2 

Branch Coverage BB 100% 71.4% 

MC/DC  100% 

Code Coverage BB 100% 60.7% 

MC/DC  100% 

Extra Test for MC/DC  2 

 

Table 6.3 shows the extra cost and coverage for MC/DC, along with the extra faults 

found for the class DeleteFile. Those results can be summarized into three 

factors: Testing Cost, Faults Found and Program Coverage. These are now considered 

in more detail. 

 

 Testing Cost 

 

 

Figure 6.7 Testing Cost Comparison on DeleteFile 
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Figure 6.7 indicates the testing cost factor (the number of tests and time costs) 

results data for the class DeleteFile. These results show two points: 

 

1. Method delFolder() has no MC/DC tests. 

2. delAllFile() had more number of MC/DC tests than that of 

Black-Box tests and at the same time, needed twice time to develop MC/DC 

tests than Black-Box tests. 

 

 Faults Found 

 

 

Figure 6.8 Faults Found Comparison on DeleteFile 

 

Figure 6.8 indicates the faults found field results data for the class DeleteFile. 

These results indicate two points: 

 

1. For method delFolder(), both the Black-Box testing and MC/DC 

testing did not find any errors.  

2. For method delAllFile(), Black-Box testing found no error while 

MC/DC found two.  

 

 Program Coverage 

 

 

Figure 6.9 Program Coverage Comparison on DeleteFile 
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Figure 6.9 indicates the Program Coverage factor (code coverage and branch 

coverage) results data for the class DeleteFile. These results indicate two points: 

 

1. delFolder() reached 100% branch coverage and code coverage for 

Black-Box testing but had no coverage data for MC/DC testing. 

2. For method delAllFile(), MC/DC testing reached 100% branch coverage 

and code coverage while Black-Box testing just reached 71.4% and 60.7%, 

respectively. 

6.4  Servlet Classes 

Table 6.4 test results for servlet classes 

 

Compare 

Criteria 

Servlet 

Login

Let 

Registe

rLet 

ViewMetaDat

aListLet 

ViewSingleOb

jectLet 

SingleImageUpl

oadLet 

The 

Numb

er of 

Tests 

BB 5 6 5 5 9 

MC/

DC 

3 3 3 3 8 

Time 

Costs 

(Minu

tes) 

BB 40 48 40 40 63 

MC/

DC 

25 26 25 25 68 

Faults 

Found 

BB 0 0 0 0 0 

MC/

DC 

0 0 0 0 1 

Extra Test for 

MC/DC 

0 0 0 0 5 

 

Table 6.4 shows the extra cost and coverage for MC/DC, along with the extra faults 

found for these Servlet classes. Those results can be summarized into three factors: 

Testing Cost, Faults Found and Program Coverage. These are now considered in more 

detail. 

 

 

 

 

 

 

 

 

 

 



 69 
 

 Testing Cost 

 

 

Figure 6.10 Testing Cost Comparison on Servlets 

 

Figure 6.10 indicates the testing cost factor (the number of tests and time costs) 

results data for these Servlet classes. These results indicate two points: 

 

1. For all Servlets, Black-Box testing needed more tests than MC/DC testing.. 

2. For almost all Servlets, developing Black-Box tests took significantly 

longer (almost twice longer time) than MC/DC tests. But it is not the case for 

SingleImageUploadLet, which needed a little bit longer time to 

develop MC/DC tests than Black-Box test. 

 

 Faults Found 

 

 
Figure 6.11 Faults Found Comparison on Servlets 
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Figure 6.11 indicates the faults found factor results data for these Servlet classes. 

These results show two points: 

 

1. For all Servlets except SingleImageUploadLet, both Black-Box 

testing and MC/DC testing did not find any errors.  

2. For Servlet SingleImageUploadLet, Black-Box testing found no 

error while MC/DC found one. 

 

 Program Coverage 

 

For Servlet classes, it is not easy to evaluate their code coverage and branch coverage 

by using Eclemma. The reason is shown in Section 7.3.3. 

6.5  Results Summary 

The results for each tested class method and Servlet listed above can be summarized 

into three points. 

 

1. For almost all the tested methods and Servlets, developing Black-Box tests 

took significantly longer than MC/DC tests and at the same time, fewer 

MC/DC tests were needed than Black-Box tests. 

2. MC/DC testing discovered some insidious but serious faults that Black-Box 

testing didn’t find. 

3. MC/DC testing improved code coverage and branch coverage of tested 

program. 

 

In conclusion, MC/DC testing had a low testing cost while it found extra faults as well 

as providing improved code coverage and branch coverage of the tested program. 

Such results show that MC/DC was an additional effective testing technique to 

cooperate with Black-Box testing in testing COMWS. 

7. Evaluation 

This section evaluates the effectiveness of MC/DC in testing COMWS. The evaluation 

focuses on three factors: Testing Cost (Number of Tests and Time Costs), Faults Found 

and Program Coverage (Code Coverage and Branch Coverage). In each evaluation 

factor, it first discusses the reason why MC/DC was effective and could be acted as an 

additional testing technique to cooperate with Black-Box testing in testing COMWS 

and then, shows some exceptions which were different from these normal cases 

during testing. 
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7.1  Testing Cost 

7.1.1 Number of Tests 

Figure 7.1 summarizes the number of Black-Box tests and MC/DC tests for each 

tested method or Servlet. 

 

 
Figure 7.1 the number of tests for each tested method or servlet 

 

As Figure 7.1 shows, for tested methods and Servlets, MC/DC required 57.8% of the 

number of Black-Box tests in average. There are three reasons: 

 

(1) EP, BVA and CI were used to create Black-Box tests, each technique contributed 

some tests. Among these three techniques, typically BVA developed the most 

number of tests and was the immediate cause to enlarge the total number of 

Black-Box tests. There are two reasons:  

- BVA selected the top and bottom value of each parameter’s each partition 

as test case, so its tests were twice the number of EP tests. 

- CI focused on discovering additional input combination tests that EP and 

BVA didn’t cover, so the number of CI tests was unlikely to be very large.  

 

(2) For a complex Boolean expression with n decisions, the number of MC/DC test 

cases (MC/DC tests) is n + 1. COMWS has a lot of complex Boolean expressions 

with 1, 2 or 3 decisions, and just few expressions have more than 5 decisions,  

which limit the number of MC/DC tests for the tested methods. 

 

(3) MC/DC is an efficient testing technique. It only focuses on those complex 
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one specific situation of tested complex Boolean expression so that no duplicate 

tests are developed during MC/DC testing analysis. But this is not the case for 

Black-Box testing. For each partition of each parameter, EP selects its 

intermediate value as test while BVA selects its top and bottom value, so 

normally the test sets for these two techniques are different. But for String 

input parameter, because of its special equivalence partition, the test sets for EP 

and BVA may have intersection, which causes the situation of duplicate tests and 

makes Black-Box testing not efficient in testing software. The detailed analysis 

for this situation is shown in section 7.1.3. 

 

However, two exceptions in this evaluation factor are shown in the Figure 7.1. 

(1) MC/DC was not applicable for testing Methods StringToJson() and 

delFolder(). Take the method delFolder() for example. 

 

public static void delFolder(String folderPath){ 

     try{      

delAllFile(folderPath); 

String filePath = folderPath; 

filePath = filePath.toString(); 

File myFilePath = new File(filePath); 

myFilePath.delete(); 

}catch(Exception e){ 

    e.printStackTrace(); 

} 

 } 

 

 

Figure 7.2 shows the source code of delFolder(), which has no complex 

Boolean expressions. Because it contains no decision, MC/DC was not applicable 

for testing such method. 

 

(2) Methods Register() and delAllfile() had an average 50% more 

MC/DC tests than Black-Box tests. Normally, the number of Black-Box tests is 

larger than that of MC/DC tests, but it was not the case for these methods. Take 

the method delAllfile() for example. Figure 7.3 shows the source code of 

delAllFile(). 

 

public static boolean delAllFile(String path) { 

        boolean flag = true;  

        if(path == null) 

           return false; 

 

        File file = new File(path); 

        if (!file.exists() || !file.isDirectory()) 

Figure 7.2 source code of delFolder() 
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           return false; 

 

        String[] tempList = file.list(); 

        File temp = null; 

        for (int i = 0; i < tempList.length; i++) { 

           if (path.endsWith(File.separator)) { 

               temp = new File(path + tempList[i]); 

           } else { 

               temp = new File(path + File.separator + tempList[i]); 

           } 

           if (temp.isFile()) { 

               temp.delete(); 

           } 

           if (temp.isDirectory()) { 

               delFolder(path + "/" + tempList[i]); 

           } 

        } 

        return flag; 

} 

  

 

From Black-Box testing view: 

 

This method only has one input parameter path, which means there was no 

need to write CI tests (CI needs combination of parameters). At the same time, 

this input parameter only has three equivalence partitions (Null; correct folder 

path; incorrect folder path), which made this method only had 3 EP tests and 3 

BVA tests (the same to EP). So the number of Black-Box tests for this method 

was limited. 

 

From MC/DC testing view: 

 

This method actually has three complex Boolean expressions: 

1.!file.exists() || !file.isDirectory() 

2. path.endsWith(File.separator) && temp.isFile() 

3. path.endsWith(File.separator) && temp.isDirectory() 

Each Boolean expression had 3 MC/DC test cases, although some test cases 

were used to jump to other Boolean expressions, this method still had 6 MC/DC 

tests. 

 

In conclusion, for such methods which have a limited number of input 

parameters together with limited number of equivalence partitions for each 

input parameter, and at the same time, have quite a few complex Boolean 

expressions inside their realization, their number of MC/DC tests is larger than 

Figure 7.3 source code of delAllFile() 
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that of Black-Box tests. 

7.1.2 Time Cost 

Figure 7.4 summarizes the cost time in developing Black-Box and MC/DC tests for 

each tested method and Servlet. 

 

 

Figure 7.4 the time cost in developing BB and MC/DC tests for each tested method or servlet  

 

As Figure 7.4 shows, for tested methods and Servlets, developing MC/DC tests took 

an average 64.41% time of developing Black-Box tests. There are two reasons: 

 

(1) Three techniques were used to create Black-Box tests. Developing BVA and CI 

tests took up the most time in developing Black-Box tests. 

BVA: this technique selected the bottom and the top values of each parameter's 

each partition as tests. Due to the large number of BVA test cases, BVA tests 

needed a lot of time to be generated. 

CI: this technique considered every combination of input parameters, so the 

process of drawing truth table to analyze CI test cases and generating CI tests 

took a long time. 

 

(2) As shown in 7.1.1, MC/DC is an efficient testing technique. It doesn’t create 

duplicate tests and each test is related to one specific situation of tested 

complex Boolean expression. But for Black-Box testing, the tests set for EP and 
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BVA may similar, so it is a waste of time to write such duplicate tests, which 

makes Black-Box testing not very efficient. 

 

However, two exceptions in this evaluation factor are shown in the Figure 7.4. 

(1) MC/DC was not applicable for testing methods StringToJson() and 

delFolder(), so the time cost in developing MC/DC tests for these two 

methods was 0 minutes. 

 

(2) Method delAllfile() and Servlet SingleImageUploadLet spent an 

average 42.57% more time in developing MC/DC tests than Black-Box tests.  

 

Also take the method delAllfile()for example. There are two reasons: 

- This method only has one input parameter, so there was no need to write CI 

tests. At the same time, because of its special equivalent partitions, the BVA 

tests were the same to EP tests. Based on these two points, developing 

Black-Box tests didn’t spend too much time. 

 

- But for MC/DC testing, because this method has three complex Boolean 

expressions, which made the process of analyzing MC/DC test cases became 

long, and at the same time, the test data for these test cases were hard to 

be generated (e.g. because of the condition code file.isDirectory(), 

MC/DC had to consider two situations: the folder path has no subfolder or 

has some subfolders. Such test data was no need to be considered in 

Black-Box testing. This special condition input is called ‘Non-Parameter 

input’, which is described in section 7.2), so these two points made 

developing MC/DC tests took extra time when compared with Black-Box 

tests. 

7.1.3 Special Exception 

By combining the number of tests and the time cost for each tested method or 

Servlet together, a special exception on method Login() and Register() was 

discovered. 

 

Table 7.1 special exception 

 

Compare Criteria 

Methods 

Login() Register() 

The Number of Tests BB 4 3 

MC/DC 4 5 

Time Costs (Minutes) BB 63 57 

MC/DC 20 34 

 

As shown in Table 7.1, for methods Login() and Register(), when compared 

with MC/DC testing, fewer Black-Box tests were developed but much more time 
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were needed. Such exception is due to the reason of duplicate tests for EP and BVA.  

 

Take the method Login() for example. Based on the specification shown in Figure 

5.4, Login() has two input parameters: email (string) and password (string). 

When considering the Black-Box testing analysis, because of the special equivalence 

partitions for email and password, the tests set for EP and BVA were actually 100% 

covered by each other (were the same). So the time for writing BVA tests was 

unnecessary. 

 

It is a waste of time to write such duplicate tests, but this will never happen during 

MC/DC testing. MC/DC testing makes sure that its test cases are different from each 

other (because each MC/DC test case is related to the specific one truth table 

situation of the tested complex Boolean expression) and are combined together to 

meet MC/DC testing requirements. Such property makes MC/DC testing efficiently in 

testing software. 

7.2  Faults Found 

Figure 7.5 summarizes the number of faults found by Black-Box testing and MC/DC 

testing for each tested method and servlet. 

 

 

Figure 7.5 the number of faults found by Black-Box testing and MC/DC testing for each tested 

method or servlets 

 

As Figure 7.5 shows, for 72.2% of the methods and servlets, both Black-Box and 

MC/DC testing didn’t find faults. But for the remaining methods and servlets, MC/DC 

testing discovered an average of 1.4 extra faults that Black-Box didn’t find. 
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The faults found by Black-Box testing were those small and obvious faults (e.g. 

miswritten fault, boundary value fault). One example is shown in Figure 7.6. 

 

i = Integer.parseInt(t); 

if ((i >= 0) && (i < 65536)) {//i<=65536 -> i<65536 

c = (char) i; 

curPos = tmpPos; 

} 

  

 

Figure 7.6 indicates a boundary value fault found by Black-Box testing. The value 

span of ‘char ’ in JAVA is 0 to 65535. Originally the source code was i<=65536, but it 

was wrong because 65536 is not inside the correct range. By creating BVA tests and 

doing the Black-Box testing, such fault was found and fixed. 

 

For MC/DC testing, the found faults were those insidious but serious faults that 

Black-Box testing did not find. There are two reasons: 

 

(1) Black-Box testing focuses on the specification, and it doesn’t not know the 

detailed implementation of each tested method, so it may miss some insidious 

faults. 

 

(2) The ‘Non-Parameter Input’. Some tested methods in COMWS are in the format 

of such code structure shown in Figure 7.7. 

 

   Method(input parameter1,2,3..) { 

      …… 

      if(which is not related to parameter value directly){ //non-parameter input 

           …… 

} 

    

      if(which is related to parameter value){ 

           …… 

       } 

       …… 

} 

 

 

Such methods contain code which is related to input parameters’ value directly 

(Parameter Input), and at the same time, also include code that is not related to 

these parameters’ value directly (Non-Parameter Input). The ‘Parameter Input’ 

code focuses most on the method’s functionality realization and the 

‘Non-Parameter Input’ code pays attention to the execution environment and 

Figure 7.6 an error found by Black-Box testing 

Figure 7.7 the special ‘Non-Parameter input’ code format 
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inner exception of the method. When testing such methods, MC/DC testing can 

find extra faults in these ‘Non-Parameter Input’ code while Black-Box testing 

cannot. 

 

For Black-Box testing on such methods: 

Because Black-Box testing doesn’t care about the detailed implementation of 

tested method but just focus on the input parameters, so it actually focuses on 

these ‘Parameter Input’ code and try to find whether the tested method meets 

its specification or not. 

 

For MC/DC testing on such methods: 

MC/DC testing aims to check whether each condition in the decision in each 

tested method works properly or not. It focuses on the behavior of each 

condition and investigates the effect it has on the decision. So MC/DC testing 

actually focuses on both the ‘Parameter Input’ code and ‘Non-Parameter Input’ 

code so that can find insidious faults which exist in ‘Non-Parameter Input’ code.  

 

For example, the code shown in Figure 7.8 is a ‘Non-Parameter Input’ fault that 

found by MC/DC testing. 

 

public static boolean delAllFile(String path) { 

     boolean flag = true; 

     if(path == null) 

          return false; 

          

     File file = new File(path); 

     if (!file.exists() || !file.isDirectory()) 

          return false; 

          

     String[] tempList = file.list(); 

     File temp = null; 

     for (int i = 0; i < tempList.length; i++) { 

          if (path.endsWith(File.separator)) { 

               temp = new File(path + tempList[i]); 

          } else { 

               temp = new File(path + File.separator + tempList[i]); 

          } 

          if (temp.isFile()) { 

              temp.delete(); 

          } 

          if (temp.isDirectory()) { 

             // delAllFile(path + "/" + tempList[i]); //original code 

             delFolder(path + "/" + tempList[i]); //new code 

          }         
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    } 

    return flag; 

 } 

 

 

Method delAllFile() aims to delete all files inside one folder. By using 

MC/DC testing analysis on this method, because of the existence of 

‘Non-Parameter Input’ code ‘temp.isDirectory()’, the situation about 

‘one folder that has subfolder’ should also be taken into consideration. Based on 

the MC/DC testing result, the original code ‘delAllFile(path + "/" + 

tempList[i]);’ under such decision was actually incorrect. That’s because 

this code just deletes all files inside the subfolder while the subfolder itself is 

actually not deleted. The correct code should be ‘delFolder(path + "/" + 

tempList[i]);’ , which can make sure that both the files inside subfolder 

together with subfolder itself are deleted successful.  

 

But this ‘Non-Parameter Input’ fault could not be discovered by Black-Box testing. 

That’s because the equivalence partitions for the input parameter path were just 

divided into three parts: null, correct folder path and incorrect folder path. This 

special ‘Non-Parameter Input’ situation ‘one folder that has subfolder’ was not 

considered in all three partitions. 

7.3  Program Coverage 

7.3.1 Code Coverage 

Figure 7.9 summarizes the code coverage of Black-Box testing and MC/DC testing for 

each tested method. 

 

 

Figure 7.9 the code coverage of Black-Box testing and MC/DC testing for each tested method 
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Figure 7.8 a ‘Non-Parameter Input ’ error found by MC/DC testing 
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As Figure 7.9 shows, for 33% of the methods, both Black-Box and MC/DC testing 

reached 100% code coverage. For the remaining methods, besides 

StringToJson() and delFolder()(MC/DC was not applicable for testing 

these two methods), MC/DC testing added an average 10.94% extra code coverage 

on the basis of Black-Box testing. The reason is: 

 

Based on the ‘Non-Parameter Input’ mentioned in section 7.2, because Black-Box 

testing aims to check whether the tested program meets the specification or not, so 

it doesn’t care the detailed implementation code inside the program. That’s may 

make some ‘Non-Parameter Input’ code unexecuted during the testing process. On 

contrary, MC/DC testing focuses on the implementation code and detailed test cases 

are generated by analyzing those complex Boolean expressions inside the tested 

program, so these ‘Non-Parameter Input’ code is also under analyzed. MC/DC tests 

make sure that all situation-handle codes including ‘Non-Parameter Input’ code for 

the tested complex Boolean expression are executed during MC/DC testing. 

 

Take the database error mentioned in section 5.3.2 for example. The code shown in 

Figure 7.10 was never covered during the Black-Box testing. 

 

   if(p.GetUserName() == null) 

{ 

jsondata = "{'err':'DB_error'}"; 

} 

 

 

Such code is actually the ‘Non-Parameter Input’ code in the tested method 

ModifyProfile_Initial(). This code has no relation with the input 

parameter UserID. So for the Black-Box testing, the tests never caused database 

error and the code ‘jsondata = "{'err':'DB_error'}";’ was never 

executed during the testing. On contrary, MC/DC testing analyzed the code of tested 

program and one specific MC/DC test case focused on this ‘Non-Paramter Input’ 

code to check whether the tested program works properly if database error occurs. 

So the test implementation for this test case focused on replacing the correct 

database with an error-inside database to manually create database error, then 

checked whether the reaction of the tested program was correct or not. By doing this, 

the special ‘Non-Parameter Input’ code was executed, which made MC/DC testing 

added extra code coverage on the basis of Black-Box testing. 

7.3.2 Branch Coverage 

Figure 7.11 summarizes the branch coverage of Black-Box testing and MC/DC testing 

for each tested method. 

 

Figure 7.10 database error codes 
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Figure 7.11 the branch coverage of Black-Box testing and MC/DC testing for each tested method 

 

As Figure 7.11 shows, for 27.78% of the methods, both Black-Box and MC/DC testing 

reached 100% branch coverage. For the remaining methods, besides 

StringToJson() and delFolder()(MC/DC was not applicable for testing 

these two methods), MC/DC testing added an average 19.2% extra branch coverage 

on the basis of Black-Box testing. The reason is: 

 

Based on the ‘Non-Parameter Input’ mentioned in 7.2, because Black-Box testing 

doesn't care the detailed implementation code inside the program, so some 

‘Non-Parameter Input’ decision branches of complex Boolean expressions in the 

tested program may not be executed during the testing process. But this is not the 

case for MC/DC testing. MC/DC focuses on ‘Non-Parameter Input’ code inside the 

tested method, so its tests will make sure that every branch (T or F) of 

‘Non-Parameter Input’ code is executed and covered at least once. 

 

Take the Login() method for example. The code shown in Figure 7.12 checks 

whether the system has user's input account or not and Figure 7.13 shows the 

branch paths for this complex Boolean expression. 

 

if(plist == null || plist.size() == 0) // no such account 

jsondata = "{'result': 0}"; 

else{…} 
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For Black-Box testing, those existing tests made branch 2,3 and 4 been covered 

during testing but there were no other tests to focus on testing database error to 

cover branch 1. That's because the database error code ‘plist == null’ is actually 

the ‘Non-Parameter Input’ code of Login(), the input parameters email and 

password never make such database error occurs (Black-Box testing always used 

correct database during testing), so it is was impossible to let ‘plist==null’ 

equals to true and branch 1 was never covered. 

 

But for MC/DC testing, one specific test case was related to such ‘Non-Parameter 

Input’ database error to check whether Login() returns correct response string if 

database error occurs in the back-end side. So the test implementation for this test 

case replaced the correct database with an error-inside database to manually create 

database error, which made plist==null equals to true so that branch 1 was 

covered during the MC/DC testing process. By doing this, all branches including this 

special ‘Non-Parameter Input’ branch of this expression were covered, which made 

MC/DC testing added extra branch coverage on Login() on the basis of Black-Box 

testing. 

7.3.3 Coverage for Servlets 

It is easy to calculate code coverage and branch coverage for normal methods, but 

this is not the case for Servlets. Servlets don’t run directly in the Java application, 

actually they are executed in the Servlet container (e.g. Tomcat). This situation makes 

it hard to calculate code coverage and branch coverage for Servlets (Because 

Eclemma is a Plug-in of MyEclipse and it works perfect for those programs that run 

directly in MyEclipse. One solution would be to use emma with the class files, but 

this was not explored in this project). 

 

Although the evaluation technique was limited, the current Black-Box tests and 

MC/DC tests still reflect that MC/DC testing added extra code coverage and branch 

Plist == null 

{'result'}: 0} 
Plist.size() == 0 

{'result'}: 0} 
else{…} 

T 

T 

1 2 

3 4 

Figure 7.13 branch paths for this piece of Login() code 
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coverage on the basis of Black-Box testing in testing those Servlets.  

 

Take the Servlet SingleImageUploadLet for example. This servlet aims to 

receive uploaded single image from mobile side, store it into local server folder  and 

return back upload result to mobile side. The most important part of code for this 

servlet that related to coverage criteria is shown in Figure 7.14. 

 

public void doPost(HttpServletRequest request, HttpServletResponse response) 

   throws ServletException, IOException { 

        ... 

        while(fii.hasNext()) 

        { 

          ... 

            if(!fis.isFormField() && fis.getName().length()>0) 

            { 

             ... 

             } 

         } 

         ...  

if(!CultureObject_Interface.Modify_Upload_CultureObject_SingleWebReso

urce(ObjectID, returnpath)) 

         { 

            System.out.println("Database error"); //database error 

         } 

} 

 

 

Code Coverage: 

 

Based on the ‘Non-Parameter Input’ mentioned in section 7.2, because the input 

parameters of this servlet has no relation to database error, so the Black-Box tests 

never caused database error and the line ‘System.out.println("Database 

error")’ was never executed during the Black-Box testing on this servlet. But 

MC/DC testing analyzed and found this ‘Non-Parameter Input’ database error code, 

so a MC/DC test which replaced the correct database with error-inside database was 

developed to check whether the sentence ‘Database error’ was printed on the server 

console or not when the database error occurred. So this special MC/DC test made 

MC/DC testing added extra code coverage on the basis of Black-Box testing in testing 

this servlet.  

 

Branch Coverage: 

 

The branch paths for the complex Boolean expression ‘!fis.isFormField() && 

fis.getName().length()>0’ is shown in Figure 7.15. 

Figure 7.14 some part of code for singleimageuploadlet 
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!fis.isFormField() aims to check whether the uploaded data is text data or 

not. Because this servlet handles uploading image, so the first step is to make sure 

the uploaded data is not text data. 

 

Based on the ‘Non-Parameter Input’ mentioned in section 7.2, for the Black-Box 

testing on this servlet, because the specification indicates that the input parameter 

(uploaded data) is image, so Black-Box tests never considered text data, which made 

the branch 1 never covered during testing. But for MC/DC testing, one specific 

MC/DC test focused on this ‘Non-Parameter Input’ situation (uploaded data is text 

data) to check whether the servlet works properly or not if text data is uploaded. So 

this special MC/DC test actually made MC/DC testing focused on ‘Non-Parameter 

Input’ code of tested servlet and added extra branch coverage on the basis of  

Black-Box testing in testing this servlet. 

7.4  Summary 

Based on the evaluation performed above, three key points can be summarized. 

 

(1) MC/DC was an additional effective testing technique to cooperate with 

Black-Box testing in testing COMWS. It needed less testing cost while found extra 

faults that Black-Box testing didn’t find as well as providing improved code 

coverage and branch coverage of tested programs. 

 

- In testing cost factor, due to the reason of String input parameters of 

many tested methods and their special equivalence partitions, the test sets 

for EP and BVA were similar, which caused the existence of duplicate 

(inefficiency) tests. Writing such inefficiency tests was a waste of time and 

made Black-Box testing ineffective to test COMWS. This phenomenon was 

never happened in MC/DC testing. Each MC/DC test was related to one 

specific truth-table situation of considered complex decision, which means 

!fis.isFormField() 

Go to another while cycle fis.getName().length >0 

Execute code inside if 

T 

T 

1 2 

3 
4 

Go to another while cycle 

Figure 7.15 branch paths for one complex Boolean expression in singleimageuploadlet 
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that it was impossible to create duplicate MC/DC tests and thus MC/DC was 

effective in testing COMWS. 

 

- In faults found factor, Because MC/DC testing focused on the behavior of 

each condition and investigated the effect it has on each decision in each 

tested method while Black-Box testing just focused on whether method 

meets with its specification, MC/DC testing found some insidious but serious 

faults that Black-Box testing did not find in testing COMWS. 

 

- In program coverage factor, due to the reason of ‘Non-Parameter Input’, 

MC/DC testing added extra code coverage and branch coverage on the basis 

of Black-Box testing in testing COMWS. 

 

(2) MC/DC showed its strength in testing programs with ‘Non-Parameter Input’ (as 

described in 7.2). 

 

‘Non-Parameter Input’ is always used to check execution environment and 

handle inner exception of the tested method. Black-Box testing was not available 

to check faults inside ‘Non-Parameter Input’ code, that’s because Black-Box tests 

were generated based on input parameters of the tested method, such tests 

actually didn’t consider these ’Non-Parameter Input’ code. But this is not the 

case for MC/DC. MC/DC testing focused on the complex Boolean expressions 

inside ‘Non-Parameter ’ code, so there must be some MC/DC tests to focus on 

checking the correctness of ‘Non-Parameter Input’ code. That’s the reason why 

MC/DC testing detected some insidious faults while Black-Box testing didn’t. 

 

(3) MC/DC also showed its advantage when compared with other white-box 

techniques in testing COMWS. 

 

DCC: MC/DC had a stronger faults-finding ability than DCC in testing COMWS. 

Take Register() for example, Figure 7.16 indicates a complex Boolean 

expression that is used to return wrong format register error.  

 

//code1 to check the format of username – if it is incorrect, then set ""  

to username attribute of the user class object 

//code2 to check the format of password – if it is incorrect, then set ""  

to the password attribute of the user class object 

      

if(p.GetUserName().equals("") || p.GetPassword().equals("")) 

{ 

jsondata = "{'result': -2}"; // wrong format  

} 

 

 
Figure 7.16 an example to show the strength of MC/DC over DCC 



 86 
 

Originally, there was a fault in code 2 that it never sets empty string to the 

password attribute of the related user class object if password parameter has 

wrong format.  

 

By using DCC, the test cases for this decision are: 

 

1. {T, T} 

2. {F, F} 

 

Such test cases will hide this error because this decision will be true when the 

first condition is true and don’t care what the value of second condition is. So if 

the test input is “wrong format username, wrong format password”, the second 

condition is actually false but this method still returns correct result. 

 

This is not the case for MC/DC. MC/DC test cases for this decision are:  

 

1. {T, T} 

2. {F, T} 

3. {T, F} 

 

The test input for test case 2 is “correct format username, wrong format 

password”, which can be used to find this serious error.  

 

MCC: MC/DC had a similar ability to find faults while only needed much less 

tests when compare with MCC in testing COMWS. For example, for the method 

Register() shown in Figure 2.7, MC/DC testing only developed 5 tests to find 

2 errors and reach 100% code coverage and branch coverage while MCC needed 

16 tests to achieve it.  

 

Path Testing: Path testing causes every possible path from entry to exit of the 

tested program to be taken. But for some complex methods such as 

JsonToString(), it is difficult to test every path because the number of 

paths for those methods is incredible large. So MC/DC is a more available 

technique to test COMWS. 

8. Conclusions 

In this paper, an evaluation of the effectiveness of MC/DC in testing a specific web 

server (COMWS) was presented. This evaluation focused on three criteria: Testing 

Cost, Faults Found and Program Coverage to evaluate the effectiveness of MC/DC 

testing. 

 

Based on the testing result and comparison evaluation, the essential conclusions are: 
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(1) MC/DC can be used as an additional effective testing technique to cooperate 

with Black-Box testing for testing web servers 

(2) MC/DC is specially effective for ‘Non-Parameter Input’ 

(3) Black-Box testing can be modified to be more efficient 

8.1  Critical Analysis on Testing 

(1) MC/DC can be used as an additional effective testing technique to enhance 

with Black-Box testing for testing web servers 

 

When testing a web server, Black-Box testing is performed first to check whether 

these server methods meet their specifications or not. Such testing is the 

foundation of whole web server testing (Failed to pass Black-Box testing means 

didn’t realize function, so there is no need to do other testing) and is used to find 

those small and obvious faults. But Black-Box testing has shortcomings. 

Black-Box tests are generated based on input parameters of the tested method,  

so such tests may not be available to detect faults inside ‘Non-Parameter Input’ 

code. In order to find these faults, another testing technique should be used to 

provide additional support. Based on the experiment result in testing COMWS 

together with detailed evaluation, MC/DC shows its high efficiency in testing 

web servers. 

 

1. Based on the experiment result, when compared with Black-Box testing, 

MC/DC testing reduced the testing cost while found extra insidious but serious 

faults as well as improved code coverage and branch coverage of tested 

programs in testing COMWS. Such result is a reasonable evidence to indicate the 

effectiveness of MC/DC in testing web servers. 

 

2. When compared with other white-box testing techniques, MC/DC also 

showed its strengths. For DCC, MC/DC had stronger ability to find faults than it; 

For MCC and Path testing, MC/DC showed higher feasibility than both of them. 

 

(2) MC/DC is specially effective for ‘Non-Parameter Input’ 

 

The inner code of some COMWS methods can be divided into two parts: 

‘Parameter Input’ code and ‘Non-Parameter Input’ code. The first type code 

focuses on realizing the functionality of the tested method while the second one 

is used to provide method execution environment and handle inner exception of 

the tested method. Although the second type code has no relations with the 

value of input parameters, it still has effect on the tested method. 

 

When performing Black-Box testing on COMWS, the tests were analyzed and 

generated based on the specification and input parameters of the tested method. 
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Typically specifications don’t cover all the details of faults caused by lower level 

software. Such tests actually just focused on the ‘Parameter Input’ code and 

ignored ‘Non-Parameter Input’ code, which made Black-Box testing missed these 

special faults. 

 

When performing MC/DC testing on COMWS, all complex Boolean expressions 

including expressions inside ‘Non-Parameter Input’ code were under analyzed. 

So there must be some MC/DC tests are used to check the correctness of 

‘Non-Parameter Input’ code so that these insidious faults were succeeded to be 

detected. 

 

Such ‘Non-Parameter Input’ is the main reason why MC/DC detected insidious 

faults that Black-Box testing didn’t find. 

 

(3) Black-Box testing can be modified to be more efficient 

 

Section 7.1.3 shows the inefficient aspect in Black-Box testing. Normally, for each 

partition of each input parameter in the tested method, EP selects its medium 

value as test while BVA selects its top and bottom value, so the test sets for 

these two techniques are different, just as shown in Figure 8.1. 

 

 

 

But for String input parameter, because of its special equivalence partition, 

the test sets for EP and BVA may have intersection even totally covered by each 

other. For example, for the method delAllFile(),the EP and BVA testing 

analysis are shown in Figure 8.2. 

 

// EP: 

// [Test Cases] Partition {Test} 

//    Inputs 

//       path: [EP1] null 

//              [EP2] correct folder path 

//              [EP3] incorrect folder path 

//    Outputs 

//       return values: [EP4] false 

//                         [EP5] true 

BVA bottom value BVA top value EP value 

One partition Other partition Other partition 

Figure 8.1 the test value selection for EP and BVA 
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// 

// BVA: 

// [Test Cases] Boundary Value {Test} 

//   Inputs 

//       path: [BVA1] null 

//              [BVA2] correct folder path 

//              [BVA3] incorrect folder path 

//   Outputs 

//       return values: [BVA4] false 

//                         [BVA5] true 

 

 

As shown in Figure 8.2, the test cases for EP and BVA are the same, which means 

the tests set for EP and BVA are 100% covered by each other. Because EP tests 

were developed first, so the development of BVA tests was a waste of time. 

Developing such duplicate tests make Black-Box testing not efficient in testing 

software. In order to improve the efficiency of Black-Box testing in testing 

software, a new test procedure is proposed. 

 

(1) Based on the equivalence partitions of input parameters for the tested 

method, do the BVA testing first.  

 

(2) Because there is no mandatory rule that EP should select the medium value 

of equivalence partition for each input parameter, so the top or bottom value of 

equivalence partition for each input parameter can be selected as EP tests value. 

Such EP tests already exist in the first step’s BVA testing. 

 

By doing this, there is no need to develop EP tests, so the time to develop 

Black-Box tests is reduced and the efficiency is improved. However, such 

technique also has disadvantage. Although it meets the requirement for EP and 

BVA, it only considers the boundary value of equivalence partitions for input 

parameters, so it doesn’t look for faults at the middle of these equivalence 

partitions. 

8.2  Limitations 

Limitations found during the testing on COMWS are shown below: 

 

(1) Coverage on Servlets 

 

It is difficult to calculate code coverage and branch coverage for those tested 

Servlets. For normal methods, their code coverage and branch coverage can be 

calculated automatically by Eclemma, but this is not the case for Servlets. 

Servlets don't run directly in the Java application (they cannot be called through 

Figure 8.2 EP and BVA analysis for method delAllFile() 
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their methods' name directly), actually they should be executed in the Servlet 

container (e.g. Tomcat). So such situation makes Eclemma hard to calculate 

coverage value for Servlets (Eclemma is a Plug-in of MyEclipse and it only works 

perfect for those pargrams that run directly inside MyEclipse). 

 

(2) Shortcomings of MC/DC  

 

While MC/DC ensures that a condition will not be masked out in a decision, it is 

still possible that the condition will ultimately be masked out within some 

sequence of statements in a program [WGY+13]. Figure 8.3 shows an example. 

 

expr_1 = in_1 or in_2;   //stmt1 

out_1 = expr_1 and in_3; //stmt2 

 

 

Based on the definition of MC/DC, one reasonable tests set (in the format {in_1, 

in_2, in_3}) for this program is: 

 

1. {T, F, F} 

2. {F, T, F} 

3. {F, F, T}  

4. {T, T, T} 

 

The test cases with in_3 = false (bold faced) contribute towards MC/DC of  

in_1 or in_2 in stm1. Nevertheless, if the concentration is on the output 

variable out_1, the effect of in_1 and in_2 cannot be observed in the output 

since it will be masked out by in_3 = false. Thus, such test set gives MC/DC 

coverage of the program, but a fault on the first line will never propagate to the 

output (for example, if in_1 or in_2 is miswritten into in_1 and in_2, such 

fault will never be found by the tests set listed above). 

 

OMC/DC is designed to improve such shortcoming of MC/DC. It establishes 

observability of decisions by requiring that the variable whose assignment 

contains a particular Boolean decision remains unmasked through a path to a 

variable monitored by the test oracle [WGY+13]. By using OMC/DC, such mask 

out problem would be solved. 

8.3  Critical Analysis of the Project 

The current work of this project focused on evaluating the effectiveness of MC/DC in 

testing COMWS. Although a simple example shown in section 7.4 was used to 

indicate MC/DC has stronger ability to detect faults than DCC, there was no detailed 

experiment to compare the effectiveness of MC/DC and DCC in testing COMWS. At 

the same time, the effectiveness of MCC in testing COMWS should also be taken into 

Figure 8.3 an example to show the shortcoming of MC/DC 
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consideration so that the viewpoint ‘MC/DC and MCC has similar ability to detect 

faults’ can be experimented. 

 

So if I did this project again, besides MC/DC testing and Black-Box testing, DCC and 

MCC testing should also be carried out in testing COMWS and other two 

comparisons between MC/DC and DCC, MC/DC and MCC were performed. These 

comparisons still focused on three criteria: Testing Cost, Faults Found and Program 

Coverage. 

 

(1) Testing Cost: comparison was based on two areas: the number of tests together 

with the time taken to write these tests for MC/DC, DCC and MCC testing.  

 

(2) Faults Found: comparison focused on the number of faults found by MC/DC, DCC 

and MCC testing. Particularly, found whether MC/DC detected faults that DCC 

didn’t find and whether MCC detected faults that MC/DC didn’t find. 

 

(3) Program Coverage: comparison was based on two areas: the code coverage and 

the branch coverage of tested programs. Particularly, found whether MC/DC 

reached higher code coverage and branch coverage than DCC and whether MCC 

reached higher code coverage and branch coverage than MC/DC. 

 

The evaluation on these three criteria can provide the evidence to show whether 

MC/DC actually performed better than DCC, and had the same faults-finding ability 

with MCC in testing web servers. 

 

In addition, current work just focused on testing a small web server project which 

has limited number of methods, so it may hard to draw conclusions for larger 

projects. 

8.4  Future Work 

This section describes the future work that can be done to continue researching on 

MC/DC testing area. 

 

 Test more web server projects 

 

Currently the MC/DC testing work just focused on the single web server COMWS 

and the experiment result were positive and encouraging. But one does not 

mean all, so such MC/DC testing and related evaluation should be carried out on 

more web server projects.  

 

For each tested web server project, the same comparison on three criteria 

(Testing Cost, Faults Found and Program Coverage) should also be carried out to 

evaluate the effectiveness of MC/DC in testing each web server. After the 
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evaluation for all tested web servers, it is necessary to combine those evaluation 

results together to verify whether MC/DC is actually effective in testing almost 

all web servers, not just a single one.  

 

 Test other programs 

 

Based on the COMWS testing result and related evaluation, MC/DC is effective in 

testing web servers. So the question about ‘whether MC/DC is still effective in 

testing other programs’ is raised up. So MC/DC testing and related evaluation 

should also be carried out on other programs. Because web servers are 

stated-based systems, so for those non stated-based systems (e.g. normal Java 

programs), the performance of MC/DC in testing them is really worth to be 

researched.  

 

When start to do the MC/DC testing on other programs, the first step aims to 

calculate the numbers of complex Boolean expressions with n (1, 2, 3…) 

conditions inside the tested program. The detailed implementation for this 

process is shown in Appendix B. Then for the detailed testing part, the testing 

step is the same to that of testing COMWS and the result can be collected to 

evaluate whether MC/DC is still effective in testing those non state-based 

programs.  
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Appendix A. Black-Box Testing Design and 

Implementation Example 

 Black-Box Testing Design 

In black-box testing stage, for each tested method, a three steps procedure is 

required to check whether it meets specification requirement or not. Such procedure 

is shown in Figure A.1. 

 

 
 

 

1. Three Techniques Test Cases Analysis and Tests Generation 

Three techniques are used to do black-box testing on COMWS: Equivalence 

Partitioning (EP), Boundary Value Analysis (BVA) and Combinations of Inputs (CI). 

Each technique needs different test analysis. 

 

 EP 

EP [BTL+11] is based on selecting representative values of each parameter from 

the equivalence partitions. This technique aims to check whether the basic data 

processing aspects of the COMWS methods are correct or not. The analysis 

template for EP is shown in Figure A.2. 

 

//Analysis: 

// [Test Cases] Partition {Test} 

Equivalence 

Partitioning 

1. Three Techniques Test Cases 

Analysis and Tests Generation 

Combinational 

Testing 

Boundary Value 

Analysis 

3. Test Execution 

2. Tests Realization 

Figure A.1 3 steps procedure for Black-Box testing 
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//    Inputs 

// 

//       Parameter 1: [EP1]... 

//                       [EP2]... 

//                       ... 

//       Parameter 2: [EPk]... 

//                       [EPk+1]... 

//                       ... 

//       ... 

//    Outputs 

//       return values: [EPn]... 

//                         [EPn+1]... 

//                         ... 

 

 

As Figure A.2 indicates, both the inputs and the outputs of the tested COMWS 

methods should be considered and each equivalence partition for each of the 

parameters is a test case. Based on these EP test cases, combined with the 

tested method's inputs, the EP test data of this method can be produced, just as 

shown in Figure A.3.  

 

//  Test Data: 

//         Test Cases          Inputs              Expected Outputs 

//    ID   Covered        xxx    xxx   xxx  ...   return value 

//   Test1 EP1,EPk,      ...    ...   ...  ...   ... 

//          ..,EPn 

//   Test2 EP2,EPk+1,    ...    ...   ...  ...   ... 

//          ..EPn+1 

//   ...   ...             ...    ...   ...  ...   ... 

 

 

 

 BVA 

BVA [BTL+11] focuses on the boundary conditions of each partition (the bottom 

and the top values) to check whether the COMWS methods have 

boundary-related programming faults. The analysis template for BVA is shown in 

Figure A.4. 

 

//Analysis: 

// [Test Cases] Boundary Value {Test} 

//    Inputs 

//       Parameter 1: [BVA1]... 

//                       [BVA2]... 

//                       ... 

Figure A.2 analysis template for EP 

Figure A.3 EP test data generation 
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//         (related to the bottom and top values of EP of parameter 1)  

//       Parameter 2: [BVAk]... 

//                       [BVAk+1].. 

//                       ... 

//         (related to the bottom and top values of EP of parameter 2) 

//       .... 

//    Outputs 

//       return values: [BVAn]... 

//                         [BVAn+1]... 

//                          ... 

//         (related to the bottom and top values of EP of return values) 

 

 

As Figure A.4 indicates, both the inputs and the outputs of the tested COMWS 

methods should be considered and each boundary value of equivalence partition 

for each of the parameters is a test case. Based on these BVA test cases, 

combined with the tested method's inputs, the BVA test data of this method can 

be produced, just as shown in Figure A.5. 

 

//  Test Data: 

//         Test Cases         Inputs              Expected Outputs 

//    ID   Covered       xxx    xxx   xxx  ...   return value 

//   Test1 BVA1,BVAk,   ...    ...   ...  ...   ... 

//          ..,BVAn 

//   Test2 BVA2,BVAk+1, ...    ...   ...  ...   ... 

//          ..BVAn+1 

//   ...   ...            ...    ...   ...  ...   ... 

 

     

 CI 

CI [BTL+11] focuses on testing all the possible combinations of inputs of each 

COMWS tested method. It provides additional coverage that EP and BVA may not 

cover. The analysis template for CI is shown in Figure A.6. 

 

 //Analysis: 

 // Causes: 

 // 1. ... 

 // 2. ... 

 // 3. ... 

 // ... 

 // Effects: 

 // 1. ... 

 // 2. ... 

 // ... 

Figure A.5 BVA test data generation 

Figure A.4 analysis template for BVA 
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 // 

 // [Test Cases] Truth Table {Test} 

 //                                                  Rules 

 //                                           1    2    3    4   ... 

 //    Causes 

 //    ....(for 1)                         xx   xx   xx   xx  ... 

 //    ....(for 2)                         xx   xx   xx   xx  ... 

 //    ...                                   ..   ..   ..   ..  ... 

 //    Effects 

 //    ....(for 1)                         xx   xx   xx   xx  ... 

 //    ....(for 2)                         xx   xx   xx   xx  ...  

 //    ....                                  ..   ..   ..   ..  ... 

 //                                   Test   CI1  CI2  CI3  CI4 ... 

 

 

As Shown in Figure A.6, the ‘Causes’ field indicates the possible values or limits 

for each input and the ‘Effects’ field indicates all the possible range of the return 

value. The ‘Truth Table’ gives a good view to show all the possible combinations 

of inputs to create related return value. In the truth table, each rule is a test case. 

Based on these CI test cases, combined with the tested method's inputs, the CI 

test data of this method can be produced, just as shown in Figure A.7. 

 

//  Test Data: 

//          Test Cases                 Inputs              Expected Outputs 

//    ID    Covered             xxx   xxx   xxx  ...       return value 

//    Test1 CI1                 ...   ...   ...  ...       ... 

//    Test2 CI2                 ...   ...   ...  ...       ... 

//    Test3 CI3                 ...   ...   ...  ...       ... 

    //    ...   ...                 ...   ...   ...  ...       ... 

 

 

2. Test Realization 

Based on the test data for different testing techniques generated in step 1, the 

detailed code for each test can be realized in this stage. The code template of 

black-box test method is shown in Figure A.8. 

 

@MyTest 

public static boolean testMethod_Technique_Txx() { 

 //call the tested method and obtain the actual return value 

 if(actual_return_value == expected_return_value) 

  return true; 

 else{ 

  reason = new String("Expected 'expected_return_value', actual result :"+ 

actual_return_value); 

Figure A.6 analysis template for CI 

Figure A.7 CI test data generation 
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  return false; 

 } 

} 

 

 

The annotation ‘@MyTest’ indicates that this method is a test method and can be 

found and executed by customized JUnit test runner to collect test result. The name 

of test method is varied based on the test technique used (EP -> testMethod_EP_Txx, 

BVA -> testMethod_BVA_Txx, CI-> testMethod_CI_Txx). For the inside code, just call 

the tested method based on the related test data and compare the actual return 

value with the expected return value. If they are the same, just return true to 

indicate this test is passed, otherwise show the reason why it is wrong and return 

false.  

 

3. Test Execution 

The tests were executed using a customized test runner and the results collected to 

prepare for the final analysis and comparison. 

 

 Black-Box test implementation example 

1. Three Techniques Test Cases Analysis and Tests Generation 

 EP for Login() 

Based on the EP analysis and tests generation template together with the 

specification of Login(), the detailed EP analysis and tests generation for 

Login() method is shown in Figure A.9. Each ‘Email’ and ‘Password’ partition 

is a test case. Based on these 5 test cases, 3 EP tests are generated. 

 

//[Test Cases] Partition {Test} 

// Inputs 

//    Email: [EP1] correct format but not existing email string {T001} 

//             [EP2] correct format and existing email string      {T002} 

//    Password: [EP3] wrong format password string                 {T003} 

//    [EP4] correct format but not 'correct' password string     {T001} 

//    [EP5] correct format and 'correct' password string          {T002} 

// 

// Outputs 

//    return values: 

//    [EP6] "{'result': 0}"                                            {T001} 

//    [EP7] "{'result': 1, 'id': .., 'username': ..}"             {T002} 

// 

// [Test Data] 

//      Test Cases                 Inputs                   Expected Outputs 

// ID   Covered         Email               Password       return value 

Figure A.8 test method template 



 100 
 

//T001 EP1,EP4,EP6 linanpp01@gmail.com  12345678       "{'result': 0}" 

//T002 EP2,EP5,EP7 linanpp09@gmail.com  123456 

//                         "{'result': 1, 'id': 1, 'username': 'Li Nan'}" 

//T003 EP3*          linanpp10@gmail.com 1234,;--=      "{'result': 0}" 

// 

// Note: * indicates an error test 

  

 

 BVA for Login() 

Based on the BVA analysis and tests generation template together with the 

specification of Login(), the detailed BVA analysis and tests generation for 

Login() method is shown in Figure A.10. The ‘Email’ and ‘Password’ boundary 

value are the same to their partition value, so BVA and EP have the same tests 

for testing Login() method. 

 

//[Test Cases] Boundary Value {Test} 

// Inputs 

//    Email: [BVA1] correct format but not existing email string {T001} 

//             [BVA2] correct format and existing email string      {T002} 

//    Password: [BVA3] wrong format password string                 {T003} 

//    [BVA4] correct format but not 'correct' password string     {T001} 

//    [BVA5] correct format and 'correct' password string          {T002} 

// 

// Outputs 

//    return values: 

//    [BVA6] "{'result': 0}"                                            {T001} 

//    [BVA7] "{'result': 1, 'id': .., 'username': ..}"             {T002} 

// 

// [Test Data] 

//      Test Cases                    Inputs                 Expected Outputs 

// ID   Covered         Email                   Password   return value 

//T001 BVA1,BVA4,BVA6 linanpp01@gmail.com  12345678    "{'result': 0}" 

//T002 BVA2,BVA5,BVA7 linanpp09@gmail.com  123456 

//                          "{'result': 1, 'id': 1, 'username': 'Li Nan'}" 

//T003 BVA3*            linanpp10@gmail.com  1234,;--=   "{'result': 0}" 

// 

// Note: * indicates an error test 

 

 

 CI for Login() 

Based on the CI analysis and tests generation template together with the 

specification of Login(), the detailed CI analysis and tests generation for 

Login() method is shown in Figure A.11. Besides the 3 same tests to EP and 

BVA, CI finds out another test to check whether Login() meets its 

Figure A.9 EP analysis and test generation for Login() 

Figure A.10 BVA analysis and test generation for Login() 
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specification or not. 

 

// Causes: 

// 1. Email -> correct format but not existing email string 

// 2. Email -> correct format and existing email string 

// 3. Password -> wrong format password string 

// 4. Password -> correct format but not 'correct' password string 

// 5. Password -> correct format and 'correct' password string 

// 

// Effects: 

// 1. "{'result': 0}" 

// 2. "{'result': 1, 'id': .., 'username': ..}" 

// 

// [Test Cases] Truth Table {Test} 

//                                             Rules  

//                                              [CI1]   [CI2]   [CI3]   [CI4]   

//   Causes: 

//   Causes -> 1                                 T       F       F       * 

//   Causes -> 2                                 F       T       T       * 

//   Causes -> 3                                 *       F       F       T 

//   Causes -> 4                                 *       T       F       F 

//   Causes -> 5                                 *       F       T       F 

//   Effects: 

//   Effects -> 1                                T       T       F       T 

//   Effects -> 2                                F       F       T       F 

//                                               T001    T004    T002    T003 

//                                                            Tests 

// 

// [Test Data] 

//        Test Cases            Inputs                     Expected Outputs 

//  ID    Covered     Email              Password         return value 

//  T001  CI1   linanpp01@gmail.com    12345678         "{'result': 0}" 

//  T002  CI3   linanpp09@gmail.com    123456 

//                         "{'result': 1, 'id': 1, 'username': 'Li Nan'}" 

//  T003  CI4   linanpp10@gmail.com    1234,;--=        "{'result': 0}" 

//  T004  CI2   linanpp09@gmail.com    1234567          "{'result': 0}" 

 

 

2. Tests Realization 

Based on the three techniques analysis on Login() in step 1, 4 tests are generated: 

T001, T002, T003 and T004. The detailed codes for these four tests are shown in 

Figure A.12. 

 

Figure A.11 CI analysis and test generation for Login() 
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@MyTest 

public static boolean testLogin_EP_T001() { 

String result = Provider_Interface.Login("linanpp01@gmail.com", "12345678"); 

if(result.equals("{'result': 0}")) 

  return true; 

else{ 

  reason=new String("Expected {'result': 0} , actual result :"+result); 

  return false;} 

} 

 

@MyTest 

public static boolean testLogin_EP_T002() { 

 String result = Provider_Interface.Login("linanpp09@gmail.com", "123456"); 

 if(result.equals("{'result': 1, 'id': 1, 'username': 'linanpp34'}")) 

  return true; 

 else{ 

  reason=new String("Expected {'result': 1, 'id': 1, 'username': 

'linanpp34'} , actual result :"+result); 

  return false;} 

} 

 

@MyTest 

public static boolean testLogin_EP_T003() { 

String result = Provider_Interface.Login("linanpp10@gmail.com", "1234,;--="); 

if(result.equals("{'result': 0}")) 

  return true; 

else{ 

  reason=new String("Expected {'result': 0}, actual result :"+result); 

  return false;} 

} 

 

@MyTest 

public static boolean testLogin_CI_T004() { 

 String result = Provider_Interface.Login("linanpp09@gmail.com", "1234567"); 

 if(result.equals("{'result': 0}")) 

   return true; 

 else{ 

   reason=new String("Expected {'result': 0}, actual result :"+result); 

   return false;} 

} 

 

 

Each test calls Login() by using the analyzed test data, if the return result does not 

equal to the expected value, then the test will show the reason and return false to 

Figure A.12 4 Black-Box tests on Login() 
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show the Login() does not have correct reaction on this test. By using such code, 

the detailed reason about why Login() fails can be viewed in the console window. 

 

3. Test Execution 

Finally, just use my test runner to run these 4 Black-Box tests, the calling code is 

shown in figure A.13.  

 

public static void main(String[] args) 

{ 

  MyTestRunner r = new MyTestRunner(); 

  r.run("Internship_Test.Provider_InterfaceTest"); 

} 

 

 

By using this code, the 4 tests will be executed to check whether Login() method 

meets its specification or not. Console output gives the execution result and 

Eclemma gives the Black-Box testing coverage result of this method, just as shown in 

Figure A.14, A.15 and A.16. 

 

 

Figure A.14 Black-Box testing result on Login() 

 

 

Figure A.15 Black-Box testing code coverage on Login() 

 

Figure A.13 run Black-Box tests to test Login() 
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Figure A.16 Black-Box testing branch coverage on Login() 

 

Figure A.14 indicates that all 4 Black-Box tests have passed, which means the method 

Login() actually meets its specification requirement. Figure A.15 and A.16 indicate 

its coverage result: 100% code coverage and 75% branch coverage, which means that 

although the line 37 was executed, the statement ‘plist == null’ was never equal to 

true. These two points together with other data (for example: the number of 

Black-Box tests is 4) can be collected to prepare for the final analysis on Login() 

method. 

 

Appendix B Calculate the number of complex 

Boolean expressions with n conditions 

When start to do the MC/DC testing on other Java programs, the first step aims to 

calculate the numbers of complex Boolean expressions with n (1, 2, 3…) conditions 

inside the tested program. Because of the large amount of source code, it is difficult 

to calculate these numbers manually. A better way is to use Java byte code.  

 

For example, the source code of method testjavabytecode() is shown in 

Figure B.1 and its byte code is shown in Figure B.2. 

 

public int testjavabytecode(int i, int d, int c) 

{ 

if((i< 20 || d > 30) && c > 10) 

return 1; 

else 

return 0; 

} 

 

 

Figure B.1 source code of method testjavabytecode() 
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Figure B.2 byte code of method testjavabytecode() 

 

As shown in Figure B.2, the ‘Code’ part is the generated instructions list and the 

‘LineNumberTable’ part indicates the line-instruction information of this method. 

These two parts information can be used to automatically calculate the number of 

complex Boolean expressions with n decisions. The calculating algorithm is: 

 

1. Read ‘Code’ part line by line and store each instruction into a string ‘instruction’ 

array (for this method, create a string array with 21 elements, store instruction 0 into 

array position 0, instruction 1 into array position 1, instruction 3 into array position 3 

and so on) 

 

2. Read ‘LineNumberTable’ part line by line and store line-instruction 

information into an integer ‘line-instruction’ array (for this method, the 

‘line-instruction’ array is: [0]->0, [1]->18, [2]->20). 

 

3. Search and count the number of jump instructions in ‘instruction’ array between 

the adjacent value of ‘line-instruction’ array (for example, because ‘line-instruction’ 

array[0] = 0 and ‘line-instruction’ array[1] = 18, so search jump instructions in 

‘instruction’ array between ‘instruction’ array[0] to ‘instruction’ array[18]). 

 

4. By performing the step 3, jump instructions ‘instruction’ array[3] (if_icmplt), 

‘instruction’ array[9] (if_icmple) and ‘instruction’ array[15] (if_icmple) are 

found, which means the method testjavabytecode() has a complex Boolean 

expressions with 3 conditions. 

 

By using such algorithm, the number of complex Boolean expressions with n 

decisions in the tested programs could be calculated automatically. For the detailed 

testing part, the testing step is the same to that of testing COMWS and the result can 

be collected to evaluate whether MC/DC is still effective in testing those non 

state-based programs. 


