
Results of the Abbadingo One DFA Learning Competition
and

a New Evidence Driven State Merging Algorithm

Kevin J. Lang
NEC Research Institute
4 Independence Way
Princeton, NJ 08540
kevin@research.nj.nec.com

Barak A. Pearlmutter
Comp Sci Dept, FEC 313

Univ of New Mexico
Albuquerque, NM 87131

bap@cs.unm.edu

Rodney A. Price�
Emtex

Milton Keynes, England
rod@emtex.com

May 8, 1998

Abstract

This paper first describes the structure and results of the Abbadingo One DFA Learning Competition. The
competition was designed to encourage work on algorithms that scale well—both to larger DFAs and to
sparser training data. We then describe and discuss the winning algorithm of Rodney Price, which orders
state merges according to the amount of evidence in their favor. A second winning algorithm, of Hugues
Juillé, will be described in a separate paper.

Part I

Abbadingo

1 Introduction

The Abbadingo One DFA Learning Competition was organized bytwo of the authors (Lang and Pearlmutter)
and consisted of a set of challenge problems posted to the internet and token cash prizes of $1024. The
organizers had the following goals:� Promote the development of new and better algorithms.� Encourage learning theorists to implement some of their ideas and gather empirical data concerning

their performance on concrete problems which lie beyond proven bounds, particulary in the direction
of sparser training data.� Encourage empiricists to test their favorite methods on target concepts with high Kolmogorov complex-
ity, under strict experimental conditions that permit comparison of results between different groups by
eliminating the possibility of hill climbing on test set performance.

1.1 The learning task

The task of the Abbadingo One competition was DFA learning from given training data consisting of both
positive and negative examples. The learner was provided with a set of training strings that had been labeled�Lang and Pearlmutter ran the Abbadingo competition. Price was one of the winners. Prior to Price’s participation in the competition,
there was no connection between Price and the Abbadingo administrators.

1

dense training set density sparse lower
U.B.=IV III II I bound

small 64 4456 3478 2499 1521 542
target 128 13894 10723 7553 4382 1211
size 256 36992 28413 19834 11255 2676
large 512 115000 87500 60000 32500 5862

Table 1: Training set sizes for the Abbadingo One competition problems.

by an unseen deterministic finite automaton (the target concept), and was required to predict the labels that
the target would assign to a set of testing strings. All threeof these—the DFA, the training strings, and the
testing strings—were drawn from uniform random distributions.

1.2 Some history

DFA learning can be very hard in the worst case. Pitt and Warmuth (1989) proved that it is NP-hard to find a
DFA that is consistent with a given set of training strings and whose size is within a polynomial factor of the
size of the smallest such DFA. Kearns and Valiant (1989) proved that predicting the output of a DFA can be
as hard as breaking cryptosystems that are widely believed to be secure.

However, DFA learning does not seem to be so hard in the average case. Trakhtenbrot and Barzdin (1973)
proved that a simple state merging algorithm is guaranteed to find the smallest DFA consistent with a complete
training set consisting ofall strings out to a given length. Lang (1992) showed empirically that this same
algorithm can often construct an approximately correct hypothesis from a sparse subset of a complete training
set, when both the target concept and training sets are randomly chosen from uniform distributions. Freund
et al. (1993) proved the approximate learnability of DFA’s with worst-case graph structure and randomly
labeled states, from randomly chosen training strings.1

We note that many papers have been published on the application of generic methods such as neural
networks and genetic search to the problem of DFA learning. Unfortunately, this literature has largely focused
on tiny benchmarks (the largest target machine in the widelyused “Tomita” suite contains five states), so the
scalability of the proposed methods is hard to assess.

2 Experimental setup

Abbadingo One used random target DFA’s because they have some relevance to the average case, they have
high Kolmogorov complexity, and they are easy to generate inany desired size. The procedure for construct-
ing a target concept of nominal sizen was: construct a random degree-2 digraph on54n nodes, extract the
subgraph reachable from the randomly chosen root node, and label the graph’s states by flipping a fair coin.

This procedure yields graphs with a distribution of sizes centered nearn, and a distribution of depths
centered near2 log2 n � 2. The size variation is of no great consequence, but the depthvariation would
complicate our training set construction, so it was eliminated by selecting only those graphs with a depth2 of
exactly2 log2 n� 2.

A training set for a target of nominal sizen consisted of a random sample drawn without replacement
from a uniform distribution over the collection of16n2 � 1 binary strings whose length lies between 0 and2 log2 n+3 inclusively. A testing set was drawn from the remaining strings in this same collection. Training
strings were labeled, while testing strings were not.

1The Freundet al. (1993) theorem concerns a slightly different protocol, in which the learner sees the label of every state that is
encountered rather than just the label of the final state.

2By analogy to trees, the depth of a DFA is maximum over all nodesx of the length of the shortest path from the root tox.

2

3 Competition design:

3.1 Target and training set sizes

As shown in table 1, the sixteen Abbadingo One problems represented the cross product of 4 values of a
target size parameter and 4 values of a training set density parameter. Both of these parameters influenced
the difficulty of the problems. Our intention was to make the target concepts large enough to challenge
the empirical learning community, and the training data sparse enough to challenge the theoretical learning
community.

The size parameter was simply the nominal size of the target concept. Its four values were 64, 128, 256,
and 512 states.

The density parameter took on values from one to four, shown as roman numerals in the tables. A density
parameter valuep was turned into an actual training set sizes by linearly interpolating between rough upper
and lower bounds on sample complexity:s = L+ (p=4)(U � L). The lower boundL came from the simple
counting argument which equates2nn2n=(n � 1)!, an estimate of the number of differentn-state (binary
alphabet) target DFA’s, with2s, the number of ways of labeling a training set ofs strings. The upper boundU was determined by visually inspecting the learning curves for the Trakhtenbrot-Barzdin algorithm which
appeared in Lang (1992). In addition, some rounding was performed on the training set sizes for targets of
size 512.

Because the problems in column IV were already solvable by the Trakhtenbrot-Barzdin state merging al-
gorithm, an implementation of which we distributed before the competition, these problems were considered
practice problems, not official challenge problems.

3.2 Testing protocol

Test set tuning is an insidious problem that afflicts even thewell intentioned. The Abbadingo One testing
protocol was designed to eliminate this phenomenon. The test set for each problem consisted of 1800 un-
labeled strings, none of which appeared in the training set.Proposed labelings were submitted to a testing
oracle provided by the Abbadingo web server at http://abbadingo.cs.unm.edu. Instead of providing a score
that could be used for hill climbing, the oracle provided only 1 bit of feedback, which told whether or not the
accuracy of the labeling was at least 99%. Since this was the threshold at which a problem was considered
solved, the feedback bit would always be zero while a participant was working on a problem, so it carried
essentially no information.

Thanks to a new cryptographic technique of Joe Kilian’s, thetesting oracle was implemented without
storing the answers anywhere online (Kilian and Lang, 1997). This reduced the temptation to break into the
Abbadingo web server.

3.3 Additional rules

Two rules governed the selection of competition winners. The priority rule stated that the first person to solve
a problem (to 99% accuracy) would get the credit for solving it. The dominance rule stated that problemA dominates problemB when TrainingSetDensity(A) � TrainingSetDensity(B) and NodeCount(A) �
NodeCount(B).

The winners of the competition would be participants who, atthe termination of the competition, had
credit for solving problems that were not dominated by othersolved problems.

4 Competition results

According to our logs (which do not include accesses to the European mirror site), training data was down-
loaded from the primary Abbadingo web site by about 460 IP addresses, including many major proxy servers.
Proposed test set labelings were submitted from 45 IP addresses, which we estimate corresponds to about 25

3

dense training set size sparse

III II I
small 64 Juillé-PBS Juillé-PBS Juillé-EDSM+search

target 128 Juillé-PBS Juillé-PBS unsolved
size 256 Price-EDSM Juillé-EDSM unsolved
large 512 Price-EDSM Price-EDSM unsolved

Table 2: The person and algorithm that first solved each of thetwelve challenge problems. The data remains
available at http://abbadingo.cs.unm.edu

different participants.3 Nine of the twelve challenge problems were ultimately solved. The person and algo-
rithm that first solved each problem is shown in table 2. The order of events was as follows.

First, Hugues Juillé solved the four problems in the upper left of the table using a parallel beam search
technique. Because this method was computationally expensive and didn’t scale well to the larger problems,
there was a lull in the competition until Rodney Price discovered an evidence driven state merging algorithm
(EDSM) that handles sparse data better than previous state merging algorithms, and that has much better time
complexity than the beam search method which Juillé had been using. This algorithm,4 which is discussed
in detail below, quickly polished off the problems in columns II and III. Note that according to the competi-
tion rules, these results dominated the earlier results of Juillé. However, Price’s algorithm could not handle
training data as sparse as that in column I. There was anotherlull in the competition until Juillé solved the
smallest problem in column I, using EDSM augmented with somesearch over its initial decisions.

According to the competition’s priority and dominance rules, the two winners were Rodney Price, by
virtue of solving problem 512-II, and Hugues Juillé, by virtue of solving problem 64-I.

The three largest problems in column I remain unsolved.

5 Post-competition work

We have done some additional work since the competition. First, we ran EDSM on new random problems
lying on the Abbadingo problem grid to discover the algorithm’s typical behavior. The results are summarized
by table 3. EDSM works well on columns IV, III, and II, whereasTrakhtenbrot-Barzdin can only handle
column IV. Both algorithms die on column I.

Second, because differing choices about small details can turn Price’s basic idea into many different
programs of varying performance, we decided to provide someguidance by defining an official reference
version of the EDSM algorithm. This algorithm will be described in part 2 of this paper. We will also describe
a couple of optimizations which make the reference algorithm practical without hurting its performance too
much, plus Juillé’s fast and simple implementation of EDSMusing the “blue-fringe” control strategy.

6 Conclusion of part I

The Abbadingo One competition had three goals. The goal of promoting the development of new and better
algorithms was clearly satisfied. Both Rodney Price and Hugues Juillé made useful contributions to the state
of the art in DFA induction.

Although we have heard a few amusing anecdotes, we have no solid evidence that theorists have em-
pirically explored the limits of their algorithms in the sparse data regime, or that empiricists have carefully
measured the scaling properties of their algorithms. We therefore conclude this report by repeating our call
for theorists to implement their best ideas, and for experimentalists to try their ideas on problems that are
hard enough to really test them.

3Participants did not necessarily submit labelings to the Oracle. They could tune their algorithms using cross-validation or their own
DFAs drawn from the same distribution. We made no attempt to count such silent participants.

4Including a similar program which Juillé coded up after a conversation with Price.

4

dense training set density sparse

IV III II I
64 2000.0 15.0 2.4 2.1

algorithm

nominal 128 1600.0 21.0 2.6 2.1 TB-92
256 850.0 8.1 2.1 2.0

target 512 130.0 13.0 2.2 2.0
64 2700.0 900.0 250.0 2.1

size 128 4500.0 2400.0 720.0 2.1 EDSM-97
256 6600.0 2500.0 700.0 2.0
512 11000.0 6800.0 2300.0 2.0

Table 3: Median reciprocal error rates of two algorithms on 100 new random instances of each of the 16
Abbadingo One problems. Higher scores are better; the values 2.0 and 100.0 correspond to generalization
rates of 50 percent and 99 percent respectively. The latter value is the Abbadingo threshold for considering a
problem solved. TB-92 is an implementation of the Trakhtenbrot-Barzdin state merging algorithm. EDSM-
97 is an earlier and worse version of the reference algorithmof section 9. It is interesting to note that EDSM
is getting better as one moves to lower matrix rows, while TB is getting worse.

Meanwhile, we are preparing a more flexible DFA learning challenge problem generation scheme, and
considering other grammar learning tasks that might be appropriate for Abbadingo Two.

Part II

Evidence driven state merging

7 Background

A simple and effective method for DFA induction from positive and negative examples is the state merging
method (Trakhtenbrot and Barzdin, 1973; Oncina and Garcia,1992; Lang, 1992). This method starts with
the prefix tree acceptor for the training set and folds it up into a compact hypothesis by merging compatible
pairs of states.5 Two states are compatible when no suffix leads from them to differing labels.

When a state merging algorithm is applied to sparse trainingdata, it can almost never be sure that an
apparently compatible merge is truly valid. Thus, most of the algorithm’s actions are hopeful guesses, which
unfortunately have serious consequences later: each mergeintroduces new constraints on future merges, and
these new constraints will be wrong when an incorrect merge is made.

Because there is a snowballing of right or wrong decisions, it is critically important for the algorithm’s
early decisions to be correct, and hence a good strategy is tofirst perform those merges that are supported by
the most evidence. Lang (1992) claimed that this consideration supported the choice of breadth-first order
for candidate merges, because then the earliest merges mustsurvive the comparison of the largest trees of
suffixes.

Higuera, Oncina, and Vidal (1996) suggested that a better strategy is to look at the training data and
perform merges exactly in order of the amount of evidence, rather than in a predetermined order that hopefully
correlates with that quantity. While this is a very good point, the actual algorithm described in Higueraet
al. (1996) does not work well on the Abbadingo challenge problems due to a couple of flaws. One was a
mistake in the algorithm’s control strategy that will be described in section 10. A more serious mistake was
the measure of evidence that they proposed, essentially thenumber of labels on strings that pass through the
two candidate nodes. This quantity is only a weak upper boundon evidence, since labeled nodes on one side
which line up with unlabeled nodes on the other side have absolutely no value in testing whether the two

5Note that state merging frequently introduces non-determinism into the hypothesis, which can then be removed by a determinization
procedure that recursively merges the children of the original nodes, as shown in figure 5. In this paper, we always do merging with
determinization.

5

candidate nodes actually represent the same mapping from suffixes to labels.
Rodney Price was able to win the Abbadingo One competition because he realized that a more accurate

evidence measure is the number of labels that are tested during a merge.

8 Price’s motivation for EDSM

Suppose that a state merging program doesm merges, and that each merge is verified byt independent tests,
each of which has a probabilityp of revealing that an incorrect merge is wrong. Let be the probability that
any given one of thesem merges is valid, andd be the probability that all of them are valid. Then,d = m,1� = (1� p)t, and finallyt = log(1� d 1m)= log(1� b) shows how many tests will suffice to ensure that
the whole computation is correct with confidenced.

Blue-fringe state merging algorithms do at mostn(a � 1) + 1 merges when constructing ann-state
hypothesis over an alphabet of sizea (see section 10.2 for a proof). Combining this fact with the calculation
of the previous paragraph and the assumption that the label comparisons which occur during a merge are
independent tests having a 50 percent chance of revealing aninvalid merge, one can see that problems in
the top row of the Abbadingo matrix can be solved with confidence .93 by restricting the program to merges
that are supported by 10 or more label comparisons. Since thehighest scoring initial merges for the top-row
problems in columns III, II, and I have scores of 19, 13, and 5 respectively, one would expect this method to
work for the first two problems, but not the last, which is exactly what happens.

Note that while one could write a program that is willing to doany merge whose score exceeds the
threshold computed above, better performance can be obtained by ignoring the threshold and simply doing
the highest scoring merge in all cases.

9 Reference algorithm

Here we describe a post-competition version of EDSM. Compared to the programs that were used during the
competition, this algorithm produces a slightly better distribution of generalization rates on random problems
(see section 11).

9.1 Definition of a merge’s score

We award one point for each state label which, as a result of a merge, undergoes an identity check and turns
out to be okay. Any mismatch results in a negative overall score. Details appear in section 9.4.2.

9.2 Initial hypothesis

The initial hypothesis is the prefix tree acceptor which directly embodies the training set.

9.3 Outer loop

The key insight of EDSM is that bad merges (which can’t be directly detected when the training data is very
sparse) can often be avoided if we instead do high scoring merges that have passed many tests and hence are
likely to be correct. To have the best chance of finding a high-scoring merge to perform at any given moment,
we need the largest possible pool of candidate merges. Thus,we would like to consider the possibility of
merging every pair of hypothesis nodes, as in the following outer loop:

1. For every pair of nodes in the hypothesis, compute the score for merging that pair.

2. If any merge is valid, perform the highest scoring one, otherwise halt.

3. Go to step 1.

Note that this outer loop requires us to be able to merge nodesthat are the roots of arbitrary subgraphs of the
hypothesis, not just nodes that are the roots of trees. In thenext section we show how to do this.

6

(define (compute-classes hypo ; current hypothesis DFA (not modified)
ufer ; union-find data structure (modified)
input-set) ; list of nodes asserted to be equivalent

(when (> (length input-set) 1)
(let ((learned-something-new? #f)

(guy1 (car input-set)))
(dolist (guy2 (cdr input-set))

(when (not (uf-same-class? ufer guy1 guy2))
(uf-unify-classes ufer guy1 guy2)
(set! learned-something-new? #t)))

(when learned-something-new?
(dotimes (i alphabet-size)

(compute-classes hypo ufer
(delete-duplicates-and-undefineds
(map (lambda (node) (get-child hypo node i))

(uf-get-members-of-guys-class ufer guy1)))))))))

Figure 1: Scheme code for working out which states are combined by a given merge.

9.4 Merging and scoring

To merge a pair of nodes, we must work out the partition of hypothesis nodes into equivalence classes which
is implied by the assertion that the two candidate nodes are equivalent, plus the determinization rule (fig-
ure 5) which states that the children of equivalent nodes must be equivalent. Note that we can perform this
computation regardless of whether the merge is valid, sincevalidity depends on state labeling, whereas the
equivalence classes only depend on the transition function.

Once we have determined the set of equivalence classes, it istrivial to consult the labels and compute a
merge score, and, if the merge is in fact valid, to construct anew hypothesis reflecting the merge.

9.4.1 Computing equivalence classes

Figure 1 shows the Scheme language subroutinecompute-classes, which works out the equivalence
classes implied by a merge and the determinization rule. It employs a union-find data structure to keep track
of sets of states that are known to be equivalent.

To assert that a particular set of states is equivalent, we call compute-classes on that set. The
procedure checks the union-find data structure to determinewhether the assertion is new information. If not,
the routine returns immediately. Otherwise, it unifies the equivalence classes associated with all the members
of the input set, and then calls itself recursively on each ofthe sets ofith children of members of the newly
unified equivalence class.

When considering a merge, we initiate the computation by calling compute-classes on the set con-
sisting of the two nodes that we are thinking of merging. We also pass in a fresh union-find data structure
that has been initialized with a singleton set for each statein the pre-merge hypothesis.

Note that the computation terminates because recursive calls only occur when separate classes have actu-
ally been unified, and the number of states in the hypothesis is an upper bound on the number of times this
can happen.

Figure 4 shows an execution trace ofcompute-classes on a toy example.

9.4.2 Scoring

A merge’s score is the sum over equivalence classes of the following quantity: if there are conflicting labels
in the class, minus infinity; if there are no labels in the class, zero; otherwise, the number of labels minus
one. We subtract one because the first label in the class establishes the correct label for the class, but is not
checked.

7

9.4.3 Constructing a merged hypothesis

Once a candidate merge has been shown valid by a non-negativescore, and we have decided to actually
perform the merge, we can construct an updated hypothesis from the equivalence classes as follows. The new
hypothesis has one state per equivalence class.

Let C1 be an equivalence class, andi be an input symbol. Lets1 be any state inC1 that has a defined
transition fori. Let s2 be the target of that transition, and letC2 be the class ofs2. Theni takes us fromC1
toC2. If no state inC1 has a defined transition fori, thenC1’s transition fori is undefined.

Let s3 be any state inC1 that has a defined label. The label ofs3 becomes the label forC1. If no state inC1 has a defined label, thenC1’s label is undefined.

10 Blue-fringe algorithm

Because the algorithm of section 9 performs merges in arbitary order, both nodes in a merge can be the roots
of arbitrary subgraphs of the hypothesis. It turns out that by placing a restriction on merge order (described
below), one can guarantee that one of the two candidate nodesis always the root of a tree, resulting in a
particularly fast and simple program.

Much previous work has employed a restriction of this type, including the papers of Lang (1992); Oncina
and Garcia (1992); Higueraet al. (1996); and the Abbadingo competition programs of Price andJuillé. Note
that the restriction shrinks the pool of merge candidates, so it increases the failure rate of the algorithm as
compared to the unrestricted algorithm of section 9. However, the idea is well worth describing.

As usual, we start with the prefix tree acceptor. The root is colored red. Its children are blue, and all other
nodes are white. We maintain the following invariants:� There is an arbitrary connected graph of mutually unmergeable red nodes.� All non-red children of red nodes are blue.� Blue nodes are the roots of isolated trees.

We restrict ourselves to the following actions:� Compute the score for merging a red/blue pair.� Promote a blue node to red if it is unmergeable with any red node.� Merge a blue node with a red node.6

This basic framework of invariants and actions can be turnedinto different algorithms of widely varying per-
formance, depending on the details of the policy for choosing which action to perform when. A particularly
good policy is described in Juillé and Pollack (1998):

1. Evaluate all red/blue merges.

2. If there exists a blue node that cannot be merged with any red node, promote the shallowest such blue
node to red, then goto step 1.

3. Otherwise (if no blue node is promoteable), perform the highest scoring red/blue merge that we know
about, then goto step 1.

4. Halt.

Note that the algorithm of Higueraet al. (1996) has the priority of steps 2 and 3 reversed, which drastically
reduces its effectiveness.7 It is important to not start merging until many merge candidates have accumulated,
so that one with a high score is likely to be available.

6Note that the last two actions might also require some white nodes to be recolored blue.
7On a set of 100 problems like the ones in section 11 but with 2500 training strings, the median generalization error rate for Juillé’s

policy is .004. Reversing the priority of steps 2 and 3 increases this to .39, which is nearly as bad as the value of .44 for the plain
Trakhtenbrot-Barzdin algorithm.

8

(define (merge-and-compute-score red-cand blue-cand)
(make-blue-guys-father-point-to-red-guy red-cand blue-cand)
(set! score 0) ; using global variable for simplicity here
(merging-walk-it red-cand blue-cand)
score)

(define (merging-walk-it r b)
(let ((r-label (get-label r))(b-label (get-label b)))
(when (defined? b-label)

(if (defined? r-label)
(if (= r-label b-label) ; compare labels

(set! score (+ score 1))
(set! score -infinity))

(set-label! r b-label)))) ; copy in missing label
(dotimes (i alphabet-size)
(let ((r-child (get-child r i))(b-child (get-child b i)))

(when (defined? b-child)
(if (defined? r-child)

(merging-walk-it r-child b-child)
(set-child! r i b-child)))))) ; splice in missing branch

Figure 2: Code for performing and scoring a merge in the blue-fringe framework.

10.1 Merging in the blue-fringe framework

Thanks to the guarantee that every blue node is the root of an isolated tree, merging (and hence score keeping)
is very simple in the blue-fringe framework. Scheme code fordoing this is shown in figure 2. Since this
procedure modifies the hypothesis, when using it to merely compute a score one would provide a mechanism
for reverting the hypothesis to its unmodified state after each call.

10.2 The number of merges performed by blue-fringe algorithms

All blue-fringe state merging algorithms do at mostn(a � 1) + 1 merges when constructing ann-state
hypothesis over an alphabet of sizea, with equality occuring when the final hypothesis contains no undefined
edges. To see this, letr andb be the number of red and blue nodes at any point in the computation, letm be
the number of merges so far, and letx be the number of undefined children of red nodes. Then at all times,
the algorithm maintains the invariantr(a� 1) = m+ x+ b� 1. We begin withr = 0;m = 0; b = 1; x = 0.
Every promotion of a blue node withj defined children causesr r+1; x x+a�j; b b�1+j. Every
merge that causesk new children to be spliced into red nodes causesm m+1; x x�k; b b�1+k.
The program terminates whenb = 0, so we haver(a � 1)� x+ 1 = m , which gives the result.

10.3 Two incorrect methods for computing scores

Here we warn against two plausible sounding but incorrect methods for evaluating merges in the blue-fringe
framework. The mistake in both cases is a failure to account for the graph structure of the red part of the
hypothesis.

The first incorrect method compares auxiliary trees constructed from the set of training set strings which
pass through the two candidate nodes. This method ignores labels that are reachable from the red candidate
node but which come from strings that go around that node rather than through it.

The second incorrect method compares labels during a non side-effecting simultaneous walk of the hy-
pothesis starting at the red and blue merge candidates. Thismethod can see all of the labels on red nodes,
but it doesn’t account for the fact that pairs of labels in theblue-rooted tree can end up conflicting with each
other because the merge forces the tree to conform to the shape of the red graph.

9

0

10

20

30

40

50

60

70

80

90

100

10^-1 10^-2 10^-3 10^-4

pe
rc

en
t o

f r
un

s
ac

hi
ev

in
g

ra
te

error rate

distribution of outcomes on 1000 runs with 2000 strings and ~64 states

EDSM, reference
EDSM, blue-fringe

Trakhtenbrot-Barzdin

Figure 3: The complete distributions of results of three algorithms on a set of 1000 random problems. Each
problem had 2000 training strings of length 0-15, and a depth-10 target DFA with about 64 states.

11 A comparison of two EDSM implementations

We have described two implementations of EDSM. A table (liketable 3) could be made for either one showing
that it scales well8, and that it can usually solve problems at density level II but not density level I. In this
section we put aside the question of scaling and focus on the question of how well the two versions can
generalize on problems that lie halfway between columns II and I, that is, near the edge of typical solvability
for the EDSM method.

Figure 3 and table 4 show the results of a comparison on a set of1000 such problems. Clearly, both
implementations of EDSM are much more powerful than the plain Trakhtenbrot-Barzdin program. The ref-
erence program is slightly more effective than the blue-fringe program. We attribute this to its larger pool of
candidate merges.

We also mention that there is a strong stochastic component to the behavior of both EDSM programs9,
and that there are many problem instances where the reference program fails and the blue-fringe program
succeeds. Given the somewhat uncorrelated failures of the two programs, it is natural to combine them by
running both and then choosing the smaller of the two resulting DFA’s. Table 4 shows that this combined
approach works better than either program alone. In fact, the combined performance level is well into the
range reported by Juillé and Pollack (1998) for the search-intensive SAGE system.

8The reference algorithm needs some speedups to be practical. See the appendix.
9This is due to randomness in the training data and the fact that even high scoring merges can be wrong.

10

median number of
algorithm generalization solutions

rate (out of 1000)
Trakhtenbrot-Barzdin .537 26

blue-fringe EDSM (Juillé) .809 311
reference EDSM .934 379

combination of the previous two .955 423

Table 4: A comparison of two implementations of EDSM on 1000 random problems. Each problem had 2000
training strings of length 0-15, and a depth-10 target DFA with about 64 states. Solutions are hypotheses with
a generalization rate of .99 or better.

12 Notes on run time

The run time of Trakhtenbrot-Barzdin is upper bounded byPH2, whereP is the size of the inital PTA, andH is the number of nodes in the final hypothesis. The bound for the blue-fringe algorithm isPH3. We don’t
have a tight upper bound on the run time of the reference algorithm, but we conjecture that it would be closer
toP 3H than toP 4H .

13 Conclusion of Part II

We have described two versions of a polynomial time DFA learning algorithm that works very well on ran-
domly generated problems. While the algorithm can be defeated by a malicious adversary, we believe that
it will degrade gracefully as one moves gradually away from the average case. We recommend that anyone
faced with a DFA learning task give this algorithm a try.

Acknowledgements

We thank Hugues Juillé for sending us code and an early draftof Juillé and Pollack (1998), which is the
source of the blue-fringe control policy described in section 10.

Appendix: speedups for the reference algorithm

For the experiment of section 11, we sped up the reference algorithm by only considering merges between
nodes that lie within a distancew of the root on a list of nodes created by a breadth-first traversal of the
hypothesis. This change hurts performance by causing the algorithm to miss the (relatively rare) high scoring
merges involving deep nodes. Note that while the existence of the neww parameter appears to make the
algorithm less general by requiring prior knowledge of the size of the target DFA, one can use the standard
doubling trick to eliminate this requirement. However, in our section 11 experiment on size-64 DFA’s, we
simply used aw value of 256.

We also employed the following optimizations, which don’t change the behavior of algorithm except to
make it faster. Whenever the deeper of a pair of candidate nodes is the root of an isolated tree, the blue fringe
scoring routine of figure 2 is used to cheaply compute the samescore that would be returned by the expensive
general-purpose code of section 9.4. Also, before finally resorting to the general-purpose code, we first do a
quick walk looking for labeling conflicts; if one is found, wecan immediately return a score of minus infinity.

References

B. Trakhtenbrot and Ya. Barzdin’. (1973)Finite Automata: Behavior and Synthesis. North-Holland Publish-
ing Company, Amsterdam.

11

The two loops: 0! 1! 2! 3! 0
4! 5! 6! 7! 8! 9! 4

classes before call argument to compute-classesf0g f1g f2g f3g f4g f5g f6g f7g f8g f9g (0 4)f04g f1g f2g f3g f5g f6g f7g f8g f9g (1 5)f04g f15g f2g f3g f6g f7g f8g f9g (2 6)f04g f15g f26g f3g f7g f8g f9g (3 7)f04g f15g f26g f37g f8g f9g (0 8 4)f048g f15g f26g f37g f9g (1 9 5)f048g f159g f26g f37g (2 4 6 8)f02468g f159g f37g (3 5 7 9)f02468g f13579g (0 6 8 4 2)

Figure 4: Execution trace ofcompute-classes while merging two cycles of length 4 and 6 to create a
cycle of length 2.a s�! xb s�! y ab s�! x

s�! y ab s�! xy
Figure 5: Explanation of determinization.Left: prior to the merge, the symbols leads from statea to statex,
and also from stateb to statey. Center: after statesa andb are merged, the automaton is non-deterministic.
Right: to restore determinism, statesx andy must be merged, which can lead in turn to the merging of other
states.

D. Angluin. (1978)On the Complexity of Minimum Inference of Regular Sets. Information and Control, Vol.
39, pp. 337-350.

L. Veelenturf. (1978)Inference of Sequential Machines from Sample Computations. IEEE Transactions on
Computers, Vol. 27, pp. 167-170.

M. Kearns and L. Valiant. (1989)Cryptographic Limitations on Learning Boolean Formulae and Finite
Automata. STOC-89.

L. Pitt and M. Warmuth. (1989)The Minimum DFA Consistency Problem Cannot be ApproximatedWithin
any Polynomial. STOC-89.

Kevin J. Lang. Random DFA’s can be Approximately Learned from Sparse Uniform Examples. InProceed-
ings of the Fifth Annual ACM Workshop on Computational Learning Theory, pp 45-52, July 1992.

J. Oncina and P. Garcia. Inferring Regular Languages in Polynomial Updated Time. InPattern Recognition
and Image Analysis. pp. 49-61, World Scientific, 1992.

Yoav Freund, Michael Kearns, Dana Ron, Ronitt Rubinfeld, Robert Schapire, and Linda Sellie.Efficient
Learning of Typical Finite Automata from Random Walks, STOC-93, pp. 315-324.

P. Dupont, L. Miclet, and E. Vidal. What is the search space ofthe regular inference? InProceedings of the
International Colloquium on Grammatical Inference ICGA-94, Lecture Notes in Artificial Intelligence 862,
pp. 25-37, Springer-Verlag, 1994.

C. de la Higuera, J. Oncina, and E. Vidal. Identification of DFA: Data-Dependent Versus Data-Independent
Algorithms. In Proceedings of the International Colloquium on Grammatical Inference ICGA-96Lecture
Notes in Artificial Intelligence 1147, pp. 313-325, Springer-Verlag, 1996.

Joe Kilian and Kevin J. Lang. (1997) A Scheme for Secure Pass-Fail Tests. NECI Technical Note 97-016N.

Hugues Juillé and Jordan B. Pollack. (1998) SAGE: a Sampling-based Heuristic for Tree Search. Submitted
to Machine Learning.

12

