
 1

Evaluation of Modified Condition/Decision Coverage in

Testing a Web Server

Nan LI (11139552)

Research Thesis 2014

M.Sc.in Computer Science (Software Engineering)

Department of Computer Science

National University of Ireland, Maynooth

County Co.Kildare, Ireland

A thesis submitted in partial fulfillment

of the requirements for the

M.Sc.in Computer Science (Software Engineering)

Supervisor: Dr. Stephen Brown

January 2014

 2

Declaration

I hereby certify that this material, which I now submit for assessment on the program

of study leading to the award of Master of Science in Software Engineering, is

entirely my own work and has not been taken from the work of the others save and

to the extent that such work has been cited and acknowledged within the text of my

work.

Signed: Nan Li Date: 28/1/2014

 3

Acknowledgement

I would like to thank Dr. Stephen Brown and Dr. John G.Keating at National University

of Ireland, Maynooth for their support and input of the project.

 4

Abstract

Modified Condition/Decision Coverage (MC/DC) is a structural coverage criterion

widely used in testing aviation software. Aviation software has a high level of

state-based behavior, typically implemented with complex Boolean expressions.

MC/DC was developed to provide the benefits of exhaustive testing of the Boolean

expressions, without the overhead. Web servers are also state-based systems, and

the purpose of this research is to determine whether the benefits of MC/DC also

apply to these systems. In this paper, a unit-testing case-study on a typical web

server Culture Object Management Web Server (COMWS) was performed to

evaluate the effectiveness of MC/DC in this context. For each method in COMWS,

Black-Box testing was carried out first, followed by MC/DC testing. The Black-Box

testing was used as a control group for MC/DC testing. The comparison focuses on

three criteria: Testing Cost, Faults Found and Program Coverage. Based on the

experimental results and comparative evaluation, two main conclusions were

obtained: MC/DC is an additional effective testing technique to complement

Black-Box testing for testing web servers, and it provides extra test capability where

some of the variables used in Boolean expression are not directly derived from the

input parameters.

 5

Table of Contents

1. Introduction... 7

1.1 Motivation .. 7

1.2 Software under Test ... 8

1.3 Method ... 8

1.4 Report Overview... 9

2. Background & Proposal ..10

2.1 Related Software Testing Concepts ...10

2.2 Modified Condition/Decision Coverage..12

2.2.1 Understanding of MC/DC ..12

2.2.2 MC/DC Example ...13

2.2.3 The Advantages of MC/DC ..14

2.2.4 MC/DC in Software Testing ...16

2.2.5 MC/DC on Avionics Systems..17

2.3 Problem Analysis ..18

2.4 Previous Work...22

2.4.1 Literature-Based Theory Work ..22

2.4.2 Software-Based Real Testing Work ...25

2.5 Proposal ..26

3. Software & Tools Used..28

3.1 Tomcat and MySQL...28

3.2 Customized JUnit Test Runner ...29

3.3 Eclemma..30

4. COMWS Overview ..31

4.1 Cultural Objects Management Web Server ..31

4.1.1 COMWS in COMP ...31

4.1.2 User Case Diagram ...32

4.1.3 COMWS Functionality Summary ..33

4.2 COMWS Classes Overview ...35

5. Testing ..37

5.1 Experimental Methodologies ..37

5.2 Test Design ..40

5.2.1 Test Procedure..40

5.2.2 Specifications Generation ...41

5.2.3 Black-Box Testing ...42

5.2.4 MC/DC Testing..43

5.2.5 Result Collection and Comparison ..45

5.3 Test Implementation ..45

5.3.1 Black-Box Testing on Login()..47

5.3.2 MC/DC Testing on Login() ..47

5.4 Test Problems ...51

5.4.1 Servlet Testing ..51

5.4.2 Handle Database Error ..54

 6

5.4.3 Summary ..59

6. Test Results ..59

6.1 Class ‘Provider_Interface’ ..60

6.2 Class ‘SymbolTransfer’ ...63

6.3 Class ‘DeleteFile’...66

6.4 Servlet Classes ..68

6.5 Results Summary ..70

7. Evaluation ..70

7.1 Testing Cost ...71

7.1.1 Number of Tests ...71

7.1.2 Time Cost ..74

7.1.3 Special Exception ...75

7.2 Faults Found ...76

7.3 Program Coverage ..79

7.3.1 Code Coverage ...79

7.3.2 Branch Coverage ..80

7.3.3 Coverage for Servlets ...82

7.4 Summary ...84

8. Conclusions ...86

8.1 Critical Analysis on Testing ...87

8.2 Limitations ..89

8.3 Critical Analysis of the Project ...90

8.4 Future Work ..91

Reference ...93

Appendix A. Black-Box Testing Design and Implementation Example ..95

Appendix B Calculate the number of complex Boolean expressions with n conditions104

 7

1. Introduction

1.1 Motivation

In recent years, the number of web applications has grown extraordinarily on a

worldwide basis. As web applications become more complex, their quality and

reliability become crucial, especially for back-end web servers. Web servers are

software programs that operate essentially independently from the clients (e.g. from

the specific browser) to offer services over the Internet [LiH00]. If a web server has

low quality, the web server may provide incorrect information to a client user or

cause data loss in the back-end. However, relatively little attention has been paid to

research on web server testing.

Different testing approaches can be used to test web servers, such as unit testing,

integration testing, and system testing. This project focuses on unit testing, used to

check the correctness of methods or classes in the web server.

When performing unit testing on a web server, two types of measurement can be

considered: requirements coverage measurement (Black-Box testing) and structural

coverage measurement (White-Box testing). Requirements coverage measurement

aims to check whether the tested web server method meets its specification (which

describes its behavior and features) or not, while structural coverage measurement

provides a means to confirm that "the requirements-based test procedures exercised

the code structure of the tested method". Requirements coverage analysis should be

accomplished and reviewed before structural coverage analysis begins [HVC+01].

Modified Condition / Decision Coverage (MC/DC) is a structural coverage criterion

requiring the basic requirement for Decision/Condition Coverage (DCC), and also

needing that each condition within a decision is shown by execution to

independently and correctly affect the outcome of the decision [ChM94].

This criterion is widely used in aviation software testing. To be certified by the FAA

(Federal Aviation Administration), aviation software must satisfy standard DO-178B

[HaV01]. Software development processes are specified in this standard for software

of varying levels of criticality. With respect to testing, the most critical (Level A)

software, which is defined as that which could prevent continued safe flight and

landing of the aircraft, must satisfy MC/DC.

The importance of MC/DC in aviation software testing field arises from the nature of

current flight control programs where the actuator commands depend on the state

of the system [Whi01]. The state of system is controlled by up to several hundred

very long Boolean expressions. Testing such software by using multiple-condition

 8

coverage is infeasible, which is due to the large number of tests. MC/DC reduces the

number of test cases while providing similar test coverage. It was developed to

provide many of the benefits of exhaustive testing of Boolean expressions without

requiring the cost of exhaustive testing [ChM94, HaV01].

Web servers are also state-based systems. They indentify the next state of a web

application based on the current state and the user input. So based on the role

MC/DC plays in testing aviation software (as a stated-based system), MC/DC was

selected as a good candidate for testing web servers in this project.

The motivation of this project is to evaluate MC/DC by assessing its effectiveness in

testing a typical web server. The effectiveness is defined by measuring the additional

cost and the additional benefits of MC/DC compared to Black-Box testing.

1.2 Software under Test

An Foras Feasa proposed a project called Cultural Objects Management Project

(COMP) which aims to help users to manage their cultural objects and reduce the

difficulty in contributing cultural data to professional data repositories.

In order to better maintain and research culture objects, national museums

cooperate with these large repositories to store and manage different metadata

(such as Europeana [DGH+10], DC [Dub03]) to record these objects’ information. But

for private providers, such as small museum curators and private collectors, the

procedure of contributing cultural data is more difficult and they have to learn how

to exchange the data and understand different data structures to represent their

cultural objects. So it is necessary to create a bridge between these private providers

and large data repositories. COMP was designed to provide such service and give

convenience to those private providers. It is intended that COMWS will be used by

various national bodies, so it is important that it operates correctly.

Cultural Object Management Web Server (COMWS) is the core of COMP and it

provides three services:

- Acts as the back-end server to communicate with the front-end cultural objects

management website.

- Includes servlet, which is used to communicate with mobile application in order

to help users to manage their cultural objects by using their mobile phone.

- Acts as the intermediate software to connect with these large repositories to do

the cultural objects data exchange.

1.3 Method

In order to evaluate whether MC/DC is actually effective in testing web server, a

related experiment - testing COMWS, was implemented to verify the proposed

 9

viewpoint. Testing such web server includes 2 parts:

- Black-Box Testing: testing whether the code of COMWS meets the specification

or not (focus on the specification)

Result data collected:

1. BB tests number

2. The work (cost time) to write these BB tests

3. Faults found number

4. Branch coverage of tested program

5. Code coverage of tested program

- MC/DC Testing: using MC/DC coverage criterion to test the implementation of

COMWS (focus on the inner structure of the code)

Result data collected:

1. MC/DC tests number

2. The work (cost time) to write these MC/DC tests

3. Faults found number

4. Branch coverage of tested program

5. Code coverage of tested program

6. Extra MC/DC tests number to find faults which BB testing didn’t find

Result data of Black-Box Testing was compared with that of MC/DC Testing to

evaluate the effectiveness of MC/DC in testing COMWS. The evaluation focused on

three criteria:

- Testing Cost: aims to find whether MC/DC Testing required more works than

Black Box Testing

- Faults Found: aims to find whether MC/DC Testing found extra faults or not

- Coverage Area: aims to find the influence MC/DC Testing had on the branch

coverage and code coverage

By doing such evaluation, the comparison result can provide the evidence to verify

whether MC/DC is actually effective in testing web server or not.

1.4 Report Overview

The rest of this report is organized as follows:

- Section 2 provides background into the problems of evaluating the effectiveness

of MC/DC for testing the COMWS. It gives the explanation of MC/DC and

proposes the testing solution to these problems.

- Section 3 describes the software and tools used in the testing solution.

- Section 4 gives an overview of COMWS (functionality and a description of

classes).

- Section 5 details the testing design for COMWS and the implementation of the

testing solution.

 10

- Section 6 describes and draws conclusions from the testing results.

- Section 7 gives the evaluation based on these testing results.

- Section 8 provides a critical analysis, presents conclusions, and makes

suggestions for future work.

2. Background & Proposal

This section describes the background details, explaining why MC/DC was selected as

a good candidate test technique for testing a web server. It describes the

fundamental software testing concepts used, and provides a detailed explanation of

MC/DC. It analyzes the reasons for using MC/DC to test a web server (COMWS) and

also describes previous work on MC/DC testing. Finally, it describes the proposal of

my project.

2.1 Related Software Testing Concepts

Some essential related Software Testing Concepts are shown as below:

 Software Quality

With the advancement and development of new software product, a major

process, which needs to be systematic scrutinize is the quality aspects. In the

world of competitive business market, a company has to make sure that the user

or clients are getting competitive and effective software products all the time.

Customers are not going to buy any low quality software products, and the only

way to promise that the software products are ready for the market is to make

sure that they pass the professional quality evaluation process.

Software Quality refers to:

The degree of conformance to explicitly stated functional and performance requirements,

explicitly documented development standards, and implicit characteristics that are expected

of all professionally developed software. [Gal04]

This definition indicates that high quality software needs to meet the following

three requirements:

- Specific functional requirements, which refer mainly to the outputs of the

software system.

- The software quality standards mentioned in the contract.

- Good Software Engineering Practices (GSEP) [Gal04], reflecting

state-of-the-art professional practices that are not explicitly mentioned in

the contract.

In order to produce high quality software (meets the three requirements above),

 11

a series of professional activities are proposed. Software testing is one of these

activities and has a close relationship with software quality. Software testing is

the first step applied to control the software product ’s quality before its

shipment or installation at the customer’s premises. Suitable test procedures can

bring the tested software to an acceptable level of quality after correction of the

identified errors and retesting [BTL+11], by contraries, unreasonable test

procedures may leads to poor software quality, which will cause more failures,

increase development costs and delay in attaining product stability [BTL+11]. So

software testing provides a great impact on software quality and developing

suitable software test procedures is really necessary.

 Testing Techniques

- Black-Box (Functional) Testing and White-Box (Structural) Testing:

Black-Box Testing is based on the program specification only (Software

function) and doesn’t consider the inner code of the tested program. All the

test cases are generated from specification. The goal of Block-Box Testing is

to verify that the program meets the specified requirements.

White-Box Testing is based on the inner program code (structure) & the

specification and all the test cases are designed to exercise the

implementation. The goal of White-Box Testing is to ensure that executing

the components (software can be viewed as a set of components) always

results in the correct output value. White-Box Testing is used to enhance

Black-Box testing and try to improve coverage of the internal components

that form the program.

- Decisions and Conditions: a decision is a compound Boolean expression that

controls the flow of the program (always exists in the ‘if’, ‘for’ and ‘while’

statements). A condition is a leaf-level Boolean expression (cannot be

broken down into a simpler Boolean expression) that can be used to make

up a decision. A decision consists of one or more conditions.

- Decision/Condition Coverage (DCC): The test cases for this white-box

testing technique ensure that every decision in the program is true and false

at least once, and that every condition is true and false at least once. By

checking whether every test execution of DCC satisfies the program

requirement or not, testers can achieve 100% coverage of every decision

and 100% coverage of every condition in the program.

- Multiple Condition Coverage (MCC): The test cases for this white-box

testing technique ensure that every possible combination of conditions for

every decision to be tested. Each decision with n conditions has 2n MCC test

cases. So although the test result is very precise, the cost will be really

 12

expensive if n is very large. By checking whether every test execution of MCC

satisfies the program requirement, testers can understand whether every

possible combination of conditions in a decision works properly or not.

2.2 Modified Condition/Decision Coverage

This section explains MC/DC [ChM94, Whi01, HaV01] and identifies its key strengths.

It also indicates what the role it plays in software testing area and finally gives the

reason why it is widely used in testing avionics systems.

2.2.1 Understanding of MC/DC

The standard MC/DC definition is shown as below:

Every point of entry and exit in the program has been invoked at least once, every

condition in a decision in the program has taken all possible outcomes at least once,

every decision in the program has taken all possible outcomes at least once. Each

condition in a decision has been shown to independently affect that decision's

outcome. A condition is shown to independently affect a decision's outcome by varying

just that condition while holding fixed all other possible conditions .[HVC+01]

This can be summarized as follows:

Modified Condition/Decision Coverage (MC/DC) is an enhanced version of Decision

Condition Coverage (DCC), it includes the basic requirements of DCC and also has its

own extra requirements.

For the basic requirements part (DCC):

1) Test cases set should be able to consider all the entrance and exit situations of

the program. It is the fundamental requirement of DCC and makes sure the test

cases consider all the conditions and decisions in the program. This requirement

is related to ‘Every point of entry and exit in the program has been invoked at least once’

in the standard MC/DC definition.

2) Test cases set should be able to cause every decision to be taken all possible

outcomes (true and false) at least once. This requirement satisfies ‘every decision

in the program has taken all possible outcomes at least once’ in the standard MC/DC

definition and makes sure all possible values of every decision are under

consideration.

3) Test cases set should be able to cause every condition in a decision to be true

and false at least once. This requirement is related to ‘every condition in a decision in

the program has taken all possible outcomes at least once’ in the standard MC/DC

definition and makes sure all possible values of every condition in every decision

 13

are under consideration.

For its own extra requirement part:

4) Test cases set should make sure that each condition in a decision should affect

the outcome of that decision independently. That means the outcome of the

decision should be changed if only a single condition was changed. This

requirement is related to the last two sentences in the standard MC/DC

definition and is the kernel of MC/DC coverage criterion.

2.2.2 MC/DC Example

I have developed the following example to show how MC/DC is used. Figure 2.1

indicates a section of code in COMWS that checks whether the profile session is

correct or not. This piece of code is an instance of a decision in the form A && (B ||

C).

The truth table of decision A && (B || C) is shown as below:

Table 2.1 truth table for A&& (B||C)

Independent Condition A B C A&&(B||C)

 T T T T

B T T F T

A,C T F T T

 F T T F

B,C T F F F

 F T F F

A F F T F

 F F F F

Test Cases

I use a list in the format {A, B, C} to indicate the MC/DC test cases for this decision:

1. {T, T, F} => T

2. {T, F, F} => F

if(session.getAttribute("ID") != null &&

 (session.getAttribute("Email") == null ||

session.getAttribute("Password") == null)){

 result = "{'err': 'session_profile_error'}";

}

Figure 2.1 an instance of decision A && (B || C) in COMWS

 14

3. {T, F, T} => T

4. {F, F, T} => F

To provide complete MC/DC test coverage on a decision of the form A && (B || C), 4

tests are required.

Explanation

A truth Table is a good way to find suitable MC/DC test cases. That’s because the

truth table indicates the relationship (especially the independency relationship)

between conditions and decision, and can help tester to find suitable combinations

of tests to meet the MC/DC requirement. Let’s take the decision A && (B || C) for

example, based on the truth table 2.1 shown above, the set {TTF, TFF, TFT, FFT} is a

good choice. The reason is that this set meets the basic requirement 1 and 2 and also

can make each condition (A, B and C) to affect the outcome of the decision

independently (See the first row).

2.2.3 The Advantages of MC/DC

A comparison of different white-box testing techniques shows the advantages of

MC/DC. The detailed comparisons among MC/DC, DCC and MCC together with the

result are shown below:

 Comparison on the number of tests

1. DCC: For a decision with N conditions, Decision Condition Coverage needs at

least 2 test cases to finish the test. This is shown in Figure 2.2.

Based on the truth table of the tested decision, one Boolean value of each

condition was combined to make the decision equals to true, at the same time,

the reverse Boolean value of each condition was joined to make the decision

equals to false, then these two test cases can satisfy DCC requirement.

2. MC/DC: If the decision has N uncoupled conditions, then MC/DC needs at

T F T F T F ……………

.

T F T F

N B C N-1 A

T F T … F F F T F … T T

Decision: True Decision: False

Conditions:

Values:

Test Cases:

Figure 2.2 the way to obtain at least number test cases for DCC

 15

least (N + 1) tests by varying one condition of each of the first N tests (For

example: test cases {TTT, FTT, TFT, TTF} for decision (A && B && C)). If the

decision has coupled conditions, then MC/DC needs at most 2N tests by

selecting unique tests for each condition [ChM94]. So the range of MC/DC tests

number is [N+1, 2N].

3. MCC: From the definition in 2.1, if the decision has N conditions, then MCC

need 2N test cases to complete the test.

Conclusion for this comparison: Figure 2.3 concludes the growth of test cases

for DCC, MC/DC and MCC when testing a decision with different number of

conditions.

Figure 2.3 the growth of test cases for DCC, MC/DC and MCC

 As Figure 2.3 shows, the number of DCC test cases has no relationship to the

number of conditions in the tested decision, always stands at 2; the number of test

cases for MC/DC grows slightly (linear growth) as the number of conditions in the

tested decision increases. On the contrary, the number of MCC test cases increases

significantly (exponential increase) with the growth of the number of tested

decision’s conditions.

 Comparison on finding faults:

1. DCC: DCC can find many faults, but it is not very sensitive to logical operator.

Table 2.2 shows such one example.

Table 2.2 DCC test cases for A &&B and A || B

Decision DCC test cases

A && B 1. {T, T} 2. {F, F}

A || B 1. {T, T} 2. {F, F}

The DCC test cases for decision ‘A && B’ and ‘A || B’ are the same, which means

0

20

40

60

80

100

120

140

2 3 4 5 6 7

T
h

e
 N

u
m

b
e

r
o

f
T

e
st

 C
a

se

The Number of Condtions in a Decision

Growth of Test Cases

DCC

MC/DC

MCC

 16

DCC is not sensitive to distinguish logical operators ‘&&’ and ‘||’. So by using

DCC technique, it is not easy to find such miswritten fault.

2. MC/DC: MC/DC can find more faults than DCC, that’s because MC/DC focuses

more on the relationship between logical operator and operands. Table 2.3

shows the same example to DCC.

Table 2.3 MC/DC test cases for A && B and A || B

Decision MC/DC test cases

A && B 1. {T, T} 2. {T, F} 3. {F, T}

A || B 1. {T, F} 2. {F, T} 3. {F, F}

MC/DC is sensitive to distinguish logical operator ‘&&’ and ‘||’ by using the

special test cases {T, F} and {F, T}, which means MC/DC has stronger ability in

finding faults than DCC.

3. MCC: Although MC/DC considers the most part in testing complex decisions, it

still doesn’t reach the same level as MCC. MCC considers every possible

combination of conditions for every decision in the tested program, so it has the

strongest ability in finding faults among these three techniques.

Conclusion for this comparison: the ability in finding faults: DCC<MC/DC <≈

MCC (<≈ means smaller but similar ability)

 Final Comparison Conclusion:

By combining the conclusions of these two comparisons above, the final

comparison conclusion can be shown in Table 2.4.

Table 2.4 comparisons of MCC, MC/DC and DCC

Comparison Item DCC MC/DC MCC

Number of tests for N conditions

within a decision

2 N + 1 2N

Ability in finding faults DCC<MC/DC <≈MCC

Table 2.4 indicates that MC/DC has a low increase in test cases when compared

with DCC and at the same time, has a similar ability to find faults when

compared with MCC. So when using MC/DC to test complex software, it can

obtain a high accuracy testing result (finding almost all the faults) by only writing

acceptable number of tests.

2.2.4 MC/DC in Software Testing

Software has become the medium of choice for enabling advanced automation in

aircraft, and also in ground and satellite-based systems that manage communication,

 17

navigation, and surveillance for air traffic control. As the capability and complexity of

software-based systems increases, so does the challenge of verifying that these

systems meet their requirements, including safety requirements. For systems that

are safety and mission critical, extensive testing is required. However, the size and

complexity of today's avionics products prohibit exhaustive testing [HaV01].

The RTCA/DO-178B document Software Considerations in Airborne Systems and

Equipment Certification [HaV01, RTC92] is the primary means used by aviation

software developers to obtain Federal Aviation Administration (FAA) approval of

airborne computer software [HaV01, USF93]. DO-178B describes software life cycle

activities and design considerations, and enumerates sets of objectives for the

software life cycle processes. For level A software (that is, software whose

anomalous behavior could have catastrophic consequences), DO-178B requires that

testing achieve MC/DC of the software structure. MC/DC criteria were developed to

provide many of the benefits of exhaustive testing of Boolean expressions without

requiring exhaustive testing [HaV01, ChM94].

In the context of DO-178B, MC/DC serves as a measure of the adequacy of

requirements-based testing-especially with respect to exercising logical expressions.

In that regard, MC/DC is often used as an exit criterion (or one aspect of the exit

criteria) for requirements-based testing [HaV01].

2.2.5 MC/DC on Avionics Systems

A more detailed analysis of avionics systems shows the fundamental reasons why

MC/DC is a suitable technique for testing these systems. Avionics systems typically

have a large number of complex Boolean expressions. Table 2.5 shows the number of

Boolean expressions with n conditions for all of the logic expressions taken from the

airborne software (written in Ada) of five different Line Replaceable Units(LRUs) from

level A systems [HVC+01, Chi01].

Table 2.5 Boolean Expression Profile for 5 Line Replaceable Units

 Number of Conditions, n

1 2 3 4 5 6-10 11-15 16-20 21-35 36-76

Number of

Boolean

expressions with n

conditions

16491 2262 685 391 131 219 35 36 4 2

Table 2.5 shows that the number of complex expressions is really large and these

systems even have more than 36 conditions Boolean expressions. It is difficult to test

them by using MCC (36 conditions need 236 tests), but for MC/DC, it is not the case.

Two reasons are listed below:

 18

 As shown in section 2.2.3, MC/DC can achieve many of the benefits of MCC

testing while has a low increase in required test cases.

 The other subtle reason: avionics systems are typically example of state-based

systems and MC/DC has a good performance when testing these systems. When

designing avionics systems, programmers have to consider a lot of factors such

as height, weight, high atmospheric pressure, humidity level and so on. These

factors are actually conditions inside complex expressions and the combination

of different values of these factors is related to the different state of the running

system.

It is important to make sure that every factor inside the system works properly

because even a small change on a factor may lead the system from good state to

disastrous state. Fortunately, by using the technique MC/DC, this requirement

could be satisfied. The essence of MC/DC is that each condition should affect the

outcome of the decision independently, which means MC/DC can help testers to

check whether each condition in each decision in the source code has the proper

effect or not (Whether the changes on each factor can lead the system to correct

state or not). So MC/DC is really suitable for testing those complex stated-based

systems.

2.3 Problem Analysis

A similar approach, as used for avionics systems, is used to analyze the web server.

Table 2.6 indicates the number of Boolean expressions with n conditions for all of the

logic expressions taken from the COMWS.

Table 2.6 Actual Boolean Expression Profile for COMWS

 Number of Conditions, n

1 2 3 4 5 6

Number of Boolean expressions with n conditions 138 11 3 2 0 0

As the table data shows, COMWS does not have many complex Boolean expressions.

But from an analysis of the COMWS source code, this web server has many special

code structures as indicated in Figure 2.4 (one piece of such style code in COMWS is

shown in Figure 2.6). Such code is named as the Equivalent complex Boolean

expression shown in Figure 2.5.

 19

Figure 2.6 one piece of such structure code in COMWS

After the equivalent substitution for all such code structures in COMWS, the

equivalent complex Boolean expression profile for this web server is shown in Table

2.7 and the comparison between the percentage of number of Boolean expressions

with n conditions in COMWS and avionics systems is shown in Figure 2.7.

Table 2.7 equivalent complex Boolean expression profile for COMWS

 Number of Conditions, n

1 2 3 4 5 6 7 8 9

Number of Boolean expressions with n conditions 77 19 7 6 1 1 1 0 1

if(A){

if(B){

 if(C){

 …

}

}

}

Figure 2.4 special structure codes

if(A && B && C){

…

}

Figure 2.5 Equivalent complex Boolean expressions

 20

At the same time, in order to show the complex Boolean expressions distribution

difference between Avionic systems and other Java programs, another analysis is

performed on Qualitas Corpus1. The Qualitas Corpus is a curated collection of Java

software systems intended to be used for empirical studies of code artifacts. 14

different software systems together with their class file in Qualitas Corpus are

randomly selected to be analyzed (the technique used to calculate the number of

Boolean expression with n conditions for these different software systems is shown

in Appendix B), and the result is shown in Figure 2.8 (The reason why the number of

conditions starts with 2 is because for almost all the software systems, the number of

decision with 1 condition is substantial larger than the others, so if this diagram

starts with 1 condition, the complex Boolean expressions distribution difference for

this software is hard to distinguish).

1
 Qualitas Corpus: http://www.qualitascorpus.com/

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

th
e

p
er

ce
n

ta
ge

 o
f

n
u

m
b

er
 o

f
B

o
o

le
an

ex

p
re

ss
io

n
s

w
it

h
 n

 c
o

n
d

it
io

n
s

Number of Conditions, n

Comparisons of the percentage of number
of Boolean expressions with n conditions

in COMWS and Avionics Systems

COMWS

Avionics
Systems

Figure2.7 comparisons of the percentage of number of Boolean expressions with n

conditions in COMWS and Avionics Systems

 21

As Figure 2.7 and Figure 2.8 shows, different software has different complex Boolean

expressions distribution. COMWS has a very similar distribution pattern of complex

Boolean expressions to Avionics Systems (COMWS even has more the percentage of

complex Boolean expressions with more than 1 condition than that of Avionics

Systems). At the same time, MC/DC seems suitable to test other Java programs, it

will be explored in ‘Conclusions’ chapter. Based on the analysis in section 2.2.5, MCC

is also not a good candidate for testing COMWS.

In common with Avionics Systems, web servers are also state-based systems. They

have to identify the correct next state based on the current state and user ’s input.

For example, for the update user’s profile method in COMWS (the code is shown in

Figure 2.6), the web server should select the unique 1 of 4 states (-2 -> wrong format,

0 -> exist user's email, 1-> update succeed, -1 -> update failed) to identify which one

should be responded to the front-end web application.

In conclusion, based on the two points above (MCC not well suited and both

state-based systems), a better test technique to test web servers is MC/DC. It is not

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

th
e

p
er

ce
n

ta
ge

 o
f

n
u

m
b

er
 o

f
B

o
o

le
an

 e
xp

re
ss

io
n

s
w

it
h

 n
 c

o
n

d
it

io
n

s

Number of Conditions, n

Comparisons of the percentage of number
of Boolean expressions with n conditions in

Qualitas Software and Avionics Systems

ant

antlr

aspectj

axion

castor

cayenne

checkstyle

displaytag

emmma

findbugs

freemind

informa

jmeter

junt

Avionics Systems

Figure2.8 comparisons of the percentage of number of Boolean expressions with n conditions in

Qualitas Software and Avionics Systems

 22

only because MC/DC can achieve approximately the same level of effectiveness as

MCC with significantly fewer test cases, but also the reason that MC/DC can check

whether each condition in each decision in the source code has the proper effect in

order to ensure the web server can jump to the correct state.

2.4 Previous Work

This section provides an overview of previous work. The previous work is divided into

two parts: literature-based theory work and software-based real testing work.

Literature-based theory work focus on the research on MC/DC while software-based

real testing work focus on evaluating the effectiveness of MC/DC in testing the

avionics related software.

2.4.1 Literature-Based Theory Work

MC/DC is a white-box testing technique in software testing area, many scientists and

academic institutions have researched on it.

 Characteristics of MC/DC:

(1) In an investigation of the applicability of MC/DC to software testing, the

modified condition/decision coverage criterion together with its properties

and areas for further work were described [ChM94]. It first described the

definition of MC/DC, its properties and relationship to other criteria. Then it

identified problems posed by coupled conditions and the Ada short-circuits

operators and proposed approaches for each. Finally, an analysis of

comparing the sensitivity of the MC/DC with that of decision,

condition/decision and multiple-condition testing in detecting errors in

Boolean expressions was proposed. The conclusion was “The MC/DC was

shown to be significantly better than either the decision or

condition/decision criterion and to compare favorably with the often

impractical multiple-condition criterion.” [CHM94]

(2) In a study of finding how good a randomly selected test-set is in exposing

errors according to a given test criterion, an empirical evaluation of

effectiveness of three main control-flow test criteria (DC (Decision Coverage),

FPC (Full Predicate Coverage), MC/DC) has been performed [KaB03]. The

study was based on exhaustive generation of all possible test-sets against

ENF, ORF, VNF and ASF faults. It also analyzed the variation in effectiveness

of test criteria (which is used to determine its fault detection reliability) and

the influence of the number of conditions on average fault detection

effectiveness and standard deviation of effectiveness for each test criteria.

The experiment results indicated that:

 23

(1) MC/DC was found to be effective in detecting faults, but its test-sets had

a large variation in fault detection effectiveness for ASF faults.

(2) The average effectiveness for DC, DC/R (DC/R is a variation of DC that is

used to ensure that it is the test-set property that influences the

effectiveness and not the test-set size) and FPC was found to decrease

with the increase in the number of conditions, while that of MC/DC

remained almost constant.

(3) The standard deviation of the effectiveness showed variation in DC,

DC/R and FPC but remained constant for MC/DC.

Thus, the conclusion of this experiment is: “MC/DC criterion is more reliable

and stable in comparison to DC, DC/R and FPC”. [KaB03]

 Test-Suite Reduction for MC/DC:

(1) In an investigation of test-suite reduction and prioritization problem for

MC/DC, new algorithms for test-suite reduction and prioritization were

proposed that can be tailored effectively for use with MC/DC [JoH01]. Test

suite always grows when the tested software is modified (Because new test

cases will be added into test suite). Researchers developed test-suite

reduction algorithms and test-suite prioritization algorithms to solve

test-suite size problem. But existing reduction and prioritization techniques

may not be effective in reducing or prioritizing MC/DC-adequate test suites

because they do not consider the complexity of the criterion. Because of this,

new algorithms were proposed and some evaluation was performed on

these two algorithms. The evaluation conclusion was "The algorithms show

the potential for substantial test-suite size reduction with respect to MC/DC"

and "the test-suite prioritization efficiently orders a test suite for MC/DC".

[JoH01]

(2) In an investigation of test-suite reduction problem for MC/DC, a new

test-suite reduction technique that using bi-objective model for MC/DC was

proposed to address this problem [PZL+05, PMG+10]. MC/DC is an effective

verification method that can help to detect safety faults, but its cost is a little

bit expensive. In regression testing, it is quite costly to rerun all of test cases

in test suite. Therefore, it is necessary to reduce the test suite to improve

test efficiency and save test cost. However, many existing test-suite

reduction techniques are not effective to reduce MC/DC test suite. Because

of this, a new algorithm was presented that has two characteristics from

traditional reduction algorithm:

(1) Constructing a bi-objective model that considers both coverage degree

and fault-detection ability of test cases

(2) The reduced test suite satisfies adequate coverage for test-requirement

suite no matter when the algorithm is terminated.

 24

Some experiments were performed on this algorithm and the results

indicated that "this test-suite reduction algorithm is effective for both

reducing test suite and ensuring fault-detection ability of reduced test suite."

[PZL+05]

 Variants of MC/DC:

(1) Observable Modified Condition/Decision Coverage (OMC/DC) [WGY+13]

Structural coverage metrics, such as MC/DC, are commonly used to measure

the adequacy of test suites. Such criteria require only certain code structures

(such as a particular Boolean assignment of a decision) to be exercised,

without requiring the resulting value to affect an observable point in the

program. As a result, test suites satisfying these criteria can produce

corrupted internal state without revealing a fault, resulting in wasted testing

effort. In order to solve this problem, Observable MC/DC, a combination of

traditional MC/DC testing with a notion of observability (an additional path

constraint) was proposed to help ensure that faults will be observed through

a non-masking path from the point the obligation is satisfied to a variable

monitored by the test oracle. Some experiments were performed to test

OMC/DC and the result indicated that "OMC/DC test suites locate a median

of 17.5% more faults than MC/DC test suites when paired with an oracle

observing only the output variables" and "OMC/DC is less sensitive to the

structure of the program under test than MC/DC and also provides the

benefits of using a very strong test oracle with MC/DC coverage". [WGY+13]

(2) Reinforced Condition/Decision Coverage (RC/DC) [ViB06]

The MC/DC criterion is used mainly for testing of safety-critical avionics

software. The main aim of MC/DC is testing situations when changing a

condition implies a change in a decision. But this criterion has one

substantial shortcoming - the deficiency of requirements for testing of the

false actuation (The false actuation of a system could be invoked by a

software error in situations when changing a condition should not imply

changing a decision) type of failures. Such situation could make MC/DC

insufficient for many safety-critical applications. To eliminate this

shortcoming, a new criterion RC/DC was proposed. Testing according RC/DC

should include test cases according MC/DC and additional test cases for

testing important situations when a false actuation of a system is possible. In

that way, all requirements of MC/DC are valid and a new requirement for

keeping the value of a decision when varying a condition is added to the

testing regime. RC/DC can make the testing process more effective and it

could be important in the testing of safety-critical applications.

 25

2.4.2 Software-Based Real Testing Work

(1) An empirical evaluation of MC/DC coverage criterion was performed on the

HETE-2 Satellite Software [DuL00]. In order to be certified by the FAA, aviation

software must satisfy a standard labeled DO-178B and the most critical (Level A)

software must satisfy MC/DC. But this standard is controversial in the aviation

community, partially because of perceived high cost and low effectiveness. In

order to shed some light on this issue, an evaluation was performed on the

attitude control software (ACS) of the HETE-2(High Energy Transient Explorer)

scientific satellite being built by the MIT Center for Space Research for NASA.

Functional testing and functional testing augmented with test cases were

compared to satisfy MC/DC coverage on the ACS. For black-box testing part,

three-step testing process was executed for each mode: switching logic testing,

parameter testing and functional testing. For white-box testing part, the

coverage evaluation was firstly performed to identify the parts of the code that

have been left unexplored by black-box testing and then the MC/DC additional

test cases were designed to find additional errors.

After the experiment, two points were summarized:

(1) The test cases generated to satisfy the MC/DC coverage requirement

detected important errors not detectable by functional testing. These

additional tests corresponded to four kinds of limitations of the black-box

testing process:

- Something was forgotten during black-box testing.

- The software has a complex logic mechanism requiring in-depth

understanding and precise, customized testing.

- Some feature of the software was not included in the specification and

could not give rise to a test case in a black-box testing context.

- The effects of some errors were too small to be detected by black-box

testing.

(2) Although MC/DC coverage testing took a considerable amount of resources

(about 40% of the total testing time), it was not significantly more difficult

than satisfying condition/decision coverage and it found errors that could

not have been found with that lower level of structural coverage.

(2) An evaluation of MC/DC testing was performed on an industrial PLC logic

networks [Bis03]. Coverage measurement has been used to estimate residual

faults in program code. The same concept can also be applied to PLC logic

networks. Other than the normal coverage concept, a PLC logic network has its

equivalent logic coverage - input-output pair coverage (I-O pair coverage), which

means that input values are selected such that change of a given binary input i

can "toggle" the state of a binary output j. There is a strong relationship between

 26

input-output pair coverage and the MC/DC test method, so it is really deserve to

research whether MC/DC can maximize such coverage growth and improve fault

detection efficiency or not on a PLC logic network.

The PLC logic network used in this paper was taken from an industrial example

that had 36 binary inputs and 10 binary outputs. There were also 6 known faults

in the initial logic implementation. For the experiment, I-O pair coverage was

compared against faults found using three different test strategies: MC/DC

random testing, uniform random input testing and a set of 486 systematic tests

developed for the original industrial logic implementation. The experiment result

indicated that the MC/DC test appears to out-perform the other rest strategies,

finding the first 4 faults in 10 random tests and all 6 in 486 tests, while the

systematic tests had only detected 4 faults at this stage, and random input

testing had found none.

After the experiment, two conclusions were summarized:

(1) I-O pair coverage was strongly correlated with the faults found in the logic

network.

(2) MC/DC random testing was more effective than random input testing and an

existing systematic test set-probably because coverage growth was faster.

2.5 Proposal

The similar pattern of complex Boolean expressions as shown in section 2.3 indicates

that MC/DC is a suitable coverage criterion for testing web servers. The proposal of

this project is to evaluate the effectiveness of MC/DC for testing the COMWS. In

order to implement this task, four steps were proposed:

1) Select representative java files

Figure 2.9 below shows the java files list about the COMWS. Those important

functional-related java files were selected (such as CultureObject_Interface.java,

SymbolTransfer.java and so on, detailed function description of COMWS is shown

in Chapter 4) to do the experiment in order to obtain useful evaluation data.

 27

2) Implement the Black-Box testing on selected java files

Three Black-Box testing techniques (Equivalence Partitioning, Boundary Value

Analysis and Combinations of Inputs) were used in testing each method in each

selected java files. The items listed below should be calculated after the

Black-Box testing:

1. Black-Box tests number

2. The work (cost time) to write these Black-Box tests

3. Faults found number

4. Branch coverage of tested program

5. Code coverage of tested program

3) Implement the MC/DC testing on selected java files

First generated the test cases based on the equivalence conditions mentioned in

section 2.3 and truth table for each decision and then wrote and executed the

tests to do the MC/DC testing. The items listed below should be calculated after

the MC/DC testing:

1. MC/DC tests number

2. The work (cost time) to write these MC/DC tests

3. Faults found number

4. Branch coverage of tested program

5. Code coverage of tested program

6. Extra MC/DC tests number to find faults which BB testing didn’t find

4) Compare Black-Box testing results with MC/DC testing results and draw

conclusions

Compared the Black-Box testing with MC/DC testing based on the calculated

Figure 2.9 java file list of COMWS

 28

items list above and focused on the following three criteria to draw the

conclusion:

- Testing cost:

Comparison was based on two areas: the number of tests and the time

taken to write tests for Black-Box testing and MC/DC testing

- Faults found:

Focused on whether MC/DC found extra faults when compared with

Black-Box testing. If it was, counted how many MC/DC tests were executed

to find these extra faults.

- Program coverage:

Comparison was based on two areas: branch coverage and code coverage of

the tested programs.

3. Software & Tools Used

This section provides a brief description of the software and tools that were used in

the implementation and testing of the COMWS.

3.1 Tomcat and MySQL

Tomcat [CBE+04] is an open source web server and servlet container, it implements

the Java Servlet and the JavaServer Pages(JSP) specifications from Sun Microsystems,

and provides a 'pure Java' HTTP web server environment for Java code to run in.

MySQL [MyS01] is an open-source relational database management system (RDBMS)

that runs as a server providing multi-user access to a number of databases, it is

always used in web application development and can be accessed and managed by

some GUI tools such as phpMyAdmin, DBEdit and so on.

In this project, Tomcat was used as the web server and MySQL was used as the way

to store users' and cultural objects' information. Meanwhile, phpMyAdmin (as shown

in Figure 3.1) was used as the GUI tool to manage the MySQL database (such as

create database, modify the structure of different tables and view detailed data in

order to check whether the related operation is correct or not).

Figure 3.1 phpMyAdmin to manage project database

 29

3.2 Customized JUnit Test Runner

When doing the unit testing and MC/DC testing of the COMWS, instead of viewing

where was wrong inside the code, detailed testing results and the reason why errors

occurred should be collected. The traditional JUnit cannot satisfy this requirement,

so customized JUnit test runner should be implemented to run those test cases.

Implementing customized JUnit test runner includes two steps [BTL+11]:

1. Define my own annotation (as shown in Figure 3.2)

Figure 3.2 my own annotation

The ‘retention policy’ makes sure that the annotation is kept at runtime, the ‘target’

means the annotation is used on a method and the ‘interface’ indicates the name of

the annotation is ‘MyTest’. By defining my own annotation, test cases can be

annotated by this new annotation so that test runner can find and execute them to

collect test results.

2. Write the test runner to find and execute the annotated methods from a class (as

shown in Figure 3.3)

Figure 3.3 customized JUnit test runner

 30

The most important method in customized JUnit test runner is runTests(), which

accepts the name of a test class as its parameter, finds the test methods (annotated

with ‘MyTest’) by using Java Reflection and execute these test methods by calling

invoke().

The test results are stored in the variables runs, successes, fails and executionFailures

and the detailed failure reason is shown in the variable reason.

By using customized JUnit test runner, my own format of test results can be

generated and the detailed failure reason can be viewed through the reason variable.

What’s more, the test results can be saved to a log file so that these data can be used

in the later analysis and evaluation phase.

3.3 Eclemma

Eclemma [Hof11a, Hof11b] is an open-source tool for measuring and reporting code

coverage of Java programs. Testers always focus on two aspects to analyze the

coverage result:

1. Coverage overview:

As shown in Figure 3.4, the coverage view lists coverage summaries for the tested

project, including the information about 'coverage ratio', 'Items covered', 'Items not

covered' and 'total items'. This coverage view provides a brief and clear way for

testers to understand the basic statement coverage of java programs – which line is

executed and which line is not.

Figure 3.4 coverage overview

2. Source highlighting:

As shown in Figure 3.5, the result of a coverage session is also directly visible in the

Java source editors. A customizable color code highlights fully, partly and not covered

lines (green - fully covered lines, yellow - partly covered lines, red - lines that have

not been executed at all). So by analyzing this source highlighting, testers can

understand the statement coverage and branch coverage of the tested Java program.

 31

Figure 3.5 sources highlighting for coverage

4. COMWS Overview

This section focuses on the overview of COMWS. It describes what the COMWS is

and shows what functions this web server has. It also gives the class diagram of

COMWS to show which classes are important and to be worth testing.

4.1 Cultural Objects Management Web Server

COMWS is a web server which is used to help users to manage their cultural objects

in different data formats (such as Europeana [DGH+10], DC [Dub03]) and acts as

intermediate software to connect with large repositories to do cultural objects data

exchange. COMWS is the core of the whole Cultural Objects Management Project

(COMP). To convey an abstract overview of COMWS, the COMP architecture diagram

(To show what role the COMWS plays in COMP) and COMWS Use Case diagram (To

show what functions the COMWS has) are presented in section 4.1.1 and 4.1.2.

4.1.1 COMWS in COMP

The architecture of COMP is shown as below:

 32

Figure 4.1 indicates that the COMWS plays three roles in COMP:

1. Acting as the back-end server to communicate with the front-end website. When

user uses the website to manage cultural objects, all the back-end operations

such as insert new cultural objects into database, count user ’s current cultural

objects number are done by COMWS.

2. Using Servlet to communicate with mobile side. User can use the mobile app to

communicate with COMWS through Servlet. It helps user to record and upload

their cultural objects information rapidly.

3. Doing data exchange with different data format repository. COMWS can

generate data format-related storing file (for example, generating Europeana

XML file of cultural objects so that it can be collected by Europeana staff) and

obtain data information from these repository.

4.1.2 User Case Diagram

The COMWS's UML Use Case diagram is shown in Figure 4.2 to manifest what users

will be able to do with this server.

COMWS

Local Database

Servlet

Europeana DB

DRI DB
…
…. .

(Different data format repository)
Front-end website

Android

(Mobile side)

Provider
Data Exchange

Person Access

Figure 4.1 the architecture of COMP

 33

Figure 4.2 COMWS use case diagram

These use cases help to convey the functionality provided by COMWS.

4.1.3 COMWS Functionality Summary

Based on the user cases above, a summary of the entire functionality of COMWS is

presented as below:

 Provider’s Account and Personal Info Part:

- Register: Focus on doing the user’s register operation, including check user ’s

input register information, store information to database and return back

the register result.

- Login: Focus on connecting with database to check the user ’s login

information (email and password) in order to identify whether user can login

the system or not

- Modify: it has three separate parts.

1. Modify personal info: check the reasonableness of modified username or

phone number value, update information in database and return back

modify result.

2. Modify account information: check the reasonableness of modified email

value (format and whether it is duplicate or not), update information in

database and return back modify result.

3. Modify password (safety part): check the reasonableness of modified

password value, update information in database and return back modify

result.

 34

 Provider’s Cultural Objects Part:

- Upload new cultural object:

1. Create Metadata: receive metadata from user ’s side and store them into

corresponding table in the database based on the data format selected by

user.

2. Upload Images: receive images from user ’s side; store them in the cultural

object-related folder and insert images’ link into the database.

- View cultural objects list:

Receive user ’s requirement and search from the database to select user ’s

current cultural objects, return these objects information back to the

front-end

- View single cultural object:

1. View Metadata information: receive user ’s different data format request,

search the database and send back the corresponding metadata information

of the selected cultural object to the front-end

2. View Images: receive user’s request and search all images’ link of selected

cultural object in the database and send back them to the front-end

- Update cultural object info:

1. Update metadata info: receive user’s request (including the selected data

format and update data), update the database and send back the result to

the front-end

2. Update images info:

For delete image: receive user’s request about which image should be

deleted, remove the selected image from the folder and delete the record in

the database

For upload single image: receive user’s request, store the new image into

the correct folder and insert this image record into the database

For upload multiple images: receive user ’s request, store all the new images

into the correct folder one by one and insert these images record into the

database

 Generating Data-Format Related File Part:

Based on the data-format, generating corresponding file (For example,

Europeana XML file) and store it into a selected folder.

 35

4.2 COMWS Classes Overview

The class diagram of COMWS is shown in Figure 4.3.

Figure 4.3 Class Diagram of COMWS

As shown in Figure 4.3, COMWS has four main levels: Database Operation Level,

Objects Level, Interface Level and Servlet Level.

 Database Operation Level: DBPool class is acted as the bottom level of COMWS.

It provides the database connection, executes the requirements from high level

and return back data or operation result.

 Objects Level: this level contains three parts: Provider, CultureObjects and

RelatedFunction.

- Provider:

The Provider class builds the connection between database and Provider

objects. It includes the basic data storage functions, such as insert the

provider’s personal information into database, modify provider ’s email

address and so on.

- CultureObjects:

For a single cultural object, it contains two types of information:

1. Common information: it records web resources (images, videos and so on)

and ownership information of the cultural object. Figure 4.4 indicates the

package and classes used to represent such information.

 36

Figure 4.4 Common Information

The class CultureObjects_HighLevelInfo is used to handle ownership

problem of the cultural object, such as search the cultural object belongs to

which user, obtain a user’s cultural objects list and so on. The class

CultureObjects_WebResource manages the web resources of the cultural

object and makes sure the web resources storage process is correct.

2. Metadata information: user can use different metadata types (Europeana,

EAD and so on) to represent the cultural object. Each metadata type has its

own data format and related functions. For example, Figure 4.5 indicates the

package and classes used to represent Europeana metadata type and

related functions.

Figure 4.5 Europeana Related Metadata and Functions

 37

The class Europeana_MetaData represents the Europeana data format to

describe the cultural object. Both the classes Europeana_Aggregation and

Europeana_XML are used in the cultural objects data exchange between

COMWS and Europeana repositories.

- RelatedFunction:

This part includes those classes that are used to help COMWS works

properly.

1. Encode Class: it is used to encrypt and decrypt user's password in order to

improve the safety of COMWS

2. DeleteFile Class: it is used to delete user’s web resources on the server

3. SymbolTransfer Class: it is used to handle some special symbols such as ‘, “,

\r\n and so on.

4. FileRename Class: it is used to rename user’s upload files

 Interface Level: this level contains two interfaces: Provider_Interface and

CultureObject_Interface. Provider_Interface provides the services that are

related to user's operation, such as login, register and so on.

CultureObject_Interface provides the services that are related to cultural objects,

for example, insert web resources of cultural object, insert metadata info of

cultural object and so on.

 Servlet Level: this level is used to provide services to mobile application. All the

servlet classes will call Provider_Interface and CultureObject_Interface to

perform their tasks.

Among these four levels of COMWS, the most important one is Interface Level. That ’s

because it has direct relations with the main functions of COMWS, which means this

level is worth to be tested.

5. Testing

This section gives a brief description of the unit testing on COMWS. It shows the

experimental methodologies and gives detailed information on how MC/DC testing

was designed to test this web server. It also provides examples to show the MC/DC

testing processes in detail, describes the problems encountered during the

implementation, and indicates how solutions work to overcome them (The detailed

Black-Box testing design and implementation are shown in Appendix A).

5.1 Experimental Methodologies

When testing a web server, Black-Box testing is performed first to check whether

these server methods meet their specifications or not. Such testing is the foundation

 38

of whole web server testing (Failed to pass Black-Box testing means that the tested

method is not succeed to be realized, so there is no need to do other testing) and is

used to find those small and obvious faults. But Black-Box testing has shortcomings.

Black-Box tests are generated based on specifications, so such tests may not be

available to detect faults inside the implementation code. In order to find these

faults, MC/DC was selected to provide additional support.

When measuring the effectiveness of MC/DC in testing COMWS, three criteria were

used: Testing Cost, Faults Found and Program Coverage. The reasons for selecting

such three criteria are:

(1) Testing Cost: No matter what testing technique is selected and used, its testing

cost needs to be considered. If a testing technique has a strong ability to detect

faults but needs huge number of tests, or takes a great deal of time, the

technique is less useful in practice. For example, MCC has a strong ability to

detect faults because it considers the combination of each condition inside the

tested decision, but it is limited because of its incredible number of tests. For a

decision with n inputs, MCC requires 2n tests. In cases where n is small, running

2n test may be reasonable; running 2n tests for large n is impracticable. So the

use of this criterion in this project aims to evaluate whether MC/DC was actually

cost-effective in testing COMWS.

(2) Faults Found: this criteria directly reflects how strong a testing technique is in

detecting faults in the tested program. Based on the theoretical analysis

mentioned in Chapter 2, MC/DC should demonstrate a similar ability to find

faults when compared with MCC. Such ability reflects that it ought to detect

some faults that Black-Box testing doesn’t find. So the use of this criterion in this

project aims to evaluate the fault finding ability of MC/DC.

(3) Program Coverage: criteria code coverage and branch coverage are used to

identify untested code or untested branches in the tested programs. Generally

speaking, insidious faults are often found in such untested code or untested

branches, so higher code coverage and branch coverage may indicate less faults

remained in the tested programs. So the use of this criterion in this project aims

to evaluate the program-coverage ability of MC/DC in testing COMWS (whether

MC/DC can actually improve code coverage and branch coverage of the tested

programs in COMWS).

It is worth noting that the branch coverage here is not the same to traditional

branch coverage. Traditional branch coverage is actually ‘source code’ level

branch coverage. For example, Figure 5.1 shows a Boolean expression to check

whether fis is file or not and Figure 5.2 shows its ‘source code’ level branch

paths.

 39

if(!fis.isFormField() && fis.getName().length()>0)

{

 ……

}

As shown in Figure 5.2, for ‘source code’ level branch coverage, there is no need

to consider the inner conditions of the decision, just focus on whether the

decision (branch) takes True or False at least once or not. Such branch coverage

is not available to show the strength of MC/DC testing.

The branch coverage used in this project is actually the ‘byte code’ level branch

coverage and the branch coverage calculated by ‘Eclemma’ is also such type

coverage. It considers the inner conditions of the decision and checks whether

each condition takes True or False at least once or not. Such coverage actually

focuses on the byte code of the tested method. Each jump situation (jump

succeed or not) of each jump instruction in the byte code is under consideration.

By measuring ‘byte code’ level branch coverage, MC/DC testing can show its

strength in testing complex Boolean expression. For example, the Figure 5.3 and

5.4 indicates the ‘byte code’ level branch coverage results for Black-Box testing

and MC/DC testing on the special complex Boolean expression in method

Login().

Figure 5.3 ‘byte code’ level branch coverage results for Black-Box testing

!fis.isFormField() && fis.getName().length()>0

True handle code False handle code

T

Figure 5.1 source codes to explain different branch coverage

Figure 5.2 source code level branch paths

 40

Figure 5.4 ‘byte code’ level branch coverage results for MC/DC testing

As shown in Figure 5.3 and 5.4, Black-Box testing missed one ‘byte code’ level

branch while MC/DC testing covered all of them. This different is due to the

special code plist == null. Such code equals to True if and only if there is a

database error inside the execution of this method. But database error has no

relations to these values of input parameters, so Black-Box testing did not cover

this branch. But it is not the case for MC/DC testing. One special MC/DC test case

focused on this situation and the related test replaced correct database with an

error-inside database to manually making a database error, which finally made

this branch been covered.

By measuring ‘byte code’ level branch coverage, it is possible to measure the

MC/DC test coverage criteria on tested programs.

The experimental methodologies above concludes the reason why Black-Box testing

was performed first in testing COMWS and why used Testing Cost, Faults Found and

Program Coverage (also explain the ‘byte code’ level branch coverage) to evaluate

the effectiveness of MC/DC in testing COMWS.

5.2 Test Design

5.2.1 Test Procedure

The detailed COMWS test procedure is shown in Figure 5.5.

Tested

Java

File

Method_1 () {…}

Method_2 () {…}

Method_3 () {…}

 ….

Each Single File

1. Write specifications for each method 2. Black-Box testing on each method:

- Equivalence Partitioning

- Boundary Value Analysis

- Combinations of Inputs

3. MC/DC testing on each method

4. Result collection and

comparison to evaluate the

effectiveness of MC/DC

Figure 5.5 COMWS test procedure

 41

Figure 5.5 indicates that the test procedure includes 4 steps: specifications

generation, black-box testing, MC/DC testing and result collection and comparison.

The detailed descriptions of these 4 steps are listed as follows.

5.2.2 Specifications Generation

Specifications play a key role in testing. In order to be tested, the correct behavior of

software must be known. Specifications meet this requirement and describe both

normal and error behavior of the tested software, which makes it easy for testers to

design related tests [BTL+11].

In this project, for each method in each tested java file, a related specification should

be given. Generating specifications for these tested methods are based on two items:

specification template and COMWS functionality description.

(1) Specification template

The specification template used in this project is shown in Figure 5.6.

/*Specification of Method_Name():

Function:

 describe the function of this method

Program Inputs:

 parameter 1: the range

 parameter 2: the range

Program Outputs:

 return value:

 possible return value 1 - the condition 1 to cause this return value

 possible return value 2 - the condition 2 to cause this return value

*/

Explanation of this specification template

 The ‘Function’ field describes the function of the tested method and indicates

the role it plays in the whole software.

 The ‘Program Inputs’ field describes the ranges of values for each parameter of

the tested method. Understanding the ranges of values for each parameter is

Figure 5.6 specification template

 42

really necessary because the output of the method is always affected by the

values of these parameters. If the method’s realization doesn’t meet the

parameter range requirements, then the return value of the method will not be

correct, which can help testers to create tests to find these errors.

 The ‘Program Outputs’ field describes the ranges of the output values of the

tested method. By considering this field, testers can understand the relationship

between program inputs and outputs (what values of inputs will cause related

outputs) so as to help them to design reasonable tests to find errors.

(2) COMWS Functionality Description

COMWS functionality description (the summery version is mentioned in section 4.1.3)

gives all the detailed information about the tested methods. It includes these

methods’ definition, possible input value of these methods’ parameters and possible

output values of these methods. It indicates the role of these methods play in the

whole web server.

By combining the COMWS functionality description and specification template, the

specifications of all the tested methods in COMWS are generated, which makes a

good preparation for the next testing stage.

5.2.3 Black-Box Testing

In black-box testing stage, for each tested method, three steps were required to

check whether it meets specification requirement or not.

1. Three Techniques Test Cases Analysis and Test Generation

Three techniques were used to do Black-Box testing on COMWS: Equivalence

Partitioning (EP), Boundary Value Analysis (BVA) and Combinations of Inputs (CI).

Different test analyses were performed on these three techniques to generate

their own tests set.

2. Test Realization

Based on the test data for these three techniques generated in step 1, the

detailed source code for each test was realized in this stage.

3. Test Execution

In this stage, tests were executed using customized JUnit test runner and the

Black-Box testing results were collected.

The detailed description for each Black-Box testing step is shown in Appendix A.

 43

5.2.4 MC/DC Testing

In MC/DC testing stage, for each tested method, a four steps procedure is required.

Such test procedure is shown in Figure 5.7.

1. Boolean Expression Transformation

Because COMWS has so many such special codes mentioned in section 2.3, the first

step is doing a transformation on the code of tested method to change all such codes

to the equivalent complex Boolean expressions. This is the basic step to do the

MC/DC testing on COMWS.

2. Test Cases Analysis and Tests Generation

The second step is doing the test cases analysis on these equivalent complex Boolean

expressions and generating the related MC/DC tests. The analysis template is shown

in Figure 5.8.

// Analysis:

//

// Conditions:

1. Boolean Expression Transformation

2. Test Cases Analysis and Tests

Generation

3. Tests Realization

4. Tests Execution

Figure 5.7 4 steps procedure for MC/DC testing

 44

// A: Line xx: ...

// B: Line xx: ...

// C: Line xx: ...

//

//

// Equivalent Complex Boolean Expression:

//

//

// Truth Table:

// A B C ... Complex Boolean Expression

//

//

//

// Test Cases:

// CASE A B C ... Test

// ===== ============================= =====

// MCDC1 Test1

// MCDC2 Test2

//

As Figure 5.8 indicates, the conditions and equivalent complex Boolean expression

fields show which conditions and decision are under consideration. The truth table

gives the relationship between the output value of decision and the truth value of

each condition. Then, based on the truth table, the test cases set can be generated

(Selecting from the truth table to make the test cases set satisfies the MC/DC

requirement) and each test case is related to one test.

Based on the MC/DC test cases generated from the analysis stage, combined with

the tested method’s inputs, the MC/DC test data of this method can be produced,

just as shown in Figure 5.9.

// Test Data:

// Test Cases Inputs Expected Outputs

// ID Covered xxx xxx xxx ... return value

// Test1 MCDC1

// Test2 MCDC2

// Test3 MCDC3

//

3. Tests Realization

Based on the test data generated in step 2, the detailed code for each test can be

realized in this stage. The code template of MC/DC test method is same to that of the

Figure 5.9 MC/DC Test Data Generation

Figure 5.8 analysis template for MC/DC

 45

black-box test method except the method name is changed to

testMethod_MDCC_Txx (xx means the test data ID).

4. Test Execution

In this stage, just use customized JUnit test runner to run these MC/DC tests and the

result together with some useful data are collected to prepare for the final analysis

and comparison.

5.2.5 Result Collection and Comparison

The data collected from Black-Box testing and MC/DC testing on each tested COMWS

method is listed in table 4.1.

Table 4.1 result data needed to be collected

Black-Box (BB) testing MC/DC Testing

The number of BB tests The number of MC/DC tests

The work (cost time) to write BB tests The work (cost time) to write MC/DC tests

The number of faults found by BB The number of faults found by MC/DC

Branch coverage of tested program Branch coverage of tested program

Code coverage of tested program Code coverage of tested program

 Extra number of MC/DC tests to find faults

which BB testing didn’t find

Three comparison criteria were used: Testing Cost, Faults Found and Program

Coverage. Testing Cost (the number of tests and the time taken to write these tests)

aims to find out whether MC/DC testing needed more tests and cost more time in

writing the tests than Black-Box testing or not; Faults Found aims to find out whether

MC/DC testing found extra faults that Black-Box testing didn’t find; Program

Coverage (Branch Coverage and Code Coverage) aims to find out whether MC/DC

testing improved the coverage or not in testing the COMWS.

The comparison on these three criteria between Black-Box testing and MC/DC

testing gives enough data in evaluating whether MC/DC is effective or not for testing

the COMWS, so it makes a good preparation for final evaluation and conclusion.

5.3 Test Implementation

An example of MC/DC testing on the method Login() in the class

Provider_Interface is shown below to indicate how this test implementation was

carried out (the implementation of Black-Box testing on the method Login() is

shown in Appendix A).

Login() is a fundamental method in COMWS that check whether user’s input

(email address and password) is correct to login the system. Its specification and

 46

source code is shown in Figure 5.10 and 5.11, respectively.

/*Specfication of Login():

 Function:

 Login the system

 Program Inputs:

 Email:

 Originally we should consider 4 situations:

 1. length error email string (null, "" and too long string)

 2. wrong format email string (including symbols such as "'", ";" and so on)

 3. correct format but not existing email string

 4. correct format and existing email string

 But for situation 1:

 it will be checked in the front-end js file

 For situation 2:

 it will be checked by using the regular expression:

 "^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\\.[a-zA-Z0-9-.]+$" in the front-end js

file

 so in this case, we only consider 3 and 4

 Password:

 Originally we should consider 4 situations:

 1. length error password string(null, "" and too long string)

 2. wrong format(Malicious) password string(including symbols such as ",",

";" to do the Database Injection)

 3. correct format but not 'correct' password string

 4. correct format and 'correct' password string

 But for sutuation 1:

 it will be checked in the front-end js file, so in this case, we only consider

2,3 and 4

 Program Outputs:

 return value:

 "{'result': 0}" - wrong email or password

 "{'result': 1, 'id': .., 'username': ..}" - correct email and password

 (first .. means the id of the user, second .. means the user's name)

*/

public static String Login(String Email, String Password)

{

Figure 5.10 Specification of Login()

 47

 String query = "SELECT * FROM provider WHERE Email = '"+Email+"'";

 ArrayList<Provider> plist = Provider.Search_Query(query);

 String jsondata = null;

 if(plist == null || plist.size() == 0){ // no such account

 jsondata = "{'result': 0}";

 }else{

 if(!Encode.authenticatePassword(plist.get(0).GetPassword(),

Password)){ //wrong password

 jsondata = "{'result': 0}";

 }else{ //correct email and password

 jsondata = "{'result': 1, 'id': " + plist.get(0).GetID() + ",

'username': '"+plist.get(0).GetUserName() +"'}";

 }

 }

 return jsondata;

}

5.3.1 Black-Box Testing on Login()

The detailed implementation of Black-Box testing on the method Login() is shown

in Appendix A.

5.3.2 MC/DC Testing on Login()

1. Boolean Expression Transformation

Based on the definition of ‘equivalent complex Boolean expression’ mentioned in

section 2.3, the original Boolean expression shown in Figure 5.12 can be transformed

into the complex Boolean expression shown in Figure 5.13.

if(plist == null || plist.size() == 0){

//no such account

}else{

if(!Encode.authenticatePassword(

plist.get(0).GetPassword(),Password)){

//wrong password

}else{ //correct email and password }

}

Figure 5.12 original Boolean expression code in Login()

Figure 5.11 Source Code of Login()

 48

2. Test Cases Analysis and Tests Generation

Based on the MC/DC analysis template and equivalence complex Boolean expression

for Login(), the detailed analysis process is shown in Figure 5.14. Besides the 3

same tests to Black-Box testing, one new test (T005) was generated to handle

database error.

// Analysis:

//

// Conditions:

// Line 37: plist == null

// Line 37: plist.size() == 0

// Line 43: (!Encode.authenticatePassword(plist.get(0).GetPassword(),

// Password))

//

// Based on the if-else relations, we can obtain a complex decision:

// !(plist == null || plist.size() == 0) &&

// Encode.authenticatePassword(plist.get(0).GetPassword(), Password)

// it equals to:

// plist != null && plist.size() != 0 &&

// Encode.authenticatePassword(plist.get(0).GetPassword(), Password)

//

// plist != null -> A

// plist.size() != 0 -> B

// Encode.authenticatePassword(plist.get(0).GetPassword(), Password) -> C

//

// Test Cases:

// CASE A B C Test

// ===== ======================= =====

// MDCC1 T T T T002

// MDCC2 T T F T004

// MDCC3 F T T* T005

// MDCC4 T F T* T001

//

// Note:

// the * under C means don't care items

//

if(!(plist == null || plist.size() == 0) &&

Encode.authenticatePassword(

plist.get(0).GetPassword(),Password)){

 //focus on correct email and password

}else{//other situations}

Figure 5.13 equivalent complex Boolean expression

 49

// [Test Data]

// Test Cases Inputs Expected Outputs

// ID Covered Email Password return value

// T001 MDCC4 linanpp01@gmail.com 12345678 "{'result': 0}"

// T002 MDCC1 linanpp09@gmail.com 123456

"{'result': 1, 'id': 1, 'username': 'Li Nan'}"

// T004 MDCC2 linanpp09@gmail.com 1234567 "{'result': 0}"

//

// For MDCC3, in order to make plist == null equals to true, I changed the correct

// database DBPool into ErrorDBPool. By doing this, we can test whether plist

// == null is true or not when using wrong database operation or information

//

// T005 MDCC3 linanpp09@gmail.com 123456 "{'result': 0}"

// (Using error database)

3. Test Realization

Based on the code template of MC/DC test method and the MC/DC test data for

Login() generated in step 2, the detailed code for each MC/DC test of Login()

method can be realized. Because the tests for test case MCDC1, MCDC2 and MCDC4

already exist in the Black-Box testing phase (T001, T002 and T004, see Appendix A),

so there is no need to write these tests again. The test code (T005) for test case

MCDC3 is shown in Figure 5.15. The detailed technique used in realizing this test is

introduced in section 5.4.2.

@MyTest

public static boolean testLogin_MDCC_T005() {

 DBPool.closePool();

 ErrorDBPool.setupPool();

 DBSelect.select = 1;

 String result = Provider_Interface.Login("linanpp09@gmail.com", "123456");

 DBSelect.select = 0;

 ErrorDBPool.closePool();

 DBPool.setupPool();

 if(result.equals("{'result': 0}"))

 return true;

 else{

 reason=new String("Expected {'result': 0}, actual result :"+result);

 return false;}

}

4. Tests Execution

Figure 5.14 MC/DC analysis and test generation for Login()

Figure 5.15 new test to handle the database error

 50

Finally, just use my test runner to run these MC/DC tests (the same code to the tests

execution phase of Black-Box testing). As the same to Black-Box testing, the console

gives the execution result and the Eclemma gives the coverage result of this method,

just shown in figure 5.16, 5.17 and 5.18.

Figure 5.16 MC/DC testing result on Login()

Figure 5.17 MC/DC testing code coverage on Login()

Figure 5.18 MC/DC testing branch coverage on Login()

Figure 5.16 indicates that all 4 MC/DC tests passed. The red exception hint means

MC/DC actually finds out the database error. Figure 5.17 and 5.18 indicate its

coverage result: 100% code coverage and 100% branch coverage, which means

MC/DC can improve the branch coverage of Login() when comparing with

Black-Box testing. These two points together with other data (for example: the

number of MC/DC tests is 4 and extra tests number is 1) can be collected to prepare

 51

for the final evaluation on Login() method.

The above testing on Login() is an example to show how to implement MC/DC

testing on a single COMWS method. By using the same test procedure on other

COMWS methods, useful result data can be collected to prepare for the final

evaluation stage.

5.4 Test Problems

During the Black-Box testing and MC/DC testing on COMWS, there were two difficult

points that need to be overcome:

(1) Because Servlet classes are used to communicate with mobile application, it is

not easy to call these Servlet methods directly in Java application. So the way to

test the Servlet side is the first difficult point.

(2) It is difficult to execute database error processing code if the server runs under

correct database with correct commends. So testing these codes is the second

difficult point.

This section focuses on how to use different techniques to solve these two problems.

5.4.1 Servlet Testing

Servlet in COMWS is acted as a bridge to connect between mobile application and

back-end data processing functions. It receives the request from mobile application

and returns back the result to complete the required task. But unfortunately, it is not

easy to test Servlet directly in the Java application, which is due to two reasons.

(1) Servlet is not a simple class that its methods can be called directly in the Java

application. It looks like a service that needs to be run in the Servlet container.

(2) Servlet can return back result only when it receives some requests from mobile

application, but there is no mobile side to send different requests, that ’s the

main reason why it is difficult to be tested.

Technique Solution:

Two steps were proposed to overcome the difficult listed above.

 Using Tomcat to run Servlet

Tomcat is a Servlet container that can make Servlet works. So just put the COMP

under the ‘webapps’ folder of the Tomcat Server and start Tomcat Server to run

it. By doing this, these COMWS Servlet classes are activated and are available to

response different requests at any time. This technique provides the

fundamental requirement in testing Servlet of COMWS.

 Write ‘Client’ class (acted as a mobile application) to send request

Because there is no mobile side application to send different requests to tested

 52

Servlet, so writing ‘Client’ class to simulate mobile side’s role is really necessary.

The source code of ‘Client’ class is shown in Figure 5.19.

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

import java.io.PrintWriter;

public class Client {

 public static void sendGet(String url, String parameter){

 //no need to write}

 public static String sendPost(String url, String parameter){

 String result = ""; //store the servlet return result

 BufferedReader in = null;

 PrintWriter out = null;

 try{

 java.net.URL connURL = new java.net.URL(url); //connect url

 java.net.HttpURLConnection httpConn =

 (java.net.HttpURLConnection)connURL.openConnection();

 // set attribute

 httpConn.setRequestProperty("Accept", "*/*");

 httpConn.setRequestProperty("Connection", "Keep-Alive");

 httpConn.setRequestProperty("User-Agent", "Mozilla/4.0

(compatible; MSIE 8.0; Windows NT 6.1)");

 // Set post method

 httpConn.setDoInput(true);

 httpConn.setDoOutput(true);

 out = new PrintWriter(httpConn.getOutputStream());

 out.write(parameter); //send request parameter

 out.flush();

 //get the return back stream from servlet

in = new BufferedReader(new

 InputStreamReader(httpConn.getInputStream(), "utf-8"));

 String line;

 //get the return back result

 while((line = in.readLine())!=null){

 result += line;

 }

 }catch(Exception e){

 e.printStackTrace();

 }finally {

 53

 try{

 if(out!=null){

 out.close();

 }

 if(in != null){

 in.close();

 }

 }catch(IOException ex){

 ex.printStackTrace();

 }

 }

 return result; //return the return back result from servlet

 }

}

As shown in Figure 5.19, the key method is sendPost() (because all the Servlets in

COMWS handle post request, so there is no need to realize sendGet() method),

which receives Servlet url and post parameter as parameters to simulate the process

of sending post request to the tested Servlet. The return value of this method is the

feedback from Servlet, which can be used to check whether the tested Servlet works

properly or not.

By using such technique, testing Servlets of COMWS in Java application becomes

available. For example, the LoginLet test template is shown in Figure 5.20. Just call

the sendPost() method with ‘link of LoginLet’ and ‘login tested data (post

parameter)’ and then compare the ‘result’ with the expected value to check whether

LoginLet works properly or not.

@MyTest

public static boolean testLoginServlet_Txx(){

 String parameter = "{'email':'tested email', 'password':'tested password'}";

String result =

Client.sendPost(

"http://localhost:8080/InternshipProject/Servlet/LoginLet",parameter);

if(result.equals("expected value"))

 return true;

 else{

 reason = new String("Expected value, actual result:" + result);

 return false;

 }

}

Figure 5.19 source code of Client class

Figure 5.20 LoginLet test template

 54

5.4.2 Handle Database Error

Some methods in COMWS has if-condition code to handle database error, for

example, as shown in Figure 5.21, for the method ModifyProfile_Initial(),

the piece of code with red color is used to handle ‘cannot get user name’ database

error.

public static String ModifyProfile_Initial(int UserID)

{

 String jsondata = null;

 if(UserID <=0)

 {

 jsondata = "{'err':'ID_error'}";

 }else{

Provider p = new Provider(UserID);

 p.Search_ID();

 if(p.GetUserName() == null)

 {

 jsondata = "{'err':'DB_error'}";

 }

 else if(p.GetUserName().equals(""))

 {

 jsondata = "{'err':'ID_error'}";

 }

 else

 {

 jsondata = "{'username':'"+p.GetUserName()+"',

'phonenumber':'"+p.GetPhoneNumber()+"',

'password':'"+p.GetPassword()+"',

'email':'"+p.GetEmail()+"'}";

 }

 }

 return jsondata;

}

When using MC/DC to test this method, the analysis process is shown in Figure 5.22.

The test case MDCC4 is related to the database error occur situation

(p.GetUserName() actually equals to null), but unfortunately, it is difficult to

write test for this test case by only consider the input parameter UserID because

there is actually no wrong inside the database operation. So the result of such

condition is the test for MDCC4 is hardly to be written and this piece of code is

Figure 5.21 red color code to handle database error

 55

unreachable.

// Analysis:

// Conditions:

// Line 76: UserID <= 0

// Line 85: p.GetUserName() == null

// Line 89: p.GetUserName().equals("")

//

// Based on the if-else relations, we can obtain a complex decision:

// !(UserID <= 0) && !(p.GetUserName() == null) && !(p.GetUserName().equals(""))

//

// !(UserID <= 0) -> A

// !(p.GetUserName() == null) -> B

// !(p.GetUserName().equals("")) -> C

//

// Test Cases:

// CASE A B C Test

// ===== ======================= =====

// MDCC1 T T T T002

// MDCC2 T T F T003

// MDCC3 F T T T001

// MDCC4 T F T* difficult!

//

// Note:

// the * under C means don't care items

Technique Solution:

Two steps were proposed to overcome this writing test difficult.

 Create Error Database

In order to write tests for those database error-related test cases, using error

database instead of original database to make error manually is a good way to

satisfy it. So the first step is creating error database, which is shown in Figure

5.23.

Figure 5.22 MC/DC analysis on ModifyProfile_Initial()

 56

Figure 5.23 Error Database

The error database dri_at_an_foras_feasa_test is almost the same as original

database except some table attributes are changed. For example, in order to

realize test for MDCC4 mentioned above, the attribute ‘Username’ in the original

database is changed to ‘User_name’ in the error database so that an error would

be caught during the execution of ModifyProfile_Initial(), which

makes ‘p.GetUserName()’ equals to null and satisfy MDCC4 requirement.

 Using parameter to select which database is under used

The second step is writing code to control the selection of database. For example,

when testing ModifyProfile_Initial() method, the tests for MDCC1,

MDCC2 and MDCC3 should be executed under the correct database, while that

for MDCC4 should be executed under the error database. In order to realize such

selection, a static parameter called ‘select’ is used to perform the exchange

between correct database and error database. The parameter code and one

example are shown in Figure 5.24 and 5.25.

public class DBSelect {

public static int select = 0; // correct database

}

public void Search_ID(){

if(DBSelect.select == 0){

DBPool db = null;

try{

db = new DBPool();

String query = "SELECT * FROM provider WHERE ID = '"+ID+"'";

ResultSet rs = db.execute_Result(query);

if(rs.next()){

this.SetID(rs.getInt("ID"));

Figure 5.24 ‘select’ parameter

 57

this.SetUserName(rs.getString("UserName"));

this.SetEmail(rs.getString("Email"));

this.SetPassword(rs.getString("Password"));

this.SetPhoneNumber(rs.getString("PhoneNumber"));

}

}catch(Exception e){

UserName = null;

Email = null;

Password = null;

PhoneNumber = null;

e.printStackTrace();

}finally {

try{

if(db != null)

db.close();

}catch(Exception e){

e.printStackTrace();

}

}

}

else // which is used for test

{

ErrorDBPool db = null;

try

{

db = new ErrorDBPool();

String query = "SELECT * FROM provider WHERE ID = '"+ID+"'";

ResultSet rs = db.execute_Result(query);

if(rs.next()){

this.SetID(rs.getInt("ID"));

this.SetUserName(rs.getString("UserName"));

this.SetEmail(rs.getString("Email"));

this.SetPassword(rs.getString("Password"));

this.SetPhoneNumber(rs.getString("PhoneNumber"));

}

}catch(Exception e){

UserName = null;

Email = null;

Password = null;

PhoneNumber = null;

e.printStackTrace();

}finally {

try{

if(db != null)

 58

db.close();

}catch(Exception e){

 e.printStackTrace();

}

}

}

}

As shown in Figure 5.24, the rule for parameter ‘select’ is:

1. Equals to 0 -> select correct database

2. Equals to 1 -> select error database

Figure 5.25 indicates an example to show how this parameter is used. The

method search_ID() is called inside ModifyProfile_Initial(), it

directly decides whether the database error code will be executed or not. Based

on the MC/DC analysis shown in Figure 5.22, the tests for MDCC1, MDCC2 and

MDCC3 should be executed under the correct database, so the parameter ‘select’

should be equal to 0 so that method search_ID() will execute correct

database (DBPool) -related code. On the contraries, the test for MDCC4 should

be executed under the error database, so in such situation, the parameter ‘select’

should be equal to 1 so that method search_ID() will execute error database

(ErrorDBPool) -related code.

By using parameter ‘select’ together with its related methods, it is available to

write tests for those database error-related test cases. For example, the source

code for ModifyProfile_Initial() MDCC4 is shown in Figure 5.26.

@MyTest

public static boolean testModifyInitial_MDCC4_T010() {

DBPool.closePool();

ErrorDBPool.setupPool();

DBSelect.select = 1;

String result = Provider_Interface.ModifyProfile_Initial(2);

DBSelect.select = 0;

ErrorDBPool.closePool();

DBPool.setupPool();

if(result.equals("{'err':'DB_error'}"))

return true;

else

{

reason=new String("Expected {'err':'DB_error'}, actual

result :"+result);

return false;

Figure 5.25 an example of using parameter ‘select’

 59

}

}

The procedure of this test code is:

(1) Close correct database pool (DBPool.closePool()) and start error

database pool (ErrorDBPool.setupPool())

(2) Using the ‘select’ parameter to select the error database

(DBSelect.select = 1)

(3) Run the tested method (ModifyProfile_Initial) and obtain return

result

(4) Recover to the original correct database set (DBSelect.select = 0;

ErrorDBPool.closePool() and DBPool.setupPool())

(5) Compare the return result with the expected return value to check whether

the tested method (ModifyProfile_Initial()) executed properly or

not.

(6) Finish the test.

5.4.3 Summary

The technique listed in section 5.4.1 and 5.4.2 provides a good environment for

MC/DC to test COMWS. The ‘Servlet Testing Technique’ in section 5.4.1 makes it easy

for MC/DC to test Servlet classes and the ‘Handle Database Error Technique’ in

section 5.4.2 makes it possible for MC/DC to cover those database-error codes and

improve the precision of testing results.

6. Test Results

This section provides the test results data collected from the test implementation

stage. It shows the Black-Box testing and MC/DC testing data for each tested class

and servlet and compares this data in three areas: Testing Cost, Faults Found and

Program Coverage.

The tested classes and servlets are:

(1) Provider_Interface class: this class is used to provide user-related

operation services (such as Login, Register, Modify Profile and so on) to the

front-end website and mobile side users.

(2) SymbolTransfer class: this class is used to provide normal string-json string

symbol transfer service to the back-end metadata storage method.

(3) DeleteFile class: this class is used to provide delete images service to the

back-end web resource storage method.

(4) Servlets, includes:

- LoginLet: it aims to response the ‘login’ request from mobile side and

Figure 5.26 source code of ModifyProfile_Initial()

 60

returns login result

- RegisterLet: it aims to response the ‘register a new account’ request from

mobile side and returns register result

- ViewMetaDataListLet: it aims to response the ‘view current user’s objects’

request from mobile side and returns information of those cultural objects

- ViewSingleObjectLet: it aims to response the ‘view info of a single cultural

object’ request from mobile side and returns information of the selected

single cultural object

6.1 Class ‘Provider_Interface’

Table 6.1 test results for class ‘Provider_Interface’

Criteria

Methods

Login() ModifyProfile_Initial() Register() ModifyProfile()

The

Number of

Tests

BB 4 9 3 12

MC/DC 4 4 5 6

Time Costs

(Minutes)

BB 63 60 57 86

MC/DC 20 22 34 56

Faults

Found

BB 0 0 0 1

MC/DC 0 0 2 1(not the same

to BB)

Branch

Coverage

BB 83.3% 83.3% 75% 91.67%

MC/DC 100% 100% 100% 100%

Code

Coverage

BB 100% 94.6% 96.1% 96.0%

MC/DC 100% 100% 100% 100%

Extra Test for

MC/DC

1 1 3 2

Table 6.1 shows the extra cost and coverage for MC/DC, along with the extra faults

found for the class Provider_Interface. Those results can be summarized into

three factors: Testing Cost, Faults Found and Program Coverage. These are now

considered in more detail.

 61

 Testing Cost

Figure 6.1 testing cost comparison on Provider_Interface

Figure 6.1 indicates the testing cost factor (the number of tests and time costs)

results data for the class Provider_Interface. These results show two points:

1. For all 4 methods, developing Black-Box tests took significantly longer

(almost twice longer time) than MC/DC tests.

2. For most Provider_Interface methods, the number of Black-Box

tests was greater than (ModifyProfile_Initial() and

ModifyProfile()) or equal to(Login()) that of MC/DC tests, but it is

not the case for method Register(). This special method needed two

more tests to complete MC/DC testing when compared with Black-Box

testing.

 Faults Found

Figure 6.2 faults found vomparison on Provider_Interface

0
20
40
60
80
100

0
2
4
6
8

10
12
14

Ti
m

e
 C

o
st

s(
TC

) m
in

u
te

s

N
u

m
b

er
 o

f
Te

st
s

(N
T}

Methods

Testing Cost Comparison on
Provider_Interface

BB(NT)

MC/DC(NT)

BB(TC)

MC/DC(TC)

0
1
2
3

Th
e

N
u

m
b

er
 o

f
B

u
gs

Methods

Faults Found Comparison on
Provider_Interface

BB

MC/DC

 62

Figure 6.2 indicates the faults found factor results data for the class

Provider_Interface. These results indicate two points:

1. For method Login() and ModifyProfile_Initial(), both the

Black-Box testing and MC/DC testing did not find any errors.

2. For method Register() and ModifyProfile(),MC/DC testing

found extra errors that Black-Box testing didn’t find. Register() passed

Black-Box testing while two errors were found by MC/DC testing. Although

Black-Box testing found one error in ModifyProfile(), another one was

still missed and detected by MC/DC testing.

 Program Coverage

Figure 6.3 program coverage comparison on Provider_Interface

Figure 6.3 indicates the Program Coverage factor (code coverage and branch

coverage) results data for the class Provider_Interface. These results indicate

2 points:

1. MC/DC testing reached 100% code coverage for all 4 methods. Although

Black-Box testing reached 100% code coverage for method Login(), the

rest three methods were not the case.

2. For all 4 methods, MC/DC testing also reached 100% branch coverage

while only average 83.3% reached by Black-Box testing.

91%
92%
93%
94%
95%
96%
97%
98%
99%
100%
101%

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%
120.00%

C
o

d
e

C
o

ve
ra

ge
(C

C
)

B
ra

n
ch

 C
o

ve
ra

ge
(B

C
)

Methods

Program Coverage Comparison on
Provider_Interface

BB (BC)

MC/DC (BC)

BB(CC)

MC/DC(CC)

 63

6.2 Class ‘SymbolTransfer’

Methods in class SymbolTtansfer:

(1) isLetter()

(2) isDigit()

(3) isHexLetter()

(4) isLetterOrDigit()

(5) isHexDigit()

(6) StringToJson()

(7) JsonToString()

Table 6.2 test results for class ‘SymbolTransfer’

Compare Criteria

Methods

(1) (2) (3) (4) (5) (6) (7)

The

Number

of Tests

BB 15 9 15 21 21 9 22

MC/DC 5 3 5 3 3 7

Time

Cost

(Minutes)

BB 80 45 90 120 120 96 125

MC/DC 35 15 25 15 14 47

Faults

Found

BB 0 0 0 0 0 0 2

MC/DC 0 0 0 0 0 1

Branch

Coverage

BB 100% 100% 100% 100% 100% 100% 75%

MC/DC 100% 100% 100% 100% 100% 75%

Code

Coverage

BB 100% 100% 100% 100% 100% 100% 94.8%

MC/DC 100% 100% 100% 100% 100% 96.9%

Extra Test for

MC/DC

0 0 0 0 0 1

Table 6.2 shows the extra cost and coverage for MC/DC, along with the extra faults

found for the class SymbolTtansfer. Those results can be summarized into three

factors: Testing Cost, Faults Found and Program Coverage. These are now considered

in more detail.

 64

 Testing Cost

Figure 6.4 Testing Cost Comparison on SymbolTransfer

Figure 6.4 indicates the testing cost factor (the number of tests and time costs)

results data for the class SymbolTransfer. These results show three points:

1. Method StringToJson() has no MC/DC tests.

2. for the other 6 methods:

(1) Developing Black-Box tests took significantly longer than MC/DC tests.

(2) The number of Black-Box tests was greater than MC/DC tests.

3. isHexDigit() had the maximum gap both in number of tests and

time cost while isDigit() had the minimum gap both in these two areas.

 Faults Found

Figure 6.5 Faults Found Comparison on SymbolTransfer

0

20

40

60

80

100

120

140

0

5

10

15

20

25

Ti
m

e
 C

o
st

s(
TC

) m
in

u
te

s

N
u

m
b

er
 o

f
Te

st
s

(N
T}

Methods

Testing Cost Comparison on SymbolTransfer

BB(NT)

MC/DC(NT)

BB(TC)

MC/DC(TC)

0
1
2
3

Th
e

N
u

m
b

er
 o

f
B

u
gs

Methods

Faults Found Comparison on
SymbolTransfer

BB

MC/DC

 65

Figure 6.5 indicates the faults found factor results data for the class

SymbolTransfer. These results indicate two points:

1. For all methods except JsonToString(), both the Black-Box testing

and MC/DC testing did not find any errors.

2. For method JsonToString(),MC/DC testing found extra errors that

Black-Box testing didn’t find. Although two errors were detected by

Black-Box testing, one more was still missed and found by MC/DC testing.

 Program Coverage

Figure 6.6 Program Coverage Comparison on SymbolTransfer

Figure 6.6 indicates the Program Coverage factor (code coverage and branch

coverage) results data for the class SymbolTransfer. These results indicate three

points:

1. StringToJson() reached 100% branch coverage and code coverage

for Black-Box testing but had no coverage data for MC/DC testing.

2. For the other methods except JsonToString(), both Black-Box

testing and MC/DC testing reached 100% branch coverage and code

coverage.

3. JsonToString() had the same branch coverage (75%) for both

Black-Box testing and MC/DC testing. Meanwhile, MC/DC testing (96.9%)

reached a little bit higher code coverage than Black-Box testing (94.8%).

92%

93%

94%

95%

96%

97%

98%

99%

100%

101%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

C
o

d
e

 C
o

ve
ra

ge
(C

C
)

B
ra

n
ch

 C
o

ve
ra

ge
(B

C
)

Methods

Program Coverage Comparison on
SymbolTransfer

BB (BC)

MC/DC (BC)

BB(CC)

MC/DC(CC)

 66

6.3 Class ‘DeleteFile’

Table 6.3 test results for class ‘DeleteFile()’

Compare Criteria

Methods

delFolder() delAllFile()

The Number of Tests BB 3 3

MC/DC 6

Time Costs (Minutes) BB 10 10

MC/DC 45

Faults Found BB 0 0

MC/DC 2

Branch Coverage BB 100% 71.4%

MC/DC 100%

Code Coverage BB 100% 60.7%

MC/DC 100%

Extra Test for MC/DC 2

Table 6.3 shows the extra cost and coverage for MC/DC, along with the extra faults

found for the class DeleteFile. Those results can be summarized into three

factors: Testing Cost, Faults Found and Program Coverage. These are now considered

in more detail.

 Testing Cost

Figure 6.7 Testing Cost Comparison on DeleteFile

0

5

10

15

20

25

30

35

40

45

50

0

1

2

3

4

5

6

7

delFolder() delAllFile()

Ti
m

e
C

o
st

s(
TC

) m
in

u
te

s

N
u

m
b

er
 o

f
Te

st
s

(N
T}

Methods

Testing Cost Comparison on DeleteFile

BB(NT)

MC/DC(NT)

BB(TC)

MC/DC(TC)

 67

Figure 6.7 indicates the testing cost factor (the number of tests and time costs)

results data for the class DeleteFile. These results show two points:

1. Method delFolder() has no MC/DC tests.

2. delAllFile() had more number of MC/DC tests than that of

Black-Box tests and at the same time, needed twice time to develop MC/DC

tests than Black-Box tests.

 Faults Found

Figure 6.8 Faults Found Comparison on DeleteFile

Figure 6.8 indicates the faults found field results data for the class DeleteFile.

These results indicate two points:

1. For method delFolder(), both the Black-Box testing and MC/DC

testing did not find any errors.

2. For method delAllFile(), Black-Box testing found no error while

MC/DC found two.

 Program Coverage

Figure 6.9 Program Coverage Comparison on DeleteFile

0

1

2

3

delFolder() delAllFile()

Th
e

N
u

m
b

er
 o

f
B

u
gs

Methods

Faults Found Comparison on DeleteFile

BB

MC/DC

0%

50%

100%

150%

0.00%

50.00%

100.00%

150.00%

delFolder() delAllFile() C
o

d
e

C
o

ve
ra

ge
(C

C
)

B
ra

n
ch

 C
o

ve
ra

ge
(B

C
)

Methods

Program Coverage Comparison on
DeleteFile

BB (BC)

MC/DC (BC)

BB(CC)

MC/DC(CC)

 68

Figure 6.9 indicates the Program Coverage factor (code coverage and branch

coverage) results data for the class DeleteFile. These results indicate two points:

1. delFolder() reached 100% branch coverage and code coverage for

Black-Box testing but had no coverage data for MC/DC testing.

2. For method delAllFile(), MC/DC testing reached 100% branch coverage

and code coverage while Black-Box testing just reached 71.4% and 60.7%,

respectively.

6.4 Servlet Classes

Table 6.4 test results for servlet classes

Compare

Criteria

Servlet

Login

Let

Registe

rLet

ViewMetaDat

aListLet

ViewSingleOb

jectLet

SingleImageUpl

oadLet

The

Numb

er of

Tests

BB 5 6 5 5 9

MC/

DC

3 3 3 3 8

Time

Costs

(Minu

tes)

BB 40 48 40 40 63

MC/

DC

25 26 25 25 68

Faults

Found

BB 0 0 0 0 0

MC/

DC

0 0 0 0 1

Extra Test for

MC/DC

0 0 0 0 5

Table 6.4 shows the extra cost and coverage for MC/DC, along with the extra faults

found for these Servlet classes. Those results can be summarized into three factors:

Testing Cost, Faults Found and Program Coverage. These are now considered in more

detail.

 69

 Testing Cost

Figure 6.10 Testing Cost Comparison on Servlets

Figure 6.10 indicates the testing cost factor (the number of tests and time costs)

results data for these Servlet classes. These results indicate two points:

1. For all Servlets, Black-Box testing needed more tests than MC/DC testing..

2. For almost all Servlets, developing Black-Box tests took significantly

longer (almost twice longer time) than MC/DC tests. But it is not the case for

SingleImageUploadLet, which needed a little bit longer time to

develop MC/DC tests than Black-Box test.

 Faults Found

Figure 6.11 Faults Found Comparison on Servlets

0
10
20
30
40
50
60
70
80

0

2

4

6

8

10

Ti
m

e
 C

o
st

s(
TC

) m
in

u
te

s

N
u

m
b

er
 o

f
Te

st
s

(N
T}

Servlets

Testing Cost Comparison on Servlets

BB(NT)

MC/DC(NT)

BB(TC)

MC/DC(TC)

0
0.2
0.4
0.6
0.8

1
1.2

Th
e

N
u

m
b

er
 o

f
B

u
gs

Servlets

Faults Found Comparison on Servlets

BB

MC/DC

 70

Figure 6.11 indicates the faults found factor results data for these Servlet classes.

These results show two points:

1. For all Servlets except SingleImageUploadLet, both Black-Box

testing and MC/DC testing did not find any errors.

2. For Servlet SingleImageUploadLet, Black-Box testing found no

error while MC/DC found one.

 Program Coverage

For Servlet classes, it is not easy to evaluate their code coverage and branch coverage

by using Eclemma. The reason is shown in Section 7.3.3.

6.5 Results Summary

The results for each tested class method and Servlet listed above can be summarized

into three points.

1. For almost all the tested methods and Servlets, developing Black-Box tests

took significantly longer than MC/DC tests and at the same time, fewer

MC/DC tests were needed than Black-Box tests.

2. MC/DC testing discovered some insidious but serious faults that Black-Box

testing didn’t find.

3. MC/DC testing improved code coverage and branch coverage of tested

program.

In conclusion, MC/DC testing had a low testing cost while it found extra faults as well

as providing improved code coverage and branch coverage of the tested program.

Such results show that MC/DC was an additional effective testing technique to

cooperate with Black-Box testing in testing COMWS.

7. Evaluation

This section evaluates the effectiveness of MC/DC in testing COMWS. The evaluation

focuses on three factors: Testing Cost (Number of Tests and Time Costs), Faults Found

and Program Coverage (Code Coverage and Branch Coverage). In each evaluation

factor, it first discusses the reason why MC/DC was effective and could be acted as an

additional testing technique to cooperate with Black-Box testing in testing COMWS

and then, shows some exceptions which were different from these normal cases

during testing.

 71

7.1 Testing Cost

7.1.1 Number of Tests

Figure 7.1 summarizes the number of Black-Box tests and MC/DC tests for each

tested method or Servlet.

Figure 7.1 the number of tests for each tested method or servlet

As Figure 7.1 shows, for tested methods and Servlets, MC/DC required 57.8% of the

number of Black-Box tests in average. There are three reasons:

(1) EP, BVA and CI were used to create Black-Box tests, each technique contributed

some tests. Among these three techniques, typically BVA developed the most

number of tests and was the immediate cause to enlarge the total number of

Black-Box tests. There are two reasons:

- BVA selected the top and bottom value of each parameter’s each partition

as test case, so its tests were twice the number of EP tests.

- CI focused on discovering additional input combination tests that EP and

BVA didn’t cover, so the number of CI tests was unlikely to be very large.

(2) For a complex Boolean expression with n decisions, the number of MC/DC test

cases (MC/DC tests) is n + 1. COMWS has a lot of complex Boolean expressions

with 1, 2 or 3 decisions, and just few expressions have more than 5 decisions,

which limit the number of MC/DC tests for the tested methods.

(3) MC/DC is an efficient testing technique. It only focuses on those complex

Boolean expressions in the tested programs. Each MC/DC test case is related to

0

5

10

15

20

25

Lo
gi

n
()

M
o

d
if

yP
ro

fi
le

_
I…

R
eg

is
te

r(
)

M
o

d
if

yP
ro

fi
le

()

is
Le

tt
er

()

is
D

ig
it

()

is
H

ex
Le

tt
er

()

is
Le

tt
er

O
rD

ig
it

()

is
H

ex
D

ig
it

()

St
ri

n
gT

o
Js

o
n

()

Js
o

n
To

St
ri

n
g(

)

d
el

Fo
ld

er
()

d
e

lA
llf

ile
()

Lo
gi

n
Le

t

R
eg

is
te

rL
et

V
ie

w
M

et
aD

at
a

…

V
ie

w
Si

n
gl

eO
b

je
…

Si
n

gl
eI

m
ag

eU
p

l…

Th
e

n
u

m
e

b
r

o
f

Te
st

s

Tested Methods or Servlets

The Number of Black-Box and MC/DC tests
for each tested method or servlet

BB

MC/DC

 72

one specific situation of tested complex Boolean expression so that no duplicate

tests are developed during MC/DC testing analysis. But this is not the case for

Black-Box testing. For each partition of each parameter, EP selects its

intermediate value as test while BVA selects its top and bottom value, so

normally the test sets for these two techniques are different. But for String

input parameter, because of its special equivalence partition, the test sets for EP

and BVA may have intersection, which causes the situation of duplicate tests and

makes Black-Box testing not efficient in testing software. The detailed analysis

for this situation is shown in section 7.1.3.

However, two exceptions in this evaluation factor are shown in the Figure 7.1.

(1) MC/DC was not applicable for testing Methods StringToJson() and

delFolder(). Take the method delFolder() for example.

public static void delFolder(String folderPath){

 try{

delAllFile(folderPath);

String filePath = folderPath;

filePath = filePath.toString();

File myFilePath = new File(filePath);

myFilePath.delete();

}catch(Exception e){

 e.printStackTrace();

}

 }

Figure 7.2 shows the source code of delFolder(), which has no complex

Boolean expressions. Because it contains no decision, MC/DC was not applicable

for testing such method.

(2) Methods Register() and delAllfile() had an average 50% more

MC/DC tests than Black-Box tests. Normally, the number of Black-Box tests is

larger than that of MC/DC tests, but it was not the case for these methods. Take

the method delAllfile() for example. Figure 7.3 shows the source code of

delAllFile().

public static boolean delAllFile(String path) {

 boolean flag = true;

 if(path == null)

 return false;

 File file = new File(path);

 if (!file.exists() || !file.isDirectory())

Figure 7.2 source code of delFolder()

 73

 return false;

 String[] tempList = file.list();

 File temp = null;

 for (int i = 0; i < tempList.length; i++) {

 if (path.endsWith(File.separator)) {

 temp = new File(path + tempList[i]);

 } else {

 temp = new File(path + File.separator + tempList[i]);

 }

 if (temp.isFile()) {

 temp.delete();

 }

 if (temp.isDirectory()) {

 delFolder(path + "/" + tempList[i]);

 }

 }

 return flag;

}

From Black-Box testing view:

This method only has one input parameter path, which means there was no

need to write CI tests (CI needs combination of parameters). At the same time,

this input parameter only has three equivalence partitions (Null; correct folder

path; incorrect folder path), which made this method only had 3 EP tests and 3

BVA tests (the same to EP). So the number of Black-Box tests for this method

was limited.

From MC/DC testing view:

This method actually has three complex Boolean expressions:

1.!file.exists() || !file.isDirectory()

2. path.endsWith(File.separator) && temp.isFile()

3. path.endsWith(File.separator) && temp.isDirectory()

Each Boolean expression had 3 MC/DC test cases, although some test cases

were used to jump to other Boolean expressions, this method still had 6 MC/DC

tests.

In conclusion, for such methods which have a limited number of input

parameters together with limited number of equivalence partitions for each

input parameter, and at the same time, have quite a few complex Boolean

expressions inside their realization, their number of MC/DC tests is larger than

Figure 7.3 source code of delAllFile()

 74

that of Black-Box tests.

7.1.2 Time Cost

Figure 7.4 summarizes the cost time in developing Black-Box and MC/DC tests for

each tested method and Servlet.

Figure 7.4 the time cost in developing BB and MC/DC tests for each tested method or servlet

As Figure 7.4 shows, for tested methods and Servlets, developing MC/DC tests took

an average 64.41% time of developing Black-Box tests. There are two reasons:

(1) Three techniques were used to create Black-Box tests. Developing BVA and CI

tests took up the most time in developing Black-Box tests.

BVA: this technique selected the bottom and the top values of each parameter's

each partition as tests. Due to the large number of BVA test cases, BVA tests

needed a lot of time to be generated.

CI: this technique considered every combination of input parameters, so the

process of drawing truth table to analyze CI test cases and generating CI tests

took a long time.

(2) As shown in 7.1.1, MC/DC is an efficient testing technique. It doesn’t create

duplicate tests and each test is related to one specific situation of tested

complex Boolean expression. But for Black-Box testing, the tests set for EP and

0

20

40

60

80

100

120

140

Lo
gi

n
()

M
o

d
if

yP
ro

fi
le

_
In

it
ia

l(
)

R
eg

is
te

r(
)

M
o

d
if

yP
ro

fi
le

()

is
Le

tt
er

()

is
D

ig
it

()

is
H

ex
Le

tt
er

()

is
Le

tt
er

O
rD

ig
it

()

is
H

ex
D

ig
it

()

St
ri

n
gT

o
Js

o
n

()

Js
o

n
To

St
ri

n
g(

)

d
el

Fo
ld

er
()

d
el

A
llf

ile
()

Lo
gi

n
Le

t

R
e

gi
st

e
rL

e
t

V
ie

w
M

et
aD

at
aL

is
tL

et

V
ie

w
Si

n
gl

eO
b

je
ct

Le
t

Si
n

gl
eI

m
ag

eU
p

lo
ad

Le
t

Ti
m

e
 C

o
st

(M
in

u
te

s)

Tested Methods or Servlets

The Time Cost in developing tests for each
tested method or servlet

BB

MC/DC

 75

BVA may similar, so it is a waste of time to write such duplicate tests, which

makes Black-Box testing not very efficient.

However, two exceptions in this evaluation factor are shown in the Figure 7.4.

(1) MC/DC was not applicable for testing methods StringToJson() and

delFolder(), so the time cost in developing MC/DC tests for these two

methods was 0 minutes.

(2) Method delAllfile() and Servlet SingleImageUploadLet spent an

average 42.57% more time in developing MC/DC tests than Black-Box tests.

Also take the method delAllfile()for example. There are two reasons:

- This method only has one input parameter, so there was no need to write CI

tests. At the same time, because of its special equivalent partitions, the BVA

tests were the same to EP tests. Based on these two points, developing

Black-Box tests didn’t spend too much time.

- But for MC/DC testing, because this method has three complex Boolean

expressions, which made the process of analyzing MC/DC test cases became

long, and at the same time, the test data for these test cases were hard to

be generated (e.g. because of the condition code file.isDirectory(),

MC/DC had to consider two situations: the folder path has no subfolder or

has some subfolders. Such test data was no need to be considered in

Black-Box testing. This special condition input is called ‘Non-Parameter

input’, which is described in section 7.2), so these two points made

developing MC/DC tests took extra time when compared with Black-Box

tests.

7.1.3 Special Exception

By combining the number of tests and the time cost for each tested method or

Servlet together, a special exception on method Login() and Register() was

discovered.

Table 7.1 special exception

Compare Criteria

Methods

Login() Register()

The Number of Tests BB 4 3

MC/DC 4 5

Time Costs (Minutes) BB 63 57

MC/DC 20 34

As shown in Table 7.1, for methods Login() and Register(), when compared

with MC/DC testing, fewer Black-Box tests were developed but much more time

 76

were needed. Such exception is due to the reason of duplicate tests for EP and BVA.

Take the method Login() for example. Based on the specification shown in Figure

5.4, Login() has two input parameters: email (string) and password (string).

When considering the Black-Box testing analysis, because of the special equivalence

partitions for email and password, the tests set for EP and BVA were actually 100%

covered by each other (were the same). So the time for writing BVA tests was

unnecessary.

It is a waste of time to write such duplicate tests, but this will never happen during

MC/DC testing. MC/DC testing makes sure that its test cases are different from each

other (because each MC/DC test case is related to the specific one truth table

situation of the tested complex Boolean expression) and are combined together to

meet MC/DC testing requirements. Such property makes MC/DC testing efficiently in

testing software.

7.2 Faults Found

Figure 7.5 summarizes the number of faults found by Black-Box testing and MC/DC

testing for each tested method and servlet.

Figure 7.5 the number of faults found by Black-Box testing and MC/DC testing for each tested

method or servlets

As Figure 7.5 shows, for 72.2% of the methods and servlets, both Black-Box and

MC/DC testing didn’t find faults. But for the remaining methods and servlets, MC/DC

testing discovered an average of 1.4 extra faults that Black-Box didn’t find.

0

0.5

1

1.5

2

2.5

Lo
gi

n
()

M
o

d
if

yP
ro

fi
le

_
In

it
i…

R
eg

is
te

r(
)

M
o

d
if

yP
ro

fi
le

()

is
Le

tt
er

()

is
D

ig
it

()

is
H

ex
Le

tt
er

()

is
Le

tt
er

O
rD

ig
it

()

is
H

e
xD

ig
it

()

St
ri

n
gT

o
Js

o
n

()

Js
o

n
To

St
ri

n
g(

)

d
el

Fo
ld

er
()

d
el

A
llf

ile
()

Lo
gi

n
Le

t

R
eg

is
te

rL
et

V
ie

w
M

e
ta

D
at

aL
is

t…

V
ie

w
Si

n
gl

eO
b

je
ct

Le
t

Si
n

gl
eI

m
ag

eU
p

lo
a

…

Th
e

n
u

m
e

b
r

o
f

b
u

gs
 f

o
u

n
d

Tested Methods or Servlets

The Number of Faults Found for each
tested method or servlet

BB

MC/DC

 77

The faults found by Black-Box testing were those small and obvious faults (e.g.

miswritten fault, boundary value fault). One example is shown in Figure 7.6.

i = Integer.parseInt(t);

if ((i >= 0) && (i < 65536)) {//i<=65536 -> i<65536

c = (char) i;

curPos = tmpPos;

}

Figure 7.6 indicates a boundary value fault found by Black-Box testing. The value

span of ‘char ’ in JAVA is 0 to 65535. Originally the source code was i<=65536, but it

was wrong because 65536 is not inside the correct range. By creating BVA tests and

doing the Black-Box testing, such fault was found and fixed.

For MC/DC testing, the found faults were those insidious but serious faults that

Black-Box testing did not find. There are two reasons:

(1) Black-Box testing focuses on the specification, and it doesn’t not know the

detailed implementation of each tested method, so it may miss some insidious

faults.

(2) The ‘Non-Parameter Input’. Some tested methods in COMWS are in the format

of such code structure shown in Figure 7.7.

 Method(input parameter1,2,3..) {

 ……

 if(which is not related to parameter value directly){ //non-parameter input

 ……

}

 if(which is related to parameter value){

 ……

 }

 ……

}

Such methods contain code which is related to input parameters’ value directly

(Parameter Input), and at the same time, also include code that is not related to

these parameters’ value directly (Non-Parameter Input). The ‘Parameter Input’

code focuses most on the method’s functionality realization and the

‘Non-Parameter Input’ code pays attention to the execution environment and

Figure 7.6 an error found by Black-Box testing

Figure 7.7 the special ‘Non-Parameter input’ code format

 78

inner exception of the method. When testing such methods, MC/DC testing can

find extra faults in these ‘Non-Parameter Input’ code while Black-Box testing

cannot.

For Black-Box testing on such methods:

Because Black-Box testing doesn’t care about the detailed implementation of

tested method but just focus on the input parameters, so it actually focuses on

these ‘Parameter Input’ code and try to find whether the tested method meets

its specification or not.

For MC/DC testing on such methods:

MC/DC testing aims to check whether each condition in the decision in each

tested method works properly or not. It focuses on the behavior of each

condition and investigates the effect it has on the decision. So MC/DC testing

actually focuses on both the ‘Parameter Input’ code and ‘Non-Parameter Input’

code so that can find insidious faults which exist in ‘Non-Parameter Input’ code.

For example, the code shown in Figure 7.8 is a ‘Non-Parameter Input’ fault that

found by MC/DC testing.

public static boolean delAllFile(String path) {

 boolean flag = true;

 if(path == null)

 return false;

 File file = new File(path);

 if (!file.exists() || !file.isDirectory())

 return false;

 String[] tempList = file.list();

 File temp = null;

 for (int i = 0; i < tempList.length; i++) {

 if (path.endsWith(File.separator)) {

 temp = new File(path + tempList[i]);

 } else {

 temp = new File(path + File.separator + tempList[i]);

 }

 if (temp.isFile()) {

 temp.delete();

 }

 if (temp.isDirectory()) {

 // delAllFile(path + "/" + tempList[i]); //original code

 delFolder(path + "/" + tempList[i]); //new code

 }

 79

 }

 return flag;

 }

Method delAllFile() aims to delete all files inside one folder. By using

MC/DC testing analysis on this method, because of the existence of

‘Non-Parameter Input’ code ‘temp.isDirectory()’, the situation about

‘one folder that has subfolder’ should also be taken into consideration. Based on

the MC/DC testing result, the original code ‘delAllFile(path + "/" +

tempList[i]);’ under such decision was actually incorrect. That’s because

this code just deletes all files inside the subfolder while the subfolder itself is

actually not deleted. The correct code should be ‘delFolder(path + "/" +

tempList[i]);’ , which can make sure that both the files inside subfolder

together with subfolder itself are deleted successful.

But this ‘Non-Parameter Input’ fault could not be discovered by Black-Box testing.

That’s because the equivalence partitions for the input parameter path were just

divided into three parts: null, correct folder path and incorrect folder path. This

special ‘Non-Parameter Input’ situation ‘one folder that has subfolder’ was not

considered in all three partitions.

7.3 Program Coverage

7.3.1 Code Coverage

Figure 7.9 summarizes the code coverage of Black-Box testing and MC/DC testing for

each tested method.

Figure 7.9 the code coverage of Black-Box testing and MC/DC testing for each tested method

0%
20%
40%
60%
80%

100%
120%

C
o

d
e

 C
o

ve
ra

ge

Tested Methods

The Code Coverage of Black-Box testing
and MC/DC testing for each tested method

BB

MC/DC

Figure 7.8 a ‘Non-Parameter Input ’ error found by MC/DC testing

 80

As Figure 7.9 shows, for 33% of the methods, both Black-Box and MC/DC testing

reached 100% code coverage. For the remaining methods, besides

StringToJson() and delFolder()(MC/DC was not applicable for testing

these two methods), MC/DC testing added an average 10.94% extra code coverage

on the basis of Black-Box testing. The reason is:

Based on the ‘Non-Parameter Input’ mentioned in section 7.2, because Black-Box

testing aims to check whether the tested program meets the specification or not, so

it doesn’t care the detailed implementation code inside the program. That’s may

make some ‘Non-Parameter Input’ code unexecuted during the testing process. On

contrary, MC/DC testing focuses on the implementation code and detailed test cases

are generated by analyzing those complex Boolean expressions inside the tested

program, so these ‘Non-Parameter Input’ code is also under analyzed. MC/DC tests

make sure that all situation-handle codes including ‘Non-Parameter Input’ code for

the tested complex Boolean expression are executed during MC/DC testing.

Take the database error mentioned in section 5.3.2 for example. The code shown in

Figure 7.10 was never covered during the Black-Box testing.

 if(p.GetUserName() == null)

{

jsondata = "{'err':'DB_error'}";

}

Such code is actually the ‘Non-Parameter Input’ code in the tested method

ModifyProfile_Initial(). This code has no relation with the input

parameter UserID. So for the Black-Box testing, the tests never caused database

error and the code ‘jsondata = "{'err':'DB_error'}";’ was never

executed during the testing. On contrary, MC/DC testing analyzed the code of tested

program and one specific MC/DC test case focused on this ‘Non-Paramter Input’

code to check whether the tested program works properly if database error occurs.

So the test implementation for this test case focused on replacing the correct

database with an error-inside database to manually create database error, then

checked whether the reaction of the tested program was correct or not. By doing this,

the special ‘Non-Parameter Input’ code was executed, which made MC/DC testing

added extra code coverage on the basis of Black-Box testing.

7.3.2 Branch Coverage

Figure 7.11 summarizes the branch coverage of Black-Box testing and MC/DC testing

for each tested method.

Figure 7.10 database error codes

 81

Figure 7.11 the branch coverage of Black-Box testing and MC/DC testing for each tested method

As Figure 7.11 shows, for 27.78% of the methods, both Black-Box and MC/DC testing

reached 100% branch coverage. For the remaining methods, besides

StringToJson() and delFolder()(MC/DC was not applicable for testing

these two methods), MC/DC testing added an average 19.2% extra branch coverage

on the basis of Black-Box testing. The reason is:

Based on the ‘Non-Parameter Input’ mentioned in 7.2, because Black-Box testing

doesn't care the detailed implementation code inside the program, so some

‘Non-Parameter Input’ decision branches of complex Boolean expressions in the

tested program may not be executed during the testing process. But this is not the

case for MC/DC testing. MC/DC focuses on ‘Non-Parameter Input’ code inside the

tested method, so its tests will make sure that every branch (T or F) of

‘Non-Parameter Input’ code is executed and covered at least once.

Take the Login() method for example. The code shown in Figure 7.12 checks

whether the system has user's input account or not and Figure 7.13 shows the

branch paths for this complex Boolean expression.

if(plist == null || plist.size() == 0) // no such account

jsondata = "{'result': 0}";

else{…}

0%

20%

40%

60%

80%

100%

120%

B
ra

n
ch

 C
o

ve
ra

ge

Tested Methods

The Branch Coverage of Black-Box testing
and MC/DC testing for each tested method

BB

MC/DC

Figure 7.12 handle no such account codes in Login()

 82

For Black-Box testing, those existing tests made branch 2,3 and 4 been covered

during testing but there were no other tests to focus on testing database error to

cover branch 1. That's because the database error code ‘plist == null’ is actually

the ‘Non-Parameter Input’ code of Login(), the input parameters email and

password never make such database error occurs (Black-Box testing always used

correct database during testing), so it is was impossible to let ‘plist==null’

equals to true and branch 1 was never covered.

But for MC/DC testing, one specific test case was related to such ‘Non-Parameter

Input’ database error to check whether Login() returns correct response string if

database error occurs in the back-end side. So the test implementation for this test

case replaced the correct database with an error-inside database to manually create

database error, which made plist==null equals to true so that branch 1 was

covered during the MC/DC testing process. By doing this, all branches including this

special ‘Non-Parameter Input’ branch of this expression were covered, which made

MC/DC testing added extra branch coverage on Login() on the basis of Black-Box

testing.

7.3.3 Coverage for Servlets

It is easy to calculate code coverage and branch coverage for normal methods, but

this is not the case for Servlets. Servlets don’t run directly in the Java application,

actually they are executed in the Servlet container (e.g. Tomcat). This situation makes

it hard to calculate code coverage and branch coverage for Servlets (Because

Eclemma is a Plug-in of MyEclipse and it works perfect for those programs that run

directly in MyEclipse. One solution would be to use emma with the class files, but

this was not explored in this project).

Although the evaluation technique was limited, the current Black-Box tests and

MC/DC tests still reflect that MC/DC testing added extra code coverage and branch

Plist == null

{'result'}: 0}
Plist.size() == 0

{'result'}: 0}
else{…}

T

T

1 2

3 4

Figure 7.13 branch paths for this piece of Login() code

 83

coverage on the basis of Black-Box testing in testing those Servlets.

Take the Servlet SingleImageUploadLet for example. This servlet aims to

receive uploaded single image from mobile side, store it into local server folder and

return back upload result to mobile side. The most important part of code for this

servlet that related to coverage criteria is shown in Figure 7.14.

public void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 ...

 while(fii.hasNext())

 {

 ...

 if(!fis.isFormField() && fis.getName().length()>0)

 {

 ...

 }

 }

 ...

if(!CultureObject_Interface.Modify_Upload_CultureObject_SingleWebReso

urce(ObjectID, returnpath))

 {

 System.out.println("Database error"); //database error

 }

}

Code Coverage:

Based on the ‘Non-Parameter Input’ mentioned in section 7.2, because the input

parameters of this servlet has no relation to database error, so the Black-Box tests

never caused database error and the line ‘System.out.println("Database

error")’ was never executed during the Black-Box testing on this servlet. But

MC/DC testing analyzed and found this ‘Non-Parameter Input’ database error code,

so a MC/DC test which replaced the correct database with error-inside database was

developed to check whether the sentence ‘Database error’ was printed on the server

console or not when the database error occurred. So this special MC/DC test made

MC/DC testing added extra code coverage on the basis of Black-Box testing in testing

this servlet.

Branch Coverage:

The branch paths for the complex Boolean expression ‘!fis.isFormField() &&

fis.getName().length()>0’ is shown in Figure 7.15.

Figure 7.14 some part of code for singleimageuploadlet

 84

!fis.isFormField() aims to check whether the uploaded data is text data or

not. Because this servlet handles uploading image, so the first step is to make sure

the uploaded data is not text data.

Based on the ‘Non-Parameter Input’ mentioned in section 7.2, for the Black-Box

testing on this servlet, because the specification indicates that the input parameter

(uploaded data) is image, so Black-Box tests never considered text data, which made

the branch 1 never covered during testing. But for MC/DC testing, one specific

MC/DC test focused on this ‘Non-Parameter Input’ situation (uploaded data is text

data) to check whether the servlet works properly or not if text data is uploaded. So

this special MC/DC test actually made MC/DC testing focused on ‘Non-Parameter

Input’ code of tested servlet and added extra branch coverage on the basis of

Black-Box testing in testing this servlet.

7.4 Summary

Based on the evaluation performed above, three key points can be summarized.

(1) MC/DC was an additional effective testing technique to cooperate with

Black-Box testing in testing COMWS. It needed less testing cost while found extra

faults that Black-Box testing didn’t find as well as providing improved code

coverage and branch coverage of tested programs.

- In testing cost factor, due to the reason of String input parameters of

many tested methods and their special equivalence partitions, the test sets

for EP and BVA were similar, which caused the existence of duplicate

(inefficiency) tests. Writing such inefficiency tests was a waste of time and

made Black-Box testing ineffective to test COMWS. This phenomenon was

never happened in MC/DC testing. Each MC/DC test was related to one

specific truth-table situation of considered complex decision, which means

!fis.isFormField()

Go to another while cycle fis.getName().length >0

Execute code inside if

T

T

1 2

3
4

Go to another while cycle

Figure 7.15 branch paths for one complex Boolean expression in singleimageuploadlet

 85

that it was impossible to create duplicate MC/DC tests and thus MC/DC was

effective in testing COMWS.

- In faults found factor, Because MC/DC testing focused on the behavior of

each condition and investigated the effect it has on each decision in each

tested method while Black-Box testing just focused on whether method

meets with its specification, MC/DC testing found some insidious but serious

faults that Black-Box testing did not find in testing COMWS.

- In program coverage factor, due to the reason of ‘Non-Parameter Input’,

MC/DC testing added extra code coverage and branch coverage on the basis

of Black-Box testing in testing COMWS.

(2) MC/DC showed its strength in testing programs with ‘Non-Parameter Input’ (as

described in 7.2).

‘Non-Parameter Input’ is always used to check execution environment and

handle inner exception of the tested method. Black-Box testing was not available

to check faults inside ‘Non-Parameter Input’ code, that’s because Black-Box tests

were generated based on input parameters of the tested method, such tests

actually didn’t consider these ’Non-Parameter Input’ code. But this is not the

case for MC/DC. MC/DC testing focused on the complex Boolean expressions

inside ‘Non-Parameter ’ code, so there must be some MC/DC tests to focus on

checking the correctness of ‘Non-Parameter Input’ code. That’s the reason why

MC/DC testing detected some insidious faults while Black-Box testing didn’t.

(3) MC/DC also showed its advantage when compared with other white-box

techniques in testing COMWS.

DCC: MC/DC had a stronger faults-finding ability than DCC in testing COMWS.

Take Register() for example, Figure 7.16 indicates a complex Boolean

expression that is used to return wrong format register error.

//code1 to check the format of username – if it is incorrect, then set ""

to username attribute of the user class object

//code2 to check the format of password – if it is incorrect, then set ""

to the password attribute of the user class object

if(p.GetUserName().equals("") || p.GetPassword().equals(""))

{

jsondata = "{'result': -2}"; // wrong format

}

Figure 7.16 an example to show the strength of MC/DC over DCC

 86

Originally, there was a fault in code 2 that it never sets empty string to the

password attribute of the related user class object if password parameter has

wrong format.

By using DCC, the test cases for this decision are:

1. {T, T}

2. {F, F}

Such test cases will hide this error because this decision will be true when the

first condition is true and don’t care what the value of second condition is. So if

the test input is “wrong format username, wrong format password”, the second

condition is actually false but this method still returns correct result.

This is not the case for MC/DC. MC/DC test cases for this decision are:

1. {T, T}

2. {F, T}

3. {T, F}

The test input for test case 2 is “correct format username, wrong format

password”, which can be used to find this serious error.

MCC: MC/DC had a similar ability to find faults while only needed much less

tests when compare with MCC in testing COMWS. For example, for the method

Register() shown in Figure 2.7, MC/DC testing only developed 5 tests to find

2 errors and reach 100% code coverage and branch coverage while MCC needed

16 tests to achieve it.

Path Testing: Path testing causes every possible path from entry to exit of the

tested program to be taken. But for some complex methods such as

JsonToString(), it is difficult to test every path because the number of

paths for those methods is incredible large. So MC/DC is a more available

technique to test COMWS.

8. Conclusions

In this paper, an evaluation of the effectiveness of MC/DC in testing a specific web

server (COMWS) was presented. This evaluation focused on three criteria: Testing

Cost, Faults Found and Program Coverage to evaluate the effectiveness of MC/DC

testing.

Based on the testing result and comparison evaluation, the essential conclusions are:

 87

(1) MC/DC can be used as an additional effective testing technique to cooperate

with Black-Box testing for testing web servers

(2) MC/DC is specially effective for ‘Non-Parameter Input’

(3) Black-Box testing can be modified to be more efficient

8.1 Critical Analysis on Testing

(1) MC/DC can be used as an additional effective testing technique to enhance

with Black-Box testing for testing web servers

When testing a web server, Black-Box testing is performed first to check whether

these server methods meet their specifications or not. Such testing is the

foundation of whole web server testing (Failed to pass Black-Box testing means

didn’t realize function, so there is no need to do other testing) and is used to find

those small and obvious faults. But Black-Box testing has shortcomings.

Black-Box tests are generated based on input parameters of the tested method,

so such tests may not be available to detect faults inside ‘Non-Parameter Input’

code. In order to find these faults, another testing technique should be used to

provide additional support. Based on the experiment result in testing COMWS

together with detailed evaluation, MC/DC shows its high efficiency in testing

web servers.

1. Based on the experiment result, when compared with Black-Box testing,

MC/DC testing reduced the testing cost while found extra insidious but serious

faults as well as improved code coverage and branch coverage of tested

programs in testing COMWS. Such result is a reasonable evidence to indicate the

effectiveness of MC/DC in testing web servers.

2. When compared with other white-box testing techniques, MC/DC also

showed its strengths. For DCC, MC/DC had stronger ability to find faults than it;

For MCC and Path testing, MC/DC showed higher feasibility than both of them.

(2) MC/DC is specially effective for ‘Non-Parameter Input’

The inner code of some COMWS methods can be divided into two parts:

‘Parameter Input’ code and ‘Non-Parameter Input’ code. The first type code

focuses on realizing the functionality of the tested method while the second one

is used to provide method execution environment and handle inner exception of

the tested method. Although the second type code has no relations with the

value of input parameters, it still has effect on the tested method.

When performing Black-Box testing on COMWS, the tests were analyzed and

generated based on the specification and input parameters of the tested method.

 88

Typically specifications don’t cover all the details of faults caused by lower level

software. Such tests actually just focused on the ‘Parameter Input’ code and

ignored ‘Non-Parameter Input’ code, which made Black-Box testing missed these

special faults.

When performing MC/DC testing on COMWS, all complex Boolean expressions

including expressions inside ‘Non-Parameter Input’ code were under analyzed.

So there must be some MC/DC tests are used to check the correctness of

‘Non-Parameter Input’ code so that these insidious faults were succeeded to be

detected.

Such ‘Non-Parameter Input’ is the main reason why MC/DC detected insidious

faults that Black-Box testing didn’t find.

(3) Black-Box testing can be modified to be more efficient

Section 7.1.3 shows the inefficient aspect in Black-Box testing. Normally, for each

partition of each input parameter in the tested method, EP selects its medium

value as test while BVA selects its top and bottom value, so the test sets for

these two techniques are different, just as shown in Figure 8.1.

But for String input parameter, because of its special equivalence partition,

the test sets for EP and BVA may have intersection even totally covered by each

other. For example, for the method delAllFile(),the EP and BVA testing

analysis are shown in Figure 8.2.

// EP:

// [Test Cases] Partition {Test}

// Inputs

// path: [EP1] null

// [EP2] correct folder path

// [EP3] incorrect folder path

// Outputs

// return values: [EP4] false

// [EP5] true

BVA bottom value BVA top value EP value

One partition Other partition Other partition

Figure 8.1 the test value selection for EP and BVA

 89

//

// BVA:

// [Test Cases] Boundary Value {Test}

// Inputs

// path: [BVA1] null

// [BVA2] correct folder path

// [BVA3] incorrect folder path

// Outputs

// return values: [BVA4] false

// [BVA5] true

As shown in Figure 8.2, the test cases for EP and BVA are the same, which means

the tests set for EP and BVA are 100% covered by each other. Because EP tests

were developed first, so the development of BVA tests was a waste of time.

Developing such duplicate tests make Black-Box testing not efficient in testing

software. In order to improve the efficiency of Black-Box testing in testing

software, a new test procedure is proposed.

(1) Based on the equivalence partitions of input parameters for the tested

method, do the BVA testing first.

(2) Because there is no mandatory rule that EP should select the medium value

of equivalence partition for each input parameter, so the top or bottom value of

equivalence partition for each input parameter can be selected as EP tests value.

Such EP tests already exist in the first step’s BVA testing.

By doing this, there is no need to develop EP tests, so the time to develop

Black-Box tests is reduced and the efficiency is improved. However, such

technique also has disadvantage. Although it meets the requirement for EP and

BVA, it only considers the boundary value of equivalence partitions for input

parameters, so it doesn’t look for faults at the middle of these equivalence

partitions.

8.2 Limitations

Limitations found during the testing on COMWS are shown below:

(1) Coverage on Servlets

It is difficult to calculate code coverage and branch coverage for those tested

Servlets. For normal methods, their code coverage and branch coverage can be

calculated automatically by Eclemma, but this is not the case for Servlets.

Servlets don't run directly in the Java application (they cannot be called through

Figure 8.2 EP and BVA analysis for method delAllFile()

 90

their methods' name directly), actually they should be executed in the Servlet

container (e.g. Tomcat). So such situation makes Eclemma hard to calculate

coverage value for Servlets (Eclemma is a Plug-in of MyEclipse and it only works

perfect for those pargrams that run directly inside MyEclipse).

(2) Shortcomings of MC/DC

While MC/DC ensures that a condition will not be masked out in a decision, it is

still possible that the condition will ultimately be masked out within some

sequence of statements in a program [WGY+13]. Figure 8.3 shows an example.

expr_1 = in_1 or in_2; //stmt1

out_1 = expr_1 and in_3; //stmt2

Based on the definition of MC/DC, one reasonable tests set (in the format {in_1,

in_2, in_3}) for this program is:

1. {T, F, F}

2. {F, T, F}

3. {F, F, T}

4. {T, T, T}

The test cases with in_3 = false (bold faced) contribute towards MC/DC of

in_1 or in_2 in stm1. Nevertheless, if the concentration is on the output

variable out_1, the effect of in_1 and in_2 cannot be observed in the output

since it will be masked out by in_3 = false. Thus, such test set gives MC/DC

coverage of the program, but a fault on the first line will never propagate to the

output (for example, if in_1 or in_2 is miswritten into in_1 and in_2, such

fault will never be found by the tests set listed above).

OMC/DC is designed to improve such shortcoming of MC/DC. It establishes

observability of decisions by requiring that the variable whose assignment

contains a particular Boolean decision remains unmasked through a path to a

variable monitored by the test oracle [WGY+13]. By using OMC/DC, such mask

out problem would be solved.

8.3 Critical Analysis of the Project

The current work of this project focused on evaluating the effectiveness of MC/DC in

testing COMWS. Although a simple example shown in section 7.4 was used to

indicate MC/DC has stronger ability to detect faults than DCC, there was no detailed

experiment to compare the effectiveness of MC/DC and DCC in testing COMWS. At

the same time, the effectiveness of MCC in testing COMWS should also be taken into

Figure 8.3 an example to show the shortcoming of MC/DC

 91

consideration so that the viewpoint ‘MC/DC and MCC has similar ability to detect

faults’ can be experimented.

So if I did this project again, besides MC/DC testing and Black-Box testing, DCC and

MCC testing should also be carried out in testing COMWS and other two

comparisons between MC/DC and DCC, MC/DC and MCC were performed. These

comparisons still focused on three criteria: Testing Cost, Faults Found and Program

Coverage.

(1) Testing Cost: comparison was based on two areas: the number of tests together

with the time taken to write these tests for MC/DC, DCC and MCC testing.

(2) Faults Found: comparison focused on the number of faults found by MC/DC, DCC

and MCC testing. Particularly, found whether MC/DC detected faults that DCC

didn’t find and whether MCC detected faults that MC/DC didn’t find.

(3) Program Coverage: comparison was based on two areas: the code coverage and

the branch coverage of tested programs. Particularly, found whether MC/DC

reached higher code coverage and branch coverage than DCC and whether MCC

reached higher code coverage and branch coverage than MC/DC.

The evaluation on these three criteria can provide the evidence to show whether

MC/DC actually performed better than DCC, and had the same faults-finding ability

with MCC in testing web servers.

In addition, current work just focused on testing a small web server project which

has limited number of methods, so it may hard to draw conclusions for larger

projects.

8.4 Future Work

This section describes the future work that can be done to continue researching on

MC/DC testing area.

 Test more web server projects

Currently the MC/DC testing work just focused on the single web server COMWS

and the experiment result were positive and encouraging. But one does not

mean all, so such MC/DC testing and related evaluation should be carried out on

more web server projects.

For each tested web server project, the same comparison on three criteria

(Testing Cost, Faults Found and Program Coverage) should also be carried out to

evaluate the effectiveness of MC/DC in testing each web server. After the

 92

evaluation for all tested web servers, it is necessary to combine those evaluation

results together to verify whether MC/DC is actually effective in testing almost

all web servers, not just a single one.

 Test other programs

Based on the COMWS testing result and related evaluation, MC/DC is effective in

testing web servers. So the question about ‘whether MC/DC is still effective in

testing other programs’ is raised up. So MC/DC testing and related evaluation

should also be carried out on other programs. Because web servers are

stated-based systems, so for those non stated-based systems (e.g. normal Java

programs), the performance of MC/DC in testing them is really worth to be

researched.

When start to do the MC/DC testing on other programs, the first step aims to

calculate the numbers of complex Boolean expressions with n (1, 2, 3…)

conditions inside the tested program. The detailed implementation for this

process is shown in Appendix B. Then for the detailed testing part, the testing

step is the same to that of testing COMWS and the result can be collected to

evaluate whether MC/DC is still effective in testing those non state-based

programs.

 93

Reference

[LiH00] Liu KCH, Hsia P. (2000). An object-oriented Web test model for testing

Web applications. In Proc. of IEEE 24th Annual International Computer

Software and Applications Conference (COMP-SAC2000), Taipei, Taiwan,

pp 537-542.

[ChM94] Chilenski JJ, Miller SP. (1994). Applicability of modified condition/decision

coverage to software testing. Software Engineering Journal, Vol.7, No.5,

pp 193-200.

[Whi01] White AL. (2001). Comments on Modified Condition/Decision Coverage

for software testing. In 2001 IEEE Aerospace Conference Proceedings,

10-17 March 2001, Big Sky, Montana, USA, vol 6, pp 2821-2828.

[HaV01] Hayhurst KJ, Veerhusen DS. (2001). A practical approach to modified

condition / decision coverage. In 20th digital avionics systems conference

(DASC), Daytona Beach, Florida, USA, 14-18 October 2001, vol 1, pp

1B2/1-1B2/10.

[RTC92] RTCA, Inc. (1992). RTCA/DO-178B, Software Considerations in Airborne

Systems and Equipment Cerification. Washington, D.C.

[USF93] U.S.Department of Transportation, Federal Aviation Administration.

(1993). Advisory Circular #20-115B.

[Gal04] Galin D. (2004). Software Quality Assurance: From Theory to

Implementation. Addison-Wesley.

[BTL+11] Brown S, Timoney J, Lysaght T, Ye DS. (2011). Software Testing: Principles

and Practice. First Edition, China Machine Press, Beijing, China.

[Pre10] Pressman RS. (2010). Software Engineering: A Practitioner's Approach.

Seventh Edition, McGraw-Hill, New York, NY.

[HVC+01] Hayhurst KJ, Veerhusen DS, Chilenski JJ, Rierson LK. (2001). A parctical

tutorial on modified condition/decision coverage. NASA Technical

Memorandum TM-2001-210876, NASA Langley Research Center,

Hampton, VA.

[Chi01] Chilenski JJ. (2001). An Investigation of Three Forms of the Modified

Condition Decision Coverage (MCDC) Criterion. FAA Tech Center Report

DOT/FAA/AR-01/18.

[KaB03] Kapoor K, Bowen JP. (2003). Experimental evaluation of the variation in

effectiveness for DC, FPC and MC/DC test criteria. In proceedings of

ACM-IEEE 2003 international symposium on empirical software

engineering (ISEIS 2003), Rome, Italy, 30 September-1 October 2003.

IEEE Computer Society Press, pp 185-194.

[JoH01] Jones JA, Harrold MJ. (2001). Test-Suite Reduction and Prioritization for

Modified Condition/Decision Coverage. In ICSM 2001, Proceedings of the

International Conference on Software Maintenance, Florence, Italy,

November 6-10, 2001, pp 92-101.

 94

[PZL+05] Pan L, Zou B, Li JY, Chen H. (2005). Bi-Objective Model for Test-Suite

Reduction based on Modified Condition/Decision Coverage. Proceedings

of the 11th Pacific Rim International Symposium on Dependable

Computing, pp. 235-244.

[PMG+10] Prabhu J, Malmurugan N, Gunasekaran G, Gowtham R. (2010).Study of

ERP Test-Suite Reduction Based on Modified Conditon/Decision Coverage.

In Proceedings of the second international conference on computer

research and development, Kuala Lumpur, 7-10 May 2010, pp 373-378.

[WGY+13] Whalen M, Gay G, You D, Heimdahl M, Staats M. (2013). Observable

Modified Condition/Decision Coverage. In Proceedings of the 2013

International Conference on Software Engineering(ICSE 2013), San

Francisco, CA, USA, pp 102-111.

[ViB06] Vilkomir SA, Bowen JP. (2006). From MC/DC to RC/DC: formalization and

analysis of control-flow testing criteria. Formal Aspects of Computing,

vol.18, no.1, pp 42-62.

[DuL00] Dupuy A, Leveson N. (2000). An Empirical Evaluation of the MC/DC

Coverage Criterion on the HETE-2 Satellite Software. Proceedings of the

Digital Aviation Systems Conference (DASC), Philadelphia.

[Bis03] Bishop PG. (2003). MC/DC based estimation and detection of residual

faults in PLC logic networks. In Supplementary proceedings 14th

international symposium on software reliability engineering (ISSRE '03),

Fast Abstracts, Denver, Colorado, USA, 17-20 November, pp 297-298.

[CBE+04] Chopra V, Bakore A, Eaves J, Galbraith B, Li S, Wiggers C. (2004).

Professional Apache Tomcat 5. John Wiley & Sons.

[MyS01] MySQL AB. MySQL. (2001). [Online]. Available: http://www.mysql.com/.

[Hof11a] Hoffmann MR. (2011). Eclemma - jacoco java code coverage library.

[Online]. Available: http://www.eclemma.org/jacoco/index.html.

[Hof11b] Hoffmann MR. (2011). Eclemma - java code coverage for eclipse.

[Online]. Available: http://www.eclemma.org/.

[DGH+10] Doerr M, Gradmann S, Hennicke S, Isaac A, Meghini C, vandeSompel, H.

(2010). The Europeana Data Model (EDM). In World Library and

Information Congress: 76th IFLA General Conference and Assembly,

10-15 August 2010, Gothenberg, Sweden.

[Dub03] Dublin Core Metadata Initiative. (2003). Dublin Core Metadata Element

Set, Version 1.1. Reference Description, retrieved October 31, 2005 from

http://dublincore.org/documents/dces.

 95

Appendix A. Black-Box Testing Design and

Implementation Example

 Black-Box Testing Design

In black-box testing stage, for each tested method, a three steps procedure is

required to check whether it meets specification requirement or not. Such procedure

is shown in Figure A.1.

1. Three Techniques Test Cases Analysis and Tests Generation

Three techniques are used to do black-box testing on COMWS: Equivalence

Partitioning (EP), Boundary Value Analysis (BVA) and Combinations of Inputs (CI).

Each technique needs different test analysis.

 EP

EP [BTL+11] is based on selecting representative values of each parameter from

the equivalence partitions. This technique aims to check whether the basic data

processing aspects of the COMWS methods are correct or not. The analysis

template for EP is shown in Figure A.2.

//Analysis:

// [Test Cases] Partition {Test}

Equivalence

Partitioning

1. Three Techniques Test Cases

Analysis and Tests Generation

Combinational

Testing

Boundary Value

Analysis

3. Test Execution

2. Tests Realization

Figure A.1 3 steps procedure for Black-Box testing

 96

// Inputs

//

// Parameter 1: [EP1]...

// [EP2]...

// ...

// Parameter 2: [EPk]...

// [EPk+1]...

// ...

// ...

// Outputs

// return values: [EPn]...

// [EPn+1]...

// ...

As Figure A.2 indicates, both the inputs and the outputs of the tested COMWS

methods should be considered and each equivalence partition for each of the

parameters is a test case. Based on these EP test cases, combined with the

tested method's inputs, the EP test data of this method can be produced, just as

shown in Figure A.3.

// Test Data:

// Test Cases Inputs Expected Outputs

// ID Covered xxx xxx xxx ... return value

// Test1 EP1,EPk,

// ..,EPn

// Test2 EP2,EPk+1,

// ..EPn+1

//

 BVA

BVA [BTL+11] focuses on the boundary conditions of each partition (the bottom

and the top values) to check whether the COMWS methods have

boundary-related programming faults. The analysis template for BVA is shown in

Figure A.4.

//Analysis:

// [Test Cases] Boundary Value {Test}

// Inputs

// Parameter 1: [BVA1]...

// [BVA2]...

// ...

Figure A.2 analysis template for EP

Figure A.3 EP test data generation

 97

// (related to the bottom and top values of EP of parameter 1)

// Parameter 2: [BVAk]...

// [BVAk+1]..

// ...

// (related to the bottom and top values of EP of parameter 2)

//

// Outputs

// return values: [BVAn]...

// [BVAn+1]...

// ...

// (related to the bottom and top values of EP of return values)

As Figure A.4 indicates, both the inputs and the outputs of the tested COMWS

methods should be considered and each boundary value of equivalence partition

for each of the parameters is a test case. Based on these BVA test cases,

combined with the tested method's inputs, the BVA test data of this method can

be produced, just as shown in Figure A.5.

// Test Data:

// Test Cases Inputs Expected Outputs

// ID Covered xxx xxx xxx ... return value

// Test1 BVA1,BVAk,

// ..,BVAn

// Test2 BVA2,BVAk+1,

// ..BVAn+1

//

 CI

CI [BTL+11] focuses on testing all the possible combinations of inputs of each

COMWS tested method. It provides additional coverage that EP and BVA may not

cover. The analysis template for CI is shown in Figure A.6.

 //Analysis:

 // Causes:

 // 1. ...

 // 2. ...

 // 3. ...

 // ...

 // Effects:

 // 1. ...

 // 2. ...

 // ...

Figure A.5 BVA test data generation

Figure A.4 analysis template for BVA

 98

 //

 // [Test Cases] Truth Table {Test}

 // Rules

 // 1 2 3 4 ...

 // Causes

 // (for 1) xx xx xx xx ...

 // (for 2) xx xx xx xx ...

 //

 // Effects

 // (for 1) xx xx xx xx ...

 // (for 2) xx xx xx xx ...

 //

 // Test CI1 CI2 CI3 CI4 ...

As Shown in Figure A.6, the ‘Causes’ field indicates the possible values or limits

for each input and the ‘Effects’ field indicates all the possible range of the return

value. The ‘Truth Table’ gives a good view to show all the possible combinations

of inputs to create related return value. In the truth table, each rule is a test case.

Based on these CI test cases, combined with the tested method's inputs, the CI

test data of this method can be produced, just as shown in Figure A.7.

// Test Data:

// Test Cases Inputs Expected Outputs

// ID Covered xxx xxx xxx ... return value

// Test1 CI1

// Test2 CI2

// Test3 CI3

 //

2. Test Realization

Based on the test data for different testing techniques generated in step 1, the

detailed code for each test can be realized in this stage. The code template of

black-box test method is shown in Figure A.8.

@MyTest

public static boolean testMethod_Technique_Txx() {

 //call the tested method and obtain the actual return value

 if(actual_return_value == expected_return_value)

 return true;

 else{

 reason = new String("Expected 'expected_return_value', actual result :"+

actual_return_value);

Figure A.6 analysis template for CI

Figure A.7 CI test data generation

 99

 return false;

 }

}

The annotation ‘@MyTest’ indicates that this method is a test method and can be

found and executed by customized JUnit test runner to collect test result. The name

of test method is varied based on the test technique used (EP -> testMethod_EP_Txx,

BVA -> testMethod_BVA_Txx, CI-> testMethod_CI_Txx). For the inside code, just call

the tested method based on the related test data and compare the actual return

value with the expected return value. If they are the same, just return true to

indicate this test is passed, otherwise show the reason why it is wrong and return

false.

3. Test Execution

The tests were executed using a customized test runner and the results collected to

prepare for the final analysis and comparison.

 Black-Box test implementation example

1. Three Techniques Test Cases Analysis and Tests Generation

 EP for Login()

Based on the EP analysis and tests generation template together with the

specification of Login(), the detailed EP analysis and tests generation for

Login() method is shown in Figure A.9. Each ‘Email’ and ‘Password’ partition

is a test case. Based on these 5 test cases, 3 EP tests are generated.

//[Test Cases] Partition {Test}

// Inputs

// Email: [EP1] correct format but not existing email string {T001}

// [EP2] correct format and existing email string {T002}

// Password: [EP3] wrong format password string {T003}

// [EP4] correct format but not 'correct' password string {T001}

// [EP5] correct format and 'correct' password string {T002}

//

// Outputs

// return values:

// [EP6] "{'result': 0}" {T001}

// [EP7] "{'result': 1, 'id': .., 'username': ..}" {T002}

//

// [Test Data]

// Test Cases Inputs Expected Outputs

// ID Covered Email Password return value

Figure A.8 test method template

 100

//T001 EP1,EP4,EP6 linanpp01@gmail.com 12345678 "{'result': 0}"

//T002 EP2,EP5,EP7 linanpp09@gmail.com 123456

// "{'result': 1, 'id': 1, 'username': 'Li Nan'}"

//T003 EP3* linanpp10@gmail.com 1234,;--= "{'result': 0}"

//

// Note: * indicates an error test

 BVA for Login()

Based on the BVA analysis and tests generation template together with the

specification of Login(), the detailed BVA analysis and tests generation for

Login() method is shown in Figure A.10. The ‘Email’ and ‘Password’ boundary

value are the same to their partition value, so BVA and EP have the same tests

for testing Login() method.

//[Test Cases] Boundary Value {Test}

// Inputs

// Email: [BVA1] correct format but not existing email string {T001}

// [BVA2] correct format and existing email string {T002}

// Password: [BVA3] wrong format password string {T003}

// [BVA4] correct format but not 'correct' password string {T001}

// [BVA5] correct format and 'correct' password string {T002}

//

// Outputs

// return values:

// [BVA6] "{'result': 0}" {T001}

// [BVA7] "{'result': 1, 'id': .., 'username': ..}" {T002}

//

// [Test Data]

// Test Cases Inputs Expected Outputs

// ID Covered Email Password return value

//T001 BVA1,BVA4,BVA6 linanpp01@gmail.com 12345678 "{'result': 0}"

//T002 BVA2,BVA5,BVA7 linanpp09@gmail.com 123456

// "{'result': 1, 'id': 1, 'username': 'Li Nan'}"

//T003 BVA3* linanpp10@gmail.com 1234,;--= "{'result': 0}"

//

// Note: * indicates an error test

 CI for Login()

Based on the CI analysis and tests generation template together with the

specification of Login(), the detailed CI analysis and tests generation for

Login() method is shown in Figure A.11. Besides the 3 same tests to EP and

BVA, CI finds out another test to check whether Login() meets its

Figure A.9 EP analysis and test generation for Login()

Figure A.10 BVA analysis and test generation for Login()

 101

specification or not.

// Causes:

// 1. Email -> correct format but not existing email string

// 2. Email -> correct format and existing email string

// 3. Password -> wrong format password string

// 4. Password -> correct format but not 'correct' password string

// 5. Password -> correct format and 'correct' password string

//

// Effects:

// 1. "{'result': 0}"

// 2. "{'result': 1, 'id': .., 'username': ..}"

//

// [Test Cases] Truth Table {Test}

// Rules

// [CI1] [CI2] [CI3] [CI4]

// Causes:

// Causes -> 1 T F F *

// Causes -> 2 F T T *

// Causes -> 3 * F F T

// Causes -> 4 * T F F

// Causes -> 5 * F T F

// Effects:

// Effects -> 1 T T F T

// Effects -> 2 F F T F

// T001 T004 T002 T003

// Tests

//

// [Test Data]

// Test Cases Inputs Expected Outputs

// ID Covered Email Password return value

// T001 CI1 linanpp01@gmail.com 12345678 "{'result': 0}"

// T002 CI3 linanpp09@gmail.com 123456

// "{'result': 1, 'id': 1, 'username': 'Li Nan'}"

// T003 CI4 linanpp10@gmail.com 1234,;--= "{'result': 0}"

// T004 CI2 linanpp09@gmail.com 1234567 "{'result': 0}"

2. Tests Realization

Based on the three techniques analysis on Login() in step 1, 4 tests are generated:

T001, T002, T003 and T004. The detailed codes for these four tests are shown in

Figure A.12.

Figure A.11 CI analysis and test generation for Login()

 102

@MyTest

public static boolean testLogin_EP_T001() {

String result = Provider_Interface.Login("linanpp01@gmail.com", "12345678");

if(result.equals("{'result': 0}"))

 return true;

else{

 reason=new String("Expected {'result': 0} , actual result :"+result);

 return false;}

}

@MyTest

public static boolean testLogin_EP_T002() {

 String result = Provider_Interface.Login("linanpp09@gmail.com", "123456");

 if(result.equals("{'result': 1, 'id': 1, 'username': 'linanpp34'}"))

 return true;

 else{

 reason=new String("Expected {'result': 1, 'id': 1, 'username':

'linanpp34'} , actual result :"+result);

 return false;}

}

@MyTest

public static boolean testLogin_EP_T003() {

String result = Provider_Interface.Login("linanpp10@gmail.com", "1234,;--=");

if(result.equals("{'result': 0}"))

 return true;

else{

 reason=new String("Expected {'result': 0}, actual result :"+result);

 return false;}

}

@MyTest

public static boolean testLogin_CI_T004() {

 String result = Provider_Interface.Login("linanpp09@gmail.com", "1234567");

 if(result.equals("{'result': 0}"))

 return true;

 else{

 reason=new String("Expected {'result': 0}, actual result :"+result);

 return false;}

}

Each test calls Login() by using the analyzed test data, if the return result does not

equal to the expected value, then the test will show the reason and return false to

Figure A.12 4 Black-Box tests on Login()

 103

show the Login() does not have correct reaction on this test. By using such code,

the detailed reason about why Login() fails can be viewed in the console window.

3. Test Execution

Finally, just use my test runner to run these 4 Black-Box tests, the calling code is

shown in figure A.13.

public static void main(String[] args)

{

 MyTestRunner r = new MyTestRunner();

 r.run("Internship_Test.Provider_InterfaceTest");

}

By using this code, the 4 tests will be executed to check whether Login() method

meets its specification or not. Console output gives the execution result and

Eclemma gives the Black-Box testing coverage result of this method, just as shown in

Figure A.14, A.15 and A.16.

Figure A.14 Black-Box testing result on Login()

Figure A.15 Black-Box testing code coverage on Login()

Figure A.13 run Black-Box tests to test Login()

 104

Figure A.16 Black-Box testing branch coverage on Login()

Figure A.14 indicates that all 4 Black-Box tests have passed, which means the method

Login() actually meets its specification requirement. Figure A.15 and A.16 indicate

its coverage result: 100% code coverage and 75% branch coverage, which means that

although the line 37 was executed, the statement ‘plist == null’ was never equal to

true. These two points together with other data (for example: the number of

Black-Box tests is 4) can be collected to prepare for the final analysis on Login()

method.

Appendix B Calculate the number of complex

Boolean expressions with n conditions

When start to do the MC/DC testing on other Java programs, the first step aims to

calculate the numbers of complex Boolean expressions with n (1, 2, 3…) conditions

inside the tested program. Because of the large amount of source code, it is difficult

to calculate these numbers manually. A better way is to use Java byte code.

For example, the source code of method testjavabytecode() is shown in

Figure B.1 and its byte code is shown in Figure B.2.

public int testjavabytecode(int i, int d, int c)

{

if((i< 20 || d > 30) && c > 10)

return 1;

else

return 0;

}

Figure B.1 source code of method testjavabytecode()

 105

Figure B.2 byte code of method testjavabytecode()

As shown in Figure B.2, the ‘Code’ part is the generated instructions list and the

‘LineNumberTable’ part indicates the line-instruction information of this method.

These two parts information can be used to automatically calculate the number of

complex Boolean expressions with n decisions. The calculating algorithm is:

1. Read ‘Code’ part line by line and store each instruction into a string ‘instruction’

array (for this method, create a string array with 21 elements, store instruction 0 into

array position 0, instruction 1 into array position 1, instruction 3 into array position 3

and so on)

2. Read ‘LineNumberTable’ part line by line and store line-instruction

information into an integer ‘line-instruction’ array (for this method, the

‘line-instruction’ array is: [0]->0, [1]->18, [2]->20).

3. Search and count the number of jump instructions in ‘instruction’ array between

the adjacent value of ‘line-instruction’ array (for example, because ‘line-instruction’

array[0] = 0 and ‘line-instruction’ array[1] = 18, so search jump instructions in

‘instruction’ array between ‘instruction’ array[0] to ‘instruction’ array[18]).

4. By performing the step 3, jump instructions ‘instruction’ array[3] (if_icmplt),

‘instruction’ array[9] (if_icmple) and ‘instruction’ array[15] (if_icmple) are

found, which means the method testjavabytecode() has a complex Boolean

expressions with 3 conditions.

By using such algorithm, the number of complex Boolean expressions with n

decisions in the tested programs could be calculated automatically. For the detailed

testing part, the testing step is the same to that of testing COMWS and the result can

be collected to evaluate whether MC/DC is still effective in testing those non

state-based programs.

