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Abstract— This work provides an up to date measurement-driven examination of the 
spatial characteristics of network resource usage. The data set used is from a large 
nationwide 3G cellular network comprised of several thousand base stations. Firstly, we 
discuss our data set and its potential application. Next, we examine the spatial correlation 
between base stations in terms of radio resource usage. We find significant spatial 
correlation, particularly for proximate base stations. We examine the causality structure in 
the network using Granger causality to identify key influential indicator base stations within 
sub-networks. These indicator base stations act as hubs in the wider network and provide 
additional information about the future states of their neighbors. The penultimate section 
examines the influential indicator base stations in more detail. Finally, we conclude with a 
brief discussion of the key points and how we aim to progress this work. 

 
Keywords – CDR, spatial usage, resource usage, cellular networks, network dynamics 

______________________________________________________________________________________ 
 

I  INTRODUCTION 
 

In the past two decades mobile phones and 
devices utilising the mobile phone network have 
become ubiquitous in modern society. Mobile phone 
penetration has approached and in some nations 
exceeded 100% [1]. Cellular networks are 
undergoing, and will continue to experience, a large 
and sustained increase in demand for network 
resources [2]. As operators move to add capacity, a 
detailed understanding of the underlying dynamics of 
resource usage is increasingly important. To this end, 
some recent works have begun to make use of large 
scale data sets provided by network operators to 
identify important facets of network usage [3-9]. 
This work provides an examination of spatially 
significant behavior with regards to resource usage 
from a network perspective. We aim to investigate i) 
the spatial correlation of resource usage from the 
perspective of network infrastructure and ii) identify 
key highly connected base stations that provide the 
most information about their local sub-network. 
These topics are relevant to network providers in the 
areas of resource planning (hardware/spectrum), 
management and measurement. 

  The remainder of this paper is structured as 
follows: Section II will outline key information about 
our data set. Section III will focus on examining the 

spatial correlation between base stations and their 
radio resource usage. Section IV examines the causal 
structure present in the network and a way to identify 
the most influential base stations. Section V explores 
the influential base stations identified in Section IV. 
Section VI concludes our work with a brief 
discussion and a look to future work we aim to carry 
out. 

 
II  DATA SET 

 
Our data set consists of two weeks of 

nationwide Call Detail Records (CDRs) collected in 
2011 from one of the Republic of Ireland’s cellular 
phone networks. The data set includes information 
on all calls, SMS and cellular data usage of over one 
million people communicating on a network 
comprised of over ten thousand base stations. Where 
appropriate, both voice calls and SMS are treated as 
an equivalent data service expressed in bytes and 
added to cellular data to get the Total Equivalent 
Data (TED). Voice is encoded in mobile phone 
networks using adaptive multirate (AMR) codecs.  In 
GSM and wCDMA, a narrowband AMR scheme is 
used with a typical data rate of 12.2 kbps.  A higher 
quality wideband AMR is used in LTE and offers 
superior quality at a data rate of 12.5 kbps [10, 11].  
Higher and lower data rates are possible, but for this 



 

 

paper a rate of 12.5 kbps will be used in converting 
voice channels to an equivalent data session.  Text 
messages will be treated as a 200 byte message with 
1 second duration. The privacy of individual 
subscribers is paramount, thus all personal 
information in the dataset is anonymised and cannot 
be used to identify individual customers. No 
information was provided relating to the content of 
any call, SMS or data session. 

 
III  SPATIAL CORRELATION 

 
  In this section we examine how spatially 

correlated the network usage is. We find that there is 
a significant amount of spatial correlation present in 
the network. There are two main metrics used to 
describe resource usage (i) traffic load in terms of 
bytes [9] and (ii) airtime [12]. Traffic load in terms 
of bytes is problematic for our application as on our 
test network a small number of extremely high data 
users (mainly USB dongles and to a lesser extent bill 
pay smartphones – possibly tethered) were heavily 
skewing the data and masking underlying patterns 
(see Figure 1). This was particularly challenging 
(especially at off-peak times) due to the fine 
granularity at which we were examining the network 
i.e. every hour & every fifteen minutes at the base 
station level. One possible method to mitigate this is 
considered by [13] but would result in reduced 
spatial granularity.  

  Airtime, as defined by [12], essentially 
quantifies the amount of time a subscriber uses radio 
and spectrum resources. In the 3G standard a 
subscriber requests, and is allocated, a radio channel 
when the subscriber has data to send [14]. The 
allocated radio channel is revoked when the 
subscriber is inactive for a certain period of time 
defined by the inactivity timer -usually about 10 
seconds [15]. The value of the inactivity timer is 
configurable by the network operators [14] and a 
subscriber can move between an active and dormant 
state multiple times within a single connection 
session. The airtime is thus defined as the amount of 
time a subscriber holds onto the radio channel (either 
in an active or dormant state). Airtime is therefore 
used as it is more closely related to radio resource 
usage and less prone to swamping by a small group 
of voracious subscribers. 

 
Figure 1: CDF of normalised traffic over the percentage of 
subscribers (all subscribers). Note that here voice and SMS 
are treated as an equivalent data service as explained in [8], 
cell data is the 3G cellular data in bytes and total data is the 
summation of all three expressed in bytes. 

 
Figure 2: CDF of the cross-correlation between all pairs of 
base stations and also within certain distance bands based 
on hourly airtime data over the course of two weeks. 

 
Using the airtime for each base station we now 
investigate the extent of the spatial correlation on the 
network by cross-correlating pairs of base station’s 
time series with one another. Cross-correlation is a 
widely used statistical method of measuring the 
similarity (the degree of correlation) between two 
time series [16]. Figure 2 shows the cross-correlation 
calculated at zero lag for all base stations on the 
network and also for base stations based on certain 
distance ranges over two weeks of data at a 
granularity of one hour. Similar results were also 
obtained for the 15 minute interval but are omitted 
due to their similarity. The cross-correlation between 
base stations was found to be quite high with the one 
hour interval displaying slightly higher values than 
the 15 minute interval. The median cross-correlation 
was approximately 0.65 for the one hour interval and 
0.5 for the 15 minute interval. 80% of base stations 
had a cross-correlation greater than or equal to 0.5 
for the one hour interval. Cross-correlation was also 
found to be dependent on the distance between the 
base stations as shown by the groups in Figure 2. For 
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example, the median cross-correlation between cells 
within 2km of each other was 0.8 falling to 0.7 for all 
cells within 20km. 
 

IV  CAUSALITY 
 

To identify base stations that provide the most 
information about their future sub-network usage, we 
now focus on causality. The causal relationship 
between sub-networks of base stations can provide 
extra information for the predication of traffic loads 
and thus allow for the appropriate allotment of 
spectrum in advance. Our chosen method for 
exploring this is Granger causality [8].  

 
a) Granger Causality 

 
  Granger causality establishes if one time 

series improves the of forecasting another [8]. One 
stochastic variable, X2, Granger causes another 
stochastic variable X1 if information in the past of X2 
helps predict the future of X1 with a better accuracy 
than is possible with only the information in the past 
of X1 alone [8]. Thus, Granger causality is present in 
the direction X2 to X1, provided that the inclusion of 
X2 in the model improves the prediction of X1 by a 
statistically significant amount. However, this 
relationship is not necessarily symmetrical and thus 
‘X2 Granger-causes X1’ does not imply that ‘X1 
Granger-causes X2’ [12].  

 
For example, suppose we have two time 

series X1(t) and X2(t), both having a length of T. As 
in [17] we can describe the two time series using a 
bivariate autoregressive model: 

 

𝑋1(𝑡) =  �𝐴11,𝑖𝑋1(𝑡 − 1) + �𝐴12,𝑖𝑋2(𝑡 − 1) +  𝜀1(𝑡).
𝑝

𝑖=1

𝑝

𝑖=1

 

 
 
 

𝑋2(𝑡) =  �𝐴21,𝑖𝑋1(𝑡 − 1) + �𝐴22,𝑖𝑋2(𝑡 − 1) + 𝜀2(𝑡).
𝑝

𝑖=1

𝑝

𝑖=1

 

 
 where p < T is the model order i.e. the 

maximum number of lagged observations of X2 used 
to predict the current value of X1 or vice versa at 
time (t). The matrix A contains the model 
coefficients while ε1 & ε2 are the residuals of the 
autoregressive model. X2 Granger causes X1 if all the 
coefficients of A12 are non-zero i.e. if the residuals 
are reduced by the inclusion of the second time series 
in the model. In practice, a threshold is set to 
determine if the relationship is statistically 
significant. One such method is the F-test; to be 
considered statistically significant the F-value should 
be greater than a desired significance threshold 
ranging from 0 to 1 [17]. The closer the significance 
threshold is to zero the greater the significance of the 

result. The Akaike Information Criterion (AIC) [18] 
was used to estimate the model order. 

 

 
Figure 3: CDF of the model order for each pair of 
neighbouring base stations using the Akaike Information 
Criterion with a granularity of one hour. 

Using [17] and in a similar fashion to [12] we 
find the model order using AIC as illustrated in 
Figure 3. The model order is generally quite low 
with about 80% of pairings having an order of 8 or 
less. This suggests that in most casses only a small 
number of previous samples from causally conneted 
neighbours are required. For the F-test of 
significance we set significance threshold level to 
0.05. The causality is tested for every pair of 
neighboring base stations in both directions. On this 
network 38% of base stations pairs were found to 
have a statistically significant causal relationship in 
at least one direction at a granularity of one hour. 

 
b) Identifying Influential Base Stations 

 
To examine the network as a whole we create 

a causality graph using the pair-wise causal 
relationships [12]. The resulting graph of Granger 
causality interactions is a directed graph G = (V, E) 
where V is the set of vertices, E is the set of edges. 
Thus, each base station becomes a node on the graph 
and there is an edge from node a to b (i.e. (a,b) ϵ E)  
if there is a significant Granger causality interaction 
between them and they are neighbors in terms of 
coverage area [12]. This causal graph allows for the 
exploration and quantification of some causal 
properties useful in identifying influential nodes 
[17]. These properties are outlined in the following 
subsections. 

 
c) Causal Density 

 
Causal density is a global measure of the 

causal interactivity in a dynamic system. It shows the 
mean causality over the entire network. A high value 
of causal density indicates that the constituent parts 
of the network are coordinated in their activity [17]. 
It is the average G-causality over all the pairs of base 
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stations examined. Causal density can take on a 
value between 0 and 1 and gives the average amount 
of significant Granger causality interactions over the 
entire network. Granger causality is defined using 
the causality graph:   

 

𝐶𝑎𝑢𝑠𝑎𝑙 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =  
∑ ∑ 𝐼[(𝑏, 𝑎) ∈ 𝐸]𝑏∈𝑉−(𝑎)𝑎∈𝑉

∑ |𝑁𝑎|𝑎∈𝑉
 

 
where Na is the set of neighbours of the base 

station corresponding to node a and I is the indicator 
function [12]. On our network the causal density was 
found to be 0.38. Unit causal density is a related term 
used to investigate the local interaction for each base 
station [17]. Unit causal density quantifies how 
causally involved a base station is with its 
surrounding base stations. Unit causal density is the 
sum of a base stations interactions with its 
neighbours, normalised by its number of neighbours. 
A high unit causal density indicates that a node is a 
causal hub [17].  

 

 
Figure 4: CDF of the unit causal density for each base 
station on the network. 

 
Figure 4 illustrates the CDF of the unit causal 

density across the base stations on the network. The 
median of the causal density was found to be 0.64 
with approximately 30% of base stations having a 
unit causal density of 0.8 or more. 

 
d) Causal Flow 

 
The causal graph representation allows us to 

examine which base stations are the influencers and 
which are the influenced i.e. which base stations 
have a causal influence on their neighbours and 
which exhibit the results of this influence. Using the 
causal graph representation, the influence emanating 
from node a is its out-degree (the number of edges 
going from node a). The influence node a 
experiences from its neighbours is given by node a’s 
in-degree (the number of edges going into node a). 
Figure 5 illustrates the out and in degree of every 
node on the network. Note that some nodes have a 

very strong influence on their surroundings, for 
example, the top 5% of nodes have an out-degree of 
15 or greater. 

 

 
Figure 5: CDF of the out and in degree of every node on 
the network. 

To get a more holistic view of the influence of 
a node while taking into account the influence it 
experiences, a metric known as the causal flow is 
employed. The causal flow of a node (base station) is 
the difference between the causal interaction it exerts 
on its neighbours and the causal interaction its 
neighbours, in turn, exert on it. Thus, on the causality 
graph, the causal flow is the difference between the 
node’s out degree and its in-degree. Nodes with 
positive causal flows are causal sources while nodes 
with negative causal flows are causal sinks. The 
more positive or negative the flow is, the stronger the 
source or sink is respectively. 
 

 
Figure 6: CDF of the causal flow of each base station on 
the network. 

 
Figure 6 shows the CDF of the causal flow for 

each base station on the network. The information 
presented in Figure 6 can be used to identify causal 
sources and sinks in the network. For example, 10% 
of base stations are causal sources with causal flows 
greater than or equal to five. Conversely, 10% of 
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base stations are causal sinks with flows less than or 
equal to negative five. The strong sources and sinks 
identified in Figure 6 will be further examined in the 
following section. 

 
V  EXAMINING SOURCES AND SINKS 

 
In the previous section base stations that 

exert/experience influence on/from their neighbours 
were identified. These base stations were known as 
sources and sinks respectively. In this section we 
examine these sources and sinks and compare them 
with each other and the general network to see if 
they have any special properties that stand out. 

 
a) Sources, Sinks & Usage 

 
Figure 7 shows the CDF of each base 

station’s total equivalent data (see section II  Data 
Set) usage grouped by their causal flow. The three 
grouping are strong sources (top 10% of base 
stations ranked by causal flow), all base stations and 
strong sinks (bottom 10% of base stations ranked by 
causal flow). It is readily apparent that the strong 
sources experience much higher usage than the other 
two groups. For example, the median total equivalent 
data usage of a strong source base station is 
approximately 4.5 times that of the median for all 
base stations on the network. 
 

 
Figure 7: CDF of the Total Equivalent Data used per base 
station ranked by their Causal Flow. The top 10% 
represent strong sources while the bottom 10% represent 
strong sinks. 

 
 
 
 
 
 
 
 
 

 
b) Sources, Sinks & Connections 

 

 
Figure 8: CDF of the total number of connections made per 
base station over one day ranked by their causal flow. The 
top 10% represent strong sources while the bottom 10% 
represent strong sinks. 

 
Figure 8 shows the CDF of the total number 

of connections made per base station over one day as 
ranked by their causal flow. The top 10% represents 
strong sources while the bottom 10% represents 
strong sinks. Figure 8 illustrates that strong sources 
have a much larger amount of connections per day 
than the other groups. The median strong source base 
station has approximately 2.5 times the number of 
connections per day as the median of all base 
stations. Thus, strong source base stations generally 
use the most data and have the largest number of 
connections in a day.  

 
VI CONCLUSION & FUTURE WORK 

 
This work explored the spatial characteristics 

of network usage and methods for identifying 
influential base stations in sub-networks. A 
significant amount of spatial correlation was found 
for base stations in close proximity, decreasing as the 
seperation distance increases. Signifiant spatial 
correlation indicates that for monitoring purposes it 
may only be nessecary to monitor a subset of base 
stations. Also, a statistically significant causal 
structure was found in the network between 38% of 
neighbouring base stations. The presence of 
significant causal relationships in the network 
indicates that load fore-casting techniques should 
utilise information based on the past load of 
neighbours for increased accuracy. A metric for 
qualifing interesting base stations that act as either 
sources (influencers) or sinks on the network was 
also examined and characterisitics of these sources 
identified. For example, it was found that influental 
base stations are generally more heavily utilised both 
in terms of traffic volume and subscriber connections 
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than other base stations. This could possibly be due 
to the presence of transport routes, busy streets etc.  

In future work we aim to explore causal paths 
throughout the network and compare these with 
various forms of spatial data to look for any 
interesting trends (if paths follow transportaion 
networks, streets etc.). We also aim to further 
explore the properties of causal sources and sinks 
and identify the drivers of their behaivour. 
Furthermore, future research focussing on using the 
Granger causality relationship between base stations 
to inform models of spectrum usage in sub-networks 
could have important applications for local spectrum 
allocation. 
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