

i

An Investigation into Improving Test Effectiveness for

Embedded Software

Department of Computer Science

National University of Ireland Maynooth Campus

Name: Greg Thomas

January 2009

1

Declaration

I hereby state that the material within this document is entirely my own work and has

not been taken from the work of others save to and to extend that such work has been

cited and acknowledged within the text of this thesis

2

Abstract

This thesis reports on the investigation of the effectiveness of software testing on

embedded systems. The aim was to improve confidence in the current methods

employed or to find new methods which could improve the hit rate of defects found

before software is sent to a customer. We investigate previous work into software

testing effectives and various black box testing methods. There are various Black Box

testing methodologies that can be employed to detect errors in systems with varying

degrees of success. In this thesis we investigate the transformation of the white box

testing technique of Definition Use (DU) Path testing using a RESOLVE like

specification, to be applied as black box test method. We do not use RESOLVE it

self, instead we defined our own method of automatic test generation based on the

principles of RESOLVE. Then we compare this method to more commonly used

requirements driven test selection, and pure boundary value analysis (BVA) testing

techniques. The results reported in this thesis indicate that BVA and DU test selection

methods create tests that are covered by unit and integration tests. The current

requirements driven test cases create tests with a combination of features working in

tandem. It was found that combination of features was more likely to find defects

because developers tests had a lesser focus on this area. The tests generated by the

BVA and DU test selection methods did not find any defects that their respective

methods were intended to find. This is due to the development team already having

tests that covered these areas and defects had been fixed before system tests could be

run. Based on the fact that the current test selection methods find defects and the

methods we investigated do not, this adds confidence that the system test approach to

testing is effective. The investigation of defects found showed that timing related

errors are common and that a test selection method designed to find timing related

defects would be worth investigating. The investigation also revealed a useful method

in automatic generation of test cases. The RESOLVE like specification was used to

apply a DU testing as a black box test method. This method showed to be more time

efficient at generating test cases than the existing requirements driven approach.

Although the test cases did not reveal significant defects, due to the overlap with

integration testing, it could be a useful method for developers to generate test cases.

3

1 INTRODUCTION ...5

1.1 Problem Statement ...5

1.2 Background of the Investigation..6

1.3 Software Testing ..7

1.3.1 Unit/Component Testing ..7

1.3.2 Integration Testing...8

1.3.3 System Testing...8

1.3.4 Common Black Box Testing Techniques ..9

2 EP80579 Embedded Software Project ...11

2.1 EP80579 IP Telephony Software...11

2.1.1 HSS Voice Driver ..13

2.1.2 Test Code Design Implications..15

2.1.3 The Test Environment for Test Method Comparison19

2.2 Version Control..20

2.3 Software Engineering Practices ...20

3 Related Research Work..24

3.1 Comparison of Testing Methodologies..24

3.2 Software Testing Effectiveness..26

3.3 Test Automation...27

4 Current System Test Methodology ..30

4.1 Alternative System Test Techniques Investigated.......................................30

4.1.1 Requirement-Based Automated Black-Box Test Generation31

4.1.2 Structurally Guided Black Box Testing...31

4.1.3 State Based Black Box Testing..32

5 Test Case Selection Techniques...34

5.1 Boundary Value Analysis ..34

5.2 DU Coverage Applied to Black Box Testing ..35

5.3 Requirements driven Selection ..38

6 Generation of Test Cases ...41

6.1 Current Test Framework ..41

6.1.1 Current Test Design ...41

6.1.2 Test Automation...44

6.2 Requirements Driven Test Generation...45

6.3 BVA Test Case Generator ...46

6.3.1 Deciding how to generate the test code ...46

6.3.2 Defining the API Boundaries...47

6.3.3 The Perl BVA Generator Design ...49

6.4 DU Coverage Test Case Generator..50

6.4.1 Deciding how to generate the test code ...50

6.4.2 The DU Generator Design ...51

6.5 Implementation Analysis ...55

4

6.5.1 Requirements Driven Tests..55

6.5.2 BVA Tests..56

6.5.3 DU Test ..56

7 Test Results..57

8 Analysis of Results ..60

8.1 Combined Usage Of Analog and Framer Mezzanines60

8.2 Missing/Repeated Bytes...60

8.3 Straight Through Traffic on Framer not working ..61

8.4 Bring up of 128 channels Causing Firmware Error61

8.5 Stuck in loop closing channels...62

8.6 Close not returning Error when channels are still open on the device.........62

8.7 Summary of Analysis...63

9 Conclusion ...64

9.1 Requirements Driven Method..64

9.2 BVA Method..65

9.3 DU Method ..65

9.4 Automatic Test Case Generation ...66

9.5 Discussion on the Relative Effectiveness ..66

9.6 Future work..67

9.7 Final Thoughts ...68

10 References..70

Appendices...73

I. HSS Voice API ..74

II. Boundary Value Analysis Input/Output Range Specification file75

III. RESOLVE ‘Like’ Specification ..76

IV. Requirements Driven Test Cases ...81

V. Perl Script for BVA Test Code Generator ...83

VI. Perl Script for DU Test Case Generator ..92

VII. Sample of Test Code Generated by BVA Test Generator108

VIII. Sample of DU Generated Test Code..110

IX. Summary of Results from BVA Tests ...114

5

1 INTRODUCTION

1.1 Problem Statement

The author hopes to improve upon or add some confidence in the test case selection

process currently used at the author’s place of employment. The quality of the current

method (described in section 4) is rather adhoc in the test generation but believed to

be effective, based on the fact that it finds defects. However it is good software

practise to try something different in case there is a better test selection method that

either finds more defects or is more efficient in generating test cases.

This work investigates the effectiveness of various black box testing methodologies

against embedded software developed by the author’s employer. The existing method

of test selection is essentially a requirements driven selection of test input which has

some elements of boundary value analysis (BVA). The BVA elements are purely

driven by the need to validate maximum performance of the system which implies

input of maximum values to the API. Otherwise test case input is driven by the need

to validate requirements (this is discussed further in section 5.3). Test case selection is

adhoc with some additional effort made to vary the test input to cover what is

perceived to be common customer configurations.

The cons of the current method of system test selection method are listed as follows:

• test code is designed and implemented manually, naturally this is a time

consuming process

• The tests are requirements driven and do not naturally fit into an automated

test framework. The test Framework is only designed to cover positive test

cases and does not handle negative or abnormal situations. For example it is

not possible to automate a test were a cable is physically removed from the

system. This makes test execution and automation of tests a costly/time

consuming process.

• Tests depend heavily on the use of external traffic generators, this new

equipment can take time for users to get familiar with and there is additional

6

work in automating this equipment. (Automated test equipment saves time

later on when used for repeated regression testing)

• Test case selection by the system testers is similar to test case selection by the

integration testers, leading to an overlap of tests between integration testing

and system testing

The pros

• The method finds additional defects that the integration tests don’t find, even

though it is similar to the integration testing and 100% of integration tests

have been executed and passed.

Fundamentally there is nothing wrong the current method of test case selection. It

takes time but appears to be effective; however effectiveness can only be measured

when compared to other processes that aim to achieve the same thing. Based upon the

learnings gained from the modules taught in the MSc in Software Engineering course

at Maynooth, it is appropriate to review the effectiveness of the current test case

selection method by comparing it to other well documented methods.

1.2 Background of the Investigation

As part of the requirements of completing the MSc in Software Engineering at NUI

Maynooth, a student is required to submit a thesis based on the software engineering

practices which occur at the students work placement. The author undertook the

course part time whilst working from Intel Shannon as a system test engineer and

therefore this thesis is based on work carried out at Intel Shannon following the study

of all modules in the MSC in Software Engineering course.

The Authors role at Intel Shannon as already mentioned was a system test engineer.

This role involves the validation of Software written by Intel, to ensure that it meets

the software product requirements before being made available to customers. The

software is aimed at enabling the use specialised network processors. A normal

software release will contain a series of drivers and hardware access layer software

components in which the customer can use in their own applications. The

requirements of this software is derived from customer requests and is generalised to

7

cover many possible customers. The software released is free to download from

Intel’s website. The quality of the software released is dependent on its use. Sample

code can be released but customers are not expected to use it in there own product so

it does not require the same level of testing of code that customers will put into there

products.

This thesis reports on the investigation of the current system test techniques used by

the system test and validation team at Intel Shannon and compares it to other black

box testing techniques to see if the current method being employed is effective for

finding defects.

1.3 Software Testing

This section describes the test stages from unit testing, integration to system testing

performed and how the company differentiates the stages.

1.3.1 Unit/Component Testing

Unit testing is also referred to by some as component testing. Beizer[8] defines

component testing is an aggregation of one or more units that can be compiled

together as a component, based on this definition, the lowest level of tests performed

by the company is component testing. Component test code performs boundary-

checks on all API interface parameters and checks pre and post conditions, as

specified by the API documentation. On execution, it will attempt to exercise as

many paths through the production code as possible with an objective goal of 100%

functional coverage 80% decision/branch coverage. A tool called Bullseye is used to

measure coverage, and then tests are added until the required code coverage is

achieved. Sometimes it is not possible to achieve 100% coverage, for example a

condition may occur that code is only executed in the case of a hardware malfunction.

We do not want to damage the hardware just to cover an unlikely scenario. The

Bullseye tool is not available to use at the system test level.

Stubbed functions are written for any module that the component is dependent on.

The stub simulates the dependent module and returns messages as per the

specification of that stubbed API.

8

The development team are responsible for component testing. Test case input is

selected manually to cover all boundaries and return value checks and achieve the

coverage metrics listed above.

1.3.2 Integration Testing

Beizer [8] defines integration testing as a process of testing an aggregation of

components to create larger components. At Intel Shannon the interpretation of

integration testing is similar – components are tested to work with other components.

In component level testing, components are tested as one component with stubbed

versions of dependent modules. Integration tests rely on fully functional dependent

modules and the focus is not on boundary value checking or return message checking

but rather that the components work together properly.

The development team is responsible for the implementation and execution of

integration tests. Their mission is to release software to the system test team that is

below a software quality threshold – expressed as defects per thousand lines of code.

The threshold is set by the software quality engineer and may vary from project to

project. The development team also need to ensure that all product requirements are

met, so their test case selection method is requirements driven.

1.3.3 System Testing

System testing is aimed at ensuring all components work together as a system. Testers

should aim to test all possible combination of interfaces between components, with

the aim of exposing defects that could only be exposed by testing all components

together. Depending on the size of the system this could overlap with integration

testing if the number of components in a system is small.

The system test team approach the system as a black box. Tests are developed based

on a product requirements document using the method described in section 5.3, the

high level design document and the API of the software to be provided. Quite often

new requirements are implied by the API and design documents so it is important to

9

check that tests cover features listed in all documents. Test case selection is

requirements driven; the result of this is that system level tests and integration level

test can be very similar, but done by an independent team. Beizer [9] does not believe

in independent testing, it is a statement of mistrust on the developers, however he

goes on to say that network testing is a specialized field and it is too much to ask the

developer to be both productive and have an expert knowledge of networks. This

analysis seems to be true for Intel; the independent test group approach has always

found defects, despite the similarities in approach to test selection

1.3.4 Common Black Box Testing Techniques

This section describes some of the most common Black Box testing techniques. These

techniques had not previously been used to generate test cases with the Intel Shannon

offices.

1.3.4.1 Equivalence Partition Testing

Equivalence Partition, Roper [17], testing is one of the basic forms of Black Box

testing. It applies test data to cover each input and output of an API at least once.

Each input and output parameters are divided into partitions, which according to the

specification, are treated identically. It should not matter if the value is a minimum or

a maximum value within the partition; the method assumes that the implementation

processes them in a similar fashion. The coverage criterion is to ensure that each

partition, be it an input or an output from a function, is covered in at least one test in a

suite of tests. Invalid data may be chosen to ensure that the system under test handles

the data correctly.

The strength of this method is that it helps to minimise the number of test cases

generated and focuses on testing the specification. The weakness is that a while a

specification may treat an input or output domain as equal, internally this may not be

that case and it does not exercise the boundaries of inputs were mistakes can easily be

made in implementation such as >= programmed as > or == as =.

10

1.3.4.2 Boundary Value Analysis

Boundary value analysis, Roper [17], is similar to equivalence partition testing except

that it focuses on an area that is renowned source of faults – the boundaries of inputs

and outputs. The inputs and outputs values of an API are partitioned and their range is

also used as a means of selecting inputs. The maximum and minimum values for each

partition are chosen and should be used as test vectors at least once in each test case

as a coverage criterion. This will exercise the boundaries with the API.

The weakness is that it is very similar to equivalence partitioning, whilst it is better to

find boundary related defects. The specification may not identify internal boundaries

within a partition where data is handled differently.

1.3.4.3 Truth Tables

This is another specification based black box techniques also known as Cause &

Effect Graphing, see Roper [17]. The method looks at the creating test input that

stimulates the system – the “cause” of stimulus and analyses the output – the “effect”

of input. The causes and effects are tabulated in a truth table expressed as statements

that can be only true or false. The test is then able to create combinations of cause and

effect statements. Some combinations will not be possible due to constraints in the

system. Each combination of cause and effect statements is converted into test code

that invokes the cause-effect combination under test. The expected output is outlined

by the true of false of the effect statements.

The strength of this method is that it tries combinations of tests that might otherwise

not have been tried. The method also creates the expected output as part of the

process. The weakness of the method is that a large number of causes and effects can

result in a large number of combinations that can become complex and time

consuming to implement.

11

2 EP80579 Embedded Software Project
The EP80579 Embedded processor is an Intel Architected (IA)processing core with

built in micro engines and a Programmable IO Unit. The micro engines and

Programmable IO Unit can be programmed with firmware that allows the CPU to

offload certain functions to the micro engines and Programmable IO Unit. Intel

provides firmware and IA drivers that allow the offloading features to be enabled and

also standard peripheral devices to be used such as SATA, Gigabit Ethernet, and

USB just to name a few. The features that it can offload include: encryption and

decryption of data streams, fragmenting data from the IA core onto TDM timeslots,

channelising data received on timeslots to be sent to the IA core, adding/removing

protocol headers, setting network byte ordering and processing bit endianess.

The software is provided to customers in the form of a binary executable for micro

engines and Programmable IO Unit and source code for Linux kernel and user space

drivers executed on the IA core. Customers compile and load the drivers into the IA

core and this allows access to the micro engine and Programmable IO Unit offload

features via IA kernel and users space drivers.

2.1 EP80579 IP Telephony Software

The EP80579 IP Telephony Software provides Programmable IO Unit firmware and

IA drivers to allow the processing of PPP data and voice traffic. Given that the

EP80579 also provides a Gigabit Ethernet interface and mezzanine card drivers to

convert TDM T1E1 and POTS (Analog) onto TDM this allows the potential for the

device to act as a media gateway between IP, TDM-T1E1 lines (ISDN) and Analog

lines. The IP Telephony infrastructure is illustrated in Figure 1 below and can also be

found in the Intel® EP80579 Software for IP Telephony Applications on Intel®

QuickAssist Technology Programmer's Guide[21]

12

EP80579 Processor

IA Core

Linux Kernel Space

Analog Driver

Hardware

Access Layer

Driver

Programable

TDM IO Unit

SPI Access

Layer Driver

T1E1

Mezzanine

Analog

Mezzanine

Linux User Space Customer

Application

T1E1 Framer

Driver

HSS Voice

Driver

HSS Data

Driver

Figure 1 EP80579 IP Telephony Infrastructure

In this thesis our investigation focuses on system testing the functionality provided by

HSS Voice Driver when used with the T1E1 Framer. As can be seen in Figure 1, the

HSS Voice Driver is dependent on the Hardware Access Layer driver and either the

T1E1 Framer driver or the combined Analog and SPI Access layer driver to provide

the input and output of a voice stream.

The T1E1 Mezzanine is an add-on PMC-PCI card that provides for up to 4 T1 or E1

TDM Interfaces. Parikh, Keyur, Junius [3] provides an insight into the use of TDM

networks and how Analog phone networks are gradually being switch to VoIP

networks, the EP80579 processor is designed for this purpose. Each E1 Interface can

carry 31
1
 channels, therefore a single mezzanine using 4 E1 links are carry 124

channels – or 124 simultaneous voice conversations. Each T1 interface can carry 24

channels; therefore a single mezzanine using 4 T1 links can carry 96 channels – or 96

1
 E1 has 32 timeslots, but the 1

st
 timeslot is used for signalling, leaving 31 timelots for voice traffic

13

simultaneous voice conversations. E1 is a European standard whilst T1 is a North

American standard.

The Analog Mezzanine is an add-on PMC-PCI card that provides 4 FXS and 1 FXO

port. An FXS port is what you would normally plug your phone into the wall at home.

And FXO port is like the port at the back of your phone.

The system allows for up to 3 Mezzanine cards to be plugged into the system, this

could be a combination of Analog, T1 or E1 or could be all the same. In this

investigation we are testing the HSS Voice driver which has a requirement of

supporting 128 channels, which can be done on 2 E1’s therefore we choose testing

with the Framer Driver to just configuring E1 Mezzanines on the system.

2.1.1 HSS Voice Driver

The HSS Voice Driver is a kernel level driver. It conforms to a Linux character device

driver model. It initializes and manages voice channel communication with the

Hardware Access Layer Driver. The customer application accesses the different voice

channels managed by the HSS Voice Driver via the standard Character Driver

operations (open, ioctl, read, write, close). A single file descriptor is used (/dev/hss-

voice), and the different channels are multiplexed within the driver. Clients can access

multiple channels per file descriptor if they so wish. For example, a single threaded

client may wish to access multiple channels on one file descriptor, whereas a multiple

threaded application may wish to access multiple channels by having multiple file

descriptors which are each used to access a single channel. The HSS Voice Driver

API is described in Appendix 0

The API has been summarised here:

• Open – opens the /dev/hss_voice device, the device may be opened up to 128

times

• ICP_HSSVOICEDRV_PORT_UP - ioctl command to bring up the port.

• ICP_HSSVOICEDRV_PORT_DOWN - ioctl command to bring down the

port

14

• ICP_HSSVOICEDRV_CHAN_ADD - ioctl command to add and configure a

voice channel.

• ICP_HSSVOICEDRV_CHAN_REMOVE - ioctl command to remove (delete)

the channel, specified by the channelId in the parameter.

• ICP_HSSVOICEDRV_CHAN_UP - ioctl command to enable data flow on the

channelId, specified by the channelId on the parameter.

• ICP_HSSVOICEDRV_CHAN_DOWN -ioctl command to disable data flow

for the channel id specified in the parameter.

• ICP_HSSVOICEDRV_CHAN_BYPASS_ENABLE - ioctl command to create

a unidirectional channel bypass between the channels specified in the data

structure of type icp_hssvoicedrv_channelbypass_s passed as parameter.

• #define ICP_HSSVOICEDRV_CHAN_BYPASS_DISABLE - ioctl command

to remove a unidirectional channel bypass between the channels specified in

the data structure of type icp_hssvoicedrv_channelbypass_s passed as

parameter.

• ICP_HSSVOICEDRV_STATS - ioctl command to display the stats for the

HSS Voice Driver.

• Read – read data on an active channel

• Write – write data to an active channel

• Close – frees up the device driver.

For the remainder of this document we use abbreviated terms for the above functions

as follows:

Open, PortUp, PortDown, ChannelAdd, ChannelRemove, ChannelUp, ChannelDown,

Read, Write, Close

The mapping of the abbreviated term to real function should be obvious to the reader.

The parameters to each IOCTL are explained in further detail in API documentation

in Appendix 0. There are certain options within the API that place limitations on the

system, such that if those options are chosen it is not possible test all product

requirements under certain configurations, these limitations are as follows:

15

• Internal loopback of the HSS Voice can only be configured with analog

mezzanine configuration in the PortUp command. This limits channels to 32

per port. It is not possible to test the requirement of 128 channels using this

configuration because 3 HSS ports @ 32 channels each only allows for 96

channels.

• Internal loopback configuration will not work if there is an external mezzanine

plugged into the same port being configured for internal loopback. This makes

it impossible to create an automated test run to test all possible combinations

on one system

• Analog mezzanine does not provide a loopback mode so is not amenable to

fast test execution tests which look at lots minor variations in channel

configuration (The external test equipment is ~ 100 times slower to configure

and run and get results from)

• byte swapping cannot be tested in internal loopback or framer loopback , this

is due to the asynchronous nature of framer loopback it is not always possible

to read back data as it was written in the same order

• External test equipment is not able to test bit endianess or bit inversion or Idle

Modes

2.1.2 Test Code Design Implications

This thesis compares the testing techniques of the current test suite based on the

requirements driven methodology of test case selection against the methodologies of

boundary value analysis (BVA) and Defined-Used (DU) testing applied in a black box

scenario. In order to complete the analysis of testing techniques within a reasonable

timeframe the comparison of test methodologies has been narrowed down to apply to

the HSS Voice Driver only.

As described in the previous section, the HSS Voice driver provides functions for

configuration of the driver and for transmitting and receiving of data. The tests for

this driver need to ensure that the driver can be configure the system successfully,

transmit and receive traffic, and are able to free resources afterwards.

16

The T1E1 Framer is used as the external interface to loopback traffic generated

internally by the test code. The T1E1 framer configuration is common across all 3

techniques with the exception that the requirements driven test suite uses internal and

external traffic generation. Voice traffic is required in order to verify that the system

setup is functioning as expected. Voice traffic can be either generated internally via

the test code or externally using voice traffic generator equipment. The major

differences in external and internal traffic generation and its implications to the test

environment are explained below.

2.1.2.1 Internally generated traffic

Internally generated traffic can be created for every byte in every channel. Every

channel requires a 16 bit channel number identifier, a 16 bit payload length and a

payload length of 80, 160, 240 or 320 bytes. The payload can be generated using rand

(), a random number generator function, provided by the C stdlib, and the seed value

can be generated using system time. Multiple channel data can be grouped together in

one data buffer and written on one file descriptor, as illustrated below:

Data Buffer: len | channelId | payload || len | channelId | payload || etc.

The Hardware Access layer software copies this data to its own internally allocated

memory then passes this data on to the Programmable I/O unit (PIO). The PIO

processes the data for transmission on the HSS Bus. The T1E1 Framer device

receives this data on its Tx line and, when set to internal loopback, it loops the data

back to the Rx line to be sent back to the Programmable I/O unit. The Programmable

I/O unit places the received data into a memory location set by the Hardware Access

layer driver, which in turn copies the data to the user space application. The

programmable I/O unit transmits idle data when there is nothing to be sent from the

Hardware Access layer driver. This means that idle data is looped back and is piped

through the system to the user space application. The implication of the transmitted

idle bytes from the Programmable I/O unit means that the received payload in the

user space application payload could also contain all idle bytes, a mix of idle bytes

and bytes transmitted by the user, or all the bytes transmitted by the user. It could

17

take more than 1 read of the HSS Voice driver to retrieve back all the original data.

To be able to filter out idle bytes, the internal generation of payload data above must

ensure that no idle byte value is inserted into the payload. Once the receive side has

read back the number of bytes transmitted the test code performs a compare of the

data written and data read. This is illustrated in Figure 2 below. The transmission is

successful only when the data matches exactly, if not, the sent and received data is

printed out for the tester to analyse.

The drawback of this type of testing is there is no measure of time taken to send and

receive back the data. Minimisation of transmission delays is important for the end

user experience in voice transmission systems. To measure the transmission delay

this way is a catch22 scenario. The test application is using up CPU resources in

processing the received data, which in turns adds delays to the processing done by the

Hardware Access layer. To measure transmission delays of the HSS Voice driver and

dependent software requires the use of externally generated voice traffic and minimal

user space processing.

18

User Processing Thread

User Processing Threads

HSS Voice Driver

ProccessThread

{

.

.

GeneratePayload(...);

BytesWrittem = WritePayload(...);

while (BytesRead!=BytesWritten)

{

ReadPayload(…);

}

Compare(WriteBuffer, ReadBuffer);

.

.

}

Tx Rx

Progamable I/O Units

Tx Rx

T1E1 Framer

Tx Rx

Hardare Access Layer

Tx Rx

Test

{

ConfigureFramer();

OpenDriver(…);

AddChannels(…);

BringUpChannels(…);

SpawnProcessingThreads(…);

While(TransmissionNotComplete)

{

}

BringDownChannels

RemoveChannels

CloseDriver

}

Figure 2 - Test Code Design for Internally Generated Voice Traffic

2.1.2.2 Externally Generated Traffic

Externally Generated Traffic can be done using off the shelf voice traffic generators.

These provide the ability to:

• Simulate voice traffic over various interfaces (such as T1E1, Analog and

VoIP),

• measure the transmitted and received signal (from the DUT) , analyse it, and

provide a Voice Quality Score such as PESQ score,

• Measure the delay in between transmitted and received signal,

• Many other measurements, echo, signal loss, ect….

The test code requirements for this are simple: Use the driver to configure the system

to match the external traffic generator, i.e. match the timeslot on the E1 line. Then

setup threads to read the HSS Voice driver and write back the received data to the

HSS Voice driver. The voice traffic generator does the rest of the work. The cons to

19

this method of testing are that; it generally not possible to automate the configuration

of the test equipment to match the configuration of the test. Also whilst it is possible

to automate the loading and running of a manually created configuration, it still takes

time to configure the voice traffic generator for each test, and this results in longer test

execution times. There are no external voice generators available to test multiple

timeslot channels, which is part of the HSS Voice driver API.

2.1.3 The Test Environment for Test Method Comparison

The Internal loopback traffic scenario is able to test all the HSS Voice driver

configurations, with the only drawback being that it cannot accurately measure

transmission delays in the system. The test selection methods being investigated are

functional black box testing methods, where as transmission delay is more of a

performance issue, which is considered outside the scope of this investigation. Based

on this test cases have been developed using BVA and DU test cases to test in an

internal loopback environment only.

The existing requirements driven test cases use a combination of externally generated

traffic and internal loopback tests. The amount of tests using the T1E1 framer

configured for E1 is rather limited due to the one timeslot limitation of the E1 voice

traffic generator equipment. The Analog mezzanine is used far more frequently in

tests because the Analog mezzanine is able to sample at variable rates and use one or

more HSS timeslots accordingly. For comparison purposes these tests will be run as a

means of testing timeslot configurations, there are E1 tests that test all 128 channels

and Analog tests that test use of multiple timeslots, and for this it should not matter if

the traffic is internally or externally generated.

For E1 internal loopback, data can be transmitted and looped back on a complete

digital transmission medium, no data loss should occur, making it possible to do a

direct comparison of data transmitted vs. data received which is looped back by the

T1E1 framer device The decision to use the T1E1 interface is based solely on the

fact that it can provide the maximum number of channels (128) that the HSS Voice

driver supports, where as the Analog Mezzanines can only provide a maximum of 12

20

channels. The comparison of methods has been applied on the use of the HSS Voice

driver only.

2.2 Version Control

The company uses an off the shelf product by IBM called Rational Clearcase as

means of version control on source code. From this it is possible to extract versions of

code based on a date or on a release that is labelled in the version control system.

A release package is created using scripts which extracts code from the version

control system. The release package is a zip file that contains all source code and

makefiles that is able to be compiled on a Linux system. In this thesis we report on the

testing of an internal build55 and version 1.0 which was released to the customers.

2.3 Software Engineering Practices

Software development within the EP80579 project uses the waterfall lifecycle model

for development and maintenance activities. The model is used on a per release basis.

The phase for design, coding, testing and release are clearly defined at the projects

conception. A preceding phase must be completed before the next starts; phase

completion is judged by the outcome of the phase matching the requirements defined

by the previous phase. In terms of how this applies to development and test teams at

the company; Software development Engineers review product requirements with

marketing and agree on what can be delivered and when, normally this is in a series of

phased release with incremental functionality added with each release. Each release

then has its own cycle of design-code-test-release and only when this phase is

complete does the process move onto the next phased with new features.

21

Requirements

Design

Implementation

Testing

Maintainence of

Released Code
Next Phase

Figure 3 – Waterfall Lifecycle Development Model

One of the weaknesses of this model is that requirements change during the design,

coding and testing phases. At the company this is handling by a process of change

management. Change requests are analysed by development and test engineers. An

impact analysis is performed and if the impact is acceptable in terms of value added

vs. delay of product then the appropriate changes are added to the project.

Software development engineers write the design documents that aim in helping

coders implement code to meet the software requirements. The system test engineers

are involved in the review of these documents. This helps to identify at an early stage

that the proposed design will cover the software requirements. A poorly conceived

software API that requires re-design in the testing phase can cause considerable extra

cost to a project, such as the wasted effort in coding the initial API + the test code that

went with it.

The test engineers use the design documents and software requirements to put

together a list of tests that will validate the software requirements. The development

team are involved in the review of test specifications to ensure that the testing covers

all the software requirements.

Whilst the developers code up the software the system test engineers write their test

applications so that once the developers are complete the test team is also ready to run

22

their test applications to validate the requirements. This approach minimises delays in

making a release to customers. The development engineers are responsible for unit

testing and integration testing of their own code. Unit testing is aimed at testing the

API of one component, checking boundary, return values and out of order calls to the

API. Integration testing aims to run an API with its dependent underlying API’s to

ensure that components work together. The test engineers perform the system level

validation testing. Quite often this can be very similar to integration testing, however,

the test team are some what removed from the development team, and their tests are

developed based on a specification (via design documents and API’s) and the result of

this is that the suite of tests developed by the test team can be very different from the

way the developers have tested it. In addition to this, the test team try to exercise the

system via external means as much as possible. If a system is intended to process

incoming data from external systems, this means the test team will use external traffic

generators where possible. Whilst the development are more likely to use input test

vectors to simulate traffic. The approach of developing tests in isolation from the

development team and use of external system stimulation by the system test Team has

been effective in finding defects in software that has complete and passed all

development integration tests.

The system test team use Clear Quest Test Manager [23] (CQTM), BIRT (Business

Intelligence and Reporting Tools [22])reports and in house solution of extracting tests

from CQTM and running them on the system under test. This allows for complete

automation the execution and reporting of tests results. CQTM is a tool developed by

IBM, to manage test cases from conception through to execution. It is essentially a

front end to a clearquest database that allows users to set up their own schema, which

for the test team at Intel, this allowed for tests to be added to a database. The tests

could be

• Arranged into test suites,

• Run in iterative stages,

• Have execution states such as planned schedule, running complete,

• Have result states such as pass and fail.

23

This allows for live updates of test execution status for long running test cycles, for

test suites in the order of 1000-2000 tests that could take up to 2 weeks to execute.

Software requirements can also be added to the database, this then allows cross

referencing of tests that cover requirements. The tool also allows scheduling of tests

and is used in conjunction with an in house developed test Management system, the

test Management system extracts scheduled test from a test suite and runs them on the

system under test.

The status of execution can be easily reported to management, via the use of BIRT

reports, on how many tests have been competed, how many have passed and how

many left to run. BIRT reports is an Eclipse based tool that allows report generation

from databases.

24

3 Related Research Work

In this section we discuss some of the work done by others in the area. We focus on

Black box testing methods and automation. The reason for investigating black box

testing is that white box testing is considered costly/time consuming to develop test

for. We want to find if there are more efficient methods for black box test generation.

We also look at research done into automatically generating test cases as this also has

potential to save time in test development.

There have been many investigations done on comparison of black box testing

techniques, measuring the effectiveness of test techniques and, automation of test

generation. This section summarises some of the previous work that has been done in

these areas that is of relevance to this thesis. A common theme that seems to come out

of the comparison of methods is that it is better to apply a combination of test

selection methods then using one alone. Each methods success seems to vary

depending on the program and normally a second method will pick up the defaults

that the first method misses. The trade of is that multiple methods takes more time to

implement so automation of test case generation is useful to negate this negative of

applying a combination of methods.

3.1 Comparison of Testing Methodologies

There has been previous work done on the comparison of Black Box testing

techniques. Of particular relevance to this thesis is the work done by Wood, Roper &

Brooks [16], where they look at one of the techniques compared in this thesis,

boundary value analysis. Their paper also looks at test generation by code reading by

stepwise abstraction, b) functional testing using equivalence partitioning and

boundary value analysis, and c) structural testing using branch coverage. Each

methods success varied between programs and each method has its strengths and

weaknesses. One of the main conclusions was that a combination of testing

methodologies was better then any one method used in isolation

Seo & Choi [7] have written a paper on the comparison of five black box testing

techniques. Their techniques are use-case driven testing, black box testing using

collaboration diagrams, testing using extended use-cases, testing using formal

25

specifications (OCL or Object-Z). They applied the methods to two software systems,

one for controlling an ATM and the other was a session scheduling system. They

describe the application of each test methodology and list code coverage achieved for

each technique as their metric for each method, although it does not specify whether it

is line coverage, branch coverage or DU coverage that they are comparing. They do

not mention anything about the number of defects found, their summary is more of a

recommendation to test planners to what method to choose if they are looking for high

code coverage of interface coverage between components of the system. This analysis

was not suitable to what the Intel Shannon test team was looking for, as mentioned in

previous sections we wanted to look at other methods to see if they are better at

finding defects.

Bertolino [10] summarised many of the research articles available today on

comparison of software testing and the effectiveness of the various techniques. She

states that there are now so many varied methods of test selection it is difficult to

justify which one to choose. However it does seem from the work that she carried out

that it seems a more effective method testing would be to apply a combination of

techniques as each method would be more likely to find a certain class of defects.

Interestingly, she makes the following statement: “Demonstrating effectiveness of

testing techniques” was in fact identified as a fundamental research challenge in

FOSE2000 Bertolino [10], which shows that there is far more work to be done in this

area. More of the recent research has been looking at model based testing, where test

are derived of a model of the software such as UML. Such models also are considered

suitable to automated generation of test inputs. This report seems relevant to this

thesis for two reasons:

1. We are investigating the effectiveness of test selection methods and comparing

them.

2. We are also looking to at the automation of test generation

Wegner and Grohtmann [11] have investigated and compared random testing against

a technique known as evolutionary testing. Their results showed that for real time

embedded systems, it is a far superior method than random test selection. “When

evolutionary algorithms are used to solve optimization problems, good results are

26

obtained surprisingly quickly”. This method does appear very applicable to the

system test team. The evolutionary test method is a specialised technique for finding

timing related issues. This reinforces the notion by Bertolino [10] that test methods

are good for finding classes of faults, in this instance; timing related faults, and should

be used in parallel with other test selection methods. This work is well worth further

investigation by test engineers of the company.

3.2 Software Testing Effectiveness

This section discusses previous work done on the effectiveness of software testing.

In a paper by Frankls [2] he suggests that there is no definitive evidence to prove that

any software testing method is effective. The paper investigated the application of the

random test case selection on a piece of software approximately 10,000 lines of C

code. The random test cases were broken up into suites of tests to cover functional

areas of the software. On each test suite he looked at the code coverage that a set of

the tests achieved and his summary of this was that the more lines of code covered by

tests the more likely to find faults within a system.

In another paper by Chen, Kuo & Merkel[4] they investigate and compare the

effectiveness of two software testing methodologies’, random test selection and

Adaptive Random test selection (see Chen, Leung & Mak [5]). They look at measures

of effectiveness (E) – Expected number of failure, (P) – Probability of detecting at

least one failure and (F) – the number of test required to run before finding the first

defect. Their findings was the based on the F-measure, Adaptive random testing was

more effective at finding defects that pure random testing. However they also state

that to compare testing effectiveness a high sampling size (test execution) is required

in order to be statistically accurate.

Huber [6] suggests a method of process metrics in determining the effectiveness of

software testing. He does not specify any particular method, process metrics set

testing goals for the test team which act as a motivator to finding tests. For example

one metric might be “Find 20% more defects than the last project”, “Improve test

Coverage by 10%”. To do this testing teams need to be innovative and forward

thinking. Simply repeating the process used in a previous project would not yield

27

improvements. There is no value added if testers implement 10% more tests but find

no extra defects, yet if they write 10% more tests and find 20% more defects then it is

quite obvious to management that the work the test team is doing is effective and is

improving the software quality. In this investigation we can apply this by recording

the time taken to implement the three test selection techniques and measure their

effectiveness by the ratio of defects found vs. time taken to implement the tests.

3.3 Test Automation

Rajappa, Biradar, Panda [12] have presented a method using graph theory which

allows for the automatic generation of test data. This method involved the

representation of a directed graph, as an N x N matrix where N = the number of nodes

in the graph and an edge between nodes is represented as a binary one and no edge

represented by a binary zero. They use a Genetic Algorithm in order to access

combinations of test for suitability. The result is the generation of a large number of

test cases and high code coverage is achieved. The author feels that generation of tests

using such a method is mathematically complex, and the paper also reports that it can

lead to regression testing issues. Since the method generates so many test cases it is

difficult to select a subset as a regression test suite. It can be difficult to find testers

with a high level of mathematical understanding to be able to replicate such a method.

With a large number of automatically generated test case it would be difficult to

justify test case elimination if were required in order to reduce test cycle times.

Javed, Strooper & Watson [13] have published a paper that reports on the automated

generation of test cases. As per other publications discusses here, they mention that

model based test selection techniques have become quite popular in recent times and

that model based software specifications are easy to automate the generation of test

cases. Their particular paper focuses on the automatic generation of test cases using

UML sequence diagrams to generate unit test cases. This method appears particularly

useful in generating test cases early in the development cycle. In this thesis we

investigate a similar method that automatically generates system test data from a

RESOLVE like software model.

B.-Y.Tsai, S. Stobart and N.Parrington [14] present an interesting paper on data flow

modelling. There selection of test cases is based on a DU pairing of hidden data

28

members in a class i.e. local function variables and private data members. When we

compare what they have done it highlights that the DU method applied in this

investigation is really state based testing. The HSS Voice driver provides that puts the

system into a certain state for each Voice channel in the system. We can verify if a

port is up by adding a channel, we can verify if a channel is added by bringing it up,

we can verify if a channel is up by transmitting and receiving traffic on it etc. The

DU method we have looked at in this thesis is based on a functional specification of

the API; With the DU analysis, we can tell the state that the driver, or channels on the

driver, are in. Internal structures of the HSS Voice driver that do not define the state

will be ignored by the DU method used here because we have approached the system

as a black box and are not aware of the internal implementation. One of B.-Y.Tsai, S.

Stobart and N.Parrington [14] main points is that data flow testing can be used in

conjunction with state based testing and that the two methods will find different

classes of faults. The remainder of their paper focuses on the data flow testing as a

white box testing technique which is outside the scope of this investigation.

The next paper we discuss is the motivator for our 3
rd

 method of test selection in this

thesis. Edwards [15] discusses a software specification called RESOLVE (see

Sitaraman M, Weide [18]) that can be used in conjunction with flow graphs to

generate black box test cases. Edwards [15] states the following about the RESOLVE

specification: “In such a specification, an abstract mathematical model of client-

visible state is associated with each type or class, and each operation or method is

characterized by pre- and post conditions”. With this information it is possible to

automatically generate state based tests based on the black box specification of the

object under test.

Edwards [15] references use a flow graph in order to help define test cases. The flow

graph defines functions as nodes and flow of control from one operation to another as

edges in the flow graph. Using this flow graph “define” and “use” scenarios can be

created. “Definitions” are at a node where the operation can potentially change its

value, “Use” occur at nodes were the inputs may affect the behaviour of the operation.

Using the RESOLVE specification: Definitions can be determined from the

specification. The specification gives an indication of the class members whilst the

post conditions of an operation indicate the redefinition of class variables. “Uses” can

29

be determined from the preconditions of an operation. Given such a specification is

possible to apply the analogues of white box testing such as DU testing to apply in a

black box testing environment. The flow graph is used to determine valid DU pairs

extracted from a RESOLVE specification. Edwards [15] paper uses the flow graph

and RESOLVE specification to generate test cases for “all definitions”, “all uses” and

“all nodes”.

30

4 Current System Test Methodology

The method of test case selection used by the test team is based on a requirement

driven method of selection. It is adhoc in that test cases are picked mainly to cover

product requirements and to test the stability of the software. The software produced

is generally a configuration driver that sets up firmware on the system to handle

incoming traffic in a certain way. Examples of this include:

• setting up varying cryptographic algorithms of encryption/decryption data

incoming/outgoing data streams

• configuring TDM lines to process input on a certain number of timeslots

within a TDM T1 or E1 line

These configuration drivers lend themselves well to applying boundary values as test

input parameters. For example “test one timeslot channel on a TDM line then test all

32 timeslots of an E1 TDM line assume that all variations in between are ok”.

Otherwise test selection is based on software requirements and ensuring that a test

exists that covers that requirement. The problem with this is that while it is ok for

validating requirements it is not targeted to finding defects. In addition to this there is

a considerable effort put into implementing and executing test for a feature.

Development teams use the same methodology as the test team for selection of test

cases and input data. The result is that two different teams work independently in

parallel to develop tests that could end up being very similar in nature. The test team

execute their tests after development, whilst the test team invariably find defects;

there is a likely hood that the amount of effort put into implementing test code is

yielding limited results. Is there a method of test selection that is either better at

finding defects, quicker to implement and execute or both?

4.1 Alternative System Test Techniques Investigated

In this investigation we compare the existing requirements driven test selection

method to other black box test selection methods. There are several methods to

choose from, the methods listed in section 1.3.4 list the most basic and well known

methods. There are many more methods of a far more complex nature based on

31

mathematical models, structural models and other models. Some of these have been

mentioned in section 3. For this investigation we wanted to take the learning’s from

the modules taken in the MSc Software Engineering course and take something from

the outside software testing community. We chose the boundary value analysis as one

of the Black Box testing methods that was covered in the MSc Software Engineering

modules. It is a method that finds a well known source of faults in many software

projects, it is easy to implement and does not require experienced software engineers

to use it. We reviewed several papers for an alternative Black Box testing method.

Some of these have been listed in section 3 of this thesis. For our second method we

chose the DU test cases generated from the RESOLVE method as described in

Edwards [15] and discussed in section 3.3. Other method were considered and have

been have discussed below.

4.1.1 Requirement-Based Automated Black-Box Test Generation

We looked at a paper from Tahat, Bader, Vaysburg & Korel [19], who investigated,

requirement based automated black box test generation. Their report discussed

automated generation of requirements from specification description language (SDL).

SDL is claimed to be highly suitable to real time and embedded systems. SDL is well

suited to full scale projects because of its abilities to interface with other languages.

Such languages include other high level notations for analysis such as unified

modelling (UML). Furthermore there are tools available that can generate executable

code such as C\C++. It was felt by the author that the time taken to become familiar

with the technique does not fit into the timeline for submission of the thesis. Also the

requirements of the HSS Voice driver are quite vague and it was felt by the author

that an accurate SDL model could not be constructed to create an auto generated test

suite. We also wanted to look outside requirement driven test selection as we are

already using this method very similar (although not based on SDL).

4.1.2 Structurally Guided Black Box Testing

Kantamneni, Pillai, & Malaiya [20] have published a paper which describes a method

of structurally testing a system using Black Box techniques. Structural testing

involves deep inspection of the code and the creation of tests to cover all parts of the

code. Common Coverage criterion includes branch coverage and statement coverage.

32

Techniques normally used to creates test for these are path testing, DU testing, all use

testing etc. This is the domain of white box testing as it is not possible to see the

internals of the code to be able to structurally test it in Black box testing. How can

structural analysis be applied to Black box testing? Also how can a reasonable amount

of code coverage using traditional black box be methods be achieved? Kantamneni,

Pillai, & Malaiya [20] approach is to develop a set of tests, analyse the coverage, and

then develop more tests to try to get 100% coverage. This approaches does not lend it

self to automation, although the authors of the paper have suggested that their method

will allow auto generated test cases, perhaps this is suitable to certain systems. It does

not seem suitable for the system we are looking at. Whilst there is a tool called gcov

for measuring code coverage on Linux systems it is not known if this will work on the

Linux 2.6.18 kernel, it was originally developed for the 2.4 kernel and there are some

reports that there are patches for the 2.6 Linux kernel however there is no guarantee

that if we chose to explore this method further there we would be no guarantee that

we would be able to measure code coverage using any of our test methods.

4.1.3 State Based Black Box Testing

State based black box testing, views the software under test as a series of states and

transitions between these states and the inputs and events that cause these states. Test

cases are generated that exercise cause changes in state. The tester is required to

verify that events and inputs change the state as expected and are also required to

monitor for any other activities that occur due to a change of state. A state transition

graph may help identify unreachable states or dead states that cannot be exited.

Because of State based testing being a typically black box style of testing, the actual

internal state of the system under test is not easily visible. Because of this, the

problems of Control and Observation come into play. Control is the ability to ensure

that the correct start state for a test exists. Observation refers to the ability to see the

final state of the system after a test has been run.

State based testing allows for easy automation of test case generation, there must be

an explicit mapping between the elements of the state machine (states, events, actions,

transitions, guards) and the elements of the implementation (e.g., structures, functions,

parameters etc.)

33

The following Checklist for analysing that the state machine is complete and

consistent enough for model or implementation testing:

• one state is designated as the initial state with outgoing transitions

• at least one state is designated as a final state with only incoming transitions; if

not, the conditions for termination shall be made explicit

• there are no equivalent states (states for which all possible outbound event

sequences result in identical action sequences)

• every state is reachable from the initial state

• at least one final state is reachable from all the other states

• every defined event and action appears in at least one transition (or state)

• except for the initial and final states, every state has at least one incoming

transition and at least one outgoing transition

• for deterministic machines, the events accepted in a particular state are unique

or differentiated by mutually exclusive guard expressions

• the state machine is completely specified: every state/event pair has at least

one transition, resulting in a defined state; or there is an explicit specification

of an error-handling or exception-handling mechanism for events that are

implicitly rejected (with no specified transition)

• the entire range of truth values (true, false) must be covered by the guard

expressions associated with the same event accepted in a particular state

• the evaluation of a guard expression does not produce any side effects in the

implementation under test

• no action produces side effects that would corrupt or change the resultant state

associated with that action

• a timeout interval (with a recovery mechanism) is specified for each state

• state, event and action names are unambiguous and meaningful in the context

of the application

34

5 Test Case Selection Techniques

This section describes the decisions that were made in how selection of test inputs are

handled for each test method

5.1 Boundary Value Analysis

Boundary value analysis technique was chosen as a test technique as it is easy to

apply and it focuses on finding a common source or faults which is at the boundary of

inputs values to an API. The boundary value analysis tests exercise each input of the

API as listed in Appendix 0. There are some functions in this API that don’t have

explicit input values however the description of the API and the design document

indicates the presence of certain internal counters that puts range limits of functions.

The inputs have also been selected based on the policy of positive tests only. This is a

policy decision that is based on the assumption that the customers of the product have

expert software engineers that use the API to create their own programs and should be

able to use the API as intended. Based on this the inputs and boundaries have been

identified as follows:

Open can be called to open the driver up to 128 times. This indicates the presence of

an internal counter required to check the open limit. Therefore the boundaries

identified for open are 1 to 128

PortUp requires a HSS port identifier, a port configuration and a loopback mode.

There are three HSS ports on the system under test, each value is expected to be

processed the same regardless of its value, therefore the range is 0 – 2. The port

configuration for our BVA tests will be hard coded to use the T1E1 framer, there is an

internal loopback configuration, however we chose to not to test this option due to the

limitations on automation (see section 2.1.1 for more details on configuration

limitations). There are 2 other configurations that are not possible to test because the

T1E1 framer hardware does not support it (They are there to support a customer who

provides their own T1E1 framer)

ChannelAdd requires: a channel number from 1-128, a HSS port from 0 - 2 to link the

channel to, a HSS port timeslot map to assign the channel too.

35

The API description mentions that up to 128 channels can be added to a client, so

there must be in internal mechanism that tracks this. A client could potentially add all

timeslots as well so we need a range for this. We should test 1 channel on a client and

128 channels on a client and we should test 1 timeslot used on a client and 128

timeslots used by separate clients.

The remaining functions do not require boundary value analysis due a policy of

positive tests only. This policy is based on the assumption that customers will use the

software with the correct inputs, so invalid inputs do not require testing. Secondly the

boundary value analysis was intended to tie into the existing test code framework

which has not been designed for negative testing. The only option after channelAdd is

to:

• bring all the added channels up,

• write and read on all the added channels

• bring all the channels down

• remove all channels

• close all clients using /dev/hss_voice

The ranges for each function have been detailed in Appendix II

5.2 DU Coverage Applied to Black Box Testing

This section describes the RESOLVE like model used and how test cases can be

extracted out of it. The main reason this method was chosen was that it allows for

automatic generation of test cases. Automatic test case generation makes our test

development phase more time efficient, later on, in section 9 of this document, we

discuss the results of using the RESOLVE like model in automating the generation of

test cases.

The RESOLVE discipline as described by Sitaraman & Weide [18] is quite complex.

It requires working with experienced engineers who have used the discipline to gain a

full understanding on how to define it correctly. Likewise, the RESOLVE

specification was not design for test automation either - It is a formal specification for

a software design. In this investigation we used the RESOLVE principles described

36

by Edwards [15] to create DU test cases based on a function description. We define a

RESOLVE ‘like’ specification which can be used to extract definitions and uses of

variables that are described in the API documentation and design documents to create

DU test cases in an attempt to structurally test the HSS Voice Driver.

The RESOLVE ‘like’ specification contains global variables; the global variables are

equivalent to the global context in the true RESOLVE specification. It contains an

interface that defines the API operations; each operation uses the keywords from

RESOLVE that have been interpreted in Table 1 below:

RESOLVE operation keywords Usage

Alters

the functions alters a global or internal

variable

Consumes these are parameters to one function of

the API

Produces output or return of the functions

Requires use case of a global or parameter to a

function

Ensures defines or redefines a global or local

variable of a function

Preserves value is constant in this function (not uses

in our analysis)

Table 1 - Resolve Keyword Mappings

For our testing purposes can use the following keywords to extract DU pairs:

• Global variables and ensures are the instances of D and,

• Requires are instances of U.

Edwards [15] uses a flowchart in his method to help select valid paths, for the HSS

Voice Driver this is not required. The normal order of calls to the HSS Voice driver is

as follows:

1. Open

37

2. PortUp

3. ChannelAdd

4. ChannelUp

5. Read/Write in any order

6. ChannelDown

7. ChannelRemove

8. PortDown

9. Close

Valid DU test cases can be determined from the operations of the RESOLVE ‘like’

specification that specifies its operations in the above listed order, provided that the

following rules are adhered to:

• Ensures are defined do not use AND or OR

• Requires use AND or OR for conditional statements

• If a variable being analysed for its D and U cases is not redefined

before it is used then it is a valid test case. If a function is called in the

above order before a use case then we skip calling that function.

• If a variable is defined below a use case in the specification we have to

call the functions in the above listed order again skipping any functions

that re-define until we hit the use case

• Close cannot be called without a valid file descriptor, an invalid file

descriptor does not test the HSS Voice driver at all as a valid file

descriptor is the only link to the HSS Voice driver

Due to the fact that we want to exercise as many DU combinations as possible, we

end up creating test cases that require incorrect use of the API in order to follow a

code path that exercises the DU pair. The company policy as described in section 5.1

is not to implement these types of test cases. However with this method of test case

generation we get these tests for free, and if we did not execute these then the method

essentially is reduced to an equivalence partition method that is equivalent or less

likely to detect defects than Boundary Value Analysis. We can check that it is not

possible to add channels to a port that has not been configured, we can check if we

38

can re-configure a port, try to bring up a channel that has not been added, this method

will check a whole range of these types of issues. The RESOLVE ‘like’ specification

that we have derived for this investigation is listed in Appendix III.

5.3 Requirements driven Selection

This section briefly describes the scope of testing of the EP80579 IP Telephony

Package as defined by the system test plan. The system test plan is a required

document as part of the product development process that describes what is to be

tested by the system test team and how many resources are required to execute the

plan. This section looks in more detail at the potential overlap with development

integration testing.

Figure 4 shows components of interested to the system test Team. The lightly shaded

components have been planned to be tested by system. The development team test the

lighter shaded and darker shaded components. Each team produces their own

implementation of test code.

To help minimize overlap between system test and development team and maximize

the system test team effort to find customer scenario defects. API verification is

outside the scope of system test and is regarded as a unit test activity; therefore

system test code policy is not to check the following:

• Parameter checks

HSS Data

Driver

HSS Voice

Driver

FXS/FXO

Analog Driver

T1E1 Framer

Driver

SPI Access Driver

Test Code

Hardware Access Driver

Figure 4 Software Components to be Tested

39

• Boundary conditions for API parameters

• Return codes

• Out of sequence API calls

The plan by the system test team to test the HSS Voice driver is to use the API to

setup channels and the Linux user space read/write access to create or loopback traffic

to external sources. Tests are selected to cover each requirement of the product

requirements document and if specific internals in suggested by high level document

then tests are also selected to target such internal mechanisms. Based on this, the tests

selected have been listed in Appendix IV. There are a total of thirty nine tests that

have implemented to test the product requirements.

These tests cover much more than the BVA and DU method test case. To implement

tests within the timelines of the Thesis, the scope has been cut down to only test the

HSS Voice Driver using the T1E1 framer as the external interface. The tests listed in

Appendix IV test:

1. combinations of the all drivers

2. combinations of channel sizes

3. all Analog interfaces

4. all T1E1 interfaces

5. specific firmware processing features – bit endianess, bit inversion

6. design features – handling of transmit over flow scenarios

7. stress testing – continually enabling and disabling channels whilst data is

processed on other channels

Since BVA and DU tests do not cover items 1, 3, 5, 6 these tests should be excluded

from the comparison. For item 3 however it is normally possible to adjust these tests

to use the T1E1 interface. They use a combination of channels sizes which is not

possible to test using the external test equipment and due to test code limitations is not

possible to test in an Internal Framer loopback scenario. Therefore all tests using the

analog interface shall be included. The author is confident that he can filter out

40

defects that are specifically related to the Analog Driver in this instance. This shall be

discussed further in section 8.

41

6 Generation of Test Cases

This section describes the generation of test cases for the three methods being

compared. As a general rule the policy of the system test team is to test positive test

cases only. For the following reasons:

1. The role of testing out of order API calls, boundary value, and parameter

checking has traditionally been the responsibility of the development teams in

either their unit or integration tests. If development have implemented their

tests correctly there should be a low probability of finding defects in negative

test cases.

2. Intel customers will have their own experienced software engineers

developing a product to be sold onto the market place. These customers are

considered quite capable to use the API correctly. Intel also provides

Engineering support to help customers iron out any usage issues.

The risk of the system test team not performing negative test cases has been ranked as

low based on the above to factors. Therefore this strategy will also be applied to BVA

and the DU test case generation.

6.1 Current Test Framework

The system test team at the company have a framework for testing that is re-used

from project to project. This framework allows for the storage of test inputs in a C

code file and accompanying files that contains functions to access the test inputs to

configure the system with. The framework is dependent on a testCli application which

allows the user to invoke functions from a loaded kernel module (Linux kernel space

code) or shared object library (Linux user space code). The test code is compiled into

either a shared object library of kernel module, which is then loaded in into the testCli

application for execution.

6.1.1 Current Test Design

The current test design has been developed to work with the framework described in

the previous section. Test input is managed via an array in a C file. Each array index

42

is a struct containing individual test data the array of structures is shown in Figure 7.

The structure of this is shown in Figure 5 below

Figure 5 - test List Structure

The iaSystestHssDrvChanCfg_t is described in Figure 6 below

Figure 6 - Channel Configuration Structure

The list of tests in the array looks like the following:

43

Figure 7 - Structure of List of Tests

The test code provides functions to lookup the testId on the list of tests. It then knows

which ports to be configured and how they should be configured. In the example

shown in Figure 7, test12 uses the 1
st
 HSS port and will be configure for analog. The

channel configuration pointer, tc12_0, describes the channels that will be added to the

1
st
 HSS port. There are four channels to be added to the first HSS, this is indicated by

the last block of values in the test structure, and this indicates how many channels are

described in tc12_0. Test13 uses two HSS ports to be configured for analog, as can be

seen in Figure 7; test13 re-uses the same channel configuration tc12_0 and also adds

four more channels to the 2
nd

 HSS port with a different configuration. There are many

optimizations that could be done to the layout of this code however that is outside the

scope of this investigation.

The test code also provides packet creation and transmission functionality, this has

already been described in section 2.1.2.1. The existing test code also provides

functionality to bring down, remove and close all the channels to return the system to

its original state. There are also some other functions provided to re-map timeslots of

channels and change the channel parameters as listed in the HSS Voice API in

Appendices

HSS Voice API

44

6.1.2 Test Automation

The testCli application is a command line interface that allows for automation.

Normally automation is done using Perl scripts with the Perl Expect.pm module. Perl

Expect is used to check for return codes or output from functions called from the

testCli. Perl can also be used to interface with external test equipment. This system

allows a Perl script to first configure the system under test, then configure external

test equipment to inject traffic into the system, then check the system under test for its

response by verifying that it received and was able to process all the traffic sent by

external equipment or whether it is still stable or check the external test equipment for

responses from the system under test. For example in the current tests design for the

HSS Voice Driver, the Perl script automates test code in the following way:

1. Open the testCli,

2. Load the test code shared object,

3. Call the Run command with the relevant test ID, which configures the

channels and kicks of processing on configured channels,

4. Call a system command to tcl which opens a connection to the test equipment,

loads a specific traffic configuration file then starts transmitting traffic for a

specified time. The test equipment creates a results log file which records

average voice quality scores
2
 and some other statistics,

5. When the system command returns, it is assumed the test equipment is

complete. The script calls a Finish command to remove all channels and close

the Voice Driver,

6. The script opens a log file created by the external test equipment and checks

that the average voice quality score is above a specified value.

The above example is for externally generated traffic, for internally generated traffic

steps 4-6 can be replaced with:

4. start transmitting traffic on all channels

2
 Voice Quality Score is used as a pass/fail criterion for externally generated traffic

45

5. wait for complete message
3
, call Finish command to remove all channels and

close driver

There are some variations on the above for specific tests, but otherwise this pseudo

code covers the automation on 80% of the tests. The remaining 20% of tests can be

difficult or not worth to automating. For example, one of the parameters of the Voice

driver is a bit endianess performed on a channel, this is to enable communication

between big endian and little endian devices. However it cannot be tested in an

internally looped back scenario; as the data has its MSB switch on transmission and

switch again on receive by the Programmable I/O unit, but to the user it is not

possible to see if this switch ever took place. It cannot be tested by External traffic as

it only supports 1 mode of endianess. The only way to test it is to create 2 channels on

the same timeslot but on different HSS ports. One channel is big endian and the other

little endian; loop a cable from one HSS port back to the second HSS port. The traffic

is internally generated from one channel and received on the 2
nd

 and each byte should

appear swapped from how it was transmitted. It takes very little to execute this test,

but the physical configuration of the cables needs to change each time the test is run,

and this makes automation of this test a waste of time. All the others tests can be run

with a common configuration

6.2 Requirements Driven Test Generation

The test inputs for test code generated at the company are based on ensuring that

every requirement has at least one test that covers it. The test inputs are selected on a

manual basis, however there is a bias in selecting the minimum and maximum values

when the API or requirements provides/requires a maximum number of supported

items (In the case of the HSS Voice driver, the API supports a maximum number of

128 channels). The minimum values to an API is always chosen for the reason that

system test engineers always need a simple test to debug their own test code before

they start running tests that involve large input values that stress the system. Another

criterion for test input is to mix up the inputs a bit, if there is an option to run different

configurations together. In the HSS Voice driver this meant creating a client that has

single, twin and quad timeslot channels, have those channels overlap their timeslots

3
 For Internal loopback traffic matching all packets that were sent is the criterion for pass or fail

46

and having multiples of single timeslot channels between quad timeslot channels
4
.

Finally, if there is any customer use case scenarios provided in the development

documentation, then test case are written to cover these scenarios.

For the HSS Voice Driver there are thirty nine test cases specified that test the HSS

Voice Driver and all its sub-components together – see Figure 1. To create a

comparable environment there are some test cases in this test suite that test features

that we have purposefully excluded from the BVA and DU tests as they are not

required to test the features that the HSS Voice driver provided these include:

• tests using analog driver and analog mezzanine

• tests using the Hardware Access layer loopback

Some of these tests have been converted to framer loopback where possible.

Generally it is was not possible to convert them to use the external traffic generator as

they are tests that use multiple timeslots of which the external traffic generator does

not support. Of the thirty nine test cases – twelve can be changed to framer loopback

with internally generated traffic and four stay as is. This left one test that used the

external traffic generator, so it was decided to convert it to framer loopback as well,

the consequences of this has already been discussed in section 2.1.2. The list of HSS

Voice test cases that were executed, were adjusted and run as is, is listed in Appendix

IV.

6.3 BVA Test Case Generator

This section describes the aims and design issues of the BVA test case generator

script.

6.3.1 Deciding how to generate the test code

In order to create BVA test cases with the least amount of effort it was decided to

design a test case generator that creates an array of test inputs that can be executed

4
 Multi timeslot channels do not have to be contiguous, therefore it is possible to interleave timeslots of

channels

47

using the current framework and supporting test API as described in section 6.1.1.

Two methods were considered for the test case generator:

1. A C program could open the file and parse the input to create boundary values

for each function and create a matrix of tests that exercise the maximum and

minimum of each boundary value in at least 1 test or,

2. A Perl script could be written to do the exact same as above

A perl parser was designed to take as input: a RESOLVE like specification to extract

the test inputs and generate DU test cases The parsing of the input file depends

heavily on string matching and splitting of strings. The author had more confidence in

Perl being able to do this as string parsing is one of Perl’s strong points, so Perl was

chosen for the task of parsing the input and creating the test input data for the test

framework

6.3.2 Defining the API Boundaries

It was hoped to parse the RESOLVE like specification list in Appendix III. However

it was not immediately obvious what the boundaries are in this specification. Upon

closer inspection it can be noted that many of the boundaries for the API are in fact

meta data visible to the entire API, and are not explicitly input or output to one

particular function. The API functions update this meta data when called; the internals

of the HSS Voice driver have boundaries on this internal data. As an example, take

the open function: This function can be called successfully up to 128 times, but it does

not take in input of 0 to 128. To make these boundaries clear to the generator a far

simpler file was created to define these not so visible boundaries, this boundary

specification is shown in Appendix II.

As mentioned at the start of this section, the policy of test case generation is to

consider positive test case generation only. The implications of this on the BVA test

case is that we only have to consider boundaries on: open, portUp and channelAdd.

channelUp & channelDown, channelRemove brings up & down and removes the

added channels – so the only input is the added channels. portDown brings down the

port that was brought up in PortUp so the only input is the port number brought up.

48

Close can only be called on a valid file descriptor which can only be obtained by

calling open in the first place. This greatly simplifies the boundary specifications.

The next issue to consider was the use of bitmasks in the API. The author did not find

any publications which gave a suggestion of how to treat bitmasks using Boundary

Value Analysis. When using portUp and channelAdd, both require a port number,

which applies to a physical port on the system: HSS0, HSS1 and HSS2. If each bit

were to result in completely different behaviour such as writing to hardware registers

in a driver then obviously each bit should be tested. In our case we are only looking at

which port we add our channel too so the behaviour for each bit is the same except for

the location of the channel in the system. We chose to use the highest and lowest bit

values for these cases.

When using channelAdd, a timeslot bitmask is required, again the BVA method does

not specify how this should be treated. The bitmask is a structure of four 32bit

integers, this makes 128 possible combinations, which greatly adds to the execution

time, but will it find more defects? Again the bit mask does not reflect a difference in

behaviour, expect the placement of the channel in the system. It was decided to use

the boundaries of each 32 bit integer, so we are testing the lowest and highest timeslot

on each E1 line as inputs, this makes reduces the number of combinations to 8.

The resulting boundary definition of the API has been placed in the text file in

Appendix II. The definition has following format which the parser expects in order to

work properly:

<userInsertedInput> - replace text encapsulated by <..> with your own input such as

operations of the API or input and output names of the API

[text] – is optional, but you need to have at least 1 input or output

? means you can have 0 or more of the preceding item

+ means you can have 1 or more of the preceding item

49

Example:

operation <functionName>

{

 [input]? : <inputVariableName> <max min>+

 [output]? : <outputVaribleName> <max min>+

}+

Operation, input and output are keywords the parser uses to keep track of what it is

parsing

6.3.3 The Perl BVA Generator Design

The BVA Perl script to extract test cases works as follows:

• Open the BVA specification file (BVASpecification.txt),

• Find “operation” keyword and the max and min values for defined by each

input and output keyword in the BVA specification file. Write them to a new

file with each input and output on a new line in the output file (bvaValues.txt),

• Open bvaValues.txt,

• For each line in bvaValues.txt,

o create test inputs for the min value against all other min values of

inputs and outputs

o create test inputs for the max value against all other min values of

inputs and outputs,

o output the test inputs to “test_case_data.txt”

• open the “test_case_data.txt” file, search for duplicated lines and remove

them, this removes duplicated tests cases.

• for each line in “test_case_data.txt”

o get the number of clients to be created,

o get the port to be used,

o get the timeslot to be added,

o get the timeslots to be used by this test

o get the channels to be used

o create the C code for the port configuration

o create the C code structure for channels to be added to

o for every client:

50

� add a channel with the current timeslot to be used to the C code

� check if all the test input satisfies the timeslots to be used on

the current E1 line, increment the timeslot to be added if there

are more timeslots required, otherwise increment the line. If the

line is > 4 increment the port number and set the line to 0.

Create a new port configuration C code structure; create a new

channel configuration C code structure.

� if we have added the max channels to the current port,

increment the port number and set the line to 0. Create a new

port configuration C code structure; create a new channel

configuration C code structure.

� if we are adding the last client, add all the remaining timeslots

required to the last client incrementing the timeslot to be added

each time, create new port configuration C code structures and

new channel configuration C code structures when the

boundaries are met.

� Print a summary of the test case in the list of test see in Figure

7

• Once all test cases have test code generated close off the test case list structure

• Combine all the channel configurations and list of test cases into one file

The Perl script and the input and output of the above design are listed in Appendix V.

6.4 DU Coverage Test Case Generator

6.4.1 Deciding how to generate the test code

Based on the experienced gained out of the BVA test code generation it was decided

to persist with Perl in parsing the specification file to create test code. However due to

the nature of DU testing it was not be possible to use the existing test framework.

Issues such as; the need for calls to the API out of its normal order and; repeated

function calls does not fit naturally in the existing test API framework.

51

This design was based on the setup and teardown the software environments i.e.

initialise and put back to start-up state after each test. If the test does not exit as

expected we reset the system. Each test is independent code with no preconditions

required based on execution of other code.

6.4.2 The DU Generator Design

This section describes the DU generator Perl script. The sections described here can

be referenced as comments in the Perl file in Appendix VI.

The Perl script executes 4 main parts in sequential order. The 1
st
 part is small in that it

parses the specification file of the “global variables”. Global variables are the DU

pairs we wish to find in the specification.

In the second part of the script we look for each global variable in the operations

provided in the specification file. We create an array of definitions and an array of

uses and then we create all the DU combinations of these. Each combination is

checked to see if it is a valid combination, we apply specific rules to judge validity;

these rules are described in more detail below. From the valid combinations we can

create skeleton code of where the function is first defined then used. As we can call

the API in a specific order, we can fill in the skeleton code between the defined and

use cases with the correct sequence of functions calls. We apply an algorithm that

ensures that a variable is not re-defined before it is used. This ensures that we test the

correct DU pair.

In the 3
rd

 part we add variables at the top of the code which tracks the expected state

of the system. We check these variables against pre-conditions of the functions to be

called and set the expected results and set tracking variables based on the post

condition of the functional call and the result expected of it.

In the final part of the script we replace pseudo code with compliable C code. We add

an initialisation function for our tracking variables and we add test code that re-

initialises the system state in case of unexpected results.

52

6.4.2.1 Part 1

Open the specification file and extract the global variables into a Perl array

6.4.2.2 Part2

This section of the Perl script is responsible for finding the DU cases (for the global

variables found in the previous section) in the specification. It is also used to extract

timeslots to be used in a test and ensuring that we keep track of which timeslots were

added in a test. We also need to keep track which functions define or redefine a global

variable so that when test code is created for only for valid DU pairs. This part of the

script creates the duPsuedoCode.c file and the duCoverage.txt which lists all the valid

and invalid DU pairs

For each global variable added to the Perl array in section 6.4.2.1:

� Open the specification file and find all instances of the global variable that is

either defined (‘ensures’) or used (‘requires’). The following rules have been

applied in this part of the Perl script:

o The keyword ‘operation’ is used as a marker, if any processing was

being done on a ‘requires’ or ‘ensures’ we reset their flags. We clear

the function parameters string so that we can add a new set of

parameters for the new operation.

o The keyword ‘consumes’ defines the parameter inputs to a function,

for each consumes line we find within an operation we add it to the

function parameters string. For example if we were parsing the

operation in Figure 8, we read in 3 parameters, a file descriptor, the

port number and the configuration being applied to the port.

operation portUp

{

 consumes: fileDesc

 consumes: portNum

 consumes: config

 alters: portConfig[portNum]

 produces: status

}

Figure 8 - Example of operation parameters

53

o If we find the keyword ‘requires’, we set the flag that we are

processing a ‘requires’ line. If the flag is already set then we assume

the ‘requires’ statement is already being processed. The flag is unset

when we find a subsequent line that does not have the ‘\’ character as

the end of the line. An example of this is shown in Figure 9. The 1
st

line of this figure we find a ‘requires’ keyword, we set the flag and the

flag remains set until the 4
th

 line were there is no ‘\’ at the end of the

line. This is an example of a large conditional statement that applies to

the timeslot map to check that it is valid. In this section of the Perl

code we also apply a special rule that applies to lines 62-90 of our

RESOLVE ‘like’ specification. On these lines we define valid

maximum and minimum timeslot values for each line for single, dual

and quad timeslot channels. The Perl code extracts the timeslot map

which is used later when a channel is added

Figure 9 - Multiple Line Requires Specification

o If we find the keyword ‘ensures’, we set the flag that we are processing

an ‘ensures’ line. If the flag is already set then we assume the ‘ensures’

statement is already being processed. The flag is unset when we find a

subsequent line that does not have the ‘\’ character as the end of the

line. We use this section to keep track of all functions which define the

current global variable we are processing. This is used later when

creating the test code so that we know not to call any functions that

redefine our DU pair before it is used. We also need to make sure that

if we are adding a channel that we keep track in our code of the

timeslot that was added. This is useful if we want to test adding a

channel again with the same timeslot, we can expect that the API

would not allow such a case. When we find an ensures, we add to the

requires: (tsMap.line0_timeslot_bit_map >= 0x00000002 && tsMap.line0_timeslot_bit_map <=0xFFFFFFFF) || \

 (tsMap.line1_timeslot_bit_map >= 0x00000002 && tsMap.line1_timeslot_bit_map <=0xFFFFFFFF) || \

 (tsMap.line2_timeslot_bit_map >= 0x00000002 && tsMap.line3_timeslot_bit_map <=0xFFFFFFFF) || \

 (tsMap.line3_timeslot_bit_map >= 0x00000002 && tsMap.line0_timeslot_bit_map <=0xFFFFFFFF)

54

pseudo code all the preceding functions that occur before the define

operation. For example Figure 10 shows the pseudo code created when

a global variable is defined (ensures) in PortUp and all the preceding

functions open and init are called before it. Then ChannelAdd is the

use (requires) function

o If we find a line with the global definition declared, it is treated as a

definition. The pseudo code is added as init, which is the start up state

of the system

o Lines 233-242 output the DU pairs found for the global variable

o Line 246 – 341 outputs the pseudo code for each DU pair, the pseudo

code adds some test specific into such as timeslots to be used. If this is

not added the default timeslot is used (timeslot 1 on line 1)

6.4.2.3 Part 3

This section re-opens the RESOLVE ‘like’ specification and extracts out all the pre

and post condition test code for each operation in the specification. Preconditions are

specified by any requires line of an operation and post conditions are specified by and

defines line of an operation.

6.4.2.4 Part 4

The final section of the Perl script opens the pseudo code and from this creates the

real test code. Init () in the pseudo code is replace with what the specification

indicates is the initial state of global variables. It also sets some test input parameters

to a default state, such as the 1
st
 timeslot for a channel is always set to timeslot 1.

Test Case 2(void)

{

init

open

portUp(fileDesc portNum config)

channelAdd(fileDesc portNum channelNum channelSize tsMap)

}

Figure 10 - Psuedocode of defined in PortUp and Use in ChannelAdd

55

Some tests update this if a use case requires a different timeslot to be tested. Based on

the pre and post condition code create in the previous section it is possible to

determine if function calls will be accepted or not and if the result of the API call is as

expected for each function call then the test passes. Code is added to the end of the

test to bring the system back to its default state. This involved removing any open

channels, bring down the port unitising the framer and closing the driver. If for any

reason the resetting of the system functions fail then the state of the system is

unknown and the tester is required to reset the system before running any more tests

6.5 Implementation Analysis

This section analyses the efficiency of each technique in terms of the time taken to

implement and test.

6.5.1 Requirements Driven Tests

The requirements driven tests were developed from a very early stage of the project.

The usage model was not well documented and busy timelines by the developers

meant that the system testers had to make their own estimations on the size and scope

of the code required to implement the test framework. Also the HSS Voice test code

framework was planned to be integrated with HSS Data test code framework so that

test inputs work with either feature. This made the task difficult to implement due to

limited availability of assistance from developers, and complicated to integrate a test

framework to two features. The time taken to implement the framework was recorded

for the combined HSS Voice and HSS Data test framework. This took 6 weeks,

however the code divided roughly 50:50 to the two features so for comparative

purposed the HSS Voice Driver tests took 3 weeks to implement. The author was

responsible for the software architecture of the HSS Voice test framework.

Implementation was done by a graduate student. The author later took on execution of

tests on the system under tests. There were quite a few lessons learned when

attempting to execute the combined feature test framework which resulted in a large

churn of the test code framework. The result of this is that the author gained an in

depth knowledge of the system and what is possible and what is not. The learning

from executing and debugging the HSS Voice test code framework, made the task of

56

implementing and executing the boundary Value analysis and DU test code generator

much easier, so a time analysis of the each methods is somewhat skewed.

6.5.2 BVA Tests

The BVA test code was designed to run off the existing test framework so in effect

90% of the work for this was already done and we just had to write a script to extract

test inputs from a specification and create the test data file. The time taken to

implement the test code generator and run the tests was 20 hours, (~ 3 days work).

However the test case generator only generated 29 test cases. The author feels that

you could manually create the same code in 1 day. So the automated test generation of

black box tests does not seem very time efficient. The test code generator heavily

linked to the test framework. If this were to be applied to a different software product

where the API is completely different then the test framework would have to be re-

written and so would the test generator. You could use the general process of the

BVA test generator script to create a new generator, but it does not seem worthwhile

to try improving a task that only takes 1 day in the first place.

6.5.3 DU Test

The DU test code by its nature could not use the existing test framework. The

generator was required to generate a completely new test application code. It took ~50

hours (~1.5 weeks) of work to create the Perl script and execute the test. The bulk of

this work was in implementing the Perl script. The tests take about 1 hour to execute

using an automated Perl script to call each test. The test execution used the automated

framework that was already in place that ran the Requirements driven tests; it was

simply a matter of editing the Perl script slightly to call the DU test code function

calls instead of the Requirements driven test case function call and add some code to

reboot the system if the test did exit gracefully.

Although it takes a long time to create the test generator script. The test code is

complete and not dependent anything except the HSS Voice driver. This method was

the most time efficient method of creating a test suite.

57

7 Test Results

The test cases for each method were run on an early build (build55) and then rerun on

the first customer release of the package (version 1.0). We re-run the tests to see if

one method is better the others at identifying defects early and to check if the fixing of

defects from an early build does not affect the code in some other way in a later build.

The early build is the first available package that is able to make all the kernel objects

required for the HSS Voice Driver. It is possible to extract earlier versions than

build55 from the version control system, but the T1E1 framer driver was not working

to an extent that it was able to process traffic. The number of defects found for each

method vs. each build is summarised in Table 2. Table 3 lists the type of issues found

in each test run. The most common problem discovered by all techniques is that bytes

could be missing or duplicated in a payload received back from the T1E1 Framer

device. The number of bytes missing or duplicated appears to be directly related to the

size of the channel, 1 byte repeated or missing for 80 byte channels, 2 bytes repeated

or missing for 160 byte channels and 4 bytes missing of repeated for 320 byte

channels. This observation has been categorized into 1 defect for counting purposes in

Table 2.

Defects Found Tests Run

Build55 Version 1.0

Requirements

driven test

Method

13 3 0

boundary Value

Analysis

29 2 0

DU tests 89 2 1

Table 2 – Defect Count for each test method

Table 3 below shows the defects found in each method and on each version of the

software it was run against ….

58

Defects Found

Build55 Version 1.0

Found Issue of 2 bytes

repeated in a Framer

Loopback test

Found Issue of 4 bytes

repeated in a Framer

Loopback test

Found Issue of 4 bytes

missing in Framer

Loopback test

External Traffic does not

work

Requirements driven test

Method

Analog and Framer does

not work together on a

system

No Defects Found

Found Issue of 1 bytes

repeated in a Framer

Loopback test

Found Issue of 2 bytes

repeated in a Framer

Loopback test

Found Issue of 4 bytes

repeated in a Framer

Loopback test

Found Issue of 1 bytes

missing in a Framer

Loopback test

Found Issue of 2 bytes

missing in a Framer

Loopback test

boundary Value Analysis

Found Issue of 4 bytes

missing in a Framer

No Defects Found

59

Loopback test

Firmware Error Reported

bringing up 128 channels –

system reboot required

Stability Issue when

removing 128 channels
5

DU tests When there are channels

still associated to the

device, Close returns

success when it should

return fail

When there are channels

still associated to the

device, Close returns

success when it should

return fail

 Found Issue of 1 bytes

repeated in a Framer

Loopback test

 Found Issue of 1 bytes

missing in a Framer

Loopback test

Table 3 - Summary of Defects Found

5
 This issue was only observed once and could not be repeated in subsequent tests

60

8 Analysis of Results

The follow sub sections analyse each of defects discovered by the test techniques

employed as list in Table 3 - Summary of Defects Found.

8.1 Combined Usage Of Analog and Framer Mezzanines

The results listed in section 7 are relatively limited and at first glance do not show any

clear choice of a preferred test method. The requirements driven test cases reveal 1

more defect than the BVA or DU tests. This extra defect was found by a test that we

explicitly stated in BVA or DU that we would not test nor compare against the

Requirements driven test cases i.e. tests that use the Analog mezzanine. However it

does show the importance of combinations of features working together and it is felt

by the author that BVA and DU methods may not have found this issue of a T1E1

framer and the Analog Mezzanine working together at the same time. Both the BVA

and DU methods are not capable of generating a test case with such a combination,

they either test with one or the other. It is possible that a tester could run all Analog

mezzanine tests on one day, then the next day come in change the physical setup on

the system by swapping the Analog mezzanine with a T1E1 framer and run framer

tests on the new nightly build. If on the same night the developer makes a change to

the driver that results in the Framer working and the Analog card not working then the

defect would go unnoticed for a while, unless a test exists that use both cards in one

test. In reality this is exactly what happened, the development team whom each were

responsible for testing their own driver, did not have tests that use a combination of

mezzanines cards. Whilst the very definition of system tests means all features should

be tested working together. This seems to be a major drawback of the BVA and DU

methods that it is not capable to create such a scenario. We would have to extend

BVA to combinational BVA and extern DU to all DU paths to find such

combinations.

8.2 Missing/Repeated Bytes

The results tables in section 7 tables does not show is that the boundary value analysis

test were better able to find the distribution of bytes missing/bytes repeated in the

61

tests, it also makes it clear that the number of bytes missing or received is tied to the

channel size, this can been seen in the detailed results in Appendix IX. The BVA

result from build 55 also leaves an open issue: why do single timeslot channels

sometimes fail with repeated bytes and sometimes fail with missing bytes. We

decided to run 2 tests repeated 20 times over the resulted are tabulated in Table 4

BVA testId

Number of Times

Bytes were missing

Number of Times

Bytes were

repeated

Number of times

test passes

22 7 4 9

26 8 5 7

Probability of

Occurrence

37.5% 22.5% 40%

Table 4 - Incidence of Repeated and Missing Bytes in Build55

The pattern is not obvious in the results from Requirement driven tests or the DU

tests. This could be useful information to help development root cause the issue.

8.3 Straight Through Traffic on Framer not working

The requirements driven test cases found that the Framer did not work in normal

throughput mode. The BVA or DU methods could also have found this defect if

repeated using Framer throughput.

8.4 Bring up of 128 channels Causing Firmware Error

There was a problem encountered in Framer loopback tests when bringing up a test

that required 128 channels. Whilst the Requirements driven tests and BVA tests had

such test cases the problem was not identified in the requirements driven test case.

Requirements driven test for this case used external traffic with CPU loopback whilst

the BVA test case used internally generated traffic with framer loopback. It should

also be noted that even though external traffic was not possible in build55. It was still

possible to bring up all 128 channels. The reason that BVA found this issue was

traced down to differences in the test code framework. Both methods use the same

test code however difference functions are uses for looping back external traffic and

62

generating/checking internal traffic. The function that processed external traffic when

bringing up the channels has a small delay in the code after each channel was brought

up. The code for generating traffic had no such delay. This defect cannot be attributed

to BVA analysis alone as it was not a particular boundary the resulted in the defect

rather is was cause by calling the channelUp function repeatedly to fast. If the test

framework had been consistent both methods could have found such a defect.

8.5 Stuck in loop closing channels

One of the BVA tests discovered an issue when removing channels. It appeared to get

stuck on continually sending messages to the Programmable IO unit to remove the

channel. This issue was not reproducible on subsequent re-runs of the test. It was not

considered in the count of defects in Table 3. Such a defect would likely be exposed

on a stress or reliability test.

8.6 Close not returning Error when channels are still open on

the device

The DU test cases found one issue that was unique to this method. It also highlights

the importance of a documented API. In this instance the error was due to Linux and

it is not clear from the documentation why Linux in this case returns the value it

returns. Some test cases looked at DU combinations that required portDown to be

called before channelRemove. In such case the portDown call was expected to fail

because the API specifies that all channels on all clients need to be removed from a

port before it can be closed. If a function call returns the expected result then the

function that normally follows is called, which in the above case is close. Close is also

expected to fail because the channel still exists on the client. However Close returned

success when it was expected not to. Further inspection of this problem revealed that

the HSS Voice driver returns an error code to Linux which then returns success to the

user but closes the file handle! With a closed file handle the channels are tied up in

the system and cannot be accessed without rebooting the system. This seems to be a

problem with Linux itself rather than the HSS Voice driver

63

8.7 Summary of Analysis

Of the defects found, all could have been found by currently employed test selection

method. It was only the implementation of those tests that resulted in them not being

all found by the current method. The defects found by DU and BVA methods are

defects that those methods were not specifically intended to find. For example no

defects were found at boundaries by the BVA method and no defects were found as a

result the state of the system the DU tests placed it in. The defects found were either

the cause by:

1. Timing errors, possibly internal interrupt related threads causing lock up

2. A collection of drivers working together, such as the analog and framer driver

in one system or,

3. Internal processing that missed or duplicate chunks of data

It appears from this analysis that the current method is capable of finding items 2 & 3.

As a system test, it is essential to check that all components work together. The

current method also found the duplicated and missing data of item 3, by verifying the

payload sent was the payload received back, any test of any method should check this.

The current requirements driven method is not so well targeted at timing errors. The

hope is, that by running test for extended periods ~24 to 48 hours that timing errors

would expose themselves. But such tests are time consuming and timing related errors

as found in the test we ran can be found within minutes. This suggests that a test

selection technique that targets timing errors could be beneficial in finding errors in

such a system.

64

9 Conclusion

We investigated the current methods of test selection and automation based on

concerns being raised from previous projects; is this test strategy good enough? Can

we do better? We cannot measure our levels of success unless we have something to

compare it to. Based upon this we investigated other black box testing techniques. We

looked at how other people measure the effectiveness of there testing and we looked

at test methods that lend themselves well to test case generation with the idea that

automatic generation of test cases would decrease test development times.

We selected the boundary value analysis method for it ease of implementation and for

its ability of find a well known source of faults. We derived a method of black box

test case generation based on white box DU testing. We look the principles that

Edwards [15] describes in using RESOLVE to generate DU test cases. We did this by

developing a new method based on specifying the API in a certain form then being

able to parse this specification using a Perl script to create C test code that is easily

automatable.

Finally we compared the above two methods of generating tests against the existing

set of test cases by running them on an early version of the software and a later

version of the software to see if any method was better at finding defects. We also

discussed the implementation time of each method to access the cost of development

for each methods.

In the following subsections we provide concluding comments on each method then

discuss the lessons learnt from this investigation and what future work we could do

going forward

9.1 Requirements Driven Method

The requirements driven test cases provide a limited detail in testing but it covers a

broad range of combinations which is essential when testing a system. The method

requires experiences engineers in order to be effective. The defects found in this

method seem to reflect system issues rather than defects that could be found by

integration or unit testing alone. As mentioned in our introduction, this method is seen

65

as costly and time consuming method of test development, due to all the manual work

of test coding and automation of equipment.

9.2 BVA Method

The BVA test cases caused most of the tests to be focused on timeslot allocation. So

whilst the BVA generated a reasonable amount of test cases and found defects, it did

not find the defects that the method was designed to find. The main reason for this is

that the development team are responsible for boundary checks so if they have done a

good job at creating their test cases then we should not find any such defects; this

turned out to be true. The effort at automatically creating test cases was very fast,

however it piggybacked the existing test code infrastructure. The test code

infrastructure is setup to allow easy add and removal of tests. It one were to separate

out the time it took to add the requirements driven tests to the test infrastructure then

the BVA method was not any more time effective and it did not find any boundary

related defects. The method is easy to implement and could be useful if the project to

be tested had engineers of limited testing experienced assigned to it.

9.3 DU Method

The DU method generated the most test cases, most of these focused on checking that

that the sequence of calls returned the correct result. This method did not find any

problems with the HSS Voice driver on return values or out of order calls. Similar to

BVA, out of order calls and return checking is in the domain of integration and unit

test code and this is likely the main reason why this test method did not find the

defects that it was targeted to find. The method looks very interesting in terms of time

efficient method of generating tests. Each test is self contained not dependent on

external test equipment and easily automatable. This method seems highly suitable to

be used at the integration test level. The largest amount of effort is ensuring that the

Perl script parses the specification correctly to create the correct code. It is also very

valuable if the API were to change, which has happened in other projects. Instead of

changing thousands of lines of code, all one has to do is to change the specification

file and adjust the Perl scrip to re-generate the tests.

66

9.4 Automatic Test Case Generation

The RESOLVE like specification was used in conjunction with a script implemented

in PERL which shows that it is possible to automatically create test cases. This

method showed to be more time effective in generating test cases that the

requirements driven method and BVA method. Also there is less chance of errors in

the code that is generated. The script is to generate the test cases is complex and

requires and experienced software engineer to implement. Whilst the test cases

generated did not find significant numbers of defects. It could be quite useful means

of generating test cases for the development team, as it can test that the API is

handling the input of data correctly, returning the correct values and that the system is

in the correct state according to the specification. The test cases generated were also

found easy to plug into and automated execution system, mainly due to the fact that

each test case contains code that setups the system then returns it to its start-up state,

so that the next test case to be executed is not dependent on the results of the previous.

9.5 Discussion on the Relative Effectiveness

We looked at several papers on test effectiveness. Frankl [2] indicated the more lines

of code coverage the more chance of finding defects. By simply implementing all the

test we have across the three methods we achieved more code coverage (although we

did not measure it) and we have found more defects.

In Huber [6], he suggested the use of metrics as a measure of effectiveness. We re-

used our existing test framework for BVA tests, and we applied ~ 3 days effort to add

BVA tests to find 1 additional defect. This is 20% extra effort
6
 resulted in 25% more

defects
7
. The DU testing effort took 7.5 days for 1 additional defect. The equates to

50% extra effort for 25% more defects and the defect found in this case was not due

to the Intel software. So based on this one has to question the value that the DU

testing added. It seems a very good method for automatic generation of test cases.

However it is be better suited to integration testing.

6
 Original requirements driven estimate of 15 days was discussed in section 6.5.1

7
 BVA found 1 new defect unique to its method refer to section 7.

67

Bertoloni [10] suggested that a combination of methods is better to find more defects

as each method targets different sources of defects. From our results we cannot

confirm whether it was the combination of methods that result it more defect being

found or whether it was due to simply more tests = more defects as suggested by

Frankl [2].

If you look at the results it appears that the number of tests run is directly related to

the number of defects found and based on this we should develop more tests. We

could use the BVA method combined with the requirements driven method, this

would give us more tests for less effort. However extra defect found by BVA was

more due to inconsistent implementation in our test framework. The above mentioned

effort vs. defect found metric is somewhat skewed. There is simply not enough in the

results to make the assumption that BVA added value. If any value has been added it

is marginal at best.

9.6 Future work

This investigation has exposed the benefits of analysing the cause of all defects and it

has highlighted causes that our methods are not specifically targeting. Some of the

defects we identified appeared to due to timing related issues. It would be prudent to

investigate a method of test selection that targets timing related issues. Also the

system test team should be measuring its relative success from project to project.

Effort spend vs. defects found, if this number were to be dropping then the test team

should investigate why this is so; are developers writing better code, maybe they have

done there own defect analysis and they have improved coding areas were system test

traditionally found bugs. The system test team would have to changes its test selection

method if it was no longer being successful at find defects.

We also discovered the issue of how to treat bitmasks in Boundary Value Analysis

was undocumented. This is clearly an area which could be investigated further, as the

BVA method is very popular for all types of software projects. The use of bitmasks is

very common in embedded software.

68

9.7 Final Thoughts

In terms of defects found by each method the requirements driven (adhoc) test

selection method is as effective as more rigorous methods of test selection. A more

rigorous method could be easily applied by an engineer with limited experience and

more tests could be added based on experiences testers input. Testing of embedded

software is complicated by the fact that a lot of activity happens within the system

that is not immediately visible to the user, hence a large amount of effort could be

spent testing for few defect founds. It appears to be a situation the more tests you run

the more defects you will find. The number of defects found is too small to define

statistical differences between the methods. The requirements driven tests could likely

have found all the defects that the other methods found (with the exception of the

close with active channels), if the test framework implementation was more

consistent. However the BVA and DU tests by nature would not have found all the

defects that the requirements driven tests found. The combined use of drivers seem to

be the main cause of defects. Also, the BVA and DU method appear to be designed to

find defects that are in the domain of responsibility of the development team. In

retrospect assuming that the development team have a good test selection criterion to

cover return checking, boundary values and out of order calls, then there is no reason

to believe that BVA or DU test selection methods would be good at finding defects

once the software is available to the system test team.

In terms of cost benefit, the DU method was more time efficient at generating test

cases. However as we have mentioned, the test cases generated maybe more useful as

integration level tests rather than system tests. The parser to generate the test cases is

quite complicated to apply so the DU method does require an experienced software

engineer. Many hours was spent implementing the Perl script that generates the test

cases, however once done, we have created a reasonable set of test cases that are

independent of each other, they each return the system to its start up state and they are

easy to automate. The DU method does have its appeals and is a useful method not

only for Integration level tests Intel Shannon, but to the wider test community

interested in generating test cases this way.

The BVA method was similar to the current requirements driven method in terms of

timeliness, however it is methodical and easy to apply so it could be useful if there are

69

shortages of engineers on a project and somebody of limited testing experience is

assigned the job of developing tests, then they could apply this method.

This gives us some confidence that the current method of test selection is acceptable,

but the potential for room for improvement has been flagged but possibilities in test

case generation and other test selection methods to try.

70

10 References

[1]. Panagiotis Louridas, "JUnit: Unit testing and Coding in Tandem," IEEE

Software, vol. 22, no. 4, pp. 12-15, Jul/Aug, 2005

[2]. Phyllis G. Frankl, “Assessing and enhancing software testing effectiveness”

ACM SIGSOFT Software Engineering Notes, Vol 25 , Issue 1, Jan 2000,

Pages: 50 - 51

[3]. Parikh, Keyur; Kim, Junius, “TDM Services over IP Networks”, IEEE

Explore, 29-31 Oct. 2007 Page(s):1 – 10

[4]. Tsong Yueh Chen, Fei-Cheng Kuo, Robert Merkel, “On the statistical

properties of testing effectiveness measures”, Journal of systems & Software,

Vol 79, Issue 5, 2006, pages 591 – 601

[5]. T.Y. Chen, H. Leung & I.K. Mak, “Adaptive Random testing”, Lecture Notes

in Computer Science, Volume 3321/2005, pages 320-329

[6]. Jon T. Huber, “Efficiency and Effectiveness Measures To Help Guide the

Business of Software testing”, SM/ASM Conference, 1999

[7]. Kwang Ik Seo, Eun Man Choi, “Comparison of Five Black-box testing

Methods for Object-Oriented Software”, Proceedings of the Fourth

International Conference on Software Engineering Research, Management and

Applications. Pages: 213 – 220, 2006

[8]. Beizer, Boris, “Software testing Techniques”, 2
nd

 Edition, Van Nostrand

Reinhold, 1990.

[9]. Beizer, Boris, “Black Box testing”, John Wiley and Sons, 1995

71

[10]. Bertolino, Antonia “Software testing Research: Achievements,

Challenges, Dreams”, Future of Software Engineering, 2007. FOSE '07, 23-25

May 2007 Page(s):85 – 103

[11]. J. Wegener and M. Grochtmann. “Verifying timing constraints of real-

time systems by means of evolutionary testing.” Real-Time Syst., 15(3):275–

298, 1998.

[12]. Dr. Velur Rajappa, Arun Biradar, Satanik Panda, “Efficient Software

test Case Generation Using Genetic Algorithm Based Graph Theory”, First

International Conference on Emerging Trends in Engineering and Technology,

2008 , pages 298-303

[13]. A. Z. Javed, P. A. Strooper, G. N. Watson, "Automated Generation of

test Cases Using Model-Driven Architecture," Automation of Software test,

Second International Workshop on, vol. 0, no. 0, pp. 3, Second International

Workshop on Automation of Software test (AST '07), 2007.

[14]. B.-Y.Tsai, S. Stobart and N.Parrington, “Employing data flow testing

on object-oriented classes”, IEE Proceedings - Software -- April 2001 --

Volume 148, Issue 2, p. 56-64

[15]. Stephen H. Edwards, “Black-box testing using flowgraphs: an

experimental assessment of effectiveness and automation potential”, Software

testing, Verification and Reliability, vol 10, issue 4, pages: 249-262, YR: 2000

[16]. Wood, M., Roper, M., Brooks, A., and Miller, J. 1997. Comparing and

combining software defect detection techniques: a replicated empirical study.

In Proceedings of the 6th European Conference Held Jointly with the 5th

ACM SIGSOFT international Symposium on Foundations of Software

Engineering (Zurich, Switzerland, September 22 - 25, 1997)

[17]. Marc Roper. Software testing. McGraw-Hill, 1993

72

[18]. Sitaraman M, Weide BW, . Component-based software engineering

using RESOLVE. ACM SIGSOFT Software Enigineering Notes, 1994, 19(4):

21-67.

[19]. Luay Ho Tahat, Atef Bader, Boris Vaysburg, Bogdan Korel.

“Requirement-Based Automated Black-Box test Generation”, Proceedings of

the 25th International Computer Software and Applications Conference on

Invigorating Software Development, Pages: 489 – 495, 2001

[20]. H. V. Kantamneni, S. R. Pillai, and Y. K. Malaiya. “Structurally

Guided Black Box testing”. Technical report, Dept. of Computer Science,

Colorado State University, Ft. Collins, CO, USA, 1998

[21]. Intel® EP80579 Software for IP Telephony Applications on Intel®

QuickAssist Technology Linux* Device Driver API Reference Manual,

September 2008, Reference Number: 320416, Revision -001,

http://download.intel.com/design/intarch/ep80579/320416.pdf

[22]. The Eclipse Foundation, “Business Intelligence and Reporting Tools”,

2009, http://www.eclipse.org/birt/phoenix/

[23]. IBM, “Rational ClearQuest Test Manager”, http://www-

01.ibm.com/software/awdtools/clearquest/index.html

73

Appendices

74

I. HSS Voice API

The HSS Voice API is described in section 5 of the following link:

Intel® EP80579 Software for IP Telephony Applications on Intel® QuickAssist

Technology Linux* Device Driver API Reference Manual, September 2008,

Reference Number: 320416, Revision -001

http://download.intel.com/design/intarch/ep80579/320416.pdf

75

II. Boundary Value Analysis Input/Output Range

Specification file

The following text specifies the operations, inputs and outputs and their maximum

and minimum values used and extracted to create test cases for the boundary Value

Analysis method:

operation open

{

 output: clients 1 128

}

operation portUp

{

 input: portNum 0 2

}

operation channelAdd

{

 input: portNum 0 2

 input: channelId 0 127

 input: tsMap 0x00000002,0x00000000,0x00000000,0x00000000

0x80000000,0x00000000,0x00000000,0x00000000

0x00000000,0x00000002,0x00000000,0x00000000

0x00000000,0x80000000,0x00000000,0x00000000

0x00000000,0x00000000,0x00000002,0x00000000

0x00000000,0x00000000,0x80000000,0x00000000

0x00000000,0x00000000,0x00000000,0x00000002

0x00000000,0x00000000,0x00000000,0x80000000

0x0000000C,0x00000000,0x00000000,0x00000000

0xC0000000,0x00000000,0x00000000,0x00000000

0x00000000,0x0000000C,0x00000000,0x00000000

0x00000000,0xC0000000,0x00000000,0x00000000

0x00000000,0x00000000,0x0000000C,0x00000000

0x00000000,0x00000000,0xC0000000,0x00000000

0x00000000,0x00000000,0x00000000,0x0000000C

0x00000000,0x00000000,0x00000000,0xC0000000

0x0000001E,0x00000000,0x00000000,0x00000000

0xF0000000,0x00000000,0x00000000,0x00000000

0x00000000,0x0000001E,0x00000000,0x00000000

0x00000000,0xF0000000,0x00000000,0x00000000

0x00000000,0x00000000,0x0000001E,0x00000000

0x00000000,0x00000000,0xF0000000,0x00000000

0x00000000,0x00000000,0x00000000,0x0000001E

0x00000000,0x00000000,0x00000000,0xF0000000

 output: tsUsed 0x00000000,0x00000000,0x00000000,0x00000000

0xFFFFFFFE,0xFFFFFFFE,0xFFFFFFFE,0xFFFFFFFE

 output: channelsUsed 1 128

}

end;

76

III. RESOLVE ‘Like’ Specification

class HSSVoice

 portStatus: int [3]

 channelsOnPort: int [3]

 channelsOnFd: int [128]

inserted: bool

 openCounter: int

 channelsUsed: int

 tsUsed: icp_hssdrv_timeslot_map_t

 portConfig: int [3]

 channelStatus: char [128]

 channelConfig: icp_hssdrv_timeslot_map_t [128]

 readBuffer: char [40960]

 writeBuffer: char [40960]

 tsMap: icp_hssdrv_timeslot_map_t

;

init

{

 alters: inserted

}

#requires: inserted= false #used

#ensures: inserted=true #defined

operation open

{

 alters: openCounter

 produces: fileDesc

}

#preconditions

requires: openCounter<128

#postconditions

ensures: openCounter+=1

operation portUp

{

 consumes: fileDesc

 consumes: portNum

 consumes: config

 alters: portConfig[portNum]

 produces: status

}

#preconditions

requires: portConfig[portNum]==config || \

 portConfig[portNum]==NOT_SET

#postconditions

ensures: portConfig[portNum]=config

ensures: portStatus[portNum]=UP

77

operation channelAdd

{

 consumes: fileDesc

 consumes: portNum

 consumes: channelNum

 consumes: channelSize

 consumes: tsMap [4][32]

 alters: tsUsed

 alters: channelsUsed

 produces: status

}

requires: channelsOnFd[openCounter]<128

requires: portStatus[portNum]==UP

#requires: portConfig[portNum]=QMVIP iff tsMap >,0xFFFFFFFF

requires: (channelsUsed & channelNum) == 0 /*channel number is not used*/

requires: (((tsUsed.line0_timeslot_bit_map & tsMap.line0_timeslot_bit_map) ==0) &&

((tsUsed.line1_timeslot_bit_map & tsMap.line1_timeslot_bit_map) ==0) &&

((tsUsed.line2_timeslot_bit_map & tsMap.line2_timeslot_bit_map) ==0) &&

((tsUsed.line3_timeslot_bit_map & tsMap.line3_timeslot_bit_map) ==0))

requires: (tsMap.line0_timeslot_bit_map >= 0x00000002 && tsMap.line0_timeslot_bit_map

<=0xFFFFFFFF) || \ /*ensure that the channel does not span E1's*/

 (tsMap.line1_timeslot_bit_map >= 0x00000002 &&

tsMap.line1_timeslot_bit_map <=0xFFFFFFFF) || \

 (tsMap.line2_timeslot_bit_map >= 0x00000002 &&

tsMap.line3_timeslot_bit_map <=0xFFFFFFFF) || \

 (tsMap.line3_timeslot_bit_map >= 0x00000002 &&

tsMap.line0_timeslot_bit_map <=0xFFFFFFFF)

requires: (tsMap.line0_timeslot_bit_map==0 && tsMap.line1_timeslot_bit_map==0 &&

tsMap.line2_timeslot_bit_map==0 && tsMap.line3_timeslot_bit_map==0x00000002) || \ /*

can be 1Timeslot channels */

 (tsMap.line0_timeslot_bit_map==0 && tsMap.line1_timeslot_bit_map==0 &&

tsMap.line2_timeslot_bit_map==0 && tsMap.line3_timeslot_bit_map==0x80000000) || \

 (tsMap.line0_timeslot_bit_map==0 && tsMap.line1_timeslot_bit_map==0 &&

tsMap.line2_timeslot_bit_map==0x00000002 && tsMap.line3_timeslot_bit_map==0) || \

 (tsMap.line0_timeslot_bit_map==0 && tsMap.line1_timeslot_bit_map==0 &&

tsMap.line2_timeslot_bit_map==0x80000000 && tsMap.line3_timeslot_bit_map==0) || \

 (tsMap.line0_timeslot_bit_map==0 &&

tsMap.line1_timeslot_bit_map==0x00000002 && tsMap.line2_timeslot_bit_map==0 &&

tsMap.line3_timeslot_bit_map==0) || \

 (tsMap.line0_timeslot_bit_map==0 &&

tsMap.line1_timeslot_bit_map==0x80000000 && tsMap.line2_timeslot_bit_map==0 &&

tsMap.line3_timeslot_bit_map==0) || \

 (tsMap.line0_timeslot_bit_map==0x00000002 &&

tsMap.line1_timeslot_bit_map==0 && tsMap.line2_timeslot_bit_map==0 &&

tsMap.line3_timeslot_bit_map==0) || \

 (tsMap.line0_timeslot_bit_map==0x80000000 &&

tsMap.line1_timeslot_bit_map==0 && tsMap.line2_timeslot_bit_map==0 &&

tsMap.line3_timeslot_bit_map==0) || \

 (tsMap.line0_timeslot_bit_map==0 && tsMap.line1_timeslot_bit_map==0 &&

tsMap.line2_timeslot_bit_map==0 && tsMap.line3_timeslot_bit_map==0x00000006) || \

/*can 2Timeslot channels where timeslots are adjacent*/

78

 (tsMap.line0_timeslot_bit_map==0 && tsMap.line1_timeslot_bit_map==0 &&

tsMap.line2_timeslot_bit_map==0 && tsMap.line3_timeslot_bit_map==0xC0000000) || \

 (tsMap.line0_timeslot_bit_map==0 && tsMap.line1_timeslot_bit_map==0 &&

tsMap.line2_timeslot_bit_map==0x00000006 && tsMap.line3_timeslot_bit_map==0) || \

 (tsMap.line0_timeslot_bit_map==0 && tsMap.line1_timeslot_bit_map==0 &&

tsMap.line2_timeslot_bit_map==0xC0000000 && tsMap.line3_timeslot_bit_map==0) || \

 (tsMap.line0_timeslot_bit_map==0 &&

tsMap.line1_timeslot_bit_map==0x00000006 && tsMap.line2_timeslot_bit_map==0 &&

tsMap.line3_timeslot_bit_map==0) || \

 (tsMap.line0_timeslot_bit_map==0 &&

tsMap.line1_timeslot_bit_map==0xC0000000 && tsMap.line2_timeslot_bit_map==0 &&

tsMap.line3_timeslot_bit_map==0) || \

 (tsMap.line0_timeslot_bit_map==0x00000006 &&

tsMap.line1_timeslot_bit_map==0 && tsMap.line2_timeslot_bit_map==0 &&

tsMap.line3_timeslot_bit_map==0) || \

 (tsMap.line0_timeslot_bit_map==0xC0000000 &&

tsMap.line1_timeslot_bit_map==0 && tsMap.line2_timeslot_bit_map==0 &&

tsMap.line3_timeslot_bit_map==0) || \

 (tsMap.line0_timeslot_bit_map==0 && tsMap.line1_timeslot_bit_map==0 &&

tsMap.line2_timeslot_bit_map==0 && tsMap.line3_timeslot_bit_map==0x00060006) || \

 /*can be 4 timeslot channels with 16 bit seperation between two Timeslot

pairs*/

 (tsMap.line0_timeslot_bit_map==0 && tsMap.line1_timeslot_bit_map==0 &&

tsMap.line2_timeslot_bit_map==0 && tsMap.line3_timeslot_bit_map==0xC000C000) || \

 (tsMap.line0_timeslot_bit_map==0 && tsMap.line1_timeslot_bit_map==0 &&

tsMap.line2_timeslot_bit_map==0x00060006 && tsMap.line3_timeslot_bit_map==0) || \

 (tsMap.line0_timeslot_bit_map==0 && tsMap.line1_timeslot_bit_map==0 &&

tsMap.line2_timeslot_bit_map==0xC000C000 && tsMap.line3_timeslot_bit_map==0) || \

 (tsMap.line0_timeslot_bit_map==0 &&

tsMap.line1_timeslot_bit_map==0x00060006 && tsMap.line2_timeslot_bit_map==0 &&

tsMap.line3_timeslot_bit_map==0) || \

 (tsMap.line0_timeslot_bit_map==0 &&

tsMap.line1_timeslot_bit_map==0xC000C000 && tsMap.line2_timeslot_bit_map==0 &&

tsMap.line3_timeslot_bit_map==0) || \

 (tsMap.line0_timeslot_bit_map==0x00060006 &&

tsMap.line1_timeslot_bit_map==0 && tsMap.line2_timeslot_bit_map==0 &&

tsMap.line3_timeslot_bit_map==0) || \

 (tsMap.line0_timeslot_bit_map==0xC000C000 &&

tsMap.line1_timeslot_bit_map==0 && tsMap.line2_timeslot_bit_map==0 &&

tsMap.line3_timeslot_bit_map==0)

#postconditions

ensures: channelsOnFd[openCounter]++

ensures: channelConfig[channelNum].line0_timeslot_bit_map=

tsMap.line0_timeslot_bit_map

ensures: channelConfig[channelNum].line1_timeslot_bit_map=

tsMap.line1_timeslot_bit_map

ensures: channelConfig[channelNum].line2_timeslot_bit_map=

tsMap.line2_timeslot_bit_map

ensures: channelConfig[channelNum].line3_timeslot_bit_map=

tsMap.line3_timeslot_bit_map

ensures: tsUsed.line0_timeslot_bit_map |= tsMap.line0_timeslot_bit_map

79

ensures: tsUsed.line1_timeslot_bit_map |= tsMap.line1_timeslot_bit_map

ensures: tsUsed.line2_timeslot_bit_map |= tsMap.line2_timeslot_bit_map

ensures: tsUsed.line3_timeslot_bit_map |= tsMap.line3_timeslot_bit_map

ensures: channelsUsed |= channelNum

ensures: channelsOnPort[portNum]++

operation channelUp

{

 consumes: fileDesc

 consumes: channelNum

 alters: channelStatus[channelNum]

}

requires: (channelsUsed & channelNum) >0 /*ensure that channel was added first*/

requires: channelStatus[channelNum]==DOWN

#postconditions

ensures: channelStatus[channelNum] = UP

operation read

{

 consumes: fileDesc

 alters: readBuffer

 produces: bytesRead

}

#postconditions

ensures: sizeof(readBuffer) == sumof (for i=0; i<channelsOnFd[openCounter]; i++)

{channelConfig[fd[openCounter]][i].channelsize + 4}

ensures: readBuffer=writeBuffer iff portConfig[portNum] == NPE_LOOPBACK

operation write

{

 consumes: fileDesc

 alters: writeBuffer

 produces: bytesWritten

}

ensures: sizeof(bytesWritten) == sumof (for i=0; i<channelsOnFd[openCounter]; i++)

{channelConfig[fd[openCounter]][i].channelsize + 4}

operation channelDown

{

 consumes: fileDesc

 consumes: channelNum

 alters: channelStatus[channelNum]

}

requires: (channelsUsed & channelNum) >=0 /*ensure that channel was added first*/

requires: channelStatus[channelNum] == UP

#postconditions

ensures: channelStatus[channelNum] = DOWN

operation channelRemove

{

80

 consumes: fileDesc

 consumes: channelNum

 alters: tsUsed

 alters: channelsUsed

 alters: tsUsedInChannel[channelNum]

 produces: status

}

requires: channelStatus[channelNum]==DOWN

requires: (channelsUsed & channelNum) >0

#postconditions

ensures: channelsOnFd[openCounter]--

ensures: channelsOnPort[portNum]--

ensures: channelsUsed ^= channelNum

ensures: tsUsed.line0_timeslot_bit_map ^=

channelConfig[channelNum].line0_timeslot_bit_map

ensures: tsUsed.line1_timeslot_bit_map ^=

channelConfig[channelNum].line1_timeslot_bit_map

ensures: tsUsed.line2_timeslot_bit_map ^=

channelConfig[channelNum].line2_timeslot_bit_map

ensures: tsUsed.line3_timeslot_bit_map ^=

channelConfig[channelNum].line3_timeslot_bit_map

operation portDown

{

 consumes: portNum

 alters: portStatus

 produces: status

}

requires: channelsOnPort[portNum]==0

#postconditions

ensures: portStatus[portNum]=0

operation close

{

 consumes: fileDesc

 alters: openCounter

 produces: status

}

requires: openCounter>0

requires: channelsOnFd[openCounter]==0

#postconditions

ensures: openCounter--

81

IV. Requirements Driven Test Cases

test Identifier Description

test

to

be

Run Changes required

systest_HssVoiceDrv_1_01

NPE Looback: Verify Timeslot Channel

Mapping Internal Loopback no

Can be changed for Framer loopback but is the same

configuration as systest_HssVoiceDrv_1_11

systest_HssVoiceDrv_1_02

NPE loopback: Verify correct behaviour of

2TS channel yes Changed to Framer Loopback

systest_HssVoiceDrv_1_03

NPE loopback: Verify correct behaviour of

4TS channel yes Changed to Framer Loopback

systest_HssVoiceDrv_1_04

Framer Loopback Verify correct behaviour

of 4TS channels (1 T1) no

Can be changed to E1, but would be the same as

systest_HssVoiceDrv_1_04

systest_HssVoiceDrv_1_05

Framer Loopback: Verify correct

behaviour of 2TS channels (1 T1) no

Can be changed to E1, but would be the same as

systest_HssVoiceDrv_1_03

systest_HssVoiceDrv_1_06

Framer loopback Verify correct behavior

of 1 TS channel (1 T1) no

Can be changed for E1 but is the same configuration

as systest_HssVoiceDrv_1_11

systest_HssVoiceDrv_1_07 NPE Loopback: TX idle pattern test no

Tx idle is not being compared between test methods so

this test will not be run

systest_HssVoiceDrv_1_08 IA Loopback: Data Inversion Check no

Data Inversion is not being compared between test

methods so this test will not be run

systest_HssVoiceDrv_1_09 IA Loopback: Byte Swap test no

Byte Swap is not being compared between test

methods so this test will not be run

systest_HssVoiceDrv_1_10

IA Loopback Blocking: TX overflow test:

(1Analog) no

Tx overflow is not being compared between test

methods so this test will not be run

systest_HssVoiceDrv_1_11

IA Loopback: Verify Timeslot Channel

Mapping (1 E1) yes ok

systest_HssVoiceDrv_1_12

IA Loopback Blocking: Verify correct

behaviour of 2TS and 4TS channels (1

Analog) yes

systest_HssVoiceDrv_1_13

IA loopback Voice and HDLC channel test

(1 E1) no

mix of voice and data channels not being compared to

other tests methods so this test will not be run

systest_HssVoiceDrv_1_14

IA loopback Blocking: Out of Order

narrowband channel test (1E1) yes

systest_HssVoiceDrv_1_15

IA loopback Blocking: Out of Order 16 bit

linear channel test (1 Analog) yes

systest_HssVoiceDrv_1_16

IA loopback Blocking: Out of Order & non-

uniform channel test (2 Analog) yes

systest_HssVoiceDrv_1_17

IA loopback Blocking: Out of Order & non-

uniform channel test (1 Analog) yes

systest_HssVoiceDrv_1_18

IA loopback Blocking: Maximum

Wideband channels (3 Analog) yes

systest_HssVoiceDrv_1_19

IA Loopback Blocking HSS Bypass test (1

Analog) no Hss Bypass not being tested by other tests Methods

systest_HssVoiceDrv_1_20

IA Loopback Blocking 24 Narrowband

channels on (1 T1) no T1 not being tested by other test methods

systest_HssVoiceDrv_1_21

IA to Framer Loopback Blocking -

Wideband Channels on E1 yes

82

systest_HssVoiceDrv_1_22

IA to Framer Loopback Blocking -

Wideband Channels on T1 no

systest_HssVoiceDrv_1_23

IA Loopback Blocking - Mixed HSS Mode

- 4 Analog, 96 T1, 28 E1 channels (1

Analog, 2 E1's) no

Mixed mezzanine configurations not being tested by

other tests

systest_HssVoiceDrv_1_50

IA Loopback NonBlocking: TX overflow

test: (1Analog) no

Tx overflow is not being compated between test

methods so this test will not be run

systest_HssVoiceDrv_1_52

IA Loopback NonBlocking: Verify correct

behaviour of 2TS and 4TS channels (1

Analog) no

this is a repeat of systest_HssVoiceDrv_1_12 in a

different driver mode which we are not compating so

will not be run

systest_HssVoiceDrv_1_54

IA loopback NonBlocking: Out of Order

narrowband channel test (1E1) no

this is a repeat of systest_HssVoiceDrv_1_14 in a

different driver mode which we are not compating so

will not be run

systest_HssVoiceDrv_1_55

IA loopback NonBlocking: Out of Order 16

bit linear channel test (1 Analog) no

this is a repeat of systest_HssVoiceDrv_1_15 in a

different driver mode which we are not compating so

will not be run

systest_HssVoiceDrv_1_56

IA loopback NonBlocking: Out of Order &

non-uniform channel test (2 Analog) no

this is a repeat of systest_HssVoiceDrv_1_16 in a

different driver mode which we are not compating so

will not be run

systest_HssVoiceDrv_1_57

IA loopback NonBlocking: Out of Order &

non-uniform channel test (1 Analog) no

this is a repeat of systest_HssVoiceDrv_1_17 in a

different driver mode which we are not compating so

will not be run

systest_HssVoiceDrv_1_58

IA loopback NonBlocking: Maximum

Wideband channels (3 Analog) no

this is a repeat of systest_HssVoiceDrv_1_18 in a

different driver mode which we are not compating so

will not be run

systest_HssVoiceDrv_1_59

IA Loopback Non Blocking HSS Bypass

test (1 Analog) no Hss Bypass not being tested by other tests Methods

systest_HssVoiceDrv_1_60

IA Loopback Non-Blocking 24

Narrowband channels on T1 no T1 not being tested by other test methods

systest_HssVoiceDrv_1_61

IA to Framer Loopback Non-Blocking -

Wideband Channels on T1 no T1 not being tested by other test methods

systest_HssVoiceDrv_1_62

IA to Framer Loopback Non-Blocking -

Wideband Channels on E1 no same as 1_22

systest_HssVoiceDrv_2_01

IA loopback Blocking: Maximum Voice

Driver Clients (2 Analog, 1E1) yes Change to Use 2 Framers

systest_HssVoiceDrv_2_02

IA loopback Blocking: Maximum Voice

Driver Channels 2 Analog, 1 E1) yes Change to Use 2 Framers

systest_HssVoiceDrv_2_03

IA loopback Non Blocking: Maximum

Voice Driver Clients (2 Analog, 1E1) no

this is a repeat of systest_HssVoiceDrv_2_01 in a

different driver mode which we are not compating so

will not be run

systest_HssVoiceDrv_2_04

IA loopback Non-Blocking: Maximum

Voice Driver Channels (2 Analog, 1 E1) no

this is a repeat of systest_HssVoiceDrv_2_02 in a

different driver mode which we are not compating so

will not be run

systest_HssVoiceDrv_3_01

IA loopback Channel enable/disable

stress test: 128 channels (2 Analog, 1 E1) yes

83

V. Perl Script for BVA Test Code Generator

#!/usr/bin/perl

my @list;

my $i;

my $op;

my @param;

my $alreadyProcessed = "false";

my $bva = "";

my @min;

my @max;

my $paramCount = 0;

my $channelCount=0;

unlink "bvaValues.txt";

open (BVAVALUES, ">>bvaValues.txt");

close BVAVALUES;

my @processesParams; #list of inputs already BVA analysed

##extract test cases from BVA model

open (LOGFILE, "HSSVoiceNPEOnly.txt") or die "I couldn't get at the file";

for $line (<LOGFILE>)

{

 if($line =~ /operation/)

 {

 @list = split(' ', $line);

 $op = $list[1];

 }

 if($line =~ /input|output/)

 {

 my @param = split(' ', $line);

 open (BVAVALUES, "bvaValues.txt") or die "I couldn't get at the file";

 for $procLine(<BVAVALUES>)

 {

 if($procLine =~ /$param[1]/)

 {

 $alreadyProcessed = "true";

 last;

 }

 }

 close BVAVALUES;

 if($alreadyProcessed eq "false")

 {

 open (BVAVALUES, ">>bvaValues.txt");

 print BVAVALUES "$op ";

 my $numParams = @param;

 for($i=1; $i<$numParams;$i++)

 {

84

 print BVAVALUES " $param[$i]";

 }

 print BVAVALUES "\n";

 $paramCount++;

 close BVAVALUES;

 }

 $alreadyProcessed = "false";

 }

}

close LOGFILE;

my $testCount = 0;

my @testInputs;

#open (TEST_DATA, ">unchecked_test_case_data.txt ");

##GENERATE TEST CASES

for(my $i=0; $i<$paramCount; $i++)

{

 my @others; #list of other parameters in sytem not BVA analyed

 my $processedItem = 0;

 my $processCheck = "true";

 my $index = 0;

 my $paramBvaAnalysed = "false";

 open (BVAVALUES, "bvaValues.txt");

 for $line(<BVAVALUES>)

 {

 my @param = split(' ', $line);

 ##check list of parameters that we have processed

 foreach(@processesParams)

 {

 if($_ eq $param[1])

 {

 #set processed flag to true if current param is in the list

 $paramBvaAnalysed = "true";

 last;

 }

 else

 {

 $paramBvaAnalysed = "false";

 }

 }

 if(($paramBvaAnalysed eq "false") && ($processCheck eq "true"))

 {

 $processCheck = "false";

 $processedItem = $index;

 ##add current param to processes list so that we can skip it

 ##if we see it again

 push(@processesParams, $param[1]);

 ##save the minimum and maximum values for this parameter

 my $lengthOfParams = @param;

 for($j=0; $j<=($lengthOfParams-4);$j+=2)

 {

85

 push(@min, $param[$j+2]);

 push(@max, $param[$j+3]);

 }

 }

 else

 {

 ##this parameter has already been processed to just use

 ##the minmium range value as default input

 push(@others, $param[2]);

 }

 $index++;

 }

 close BVAVALUES;

 ##colate the input values

 my $numberOfRanges = @min;

 for($j=0; $j<$numberOfRanges; $j++)

 {

 my $counter=0;

 my $paramList1 = ""; #list of inputs against min BVA value

 my $paramList2 = ""; #list of inputs against max BVA value

 foreach(@others)

 {

 if($counter == $processedItem)

 {

 $paramList1 = $paramList1.pop(@min)."\t".$_."\t";

 $paramList2 = $paramList2.pop(@max)."\t".$_."\t";

 }

 else

 {

 $paramList1 = $paramList1.$_."\t";

 $paramList2 = $paramList2.$_."\t";

 }

 $counter++;

 }

 if($counter == $processedItem)

 {

 $paramList1 = $paramList1.pop(@min)."\t";

 $paramList2 = $paramList2.pop(@max)."\t";

 my $temp1 = 1;

 my $temp2 = 1;

 foreach (@testInputs)

 {

 if($_ eq $paramList1)

 {

 print "Removing duplicate input\n";

 $temp1 = 0;

 }

 if($_ eq $paramList2)

 {

 print "Removing duplicate input\n";

86

 $temp2 = 0;

 }

 }

 if($temp1)

 {

 push(@testInputs, $paramList1);

 }

 if($temp2)

 {

 push(@testInputs, $paramList2);

 }

 #print TEST_DATA "$paramList1\n";

 #print TEST_DATA "$paramList2";

 }

 else

 {

 my $temp1 = 1;

 my $temp2 = 1;

 foreach (@testInputs)

 {

 if($_ eq $paramList1)

 {

 print "Removing duplicate input\n";

 $temp1 = 0;

 }

 if($_ eq $paramList2)

 {

 print "Removing duplicate input\n";

 $temp2 = 0;

 }

 }

 if($temp1)

 {

 push(@testInputs, $paramList1);

 }

 if($temp2)

 {

 push(@testInputs, $paramList2);

 }

 #print TEST_DATA "$paramList1\n";

 #print TEST_DATA "$paramList2\n";

 }

 }

}

#print TEST_DATA "\n";

#close TEST_DATA;

##find and remove any duplicate test cases

open (TEST_DATA, ">test_case_data.txt ");

foreach (@testInputs)

{

87

 print TEST_DATA $_."\n";

}

close TEST_DATA;

##TURN TEST CASES INTO CODE

open (TEST_DATA, ">bva_test_data.c ");

open (TEST_CASES, ">temp.txt");

print TEST_CASES "systestHssDrvDesc_t s_testcaseList[] =\n{\n";

print TEST_DATA "

#ifdef __linux

#include <stdint.h>

#include <stdio.h>

#include <sys/ioctl.h>

#include <fcntl.h>

#endif /* endif __linux */

#include \"icp_hssdrv.h\"

#include \"icp_hssvoicedrv.h\"

#include \"icp.h\"

#include \"IaHssDrvSystest.h\"

#include \"IaT1E1FramerSystest.h\"

uint32_t s_configure_framer = 1;

systestT1E1PortConfig_t portConfig =

 {ICP_FRAMERDRV_CFG_E1_CCS_HDB3_CRCMF_QUAD, ICP_FRAMERDRV_LOOPBACK_NONE,

 0, TRUE};

systestT1E1testData_t icp_T1E1SystestData[] =

{

 {1, {&portConfig , &portConfig, &portConfig}}

};\n\n";

my @testCaseData;

my $numbertestCases = 1;

open (TEST_CASE_DATA, "test_case_data.txt");

for $line (<TEST_CASE_DATA>)

{

 @testCaseData = split('\t', $line);

 $channelCount=0;

 my $channelsUsed = $testCaseData[5];

 my $testCase = $numbertestCases++;

 my $portNum = $testCaseData[1];

 my @portConfig = ("PORT_UNUSED", "PORT_UNUSED", "PORT_UNUSED", "PORT_UNUSED");

 my @portTsMap = ("0", "0", "0", "0");

 my @ChannelsOnPort= ("0", "0", "0", "0");

 $portConfig[$portNum] = "Q_E1_CGF_FLB";

 my $numClients = $testCaseData[0];

 my @tsMap = split(',',$testCaseData[3]);

 my @tsUsed = (0, 0, 0, 0);

 #my @timeSlotsRequiredToBeUsed = ("0","0","0");

88

 my @timeSlotsRequiredToBeUsed = split(',',$testCaseData[4]);

 #$timeSlotsRequiredToBeUsed[0] = $testCaseData[3];

 for($j=0; $j<4; $j++)

 {

 $timeSlotsRequiredToBeUsed[$j] = hex($timeSlotsRequiredToBeUsed[$j]);

 $tsMap[$j] = hex($tsMap[$j]);

 }

 my $channelsThisPort = 0;

 my $line;

 for($j=0; $j<4; $j++)

 {

 if($tsMap[$j]>0)

 {

 $line=$j;

 last;

 }

 }

 $portTsMap[$portNum]= "tc".$testCase."_".$portNum;

 print TEST_DATA "iaSystestHssDrvChanCfg_t tc".$testCase."_".$portNum."\[\]

=\n{\n";

 for ($i=0; $i<$numClients; $i++)

 {

 $tsUsed[$line] = $tsUsed[$line] | $tsMap[$line];

 addChannel(\@tsMap,$i);

 $ChannelsOnPort[$portNum]++;

 ##if we have more channels to add on this line

 if((($tsUsed[$line] & $timeSlotsRequiredToBeUsed[$line])!=

$timeSlotsRequiredToBeUsed[$line])

 ||($tsMap[$line] < 0x80000000))

 {

 $tsMap[$line] = $tsMap[$line]<<1;

 }

 else

 {

 #$channelsThisPort = 0;

 $tsMap[$line]=0;

 $line++;

 if($line >3)

 {

 $line = 0;

 }

 #$portConfig[$portNum] = "NPE_LOOPBACK";

 $tsMap[$line] = 2;

 }

 if($ChannelsOnPort[$portNum] == 124)

 {

 if($portNum == 2)

 {

 $portNum=0;

 }

89

 else

 {

 $portNum++;

 }

 $portTsMap[$portNum]= "tc".$testCase."_".$portNum;

 $portConfig[$portNum] = "Q_E1_CGF_FLB";

 print TEST_DATA "\n};\n\n";

 print TEST_DATA "iaSystestHssDrvChanCfg_t tc".$testCase."_".$portNum."\[\]

=\n{\n";

 }

 ##if we have added all the channels to the clients check that we have

 ## fill all the required timeslots

 if($i == ($numClients -1))

 {

 $tsMap[$line]=0;

 for($m=0; $m<4; $m++)

 {

 if($tsMap[$m] > 0x80000000 || $tsMap[$m] ==

0x00000000)

 {

 $tsMap[$m]=2;

 while(($tsUsed[$m] & $tsMap[$m])

 && $tsMap[$m] <= 0x80000000)

 {

 $tsMap[$m] = $tsMap[$m]<<1;

 }

 }

 ##check that we have added the require number of Timeslots to this port

 while((((~$tsUsed[$m]) &

$timeSlotsRequiredToBeUsed[$m]) > 0)

 || $channelCount<$channelsUsed)

 {

 addChannel(\@tsMap,$i);

 $ChannelsOnPort[$portNum]++;

 if($ChannelsOnPort[$portNum] == 124)

 {

 if($portNum == 2)

 {

 $portNum=0;

 }

 else

 {

 $portNum++;

 }

 $portTsMap[$portNum]= "tc".$testCase."_".$portNum;

 $portConfig[$portNum] = "Q_E1_CGF_FLB";

 print TEST_DATA "\n};\n\n";

 print TEST_DATA "iaSystestHssDrvChanCfg_t tc".$testCase."_".$portNum."\[\]

=\n{\n";

 }

 $tsUsed[$m] = $tsUsed[$m] | $tsMap[$m];

90

 if((($tsUsed[$line] & $timeSlotsRequiredToBeUsed[$line])!=

$timeSlotsRequiredToBeUsed[$line])

 ||($tsMap[$line] < 0x80000000))

 {

 $tsMap[$line] = $tsMap[$line]<<1;

 }

 else

 {

 #$channelsThisPort = 0;

 $tsMap[$line]=0;

 $line++;

 if($line >3)

 {

 $line = 0;

 }

 $tsMap[$line] = 2;

 }

 }

 }

 }

 }

 print TEST_DATA "\n};\n\n";

 print TEST_CASES "\n\n";

 print TEST_CASES "\t{".$testCase.", ".$numClients.", 0,";

 print TEST_CASES "

{".$portConfig[0].",".$portConfig[1].",".$portConfig[2].",".$portConfig[3]."},\n";

 print TEST_CASES "\t\t{".$portTsMap[0].", ".$portTsMap[1].", ".$portTsMap[2].",

0},";

 print TEST_CASES " {".$ChannelsOnPort[0].", ".$ChannelsOnPort[1].",

".$ChannelsOnPort[2].", 0},\n";

 print TEST_CASES "\t\tBLOCKING, QOS_DISABLED, SRTP_DISABLED,

QOS_PRIORITY_BOUNDARY_IS_0\n\t},";

}

print TEST_CASES "\n\t{999, 0, 0, {PORT_UNUSED, PORT_UNUSED, PORT_UNUSED,

PORT_UNUSED},\n";

print TEST_CASES "\t\t{0,0,0,0}, {0,0,0, 0},\n";

print TEST_CASES "\t\tBLOCKING, QOS_DISABLED, SRTP_DISABLED,

QOS_PRIORITY_BOUNDARY_IS_0\n\t}";

print TEST_CASES "\n};\n";

close TEST_CASE_DATA;

close TEST_DATA;

close TEST_CASES;

open (TEST_DATA, ">>bva_test_data.c ");

open (TEST_CASES, "temp.txt");

for $line (<TEST_CASES>)

{

 print TEST_DATA $line;

}

close TEST_DATA;

close TEST_CASES;

91

unlink "temp.txt";

#unlink "test_case_data.txt";

sub addChannel

{

 (my $reftsMap, $i) = @_;

 my @tsMap = @{$reftsMap};

 my $map="{";

 my $chan_cfg = "";

 for($n=0; $n<4; $n++)

 {

 if($tsMap[$n]==0)

 {

 }

 elsif($tsMap[$n]%15==0)

 {

 $chan_cfg = "CHAN_CFG_320B";

 }

 elsif($tsMap[$n]%3==0)

 {

 $chan_cfg = "CHAN_CFG_160B";

 }

 else

 {

 $chan_cfg = "CHAN_CFG_DFT";

 }

 $tsMap[$n] = sprintf("0x%08x", $tsMap[$n]);

 $map = $map.$tsMap[$n];

 if($n!=3)

 {

 $map= $map.",";

 }

 }

 $map = $map."}";

 if($channelCount!= 0 && $channelCount!= 124)

 {

 print TEST_DATA ",\n";

 }

 print TEST_DATA "\t{".$i.", ".$map.", ".$chan_cfg.", VOICE_CHANNEL, ".$i."}";

 for($n=0; $n<4; $n++)

 {

 $tsMap[$n] = hex($tsMap[$n]);

 }

 $channelCount++;

}

92

VI. Perl Script for DU Test Case Generator

#!/usr/bin/perl

my @globalDefs;

my @list;

my $line;

#array to store pre-post conditions of an operation

my @operationtestCode = (0,0,0,0,0,0,0,0,0,0);

##Part 1: open specification file and extract global definitions

open (RESOLVE_SPEC, "HSSVoiceResolveSpec.txt") or die "I couldn't get at the file";

for $line (<RESOLVE_SPEC>)

{

 if($line !~ /;/)

 {

 if($line =~ /\t/)

 {

 @list = split(':', $line);

 $list[0] =~ s/\t//;

 push(@globalDefs, $list[0]);

 }

 }

 else

 {

 last;

 }

}

close RESOLVE_SPEC;

##declare some memory to help create DU test code

#list & normal order of function calls for API under test

my @allFunctions = ("init", "open", "portUp", , "channelAdd", , "channelUp",

 "read", "write", "channelDown", "channelRemove", "portDown", "close");

my $testCode = "";

my $testCaseCount = 0;

my $counter = 0;

my $currentOp =""; #used to store operations being processed in RESOLVE_SPEC

my $funcParams = ""; #used to store parameters to operation be processed

my $initCode = ""; #used to store the initilisation code of global vars

my $resetCode = ""; #used to store the initilisation code of global vars

my $tsMapCode = "";

open (DU, ">duCoverage.txt") or die "I couldn't get at the file";

open (TESTCODE, ">duPsuedoCode.c") or die "I couldn't get at the file";

Part2: for each global definition, find valid DU pairs and create test code for

each pair

foreach(@globalDefs)

{

93

 print DU "\n\n\n***** DU Coverage for $_ *****\n";

 print DU "testCase Defined Used\n";

 open (RESOLVE_SPEC, "HSSVoiceResolveSpec.txt") or die "I couldn't get

 at the file";

 my $lineNum = 1; #track current line be processed in RESOLVE_SPEC

 my @defined; #store lineNo's where current globalDef is defined

 my @used; #store lineNo's where current globalDef is used

 my @useCaseFunctionCall; #store operation¶meters of use

 my @defineCaseFunctionCall; #store operation¶meters of define

 my $processingRequires = "false"; #flag set id requires spans >1 line

 my $processingEnsures = "false"; #flag set id ensures spans >1 line

 my $functionsWhichDefine = ""; #string of functions which define is used

 my $timeSlotSetting = "";

 for $line (<RESOLVE_SPEC>)

 {

 #if we find a new operation

 if($line =~ /^operation/)

 {

 @list = split(' ', $line);

 #store the operation name

 $currentOp = $list[1];

 #reset the funcParams (following consumes lines define params for

 #this operation)

 $funcParams = "";

 $processingRequires = "false";

 $processingEnsures = "false";

 }

 #if we find a line with consumes

 if($line =~ /^\tconsumes/)

 {

 @list = split(' ', $line);

 #add it to the function params for current operation being processed

 $funcParams = $funcParams." ".$list[1];

 }

 #use case is found, or flag is set indicating we are processing a use

 #

 if($line =~ /^requires(.*|\W*)$_/ || $processingRequires eq $_)

 {

 my $useInput="";

 @list = split(' ', $line);

 if($processingRequires eq $_)

 {

 $list[0] =~ s/\t//;

 my $var = $list[0];

 $var =~ s/\W.+//;

 if($var =~ /tsMap/)

 {

 $useInput=$list[0].";\n";

 }

 }

 else

94

 {

 $list[1] =~ s/\n//;

 my $var = $list[1];

 $var =~ s/\W.+//;

 if($var =~ /tsMap/)

 {

 $useInput=$list[1].";\n";

 }

 }

 if(($line =~ /tsMap\.line0_timeslot_bit_map==/) ||

 ($line =~ /tsMap\.line1_timeslot_bit_map==/) ||

 ($line =~ /tsMap\.line2_timeslot_bit_map==/) ||

 ($line =~ /tsMap\.line3_timeslot_bit_map==/))

 {

 @tsMapConfig = split('&&',$line);

 $tsMapConfig[0] =~ s/requires: \(//;

 $tsMapConfig[0] =~ s/==/=/;

 $tsMapConfig[0] =~ s/ |\(//g;

 $tsMapConfig[1] =~ s/==/=/;

 $tsMapConfig[1] =~ s/ |\(//g;

 $tsMapConfig[2] =~ s/==/=/;

 $tsMapConfig[2] =~ s/ |\(//g;

 $tsMapConfig[3] =~ s/==/=/;

 $tsMapConfig[3] =~ s/ |\(|\)//g;

 $tsMapConfig[3] =~ s/\).+ |\|\|.+//;

 chomp($tsMapConfig[3]);

 $tsMapCode =

$tsMapConfig[0].";\n".$tsMapConfig[1].";\n".$tsMapConfig[2].";\n".$tsMapConfig[3].";\n

"

 }

 else

 {

 }

 #store the lineNumber where a globalDef is used

 push (@used,$lineNum);

 #store the function call and parameters for this use

 push

(@useCaseFunctionCall,"$tsMapCode\n$useInput$currentOp($funcParams)");

 #set processing flag to the use we are processing

 $processingRequires = $_;

 }

 #define case is found, or flag is set indicating we are processing a def

 if($line =~ /^ensures\W+\(*$_/ || $processingEnsures eq $_)

 {

 #set processing flag to the define we are processing

 $processingEnsures = $_;

 #store the lineNumber where a globalDef is defined

 push (@defined, $lineNum);

 #store the functions that this global variable is defined in

95

 if($functionsWhichDefine !~ /$currentOp/)

 {

 $functionsWhichDefine = $functionsWhichDefine.$currentOp." ";

 }

 ##RULE if we are defining timeslot being set on a spefific line then

 if($line =~ /tsUsed.line\d_timeslot_bit_map/ && $processingEnsures eq

"tsUsed")

 {

 print "$&\n";

 my $tsStr = $&;

 $tsStr =~ s/tsUsed/tsMap/g;

 $timeSlotSetting =

"tsMap.line0_timeslot_bit_map=0;\n".$tsStr."=2;\n\n";

 }

 ##RULE Should call all functions before a define

 #get the functions that can be called for the current operation

 # where we have found a define and create the function calls for it

 foreach $func (@allFunctions)

 {

 #if the function is not the current operation insert the funtion

 #call into the code

 if($func ne $currentOp)

 {

 $testCode = $testCode."$func\n";

 }

 else

 {

 #insert the current operation and its parameters into the

 #test code

 $testCode = $testCode.$timeSlotSetting."$currentOp($funcParams)";

 $timeSlotSetting = "";

 #then store it

 push (@defineCaseFunctionCall,$testCode);

 #reset the test code memory

 $testCode = "";

 #escape foreach loop

 last;

 }

 }

 }

 #if the line is a global definition

 if($line =~ /^\t$_/)

 {

 @list = split(' ', $line);

 if(@list ==2)

 {

 $initCode = $initCode.$list[1]." ".$_.";\n";

 #$resetCode = $resetCode.$_." = 0;\n\t";

 $resetCode = $resetCode."\tbzero(&".$_.", sizeof(".$list[1]."));\n";

 }

 elsif(@list==3)

96

 {

 my $arraySize = $list[2];

 $arraySize =~ s/[\[|\]]//g;

 #print "ArraySize for $_ : $arraySize\n";

 $initCode = $initCode.$list[1]." ".$_.$list[2].";\n";

 $resetCode = $resetCode."\tbzero(".$_.",

sizeof(".$list[1].")*".$arraySize.");\n";

 #print $resetCode;

 }

 #store is as a definition

 push (@defined, $lineNum);

 #TODO REMOVE THE FOLLOWING LINE

 push (@defineCaseFunctionCall,"init");

 }

 #if there is no '\' in the line, then we have finsihed processing the

 #current define or use.

 if($line !~ /\\/)

 {

 #reset the flags

 $processingRequires = "false";

 $processingEnsures = "false";

 }

 #increment the line number that we are looking at in RESOLVE_SPEC

 $lineNum++;

 }

 close RESOLVE_SPEC;

 #processing of 1 globalDef complete, now output the valid DU pairs and test

 #code for it

 #for each define

 foreach $def (@defined)

 {

 foreach(@used)

 {

 #increment the testcase count

 $testCaseCount++;

 #output a DU pair

 print DU "$testCaseCount $def $_\n";

 }

 }

 print DU "\n";

 my $lengthUseCase = @useCaseFunctionCall;

 my $lengthDefineCase = @defineCaseFunctionCall;

 print TESTCODE "/******DU testcases for $_******/\n";

 for ($k=0; $k<$lengthDefineCase; $k++)

 {

 for ($j=0; $j<$lengthUseCase; $j++)

 {

 $counter++;

 ##RULE Should only call functions after a definition that dont

 ##re-define before use

97

 ##this section of code determines functions that maybe called

 ##after, the function that causes definition, that do not redefine

 ##the variable we are analysing

 my $index =0;

 #find the index of the useCase function from the list of all

 #functions

 my $usetestCode = $useCaseFunctionCall[$j];

 foreach $func (@allFunctions)

 {

 if($usetestCode =~ /$func/)

 {

 $index--;

 last;

 }

 else

 {

 $index++;

 }

 }

 ##search back in the list of all functions from the useCase Function

 ## and add functions which do not define and are not in the list of

 ##functions at or before the defined function

 my $dependendiesMet = 1; #flag set if

 while ($defineCaseFunctionCall[$k] !~ /$allFunctions[$index]/ &&

 ($index > 0))

 {

 if(($functionsWhichDefine !~ /$allFunctions[$index]/) &&

 ($defineCaseFunctionCall[$k] !~ /$allFunctions[$index]/)

)

 {

 $dependendiesMet = &AllDependenciesAvailible(

 $allFunctions[$index],

 $functionsWhichDefine,

 $defineCaseFunctionCall[$k]);

 if($dependendiesMet)

 {

 $usetestCode = $allFunctions[$index]."\n$usetestCode";

 }

 }

 $index--;

 }

 ##RULE where close is called in succession is not a valid

 #test case

 ##RULE if dependcies cannot be meet it is not a valid test case

|| &AllDependenciesAvailible($useCaseFunctionCall[$j],

 $functionsWhichDefine,

98

$usetestCode) == 0)

 #

 if(($defineCaseFunctionCall[$k] =~ /close\(fileDesc\)$/ &&

 $usetestCode =~ /^close\(fileDesc\)/) || $dependendiesMet ==0)

 {

 print "test Case $counter Exluded from psuedo code\n";

 print "DefineCase Function Call: $defineCaseFunctionCall[$k]\n\n";

 print "UseCase testCode: $usetestCode\n\n";

 print "dependendies meet: $dependendiesMet\n\n\n\n";

 }

 else

 {

 #if($dependendiesMet)

 print TESTCODE "test Case $counter(void)\n{\n";

 print TESTCODE "$defineCaseFunctionCall[$k]\n$usetestCode\n}\n\n";

 }

 }

 }

 print DU "\n";

 print TESTCODE "\n\n";

}

close DU;

close TESTCODE;

print "test case count $testCaseCount\n";

##PART3

#open the RESOLVE_SPEC again and extract out all the pre and post conditions

#for each opearion and create test code to check and set them

open (RESOLVE_SPEC, "HSSVoiceResolveSpec.txt") or die "I couldn't get

 at the file";

my $processingRequires = "false"; #flag set id requires spans >1 line

my $processingEnsures = "false"; #flag set id ensures spans >1 line

my $preConditions ="\tif("; #store the precondition of an operation to this

my $postConditions = "\t"; #store the post condition code of an operation

my $braceOpen = "false";

my @tsMapConfig;

for $line (<RESOLVE_SPEC>)

{

 #if we find a new operation

 if($line =~ /^operation/)

 {

 #if we were processing a previos Operation close the postConditions

 if($postConditions ne "")

 {

 $postConditions=$postConditions."}\n\telse\n\t{\n";

 $postConditions=$postConditions."\t\tprintf (\"$currentOp: Setting

ResultExpected = -1\\n\");\n";

99

 $postConditions=$postConditions."\t\tResultExpected = -1;\n\t}\n";

 }

 #store the test code

 if($currentOp eq "open")

 {

 $operationtestCode[0] = $preConditions.$postConditions;

 }

 elsif($currentOp eq "portUp")

 {

 $operationtestCode[1] = $preConditions.$postConditions;

 }

 elsif($currentOp eq "channelAdd")

 {

 $operationtestCode[2] =

$preConditions.$postConditions."\ttsMap.line0_timeslot_bit_map =

tsMap.line0_timeslot_bit_map<<1;\n";

 }

 elsif($currentOp eq "channelUp")

 {

 $operationtestCode[3] = $preConditions.$postConditions;

 }

 elsif($currentOp eq "read")

 {

 $operationtestCode[4] = $preConditions.$postConditions;

 }

 elsif($currentOp eq "write")

 {

 $operationtestCode[5] = $preConditions.$postConditions;

 }

 elsif($currentOp eq "channelDown")

 {

 $operationtestCode[6] = $preConditions.$postConditions;

 }

 elsif($currentOp eq "channelRemove")

 {

 $operationtestCode[7] = $preConditions.$postConditions;

 }

 elsif($currentOp eq "portDown")

 {

 $operationtestCode[8] = $preConditions.$postConditions;

 }

 elsif($currentOp eq "close")

 {

 $operationtestCode[9] = $preConditions.$postConditions;

 }

 #reset the pre& post conditions for new operation

 $preConditions ="\tif(";

 $postConditions = "\t";

 @list = split(' ', $line);

 #store the operation name

100

 $currentOp = $list[1];

 }

 #(.*|\W*)$_

 if($line =~ /^requires/ || $processingRequires eq "true")

 {

 if(($line !~ /tsMap\.line0_timeslot_bit_map==/) &&

 ($line !~ /tsMap\.line1_timeslot_bit_map==/) &&

 ($line !~ /tsMap\.line2_timeslot_bit_map==/) &&

 ($line !~ /tsMap\.line3_timeslot_bit_map==/))

 {

 if($processingRequires eq "true")

 {

 my $temp = $line;

 $temp =~ s/\t//g;

 $temp =~ s/\\//;

 $temp =~ s/\n//;

 $preConditions = $preConditions.$temp;

 if(($line !~ /\\/) && $braceOpen eq "true")

 {

 $braceOpen = "false";

 $preConditions = $preConditions.")";

 }

 }

 else

 {

 @list = split(':', $line);

 #remove and possible backslash charater

 $list[1] =~ s/\\//;

 $list[1] =~ s/\n//;

 $list[1] =~ s/^\s//;

 #add an && statement to preconditions if there is an existing

 #condtion

 if($preConditions !~ /if\($/ && $braceOpen eq "false")

 {

 $preConditions = $preConditions." &&\n\t\t ";

 }

 ## if the statement is over multiple lines open (

 if($line =~/\\/)

 {

 if($braceOpen eq "false")

 {

 $preConditions = $preConditions."(";

 $braceOpen = "true";

 }

 }

 #store the requriements of operation

 $preConditions = $preConditions.$list[1];

 #$preConditions = $preConditions." ";

 }

 #set processing flag to the use we are processing

101

 $processingRequires = "true";

 }

 }

 #define case is found, or flag is set indicating we are processing a def

 #\W+\(*$_

 if($line =~ /^ensures/ || $processingEnsures eq "true")

 {

 #get the post condition value

 @list = split(':', $line);

 $list[1] =~ s/\n//;

 $list[1] =~ s/^\s//;

 #add it to the post condition code

 $postConditions = $postConditions."\t$list[1];\n\t";

 #set processing flag to the define we are processing

 $processingEnsures = "true";

 }

 #if there is no '\' in the line, then we have finsihed processing the

 #current define or use.

 if($line !~ /\\/)

 {

 #reset the flags

 $processingRequires = "false";

 $processingEnsures = "false";

 }

 #if we have gone to the end of the pre-conditions close the

 #pre conditions statement

 if($line =~ /#postconditions/)

 {

 $preConditions = $preConditions.")\n\t{\n\t";

 $postConditions = "\tprintf (\"$currentOp: ResultExpected = 0\\n\");\n\t";

 $postConditions = $postConditions."\tResultExpected = 0;\n\t";

 }

}

$postConditions=$postConditions."}\n\telse\n\t{\n";

$postConditions=$postConditions."\t\tprintf (\"$currentOp: Setting ResultExpected = -

1\\n\");\n";

$postConditions=$postConditions."\t\tResultExpected = -1;\n\t}\n";

if($currentOp eq "close")

{

 $operationtestCode[9] = $preConditions.$postConditions;

}

#PART4

##REPLACE PSUEDO CODE WITH REAL CODE

open (PSUEDOCODE, "duPsuedoCode.c") or die "I couldn't get at the file";

open (TESTCODE, ">dutestCode.c") or die "I couldn't get at the file";

open (HEADERCODE, ">dutestCode.h") or die "I couldn't get at the file";

print HEADERCODE "#include <asm/types.h>\n";

print TESTCODE "#include <asm/types.h>\n";

102

print TESTCODE "#include <sys/stat.h>\n";

print TESTCODE "#include <fcntl.h>\n";

print TESTCODE "#include <sys/ioctl.h>\n";

print TESTCODE "#include <unistd.h>\n";

print TESTCODE "#include <string.h>\n";

print TESTCODE "#include \"icp.h\"\n";

print TESTCODE "#include \"readWrite.h\"\n";

print TESTCODE "#include \"icp_hssdrv.h\"\n\n";

print TESTCODE "#include \"icp_hssvoicedrv.h\"\n\n";

print TESTCODE "#include \"dutestCode.h\"\n\n";

$initCode = $initCode."\n\n\n";

$initCode = $initCode."#define PASS 0\n";

$initCode = $initCode."#define FAIL 1\n";

$initCode = $initCode."#define NOT_SET 0\n";

$initCode = $initCode."#define DOWN 0\n";

$initCode = $initCode."#define UP 1\n\n";

$initCode = $initCode."int i;\n";

$initCode = $initCode."int j;\n";

$initCode = $initCode."int ResultExpected;\n";

$initCode = $initCode."int fd[128];\n";

$initCode = $initCode."int portNum;\n";

$initCode = $initCode."int channelNum;\n";

$initCode = $initCode."icp_hssdrv_portup_t pCfg;\n";

$initCode = $initCode."icp_hssvoicedrv_channeladd_t cCfg;\n";

$initCode = $initCode."int config;\n";

print TESTCODE $initCode."\n\n";

print TESTCODE "void init()\n{\n";

print TESTCODE "\tbzero(fd, sizeof(int)*128);\n";

print TESTCODE $resetCode;

print TESTCODE "\tResultExpected=0;\n";

print TESTCODE "\tportNum=0;\n";

print TESTCODE "\tchannelNum=0;\n";

print TESTCODE "\tpCfg.portId=0;\n";

print TESTCODE "\tpCfg.port_config=ICP_HSSDRV_PORT_HMVIP_FRAMER_MEZZANINE_CONFIG;\n";

print TESTCODE "\tpCfg.loopbackMode=ICP_HSSDRV_NO_LOOPBACK;\n";

print TESTCODE "\tcCfg.channelId = channelNum;\n";

print TESTCODE "\tcCfg.portId = portNum;\n";

print TESTCODE "\tcCfg.voicePacketSize = 240;\n";

print TESTCODE "\ttsMap.line0_timeslot_bit_map = 2;\n";

print TESTCODE "\tcCfg.tsMap.line0_timeslot_bit_map = 2;\n";

print TESTCODE "\tcCfg.tsMap.line1_timeslot_bit_map = 0;\n";

print TESTCODE "\tcCfg.tsMap.line2_timeslot_bit_map = 0;\n";

print TESTCODE "\tcCfg.tsMap.line3_timeslot_bit_map = 0;\n";

print TESTCODE "\tcCfg.voiceIdleAction = 0;\n";

print TESTCODE "\tcCfg.voiceIdlePattern = 0x7E;\n";

print TESTCODE "\tcCfg.channelDataInvert =0;\n";

print TESTCODE "\tcCfg.channelBitEndianness = 1;\n";

print TESTCODE "\tcCfg.channelByteSwap = 0;\n";

print TESTCODE "\tconfig=ICP_HSSDRV_PORT_HMVIP_FRAMER_MEZZANINE_CONFIG;\n";

103

print TESTCODE "\tfor(i=0;i<3;i++)\n\t{\n";

print TESTCODE "\t\ticp_FramerDrvInit(i);\n";

print TESTCODE "\t\ticp_FramerDrvConfigSet(i,ICP_FRAMERDRV_CFG_E1_CCS_HDB3_DATA);\n";

print TESTCODE "\t\ticp_FramerDrvLoopbackSet(i,ICP_FRAMERDRV_LOOPBACK_DIGITAL);\n";

print TESTCODE "\t}\n";

print TESTCODE "}\n";

print TESTCODE "void uninit()\n{\n";

print TESTCODE &channelDownCode();

print TESTCODE &channelRemoveCode();

print TESTCODE &portDownCode();

print TESTCODE &closeCode();

print TESTCODE "\tfor(i=0;i<3;i++)\n\t{\n";

print TESTCODE "\t\ticp_FramerDrvUninit(i);\n";

print TESTCODE "\t}\n";

print TESTCODE "}\n";

for $line (<PSUEDOCODE>)

{

 if($line =~ /test Case/)

 {

 $line =~ s/test Case /uint8_t test/;

 print TESTCODE $line;

 my $proto = $line;

 $proto =~ s/\n/;\n/;

 print HEADERCODE $proto;

$line =~ s/*\/$//;

 }

 elsif($line =~ /^init/)

 {

 print TESTCODE "\tinit();\n";

 }

 elsif($line =~ /^open/)

 {

 print TESTCODE $operationtestCode[0];

 print TESTCODE "\tfd[openCounter] = open(\"/dev/hss-voice\",O_RDWR);\n";

 print TESTCODE "\tif(fd[openCounter] < ResultExpected)\n\t{\n";

 print TESTCODE "\t\tuninit();\n";

 print TESTCODE "\t\treturn FAIL;\n\t}\n";

 }

 elsif($line =~ /^portUp/)

 {

 print TESTCODE $operationtestCode[1];

 print TESTCODE "\tif(ioctl(fd[openCounter], ICP_HSSVOICEDRV_PORT_UP, &pCfg)";

 &failCode();

 }

 elsif($line =~ /^channelAdd/)

 {

 print TESTCODE "\tcCfg.channelId = ++channelNum;\n";

 print TESTCODE "\tcCfg.portId = portNum;\n";

 print TESTCODE "\tcCfg.voicePacketSize = 240;\n";

104

 print TESTCODE "\tcCfg.tsMap.line0_timeslot_bit_map =

tsMap.line0_timeslot_bit_map;\n";

 print TESTCODE "\tcCfg.tsMap.line1_timeslot_bit_map =

tsMap.line1_timeslot_bit_map;\n";

 print TESTCODE "\tcCfg.tsMap.line2_timeslot_bit_map =

tsMap.line2_timeslot_bit_map;\n";

 print TESTCODE "\tcCfg.tsMap.line3_timeslot_bit_map =

tsMap.line3_timeslot_bit_map;\n";

 print TESTCODE "\tcCfg.voiceIdleAction = 0;\n";

 print TESTCODE "\tcCfg.voiceIdlePattern = 0x7E;\n";

 print TESTCODE "\tcCfg.channelDataInvert =0;\n";

 print TESTCODE "\tcCfg.channelBitEndianness = 1;\n";

 print TESTCODE "\tcCfg.channelByteSwap = 0;\n";

 print TESTCODE $operationtestCode[2];

 print TESTCODE "\ti= ioctl(fd[openCounter], ICP_HSSVOICEDRV_CHAN_ADD,

&cCfg);\n";

 print TESTCODE "\tif(i!=0) channelNum--;\n";

 print TESTCODE "\tif(i";

 &failCode();

 }

 elsif($line =~ /^channelUp/)

 {

 print TESTCODE $operationtestCode[3];

 print TESTCODE "\ti= ioctl(fd[openCounter], ICP_HSSVOICEDRV_CHAN_UP,

channelNum);\n";

 print TESTCODE "\tif(i";

 &failCode();

 }

 elsif($line =~ /^read/)

 {

 print TESTCODE "\tif(systestHssDrvVoiceTx (openCounter, 10, 240)!=0)\n\t{\n";

 print TESTCODE "\t\tuninit();\n";

 print TESTCODE "\t\treturn FAIL;\n\t}\n";

 }

 elsif($line =~ /^write/)

 {

 }

 elsif($line =~ /^channelDown/)

 {

 print TESTCODE $operationtestCode[6];

 print TESTCODE "\ti= ioctl(fd[openCounter], ICP_HSSVOICEDRV_CHAN_DOWN,

channelNum);\n";

 print TESTCODE "\tif(i";

 &failCode();

 }

 elsif($line =~ /^channelRemove/)

 {

 print TESTCODE $operationtestCode[7];

 print TESTCODE "\ti= ioctl(fd[openCounter], ICP_HSSVOICEDRV_CHAN_REMOVE,

channelNum);\n";

105

 print TESTCODE "\tif(i==0) channelNum--;\n";

 print TESTCODE "\tif(i";

 &failCode();

 }

 elsif($line =~ /^portDown/)

 {

 print TESTCODE $operationtestCode[8];

 print TESTCODE "\ti= ioctl(fd[openCounter], ICP_HSSVOICEDRV_PORT_DOWN,

portNum);\n";

print TESTCODE "\tif(i!=0) \n\t{\n";

print TESTCODE &channelRemoveCode();

print TESTCODE "\t}\n";

 print TESTCODE "\tif(i";

 &failCode();

 }

 elsif($line =~ /^close/)

 {

 print TESTCODE $operationtestCode[9];

 print TESTCODE "\ti= close(fd[openCounter]);\n";

 print TESTCODE "\tif(i";

 &failCode();

print TESTCODE "\t!= ResultExpected)\n{\n";

 # print TESTCODE "\t\tuninit();\n";

print TESTCODE "\t\treturn FAIL;\n\t}\n";

 }

 elsif($line =~ /^}/)

 {

 print TESTCODE "\tuninit();\n\treturn PASS;\n}\n";

 }

 else

 {

 print TESTCODE $line;

 }

}

print HEADERCODE "\n";

close HEADERCODE;

close PSUEDOCODE;

close TESTCODE;

sub AllDependenciesAvailible

{

 my ($func, $functionsWhichDefine, $defineCaseFunctionCall) = @_;

 my $returnVal =0;

 if($defineCaseFunctionCall =~ /$func/)

 {

 return 1;

 }

106

 if($functionsWhichDefine =~ /$func/)

 {

 return 0;

 }

 if($func =~ /channelDown/)

 {

 $returnVal = &AllDependenciesAvailible("channelUp",

 $functionsWhichDefine, $defineCaseFunctionCall);

 }

 elsif($func =~ /read/)

 {

 $returnVal = &AllDependenciesAvailible("channelUp",

 $functionsWhichDefine, $defineCaseFunctionCall);

 }

 elsif($func =~ /write/)

 {

 $returnVal = &AllDependenciesAvailible("channelUp",

 $functionsWhichDefine, $defineCaseFunctionCall);

 }

 elsif($func =~ /channelUp/)

 {

 $returnVal = &AllDependenciesAvailible("channelAdd",

 $functionsWhichDefine, $defineCaseFunctionCall);

 }

 elsif($func =~ /channelAdd/)

 {

 $returnVal = &AllDependenciesAvailible("open",

 $functionsWhichDefine, $defineCaseFunctionCall);

 }

 elsif($func =~ /portUp/)

 {

 $returnVal = &AllDependenciesAvailible("open",$functionsWhichDefine,

 $defineCaseFunctionCall);

 }

 elsif($func =~ /portDown/)

 {

 $returnVal = &AllDependenciesAvailible("open",$functionsWhichDefine,

 $defineCaseFunctionCall);

 }

 elsif($func =~ /open/)

 {

 $returnVal = &AllDependenciesAvailible("init",$functionsWhichDefine,

 $defineCaseFunctionCall);

 }

 elsif($func =~ /close/)

 {

 $returnVal = &AllDependenciesAvailible("open",$functionsWhichDefine,

 $defineCaseFunctionCall);

 }

 return $returnVal;

}

107

sub closeCode

{

 my $str= "\tfor(i=0;i<openCounter;i++)\n\t{\n";

 $str = $str."\t\tclose(fd[i]);\n";

 $str = $str."\t}\n";

 return $str;

}

sub portDownCode

{

 my $str= "\tfor(i=0;i<3;i++)\n\t{\n";

 $str = $str."\t\tif(portStatus[i] == UP)\n\t\t{\n";

 $str = $str."\t\t\tioctl(fd[openCounter], ICP_HSSVOICEDRV_PORT_DOWN, 0);\n";

 $str = $str."\t\t}\n";

 $str = $str."\t}\n";

 return $str;

}

sub channelRemoveCode

{

 my $str= "\tfor(j=channelNum;j>0;j--)\n\t{\n";

 $str = $str."\t\tioctl(fd[openCounter], ICP_HSSVOICEDRV_CHAN_REMOVE,j);\n";

 $str = $str."\t}\n";

 return $str;

}

sub channelDownCode

{

 my $str= "\tfor(i=channelNum;i>0;i--)\n\t{\n";

 $str = $str."\t\tioctl(fd[openCounter], ICP_HSSVOICEDRV_CHAN_DOWN,i);\n";

 $str = $str."\t}\n";

 return $str;

}

sub failCode

{

 print TESTCODE " != ResultExpected)\n\t{\n";

 print TESTCODE "\t\tprintf (\"Result: %d, was not expected\\n\", i);\n";

 print TESTCODE "\t\tuninit();\n";

 print TESTCODE "\t\treturn FAIL;\n\t}\n";

}

108

VII. Sample of Test Code Generated by BVA Test

Generator

#ifdef __linux

#include <stdint.h>

#include <stdio.h>

#include <sys/ioctl.h>

#include <fcntl.h>

#endif /* endif __linux */

#include "icp_hssdrv.h"

#include "icp_hssvoicedrv.h"

#include "icp.h"

#include "IaHssDrvSystest.h"

#include "IaT1E1FramerSystest.h"

uint32_t s_configure_framer = 1;

systestT1E1PortConfig_t portConfig =

 {ICP_FRAMERDRV_CFG_E1_CCS_HDB3_CRCMF_QUAD, ICP_FRAMERDRV_LOOPBACK_NONE,

 0, TRUE};

systestT1E1testData_t icp_T1E1SystestData[] =

{

 {1, {&portConfig , &portConfig, &portConfig}}

};

iaSystestHssDrvChanCfg_t tc1_0[] =

{

 {0, {0x00000002,0x00000000,0x00000000,0x00000000}, CHAN_CFG_DFT, VOICE_CHANNEL,

0}

};

iaSystestHssDrvChanCfg_t tc3_2[] =

{

 {0, {0x00000002,0x00000000,0x00000000,0x00000000}, CHAN_CFG_DFT, VOICE_CHANNEL,

0}

};

iaSystestHssDrvChanCfg_t tc4_0[] =

{

 {0, {0x00000002,0x00000000,0x00000000,0x00000000}, CHAN_CFG_DFT, VOICE_CHANNEL,

0}

};

systestHssDrvDesc_t s_testcaseList[] =

{

 {1, 1, 0, {Q_E1_CGF_FLB,PORT_UNUSED,PORT_UNUSED,PORT_UNUSED},

 {tc1_0, 0, 0, 0}, {1, 0, 0, 0},

 BLOCKING, QOS_DISABLED, SRTP_DISABLED, QOS_PRIORITY_BOUNDARY_IS_0

 },

 {2, 128, 0, {Q_E1_CGF_FLB,Q_E1_CGF_FLB,PORT_UNUSED,PORT_UNUSED},

 {tc2_0, tc2_1, 0, 0}, {124, 4, 0, 0},

 BLOCKING, QOS_DISABLED, SRTP_DISABLED, QOS_PRIORITY_BOUNDARY_IS_0

 },

 {3, 1, 0, {PORT_UNUSED,PORT_UNUSED,Q_E1_CGF_FLB,PORT_UNUSED},

 {0, 0, tc3_2, 0}, {0, 0, 1, 0},

 BLOCKING, QOS_DISABLED, SRTP_DISABLED, QOS_PRIORITY_BOUNDARY_IS_0

 },

 {4, 1, 0, {Q_E1_CGF_FLB,PORT_UNUSED,PORT_UNUSED,PORT_UNUSED},

 {tc4_0, 0, 0, 0}, {1, 0, 0, 0},

 BLOCKING, QOS_DISABLED, SRTP_DISABLED, QOS_PRIORITY_BOUNDARY_IS_0

109

 },

 {28, 1, 0, {Q_E1_CGF_FLB,Q_E1_CGF_FLB,PORT_UNUSED,PORT_UNUSED},

 {tc28_0, tc28_1, 0, 0}, {124, 0, 0, 0},

 BLOCKING, QOS_DISABLED, SRTP_DISABLED, QOS_PRIORITY_BOUNDARY_IS_0

 },

 {29, 1, 0, {Q_E1_CGF_FLB,Q_E1_CGF_FLB,PORT_UNUSED,PORT_UNUSED},

 {tc29_0, tc29_1, 0, 0}, {124, 4, 0, 0},

 BLOCKING, QOS_DISABLED, SRTP_DISABLED, QOS_PRIORITY_BOUNDARY_IS_0

 },

 {999, 0, 0, {PORT_UNUSED, PORT_UNUSED, PORT_UNUSED, PORT_UNUSED},

 {0,0,0,0}, {0,0,0, 0},

 BLOCKING, QOS_DISABLED, SRTP_DISABLED, QOS_PRIORITY_BOUNDARY_IS_0

 }

};

110

VIII. Sample of DU Generated Test Code

#include <asm/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <sys/ioctl.h>

#include <unistd.h>

#include <string.h>

#include "icp.h"

#include "readWrite.h"

#include "icp_hssdrv.h"

#include "icp_hssvoicedrv.h"

#include "dutestCode.h"

int portStatus[3];

int channelsOnPort[3];

int channelsOnFd[128];

int openCounter;

int channelsUsed;

icp_hssdrv_timeslot_map_t tsUsed;

int portConfig[3];

char channelStatus[128];

icp_hssdrv_timeslot_map_t channelConfig[128];

char readBuffer[40960];

char writeBuffer[40960];

icp_hssdrv_timeslot_map_t tsMap;

#define PASS 0

#define FAIL 1

#define NOT_SET 0

#define DOWN 0

#define UP 1

int i;

int j;

int ResultExpected;

int fd[128];

int portNum;

int channelNum;

icp_hssdrv_portup_t pCfg;

icp_hssvoicedrv_channeladd_t cCfg;

int config;

void init()

{

 bzero(fd, sizeof(int)*128);

 bzero(portStatus, sizeof(int)*3);

 bzero(channelsOnPort, sizeof(int)*3);

 bzero(channelsOnFd, sizeof(int)*128);

 bzero(&openCounter, sizeof(int));

 bzero(&channelsUsed, sizeof(int));

 bzero(&tsUsed, sizeof(icp_hssdrv_timeslot_map_t));

 bzero(portConfig, sizeof(int)*3);

 bzero(channelStatus, sizeof(char)*128);

 bzero(channelConfig, sizeof(icp_hssdrv_timeslot_map_t)*128);

 bzero(readBuffer, sizeof(char)*40960);

 bzero(writeBuffer, sizeof(char)*40960);

 bzero(&tsMap, sizeof(icp_hssdrv_timeslot_map_t));

 ResultExpected=0;

 portNum=0;

 channelNum=0;

 pCfg.portId=0;

 pCfg.port_config=ICP_HSSDRV_PORT_HMVIP_FRAMER_MEZZANINE_CONFIG;

 pCfg.loopbackMode=ICP_HSSDRV_NO_LOOPBACK;

 cCfg.channelId = channelNum;

 cCfg.portId = portNum;

 cCfg.voicePacketSize = 240;

 tsMap.line0_timeslot_bit_map = 2;

 cCfg.tsMap.line0_timeslot_bit_map = 2;

111

 cCfg.tsMap.line1_timeslot_bit_map = 0;

 cCfg.tsMap.line2_timeslot_bit_map = 0;

 cCfg.tsMap.line3_timeslot_bit_map = 0;

 cCfg.voiceIdleAction = 0;

 cCfg.voiceIdlePattern = 0x7E;

 cCfg.channelDataInvert =0;

 cCfg.channelBitEndianness = 1;

 cCfg.channelByteSwap = 0;

 config=ICP_HSSDRV_PORT_HMVIP_FRAMER_MEZZANINE_CONFIG;

 for(i=0;i<3;i++)

 {

 icp_FramerDrvInit(i);

 icp_FramerDrvConfigSet(i,ICP_FRAMERDRV_CFG_E1_CCS_HDB3_DATA);

 icp_FramerDrvLoopbackSet(i,ICP_FRAMERDRV_LOOPBACK_DIGITAL);

 }

}

void uninit()

{

 for(i=channelNum;i>0;i--)

 {

 ioctl(fd[openCounter], ICP_HSSVOICEDRV_CHAN_DOWN,i);

 }

 for(j=channelNum;j>0;j--)

 {

 ioctl(fd[openCounter], ICP_HSSVOICEDRV_CHAN_REMOVE,j);

 }

 for(i=0;i<3;i++)

 {

 if(portStatus[i] == UP)

 {

 ioctl(fd[openCounter], ICP_HSSVOICEDRV_PORT_DOWN, 0);

 }

 }

 for(i=0;i<openCounter;i++)

 {

 close(fd[i]);

 }

 for(i=0;i<3;i++)

 {

 icp_FramerDrvUninit(i);

 }

}

/******DU testcases for portStatus******/

uint8_t test1(void)

{

 init();

 if(openCounter<128)

 {

 printf ("open: ResultExpected = 0\n");

 ResultExpected = 0;

 openCounter+=1;

 }

 else

 {

 printf ("open: Setting ResultExpected = -1\n");

 ResultExpected = -1;

 }

 fd[openCounter] = open("/dev/hss-voice",O_RDWR);

 if(fd[openCounter] < ResultExpected)

 {

 uninit();

 return FAIL;

 }

 cCfg.channelId = ++channelNum;

 cCfg.portId = portNum;

 cCfg.voicePacketSize = 240;

 cCfg.tsMap.line0_timeslot_bit_map = tsMap.line0_timeslot_bit_map;

 cCfg.tsMap.line1_timeslot_bit_map = tsMap.line1_timeslot_bit_map;

 cCfg.tsMap.line2_timeslot_bit_map = tsMap.line2_timeslot_bit_map;

 cCfg.tsMap.line3_timeslot_bit_map = tsMap.line3_timeslot_bit_map;

 cCfg.voiceIdleAction = 0;

 cCfg.voiceIdlePattern = 0x7E;

 cCfg.channelDataInvert =0;

 cCfg.channelBitEndianness = 1;

 cCfg.channelByteSwap = 0;

 if(channelsOnFd[openCounter]<128 &&

112

 portStatus[portNum]==UP &&

 (channelsUsed & channelNum) == 0 /*channel number is not used*/ &&

 (((tsUsed.line0_timeslot_bit_map & tsMap.line0_timeslot_bit_map) ==0)

&& ((tsUsed.line1_timeslot_bit_map & tsMap.line1_timeslot_bit_map) ==0) &&

((tsUsed.line2_timeslot_bit_map & tsMap.line2_timeslot_bit_map) ==0) &&

((tsUsed.line3_timeslot_bit_map & tsMap.line3_timeslot_bit_map) ==0)) &&

 ((tsMap.line0_timeslot_bit_map >= 0x00000002 &&

tsMap.line0_timeslot_bit_map <=0xFFFFFFFF) || /*ensure that the channel does not span

E1's*/(tsMap.line1_timeslot_bit_map >= 0x00000002 && tsMap.line1_timeslot_bit_map

<=0xFFFFFFFF) || (tsMap.line2_timeslot_bit_map >= 0x00000002 &&

tsMap.line3_timeslot_bit_map <=0xFFFFFFFF) || (tsMap.line3_timeslot_bit_map >=

0x00000002 && tsMap.line0_timeslot_bit_map <=0xFFFFFFFF)))

 {

 printf ("channelAdd: ResultExpected = 0\n");

 ResultExpected = 0;

 channelsOnFd[openCounter]++;

 channelConfig[channelNum].line0_timeslot_bit_map=

tsMap.line0_timeslot_bit_map;

 channelConfig[channelNum].line1_timeslot_bit_map=

tsMap.line1_timeslot_bit_map;

 channelConfig[channelNum].line2_timeslot_bit_map=

tsMap.line2_timeslot_bit_map;

 channelConfig[channelNum].line3_timeslot_bit_map=

tsMap.line3_timeslot_bit_map;

 tsUsed.line0_timeslot_bit_map |= tsMap.line0_timeslot_bit_map;

 tsUsed.line1_timeslot_bit_map |= tsMap.line1_timeslot_bit_map;

 tsUsed.line2_timeslot_bit_map |= tsMap.line2_timeslot_bit_map;

 tsUsed.line3_timeslot_bit_map |= tsMap.line3_timeslot_bit_map;

 channelsUsed |= channelNum;

 channelsOnPort[portNum]++;

 }

 else

 {

 printf ("channelAdd: Setting ResultExpected = -1\n");

 ResultExpected = -1;

 }

 tsMap.line0_timeslot_bit_map = tsMap.line0_timeslot_bit_map<<1;

 i= ioctl(fd[openCounter], ICP_HSSVOICEDRV_CHAN_ADD, &cCfg);

 if(i!=0) channelNum--;

 if(i != ResultExpected)

 {

 printf ("Result: %d, was not expected\n", i);

 uninit();

 return FAIL;

 }

 uninit();

 return PASS;

}

uint8_t test2(void)

{

 init();

 if(openCounter<128)

 {

 printf ("open: ResultExpected = 0\n");

 ResultExpected = 0;

 openCounter+=1;

 }

 else

 {

 printf ("open: Setting ResultExpected = -1\n");

 ResultExpected = -1;

 }

 fd[openCounter] = open("/dev/hss-voice",O_RDWR);

 if(fd[openCounter] < ResultExpected)

 {

 uninit();

 return FAIL;

 }

 if((portConfig[portNum]==config || portConfig[portNum]==NOT_SET))

 {

 printf ("portUp: ResultExpected = 0\n");

 ResultExpected = 0;

 portConfig[portNum]=config;

 portStatus[portNum]=UP;

 }

 else

113

 {

 printf ("portUp: Setting ResultExpected = -1\n");

 ResultExpected = -1;

 }

 if(ioctl(fd[openCounter], ICP_HSSVOICEDRV_PORT_UP, &pCfg) != ResultExpected)

 {

 printf ("Result: %d, was not expected\n", i);

 uninit();

 return FAIL;

 }

 cCfg.channelId = ++channelNum;

 cCfg.portId = portNum;

 cCfg.voicePacketSize = 240;

 cCfg.tsMap.line0_timeslot_bit_map = tsMap.line0_timeslot_bit_map;

 cCfg.tsMap.line1_timeslot_bit_map = tsMap.line1_timeslot_bit_map;

 cCfg.tsMap.line2_timeslot_bit_map = tsMap.line2_timeslot_bit_map;

 cCfg.tsMap.line3_timeslot_bit_map = tsMap.line3_timeslot_bit_map;

 cCfg.voiceIdleAction = 0;

 cCfg.voiceIdlePattern = 0x7E;

 cCfg.channelDataInvert =0;

 cCfg.channelBitEndianness = 1;

 cCfg.channelByteSwap = 0;

 if(channelsOnFd[openCounter]<128 &&

 portStatus[portNum]==UP &&

 (channelsUsed & channelNum) == 0 /*channel number is not used*/ &&

 (((tsUsed.line0_timeslot_bit_map & tsMap.line0_timeslot_bit_map) ==0)

&& ((tsUsed.line1_timeslot_bit_map & tsMap.line1_timeslot_bit_map) ==0) &&

((tsUsed.line2_timeslot_bit_map & tsMap.line2_timeslot_bit_map) ==0) &&

((tsUsed.line3_timeslot_bit_map & tsMap.line3_timeslot_bit_map) ==0)) &&

 ((tsMap.line0_timeslot_bit_map >= 0x00000002 &&

tsMap.line0_timeslot_bit_map <=0xFFFFFFFF) || /*ensure that the channel does not span

E1's*/(tsMap.line1_timeslot_bit_map >= 0x00000002 && tsMap.line1_timeslot_bit_map

<=0xFFFFFFFF) || (tsMap.line2_timeslot_bit_map >= 0x00000002 &&

tsMap.line3_timeslot_bit_map <=0xFFFFFFFF) || (tsMap.line3_timeslot_bit_map >=

0x00000002 && tsMap.line0_timeslot_bit_map <=0xFFFFFFFF)))

 {

 printf ("channelAdd: ResultExpected = 0\n");

 ResultExpected = 0;

 channelsOnFd[openCounter]++;

 channelConfig[channelNum].line0_timeslot_bit_map=

tsMap.line0_timeslot_bit_map;

 channelConfig[channelNum].line1_timeslot_bit_map=

tsMap.line1_timeslot_bit_map;

 channelConfig[channelNum].line2_timeslot_bit_map=

tsMap.line2_timeslot_bit_map;

 channelConfig[channelNum].line3_timeslot_bit_map=

tsMap.line3_timeslot_bit_map;

 tsUsed.line0_timeslot_bit_map |= tsMap.line0_timeslot_bit_map;

 tsUsed.line1_timeslot_bit_map |= tsMap.line1_timeslot_bit_map;

 tsUsed.line2_timeslot_bit_map |= tsMap.line2_timeslot_bit_map;

 tsUsed.line3_timeslot_bit_map |= tsMap.line3_timeslot_bit_map;

 channelsUsed |= channelNum;

 channelsOnPort[portNum]++;

 }

 else

 {

 printf ("channelAdd: Setting ResultExpected = -1\n");

 ResultExpected = -1;

 }

 tsMap.line0_timeslot_bit_map = tsMap.line0_timeslot_bit_map<<1;

 i= ioctl(fd[openCounter], ICP_HSSVOICEDRV_CHAN_ADD, &cCfg);

 if(i!=0) channelNum--;

 if(i != ResultExpected)

 {

 printf ("Result: %d, was not expected\n", i);

 uninit();

 return FAIL;

 }

 uninit();

 return PASS;

}

114

IX. Summary of Results from BVA Tests

Build 55 test Results

test Case Result Comment

1,4,6,7,8,10,11,13,

17,19,27

Pass

2 Fail 128 clients with a single channel each: some failed due

to repeated byte in loopback frame or

chunks 8 bytes of data missing in loopback frame

stuck in loop trying to remove channels at end of test

3, 21, 23, 24,26

Failed 1 byte dropped out of rx frame

22,25

Fail 1 byte repeated in of rx frame

8 Fail section of 4 bytes missing in received framer

12 Fail section of four bytes repeated in received frame

14,16,18, 20

Fail section of 2 bytes repeated in received framer

15.

Fail section of 2 bytes missing in received framer

28, 29 Fail Firmware Error bring up channels

Version 1.0 test Results

test Case Result Comment

1-29 Pass

