Results of the Abbadingo One DFA Learning Competition
and
a New Evidence Driven State Merging Algorithm

Kevin J. Lang Barak A. Pearlmutter Rodney A. Price
NEC Research Institute Comp Sci Dept, FEC 313 Emtex
4 Independence Way Univ of New Mexico Milton Keynes, England
Princeton, NJ 08540 Albuquerque, NM 87131 rod@emtex.com
kevin@research.nj.nec.com bap@cs.unm.edu
May 8, 1998
Abstract

This paper first describes the structure and results of tHeafimgo One DFA Learning Competition. The
competition was designed to encourage work on algorithrasgbale well—both to larger DFAs and to
sparser training data. We then describe and discuss thengimfgorithm of Rodney Price, which orders
state merges according to the amount of evidence in their.fa¥ second winning algorithm, of Hugues
Juille, will be described in a separate paper.

Part |

Abbadingo

1 Introduction

The Abbadingo One DFA Learning Competition was organizethlmyof the authors (Lang and Pearlmutter)
and consisted of a set of challenge problems posted to teengttand token cash prizes of $1024. The

organizers had the following goals:

¢ Promote the development of new and better algorithms.

¢ Encourage learning theorists to implement some of themsdend gather empirical data concerning
their performance on concrete problems which lie beyondgmdoounds, particulary in the direction
of sparser training data.

e Encourage empiricists to test their favorite methods ogeteroncepts with high Kolmogorov complex-
ity, under strict experimental conditions that permit camgon of results between different groups by
eliminating the possibility of hill climbing on test set pemmance.

1.1 The learning task

The task of the Abbadingo One competition was DFA learniognfigiven training data consisting of both
positive and negative examples. The learner was providddasset of training strings that had been labeled

*Lang and Pearlmutter ran the Abbadingo competition. Priag ene of the winners. Prior to Price’s participation in thepetition,
there was no connection between Price and the Abbadingméstrators.

@nse training set density sparse | lOWeEr
U.B.=IV 1l Il I bound
smal 64 4456 3478 2499 1521 542
target 128 | 13894 10723 7553 4382 1211
size 256 | 36992 28413 19834 11255 2676
mge 512 | 115000 87500 60000 325005862

Table 1: Training set sizes for the Abbadingo One competiimblems.

by an unseen deterministic finite automaton (the targeteot)cand was required to predict the labels that
the target would assign to a set of testing strings. All trokthese—the DFA, the training strings, and the
testing strings—were drawn from uniform random distribus.

1.2 Some history

DFA learning can be very hard in the worst case. Pitt and Wénr(il089) proved that it is NP-hard to find a
DFA that is consistent with a given set of training stringd arhose size is within a polynomial factor of the
size of the smallest such DFA. Kearns and Valiant (1989) guidtat predicting the output of a DFA can be
as hard as breaking cryptosystems that are widely believbd secure.

However, DFA learning does not seem to be so hard in the as@age. Trakhtenbrot and Barzdin (1973)
proved that a simple state merging algorithm is guarantefidd the smallest DFA consistent with a complete
training set consisting ddill strings out to a given length. Lang (1992) showed empirgcdiat this same
algorithm can often construct an approximately correctdifpsis from a sparse subset of a complete training
set, when both the target concept and training sets are nalgditnosen from uniform distributions. Freund
et al. (1993) proved the approximate learnability of DFA's with ssbcase graph structure and randomly
labeled states, from randomly chosen training strings.

We note that many papers have been published on the appficatigeneric methods such as neural
networks and genetic search to the problem of DFA learningoldunately, this literature has largely focused
on tiny benchmarks (the largest target machine in the widsegd “Tomita” suite contains five states), so the
scalability of the proposed methods is hard to assess.

2 Experimental setup

Abbadingo One used random target DFA's because they have sglavance to the average case, they have
high Kolmogorov complexity, and they are easy to generasmindesired size. The procedure for construct-
ing a target concept of nominal sizewas: construct a random degree-2 digraph%@nnodes, extract the
subgraph reachable from the randomly chosen root node adedithe graph’s states by flipping a fair coin.

This procedure yields graphs with a distribution of sizesteeed nean, and a distribution of depths
centered nea?log, n — 2. The size variation is of no great consequence, but the depthtion would
complicate our training set construction, so it was elirtéaizby selecting only those graphs with a déuth
exactly2 log, n — 2.

A training set for a target of nominal size consisted of a random sample drawn without replacement
from a uniform distribution over the collection a6n? — 1 binary strings whose length lies between 0 and
2log, n + 3 inclusively. A testing set was drawn from the remainingrggs in this same collection. Training
strings were labeled, while testing strings were not.

1The Freundet al. (1993) theorem concerns a slightly different protocol, ihieh the learner sees the label of every state that is
encountered rather than just the label of the final state.
2By analogy to trees, the depth of a DFA is maximum over all sadef the length of the shortest path from the rootrto

3 Competition design:

3.1 Target and training set sizes

As shown in table 1, the sixteen Abbadingo One problems sgmted the cross product of 4 values of a
target size parameter and 4 values of a training set denaignpeter. Both of these parameters influenced
the difficulty of the problems. Our intention was to make theget concepts large enough to challenge
the empirical learning community, and the training datarsp@&nough to challenge the theoretical learning
community.

The size parameter was simply the nominal size of the tastept. Its four values were 64, 128, 256,
and 512 states.

The density parameter took on values from one to four, sh@woman numerals in the tables. A density
parameter valug was turned into an actual training set sizby linearly interpolating between rough upper
and lower bounds on sample complexity= L + (p/4)(U — L). The lower bound. came from the simple
counting argument which equatg%n"/(n — 1)!, an estimate of the number of differemtstate (binary
alphabet) target DFA's, witR?*, the number of ways of labeling a training setsadtrings. The upper bound
U was determined by visually inspecting the learning cureedtfe Trakhtenbrot-Barzdin algorithm which
appeared in Lang (1992). In addition, some rounding wasopméd on the training set sizes for targets of
size 512.

Because the problems in column IV were already solvable &y'thkhtenbrot-Barzdin state merging al-
gorithm, an implementation of which we distributed befdre tompetition, these problems were considered
practice problems, not official challenge problems.

3.2 Testing protocol

Test set tuning is an insidious problem that afflicts evervik# intentioned. The Abbadingo One testing
protocol was designed to eliminate this phenomenon. Thes&tdor each problem consisted of 1800 un-
labeled strings, none of which appeared in the training Betposed labelings were submitted to a testing
oracle provided by the Abbadingo web server at http://ablzgdcs.unm.edu. Instead of providing a score
that could be used for hill climbing, the oracle providedyohlbit of feedback, which told whether or not the
accuracy of the labeling was at least 99%. Since this washtfestiold at which a problem was considered
solved, the feedback bit would always be zero while a paict was working on a problem, so it carried
essentially no information.

Thanks to a new cryptographic technique of Joe Kilian's, tating oracle was implemented without
storing the answers anywhere online (Kilian and Lang, 19%9%)s reduced the temptation to break into the
Abbadingo web server.

3.3 Additional rules

Two rules governed the selection of competition winnerse ffiority rule stated that the first person to solve
a problem (to 99% accuracy) would get the credit for solvingTihe dominance rule stated that problem
A dominates problenB when TrainingSetDensityl) < TrainingSetDensityB3) and NodeCouritd) >
NodeCoungB).

The winners of the competition would be participants whothat termination of the competition, had
credit for solving problems that were not dominated by owved problems.

4 Competition results

According to our logs (which do not include accesses to thegean mirror site), training data was down-
loaded from the primary Abbadingo web site by about 460 IReskes, including many major proxy servers.
Proposed test set labelings were submitted from 45 IP aslelsewhich we estimate corresponds to about 25

dense tra|n|ng Set SIZG sparse
" Il I

sml 64 | Juille-PBS Juille-PBS Juille-EDSM+searc¢h
target 128 | Juille-PBS Juille-PBS unsolved

size 256 | Price-EDSM Juille-EDSM unsolved

large 512 | Price-EDSM Price-EDSM unsolved

Table 2: The person and algorithm that first solved each ofivileéve challenge problems. The data remains
available at http://abbadingo.cs.unm.edu

different participants. Nine of the twelve challenge problems were ultimately sdlvEhe person and algo-
rithm that first solved each problem is shown in table 2. Thikpof events was as follows.

First, Hugues Juillé solved the four problems in the uppérdf the table using a parallel beam search
technique. Because this method was computationally expeasd didn't scale well to the larger problems,
there was a lull in the competition until Rodney Price disr@d an evidence driven state merging algorithm
(EDSM) that handles sparse data better than previous statgmg algorithms, and that has much better time
complexity than the beam search method which Juillé had being. This algorithnt,which is discussed
in detail below, quickly polished off the problems in colusiihand Ill. Note that according to the competi-
tion rules, these results dominated the earlier resultsifieJ However, Price’s algorithm could not handle
training data as sparse as that in column I. There was anlther the competition until Juillé solved the
smallest problem in column I, using EDSM augmented with see@ch over its initial decisions.

According to the competition’s priority and dominance sjl¢he two winners were Rodney Price, by
virtue of solving problem 512-11, and Hugues Juillé, bytu& of solving problem 64-1.

The three largest problems in column | remain unsolved.

5 Post-competition work

We have done some additional work since the competitiorst,Rive ran EDSM on new random problems
lying on the Abbadingo problem grid to discover the algarithtypical behavior. The results are summarized
by table 3. EDSM works well on columns IV, Ill, and II, whereamkhtenbrot-Barzdin can only handle
column IV. Both algorithms die on column .

Second, because differing choices about small details wanRrice’s basic idea into many different
programs of varying performance, we decided to provide sgoidance by defining an official reference
version of the EDSM algorithm. This algorithm will be dederd in part 2 of this paper. We will also describe
a couple of optimizations which make the reference algorignactical without hurting its performance too
much, plus Juillé’s fast and simple implementation of ED&dhg the “blue-fringe” control strategy.

6 Conclusion of part |

The Abbadingo One competition had three goals. The goalafpting the development of new and better
algorithms was clearly satisfied. Both Rodney Price and teaguillé made useful contributions to the state
of the art in DFA induction.

Although we have heard a few amusing anecdotes, we have itbesadience that theorists have em-
pirically explored the limits of their algorithms in the gpa data regime, or that empiricists have carefully
measured the scaling properties of their algorithms. Weefloee conclude this report by repeating our call
for theorists to implement their best ideas, and for expernitalists to try their ideas on problems that are
hard enough to really test them.

SParticipants did not necessarily submit labelings to thec: They could tune their algorithms using cross-vaitiataor their own
DFAs drawn from the same distribution. We made no attempbtmtsuch silent participants.
4Including a similar program which Juillé coded up after av@rsation with Price.

dense training set density sparse
v 1 I I
64 | 2000.0 15.0 24 2.1
nominal 128 | 1600.0 21.0 2.6 21 TB-92
256 | 850.0 8.1 21 2.0
target 512 | 130.0 13.0 2.2 2.0
64 | 2700.0 900.0 250.0 2.1
size 128 | 4500.0 2400.0 720.0 2.1EDSM-97
256 | 6600.0 2500.0 700.0 2.0
512 | 11000.0 6800.0 2300.0 2P0

wyuobe

Table 3: Median reciprocal error rates of two algorithms @9 hew random instances of each of the 16
Abbadingo One problems. Higher scores are better; the sélu@and 100.0 correspond to generalization
rates of 50 percent and 99 percent respectively. The lagieevs the Abbadingo threshold for considering a
problem solved. TB-92 is an implementation of the TrakhtenBarzdin state merging algorithm. EDSM-
97 is an earlier and worse version of the reference algorahsection 9. It is interesting to note that EDSM
is getting better as one moves to lower matrix rows, while $getting worse.

Meanwhile, we are preparing a more flexible DFA learning lerege problem generation scheme, and
considering other grammar learning tasks that might be@pjate for Abbadingo Two.

Part Il
Evidence driven state merging

7 Background

A simple and effective method for DFA induction from positignd negative examples is the state merging
method (Trakhtenbrot and Barzdin, 1973; Oncina and Gai@82; Lang, 1992). This method starts with
the prefix tree acceptor for the training set and folds it up encompact hypothesis by merging compatible
pairs of states.Two states are compatible when no suffix leads from them feritify labels.

When a state merging algorithm is applied to sparse traidetg, it can almost never be sure that an
apparently compatible merge is truly valid. Thus, most efdlgorithm’s actions are hopeful guesses, which
unfortunately have serious consequences later: each nmergduces new constraints on future merges, and
these new constraints will be wrong when an incorrect mesgedde.

Because there is a snowballing of right or wrong decisianis, éritically important for the algorithm’s
early decisions to be correct, and hence a good strategyirstperform those merges that are supported by
the most evidence. Lang (1992) claimed that this consimeraupported the choice of breadth-first order
for candidate merges, because then the earliest mergessomvgte the comparison of the largest trees of
suffixes.

Higuera, Oncina, and Vidal (1996) suggested that a bettategly is to look at the training data and
perform merges exactly in order of the amount of evidendberghan in a predetermined order that hopefully
correlates with that quantity. While this is a very good pipthe actual algorithm described in Higuezta
al. (1996) does not work well on the Abbadingo challenge prokleime to a couple of flaws. One was a
mistake in the algorithm’s control strategy that will be déised in section 10. A more serious mistake was
the measure of evidence that they proposed, essentiallyutimder of labels on strings that pass through the
two candidate nodes. This quantity is only a weak upper bamglidence, since labeled nodes on one side
which line up with unlabeled nodes on the other side havelatedp no value in testing whether the two

5Note that state merging frequently introduces non-deteismi into the hypothesis, which can then be removed by ard@t@ation
procedure that recursively merges the children of the walghodes, as shown in figure 5. In this paper, we always doingexgith
determinization.

candidate nodes actually represent the same mapping frifixestto labels.
Rodney Price was able to win the Abbadingo One competitimabse he realized that a more accurate
evidence measure is the number of labels that are testemgdurmerge.

8 Price’s motivation for EDSM

Suppose that a state merging program daaserges, and that each merge is verified loydependent tests,
each of which has a probabilifyof revealing that an incorrect merge is wrong. kéte the probability that
any given one of these merges is valid, and be the probability that all of them are valid. Theh= ™,
1—c=(1-p), andfinallyt = log(1 — d=)/log(1 — b) shows how many tests will suffice to ensure that
the whole computation is correct with confidente

Blue-fringe state merging algorithms do at megtz — 1) + 1 merges when constructing anstate
hypothesis over an alphabet of sizésee section 10.2 for a proof). Combining this fact with takalation
of the previous paragraph and the assumption that the lameparisons which occur during a merge are
independent tests having a 50 percent chance of revealimgvalid merge, one can see that problems in
the top row of the Abbadingo matrix can be solved with confae®3 by restricting the program to merges
that are supported by 10 or more label comparisons. Sinchigiiest scoring initial merges for the top-row
problems in columns lll, I, and | have scores of 19, 13, anddpectively, one would expect this method to
work for the first two problems, but not the last, which is ekawhat happens.

Note that while one could write a program that is willing to doy merge whose score exceeds the
threshold computed above, better performance can be @otip ignoring the threshold and simply doing
the highest scoring merge in all cases.

9 Reference algorithm

Here we describe a post-competition version of EDSM. Coexbér the programs that were used during the
competition, this algorithm produces a slightly bettetrilisition of generalization rates on random problems
(see section 11).

9.1 Definition of a merge’s score
We award one point for each state label which, as a result cdr@en undergoes an identity check and turns
out to be okay. Any mismatch results in a negative overaltescDetails appear in section 9.4.2.

9.2 Initial hypothesis

The initial hypothesis is the prefix tree acceptor which ciseembodies the training set.

9.3 Outer loop

The key insight of EDSM is that bad merges (which can’t beddiyedetected when the training data is very
sparse) can often be avoided if we instead do high scoringesahat have passed many tests and hence are
likely to be correct. To have the best chance of finding a lEgbring merge to perform at any given moment,
we need the largest possible pool of candidate merges. TWausyould like to consider the possibility of
merging every pair of hypothesis nodes, as in the followiatgoloop:

1. Forevery pair of nodes in the hypothesis, compute theedoomerging that pair.
2. If any merge is valid, perform the highest scoring oneeaotlise halt.

3. Gotostep 1.

Note that this outer loop requires us to be able to merge nibde¢sire the roots of arbitrary subgraphs of the
hypothesis, not just nodes that are the roots of trees. Ingkesection we show how to do this.

(define (conpute-classes hypo ; current hypothesis DFA (not nodified)
uf er ; union-find data structure (nodified)
input-set) ; list of nodes asserted to be equival ent

(when (> (length input-set) 1)
(let ((!earned-sonething-new? #f)
(guyl (car input-set)))
(dolist (guy2 (cdr input-set))
(when (not (uf-sane-class? ufer guyl guy2))
(uf -unify-classes ufer guyl guy2)
(set! | earned-sonething-new? #t)))
(when | ear ned- sonet hi ng- new?
(dotines (i al phabet-size)
(conput e-cl asses hypo ufer
(del et e-dupl i cat es- and- undefi neds
(map (I anbda (node) (get-child hypo node i))
(uf - get - menber s- of - guys-cl ass ufer guyl)))))))))

Figure 1: Scheme code for working out which states are coetbiry a given merge.

9.4 Merging and scoring

To merge a pair of nodes, we must work out the partition of lilgpsis nodes into equivalence classes which
is implied by the assertion that the two candidate nodes gué/aent, plus the determinization rule (fig-
ure 5) which states that the children of equivalent nodes imei€quivalent. Note that we can perform this
computation regardless of whether the merge is valid, siadidity depends on state labeling, whereas the
equivalence classes only depend on the transition function

Once we have determined the set of equivalence classedtiitidgd to consult the labels and compute a
merge score, and, if the merge is in fact valid, to construeha hypothesis reflecting the merge.

9.4.1 Computing equivalence classes

Figure 1 shows the Scheme language subrouwtimeput e- cl asses, which works out the equivalence
classes implied by a merge and the determinization rulanfileys a union-find data structure to keep track
of sets of states that are known to be equivalent.

To assert that a particular set of states is equivalent, Wecoarput e- cl asses on that set. The
procedure checks the union-find data structure to determimather the assertion is new information. If not,
the routine returns immediately. Otherwise, it unifies thaiealence classes associated with all the members
of the input set, and then calls itself recursively on eacthefsets oi™" children of members of the newly
unified equivalence class.

When considering a merge, we initiate the computation biyngat orrput e- cl asses on the set con-
sisting of the two nodes that we are thinking of merging. Wemadass in a fresh union-find data structure
that has been initialized with a singleton set for each stetiee pre-merge hypothesis.

Note that the computation terminates because recursileeardly occur when separate classes have actu-
ally been unified, and the number of states in the hypothesis upper bound on the number of times this
can happen.

Figure 4 shows an execution tracecafnput e- cl asses on a toy example.

9.4.2 Scoring

A merge’s score is the sum over equivalence classes of tleviog quantity: if there are conflicting labels
in the class, minus infinity; if there are no labels in the s]amero; otherwise, the number of labels minus
one. We subtract one because the first label in the clasdisbththe correct label for the class, but is not
checked.

9.4.3 Constructing a merged hypothesis

Once a candidate merge has been shown valid by a non-negative, and we have decided to actually
perform the merge, we can construct an updated hypothesistfre equivalence classes as follows. The new
hypothesis has one state per equivalence class.

Let C; be an equivalence class, antle an input symbol. Let; be any state ir’; that has a defined
transition fori. Let s, be the target of that transition, and (8% be the class of,. Theni takes us fronC;
to C,. If no state inC, has a defined transition fér thenC, s transition fori is undefined.

Let s3 be any state il’; that has a defined label. The labelsgfbecomes the label fdr;. If no state in
(4 has a defined label, theTy s label is undefined.

10 Blue-fringe algorithm

Because the algorithm of section 9 performs merges in aybitaer, both nodes in a merge can be the roots
of arbitrary subgraphs of the hypothesis. It turns out thaplacing a restriction on merge order (described
below), one can guarantee that one of the two candidate rieddways the root of a tree, resulting in a
particularly fast and simple program.

Much previous work has employed a restriction of this typeluding the papers of Lang (1992); Oncina
and Garcia (1992); Higueet al. (1996); and the Abbadingo competition programs of Priceanie. Note
that the restriction shrinks the pool of merge candidatest screases the failure rate of the algorithm as
compared to the unrestricted algorithm of section 9. Howehe idea is well worth describing.

As usual, we start with the prefix tree acceptor. The rootisreal red. Its children are blue, and all other
nodes are white. We maintain the following invariants:

e There is an arbitrary connected graph of mutually unmerigaal nodes.
¢ All non-red children of red nodes are blue.
¢ Blue nodes are the roots of isolated trees.
We restrict ourselves to the following actions:
e Compute the score for merging a red/blue pair.
¢ Promote a blue node to red if it is unmergeable with any redenod
¢ Merge a blue node with a red nofle.

This basic framework of invariants and actions can be tumntddifferent algorithms of widely varying per-
formance, depending on the details of the policy for chagsihich action to perform when. A particularly
good policy is described in Juillé and Pollack (1998):

1. Evaluate all red/blue merges.

2. If there exists a blue node that cannot be merged with athpoele, promote the shallowest such blue
node to red, then goto step 1.

3. Otherwise (if no blue node is promoteable), perform thghbst scoring red/blue merge that we know
about, then goto step 1.

4. Halt.

Note that the algorithm of Higuert al. (1996) has the priority of steps 2 and 3 reversed, which ikt
reduces its effectivenegdt is important to not start merging until many merge cantigdnave accumulated,
so that one with a high score is likely to be available.

SNote that the last two actions might also require some whities to be recolored blue.

70n a set of 100 problems like the ones in section 11 but witld2Ening strings, the median generalization error rateJtdllé’s
policy is .004. Reversing the priority of steps 2 and 3 insezathis to .39, which is nearly as bad as the value of .44 fopthin
Trakhtenbrot-Barzdin algorithm.

(define (nerge-and-conpute-score red-cand bl ue-cand)
(make- bl ue- guys- f at her - poi nt -t o-red- guy red-cand bl ue-cand)
(set! score 0) ; using global variable for sinplicity here
(merging-wal k-it red-cand bl ue-cand)
score)

(define (merging-walk-it r b)
(let ((r-1abel (get-label r))(b-1abel (get-label b)))
(when (defined? b-1abel)
(if (defined? r-1abel)
(if (=r-label b-label) ; conpare | abels
(set! score (+ score 1))
(set! score -infinity))
(set-label! r b-label)))) ; copy in mssing | abe
(dotimes (i al phabet-size)
(let ((r-child (get-child r i))(b-child (get-child b i)))
(when (defined? b-child)
(if (defined? r-child)
(merging-wal k-it r-child b-child)
(set-child! r i b-child)))))) ; splice in mssing branch

Figure 2: Code for performing and scoring a merge in the Hitingye framework.

10.1 Merging in the blue-fringe framework

Thanks to the guarantee that every blue node is the root sbdetéd tree, merging (and hence score keeping)
is very simple in the blue-fringe framework. Scheme codedoing this is shown in figure 2. Since this
procedure modifies the hypothesis, when using it to meretypde a score one would provide a mechanism
for reverting the hypothesis to its unmodified state aftehezall.

10.2 The number of merges performed by blue-fringe algoritims

All blue-fringe state merging algorithms do at mosga — 1) + 1 merges when constructing anstate
hypothesis over an alphabet of sizewith equality occuring when the final hypothesis containsindefined
edges. To see this, letandb be the number of red and blue nodes at any point in the compuidétm be
the number of merges so far, and debe the number of undefined children of red nodes. Then atnadig]
the algorithm maintains the invarianta — 1) = m + = + b — 1. We begin withr =0,m =0,b =1,z = 0.
Every promotion of a blue node withdefined children causes«— r+1,x < z+a—j,b < b—1+j. Every
merge that causésnew children to be spliced into red nodes causes- m+ 1,2 <+ x —k,b+ b—1+k.
The program terminates whén= 0, so we have(a — 1) — z + 1 = m , which gives the result.

10.3 Two incorrect methods for computing scores

Here we warn against two plausible sounding but incorre¢hods for evaluating merges in the blue-fringe
framework. The mistake in both cases is a failure to accoomtife graph structure of the red part of the
hypothesis.

The first incorrect method compares auxiliary trees cosddifrom the set of training set strings which
pass through the two candidate nodes. This method igndretslthat are reachable from the red candidate
node but which come from strings that go around that noderdkian through it.

The second incorrect method compares labels during a neredidcting simultaneous walk of the hy-
pothesis starting at the red and blue merge candidates.nTétisod can see all of the labels on red nodes,
but it doesn’t account for the fact that pairs of labels inthes-rooted tree can end up conflicting with each
other because the merge forces the tree to conform to the sifdipe red graph.

distribution of outcomes on 1000 runs with 2000 strings and ~64 states
100 T L T T T T T L T T L

EDSM, reference —
‘ EDSM, blue-fringe ----
» 3 Trakhtenbrot-Barzdin ----- -

80
70 | 1 .
60 |4 -

BO [TN o .

percent of runs achieving rate

30 .

! N
\ <
. Ry
. N
20 : \ _
\ <
\ . N
. N

error rate

Figure 3: The complete distributions of results of threealhms on a set of 1000 random problems. Each
problem had 2000 training strings of length 0-15, and a dépttarget DFA with about 64 states.

11 A comparison of two EDSM implementations

We have described two implementations of EDSM. A table (igde 3) could be made for either one showing
that it scales wefll, and that it can usually solve problems at density level tirbt density level I. In this
section we put aside the question of scaling and focus on dlestipn of how well the two versions can
generalize on problems that lie halfway between columnaedilathat is, near the edge of typical solvability
for the EDSM method.

Figure 3 and table 4 show the results of a comparison on a sE@J such problems. Clearly, both
implementations of EDSM are much more powerful than thenplaiakhtenbrot-Barzdin program. The ref-
erence program is slightly more effective than the bluage program. We attribute this to its larger pool of
candidate merges.

We also mention that there is a strong stochastic componehgtbehavior of both EDSM prografhs
and that there are many problem instances where the refeogram fails and the blue-fringe program
succeeds. Given the somewhat uncorrelated failures ofatbgtograms, it is natural to combine them by
running both and then choosing the smaller of the two resylbFAS. Table 4 shows that this combined
approach works better than either program alone. In faetcttimbined performance level is well into the
range reported by Juillé and Pollack (1998) for the seamténsive SAGE system.

8The reference algorithm needs some speedups to be praGiathe appendix.
9This is due to randomness in the training data and the fatettem high scoring merges can be wrong.

10

median number of
algorithm generalization| solutions
rate (out of 1000)
Trakhtenbrot-Barzdin 537 26
blue-fringe EDSM (Juillé) .809 311
reference EDSM .934 379
combination of the previous two .955 423

Table 4: A comparison of two implementations of EDSM on 10f@dom problems. Each problem had 2000
training strings of length 0-15, and a depth-10 target DFthwabout 64 states. Solutions are hypotheses with
a generalization rate of .99 or better.

12 Notes on run time

The run time of Trakhtenbrot-Barzdin is upper bounded®¥?2, whereP is the size of the inital PTA, and
H is the number of nodes in the final hypothesis. The bound fbthe-fringe algorithm is” 3. We don't
have a tight upper bound on the run time of the reference ithgoy but we conjecture that it would be closer
to P®H than toP*H.

13 Conclusion of Part Il

We have described two versions of a polynomial time DFA lesgralgorithm that works very well on ran-
domly generated problems. While the algorithm can be defehy a malicious adversary, we believe that
it will degrade gracefully as one moves gradually away frowa &verage case. We recommend that anyone
faced with a DFA learning task give this algorithm a try.

Acknowledgements

We thank Hugues Juillé for sending us code and an early dfaftille and Pollack (1998), which is the
source of the blue-fringe control policy described in saetlO.

Appendix: speedups for the reference algorithm

For the experiment of section 11, we sped up the referenaeitdlgn by only considering merges between
nodes that lie within a distance of the root on a list of nodes created by a breadth-first tsaleof the
hypothesis. This change hurts performance by causing ¢foeitiim to miss the (relatively rare) high scoring
merges involving deep nodes. Note that while the existei¢eeoneww parameter appears to make the
algorithm less general by requiring prior knowledge of thee ©f the target DFA, one can use the standard
doubling trick to eliminate this requirement. However, iarection 11 experiment on size-64 DFA's, we
simply used avvalue of 256.

We also employed the following optimizations, which doriaoge the behavior of algorithm except to
make it faster. Whenever the deeper of a pair of candidatesisdhe root of an isolated tree, the blue fringe
scoring routine of figure 2 is used to cheaply compute the saooee that would be returned by the expensive
general-purpose code of section 9.4. Also, before finaklpriing to the general-purpose code, we first do a
quick walk looking for labeling conflicts; if one is found, wean immediately return a score of minus infinity.

References

B. Trakhtenbrot and Ya. Barzdin’. (197Bjnite Automata: Behavior and Synthediorth-Holland Publish-
ing Company, Amsterdam.

11

Thetwoloops: 0-51—-2—-53—0
455565758594

classes before call argument to compute-classes

{0y {1} {2 {3} {4} {5) {6} {7} {8) {9} 04
{04} {1} {2} {3} {5} {6} {7} {8} {9} (15)
{04} {15} {2} {3} {6} {7} {8} {9} (26)
{04} {15} {26} {3} {7} {8} {9} 37)
{04} {15} {26} {37} {8} {9} 084
{048} {15} {26} {37} {9} (195)

{048} {159} {26} {37} (2468)

{02468 {159} {37} (3579)

{02468 {13579 (06842

Figure 4: Execution trace afonput e- cl asses while merging two cycles of length 4 and 6 to create a
cycle of length 2.

229 (-0 =)

—©

Figure 5: Explanation of determinizatiobeft: prior to the merge, the symbelleads from state to stater,

and also from statéto statey. Center: after states andb are merged, the automaton is non-deterministic.
Right: to restore determinism, statesandy must be merged, which can lead in turn to the merging of other
states.

D. Angluin. (1978)On the Complexity of Minimum Inference of Regular Sketfermation and Control, Vol.
39, pp. 337-350.

L. Veelenturf. (1978)nference of Sequential Machines from Sample Computati®tsE Transactions on
Computers, Vol. 27, pp. 167-170.

M. Kearns and L. Valiant. (198Cryptographic Limitations on Learning Boolean FormulaedaFinite
Automata STOC-89.

L. Pitt and M. Warmuth. (1989)he Minimum DFA Consistency Problem Cannot be Approxim@fitiain
any Polynomial STOC-89.

Kevin J. Lang. Random DFA's can be Approximately Learnedfi®parse Uniform Examples. Proceed-
ings of the Fifth Annual ACM Workshop on Computational LeagiTheory pp 45-52, July 1992.

J. Oncina and P. Garcia. Inferring Regular Languages inrfeotyal Updated Time. IfPattern Recognition
and Image Analysigp. 49-61, World Scientific, 1992.

Yoav Freund, Michael Kearns, Dana Ron, Ronitt Rubinfeldb&b Schapire, and Linda Selligfficient
Learning of Typical Finite Automata from Random WalB$OC-93, pp. 315-324.

P. Dupont, L. Miclet, and E. Vidal. What is the search spacthefregular inference? IRroceedings of the
International Colloguium on Grammatical Inference ICGA;Qecture Notes in Atrtificial Intelligence 862,
pp. 25-37, Springer-Verlag, 1994.

C. de la Higuera, J. Oncina, and E. Vidal. Identification ofADBata-Dependent Versus Data-Independent
Algorithms. InProceedings of the International Colloquium on Grammdticderence ICGA-98. ecture
Notes in Artificial Intelligence 1147, pp. 313-325, Spriniéerlag, 1996.

Joe Kilian and Kevin J. Lang. (1997) A Scheme for Secure Fagisfests. NECI Technical Note 97-016N.

Hugues Juillé and Jordan B. Pollack. (1998) SAGE: a Samased Heuristic for Tree Search. Submitted
to Machine Learning

12

