
Automated Metamodel Instance Generation

Satisfying Quantitative Constraints

Wu Hao(吴昊)

Supervisors: Dr. Rosemary Monahan and Dr. James F. Power

Department of Computer Science

National University of Ireland, Maynooth

A thesis submitted for the degree of

Doctor of Philosophy

October, 2013

mailto:haowu@cs.nuim.ie
http://www.cs.nuim.ie/users/dr-rosemary-monahan
http://www.cs.nuim.ie/users/dr-james-power
http://www.cs.nuim.ie
http://www.nuim.ie

I would like to dedicate this thesis to every one who helped me

during my PhD studies.

Acknowledgements

I consider this section as one of the most important parts of this

thesis because without any one of you mentioned below this thesis

would never have been possible.

First and foremost, I would like to thank my supervisors Dr. Rose-

mary Monahan and Dr. James F. Power for their guidance during the

last four years. Their critical and strict attitude towards my work are

the key factors for me to keep up till the very end of my PhD studies.

So, a huge thank you to both of you.

I would like to exponentially extend my gratitude to those of you who

helped me during my sickness in 2011. They include: Jimmy Gor-

man, Joe Timoney, Lu Bing Bing(卢斌斌), Deirdre Dunne, Ying Fang

Li(应方立), Yang Wen Bai(杨文白), Brendan Ashe, Zhang Xin(张

欣), Chen Yu Ying(陈昱颖), Chen Shuang(陈霜), Stephen Brown and

many of who visited me when I was in hospital. It was the darkest

time in my PhD studies, and probably also in my life so far. Fortu-

nately, with the encouragement and support from all of you, I was

able to quickly step out the darkness and start to recover. Therefore,

all of you really deserve my biggest thanks.

I also would like to thank those who shared an apartment with me

during my last year studies. They include: Chen Xiao Ming(陈晓

敏), Emma Jackson, Michael Roche, Holly Henning and Jamie Mac

Phillips. Thanks for all the nice conversations during the dinner time

in the living room, which really helped me get relaxed after my daily

stressful work.

Finally, I would like to give my deepest gratitude to my loving parents

(袁美萍, 吴国弟). Your greatest support is the ultra power supply

for finishing this thesis, and it is far beyond any physical distance and

time difference.

Abstract

Metamodels are the core of the metamodeling approach and widely

used in model driven architecture. The high abstraction level provided

by metamodels makes the metamodeling approach popular among

software modelers and language designers. However, the metamod-

eling approach has one big drawback: it does not support instance

generation. Instances are particularly important for software model-

ers and language designers to test or verify their metamodels. Un-

fortunately, automatically generating metamodel instances is a very

challenging task. Furthermore, the generated instances should ideally

cover a more generic or specific feature of a metamodel as required by

modelers for different purposes.

This thesis presents a solution that combines both graph represen-

tation and Satisfiability Modulo Theories (SMT) to the problem of

metamodel instance generation. The solution consists of two ap-

proaches, the first approach presents a new foundation for generating

metamodel instances by translating a metamodel to an SMT prob-

lem via a bounded graph representation. The second approach in-

vestigates generating meaningful metamodel instances by using two

new techniques. The first technique generates instances that meet

partition-based coverage criteria by using criteria formulas to further

constrain the entire generation process. The second technique gener-

ates instances that satisfy graph-property based criteria by introducing

different scenarios. These two approaches have been prototyped into a

new tool, named ASMIG, to demonstrate the feasibility of automatic

metamodel instance generation.

Simplicity is prerequisite for reliability. Edsger.W.Dijkstra, 1975

Contents

Contents v

List of Figures ix

Nomenclature xiv

1 Introduction 1

1.1 Model Driven Engineering . 1

1.2 Model and Metamodel . 2

1.3 MetaObject Facility . 4

1.4 Metamodels and UML Class Diagrams 4

1.5 Object Constraint Language . 4

1.6 Problem Statement . 5

1.7 Motivation . 6

1.8 Challenges . 6

1.9 Summary of Contributions . 7

2 A Systematic Literature Review of Metamodel Instance Gener-

ation Techniques 9

2.1 Review Research Methods . 9

2.2 Defining The Research Questions 10

2.2.1 Search terms . 12

2.2.2 Paper Selection Study . 15

2.3 Discussion . 15

v

0.0 CONTENTS

2.3.1 RQ1. What are the research domains with techniques that

are applicable to metamodel instance generation? 15

2.3.1.1 Compiler Testing 17

2.3.1.2 Model Transformation Testing 17

2.3.1.3 Graph Grammars 19

2.3.1.4 SAT/SMT based Approaches 20

2.3.1.5 Constraint Programming 20

2.3.1.6 XML & Miscellaneous Domains 21

2.3.2 RQ2. Within those research domains, what theoretical

frameworks and associated algorithms have actually been

used for metamodel instance generation? 21

2.3.2.1 Compiler Testing 21

2.3.2.2 Model Transformation Testing 22

2.3.2.3 Graph Grammars 24

2.3.2.4 SAT/SMT Based Approaches 25

2.3.2.5 Constraint Programming Approach (CP) 28

2.3.2.6 XML . 29

2.3.2.7 Miscellaneous Domains 29

2.3.3 RQ3. What criteria are applied for selecting metamodel

instances? . 31

2.3.4 RQ4. What tools exist to implement those algorithms to

produce model instances? 32

2.3.5 Discussion . 36

2.4 Summary . 40

3 Background: Graphs, SAT and SMT 41

3.1 Metamodels and Graphs . 42

3.1.1 Typed Graphs . 43

3.1.2 Attributed Graphs and Attributed Type Graphs 44

3.1.3 Attributed Type Graph with Inheritance 48

3.2 Boolean Satisfiability Problem . 51

3.3 Satisfiability Modulo Theories . 52

3.3.1 SMT-Lib version 2 . 53

vi

0.0 CONTENTS

3.3.1.1 Functions . 53

3.3.1.2 Logic Context . 53

3.3.1.3 Formulas . 53

3.3.1.4 Models . 53

3.3.1.5 Solving An Integer Equation 54

3.4 An SMT-based Sudoku Solver . 54

3.5 Summary . 58

4 Generating Metamodel Instances Satisfying Structural and OCL

Constraints 59

4.1 Bounded Attributed Type Graphs with Inheritance 60

4.2 Translating an AGu to SMT2 Formulas 64

4.2.1 Translating the Nodes and Edges 65

4.2.2 Translating Graph Edges 66

4.2.2.1 Unidirectional Associations 68

4.2.2.2 Bidirectional Association 70

4.3 Translating OCL Invariants to SMT2 Formulas 72

4.4 A Graph Colouring Example . 74

4.5 Evaluation . 77

4.5.1 Implementation . 77

4.5.2 Results . 80

4.5.3 Comparison . 84

4.6 Summary . 89

5 Generating Metamodel Instances Satisfying Partition-Based Cov-

erage Criteria 90

5.1 Partition-based Coverage Criteria for Metamodels 91

5.2 Using Partition Switches and Criterial Formulas for Partition-based

Instance Generation . 93

5.2.1 Class Attribute Partitioning 94

5.2.1.1 An Example of Attribute-based Partitions 95

5.2.2 Association-End Multiplicity Partitioning 97

5.2.2.1 Partitioning Unidirectional Associations 98

vii

0.0 CONTENTS

5.2.2.2 Partitioning Bidirectional Associations 101

5.2.3 Better Control of Instance Enumeration 103

5.3 An Example of Achieving CA and AEM Coverage Criteria 105

5.4 Evaluation . 107

5.4.1 Implementation . 107

5.4.2 Results . 107

5.5 Summary . 112

6 Generating Metamodel Instances Satisfying Graph-Based Crite-

ria 113

6.1 Directed Acyclic Graphs . 114

6.2 Sharing and Non-Sharing Nodes 116

6.3 Quantity of Nodes and Edges . 120

6.4 Examples: Class Cohesion and McCabe Complexity 122

6.4.1 Class Cohesion and Call Graphs 122

6.4.2 McCabe Complexity . 127

6.5 Evaluation . 128

6.5.1 Implementation . 128

6.5.2 Results . 129

6.6 Summary . 133

7 Conclusion 134

7.1 Discussion . 135

7.2 Future work . 141

7.2.1 Shared SMT2 Formulas 141

7.2.2 Unsat Core Analysis . 141

7.2.3 Extending OCL Support 142

7.2.4 Special Graph-Properties Based Language 142

Appendix A 144

Bibliography 151

viii

List of Figures

1.1 An example of model and its metamodel. This is the four-level

MOF architecture, and from the top down it describes a meta-

metamodel (level 3), metamodel (level 2), model (level 1) and an

object (level 0). 3

1.2 A metamodel with an OCL invariant indicating a person’s age

must be over 18. 5

1.3 Two instances: Figure 1.3(a) is a valid instance for metamodel in

Figure 1.2, Figure 1.3(b) is an invalid instance. 5

1.4 The approach and techniques presented in Chapter 4, 5 and 6

have been implemented as a new tool: A Small Metamodel In-

stance Generator (ASMIG). Not only can ASMIG automatically

generate metamodel instances satisfying structural and OCL con-

straints (described in Chapter 4) but also with consideration for

partition and graph based criteria (described in Chapters 5 and

6). The generated formulas from ASMIG conform to the SMT-Lib

Version 2.0 (SMT2) standard, and input to the SMT2 solver (that

acts as a black-box engine) for solving the formulas, and each suc-

cessful assignment for formulas is converted back into an instance

of a metamodel. 8

2.1 The relationship between our research questions. 12

2.2 A sample rule of a graph grammar 20

3.1 An example of typed graph. Dashed lines describe nodes and edges

in the graph G and are typed over nodes and edges in the graph T . 44

ix

0.0 LIST OF FIGURES

3.2 An example of attributed graph. The dashed nodes are the data

nodes used in VD, and the dashed lines are the edges linking graph

nodes in VG to data nodes in VD 46

3.3 An attributed type graph for the attribute graph in Figure 3.2.

The dashed boxes represent the different sorts. The dashed lines

depict the links from the typed node to the sorts through different

node attributes. 47

3.4 An example of an Attributed Type Graph with Inheritance 49

3.5 The Attributed Type Graph with Inheritance in Figure 3.4 in com-

pact notation . 50

3.6 A propositional logic formula in conjunctive normal form. 51

3.7 An SMT2 example that uses quantifier-free linear integer arith-

metic logic to solve a inequality: z − y > x+ y and z = 2x. 54

3.8 An extreme-level Sudoku puzzle 55

3.9 SMT2 Formulas for the Sudoku puzzle 57

3.10 The solution found by SMT solver to the Sudoku puzzle in Figure

3.8 . 57

4.1 Rules for bounding type nodes according to different association-

end multiplicities. Here, we implicitly require b(A) ≥ 1. 62

4.2 Examples of (a) a Bounded ATGI in compact notation. (b) an

instance of a Bounded ATGI in explicit notation, where we have

only selected one instance of Worker. 64

4.3 Translation rules for translating graph nodes (VG), data nodes

(VD), node attributes (ENA) and graph edges (EG) to SMT2 for-

mulas. 67

4.4 Translation rules for graph edges typed over the edges in ATGIb

that represent unidirectional associations. 69

4.5 A 2D-array represents an association ref , the bounds here for A

and B are 2 and 3 respectively. 69

4.6 Truth table for formula f1 where each 0 denotes false and 1 denotes

true. 70

x

0.0 LIST OF FIGURES

4.7 Translation rules for graph edges typed over the edges in ATGIb

that represent bidirectional associations. 71

4.8 A summary of supported OCL abstract syntax. Note that we use

the notation [x : T] to denote that a variable x has a type of T

and [x : T]∗ to denote a list of typed variables. 75

4.9 An example of translating an OCL constraint. Here, b(Manager) =

2 and the OCL constraint is: Manager.allInstances()->exists(m|m.age>50

and m.age<55) . 76

4.10 A Graph colouring metamodel . 76

4.11 The illustrated translation steps for the metamodel in Figure 4.10.

Note: In step 6, formulas written in red colour (e7 and e11) indi-

cate that they are logically equivalent and they can be shared for

efficiency. 78

4.12 One of the instances of the graph colouring metamodel found by

Z3. The letter in each node of this graph represents a colour

(R:Red, G:Green, B:Blue), and an edge between two nodes means

they are adjacent. 79

4.13 The time spent on translation by ASMIG with different size of

metamodels. Each point in this graph represents the translation

time that ASMIG takes on a metamodel from Table 4.1. 83

4.14 A comparison with UML2CSP, EMF2CSP and Echo. Each point

in this graph represents the translation time that individual tool

takes on a specific metamodel in Table 4.3. Note that only those

metamodels that are successfully translated by the tools listed in

Table 4.3 are included. 88

5.1 A subset of a programming language metamodel, depicted using

bounded ATGI notation. The number in each circle represents the

bound on the number of instances for a particular class (2 and 3

for Class and Method respectively). 92

5.2 The SMT2 template for generating a partition switch used in each

translation rule. 94

xi

0.0 LIST OF FIGURES

5.3 The translation rule for data nodes that are integer and boolean

type. The criterial formulas in this translation rule are in blue colour. 95

5.4 Three instances are needed to achieve a maximum class attribute

coverage for the class Class in the metamodel from Figure 5.1. . . 97

5.5 Translation rules for graph edges typed over the edges in ATGIb

that represent unidirectional associations. The criterial formulas

in translation rule are marked in blue colour. 99

5.6 The 2D-array representing the second association pattern in Figure

5.5. 100

5.7 The auxiliary 2D-array created for capturing information about

the exact number of instances of B that an instance of A can be

associated with. Each Auxi,j is an SMT2 integer constant. 100

5.8 The resulting formula for the first row of the array ref 100

5.9 An example of a possible assignment found by an SMT2 solver for

array ref in Figure 5.7. 101

5.10 Translation rules for graph edges typed over the edges in ATGIb

that represent bidirectional associations. The criterial formulas in

each translation rule are marked in blue colour. 102

5.11 An example of an assignment found by an SMT2 solver for an

association between two classes A and B, where the bounds for A

and B are manually allocated and they are 3 and 5, respectively.

In this example an instance of A is linked with a maximum of 3

instances of B. Since the sum of each column is 1, an instance of

B is only connected to a single instance of A. 103

5.12 A subset of the Ecore metamodel showing the relationship between

EPackage, EClass, EAttribute, EReference and EOperation,

where a bound for each non-abstract class is depicted as a number

in a circle. 106

5.13 In this generated instance of the Ecore metamodel of Figure 5.12,

at least one EClass instance is associated with a maximum number

of EAttribute, EOperation and EReference instances. 106

xii

0.0 LIST OF FIGURES

5.14 In this generated instance of the Ecore metamodel of Figure 5.12,

each EClass instance is associated with a maximum number of

other instances (EAttribute, EOperation and EReference) ac-

cording to the bound defined on each class in metamodel. 107

5.15 Translation time affected by different sized metamodel in Table

5.4. Each point in this graph represents the translation time that

ASMIG takes on a specific metamodel from Table 5.4. 110

6.1 A subset of the Java metamodel representing relationships between

classes and their members, which are fields or methods. 114

6.2 A DAG with all nodes in one line. 115

6.3 An example of sharing nodes in a graph 117

6.4 An example of non-sharing nodes in a graph 117

6.5 An example of transposed 2D-array for illustrating sharing and

non-sharing properties. 118

6.6 A subset of the Java metamodel represented as a bounded graph

representing relationships between classes and their members, which

are fields or methods. 123

6.7 One of the successful assignments for the formula for deciding how

the graph is connected, based on the bounds defined on meta-

model in Figure 6.6 and given a desired LCOM value of 3. Here

m1 through m5 represent methods, and the numbers 1 through 3

represent three sets in a partition of these methods. 125

6.8 A generated instance of the Java metamodel from Figure 6.6. This

Java program has an LCOM value of 3, as well as a call-graph

depth of 3. 126

6.9 A metamodel that describes directed graphs with a bound of 8

on the Node class in Figure 6.9(a). An instance, with a McCabe

complexity of 3, of the metamodel in Figure 6.9(b). 128

6.10 A generated instance (6 nodes and 7 edges) of the metamodel in

Figure 6.9(a) that has a McCabe complexity of 3. 129

xiii

0.0 LIST OF FIGURES

6.11 Translation time against different size of bound for four metrics.

Each point in this graph represents one specific translation time

that ASMIG takes based on a specific bound. Points and bounds

are derived from Table 6.1. 132

1 For a standard 9x9 Sudoku puzzle, each two dimensional block is

flatten into a list, b1 denotes the first cell in each block and b9

denotes the last cell. 148

xiv

Chapter 1

Introduction

The motivation of this research is to assist software engineers using metamodels

for software design in Model Driven Engineering. These metamodels capture im-

portant aspects of the software that allow software engineers to refine their design

at higher levels of abstraction. However, a central problem of using metamodels

for modelling software is that it is difficult to automatically generate metamodel

instances. This is because each valid metamodel instance must satisfy many

constraints. The research presented in this thesis argues that an advantageous

automated approach for producing metamodel instances can be derived from the

combination of graph representation with Satisfiability Modulo Theories (SMT).

In particular, the approach can be tailored to generate meaningful metamodel

instances in a relatively straightforward manner.

1.1 Model Driven Engineering

The idea of working with Model Driven Engineering (MDE) is to use models as

primary artifacts when software engineers are developing software. Before writing

any lines of code, a model that represents an aspect of a system is built and the

actual program may be automatically generated from the model. This provides

software engineers with a complementary approach to generate code, being ab-

stract and automated over the traditional manual code writing. Much research

has been focused on devising methods for integrating MDE into the software en-

1

1.3 1. INTRODUCTION

gineering tool-kit [Alonso et al., 2007; Heidenreich et al., 2010b; Philippi, 2006].

The interaction between different development tasks now varies from writing dif-

ferent pieces of code to depicting different types of models [Jäger et al., 1999;

Larman, 2003]. MDE not only changes the process of software development but

also raises the software design to a higher abstraction level [Atkinson and Kühne,

2003; Baker et al., 2005; Elaasar and Neal, 2013].

1.2 Model and Metamodel

In MDE, models are key structures for building a complex system, where software

engineers use them to represent different aspects of a system at an abstract level.

Different types of models capture different aspects of a system. For example,

models can be used to describe a system’s structural or dynamic behaviours. To

a software engineer, interacting and refining these models relieves the complexity

of a system by removing a large amount of code which may be automatically

generated from these models. A program automatically generated from a model

creates real objects during its execution, and these objects created are instances

of the model. The introduction of metamodeling, a higher abstraction technique

to MDE, allowed software engineers to describe and refine their designs at an

even higher level [Object Management Group, 2011a]. To a software engineer, a

model is an abstract representation of an aspect of a system, whereas a metamodel

describes a higher abstraction: a metamodel is a model that describes the syntax

for a set of models.

Since a metamodel captures a set of models that have the same syntax, an

instance of a metamodel is thus a model. To illustrate this concept, Figure 1.1

shows an example of a model and metamodel. In Figure 1.1 at level 1, the model

Person conforms to a metamodel which is defined at level 2. This higher level

metamodel has two metaclasses, Class and Attribute (the field age conforms to

Attribute). The conformance here means that the model defined in the lower

level is an instance of the model defined in the level above. Thus, the Person

model defined at level 1 is an instance of its metamodel defined at level 2. For

example, Person is an instance of Class, and age is an instance of Attribute.

2

1.3 1. INTRODUCTION

Figure 1.1: An example of model and its metamodel. This is the four-level MOF
architecture, and from the top down it describes a meta-metamodel (level 3),
metamodel (level 2), model (level 1) and an object (level 0).

3

1.5 1. INTRODUCTION

1.3 MetaObject Facility

The MetaObject Facility (MOF) is a standard formalism for constructing meta-

models in Model Driven Architecture (MDA), and it consists of four levels for

specifying models [Object Management Group, 2011a]. Each level represents a

different abstraction level, where an upper level specifies a higher abstraction than

a lower level does. In Figure 1.1, at the top level (level 3) is the meta-metamodel

used by MOF for building a metamodel (level 2). For example, in Figure 1.1 the

meta-metamodel Class at level 3 defines the metamodel Class and Attribute at

level 2. In other words, metamodel Class and Attribute are instances of meta-

metamodel Class. Similarly, the model at level 1 is described by its metamodel

at level 2. Models at level 0 are called objects, and they represent objects in

the real-world. For example, the model jack with an age of 20 in Figure 1.1

represents an object that is an instance of the Person model.

1.4 Metamodels and UML Class Diagrams

The Unified Modeling Language (UML) is a visual modeling language that is

widely used by software engineers to depict their system [Object Management Group,

2011c,d]. The UML diagrams are grouped into two main types: structural dia-

grams and behavioural diagrams. Since a metamodel describes a structural view

of the models, this can also be captured by one type of UML structural diagram:

the UML class diagram. Therefore, a metamodel can be depicted as a UML class

diagram. For example, in Figure 1.1, the metamodel (level 2) for Person is de-

picted as a UML class diagram, which has 2 classes, a list of attributes in each

class and a binary association.

1.5 Object Constraint Language

The Object Constraint Language (OCL) is a declarative language that is used

to express constraints or queries over a metamodel [Object Management Group,

2012b]. OCL uses a first order logic (FOL) like syntax to quantify a set of

objects such as the forAll operator in Figure 1.2. However, OCL has more

4

1.6 1. INTRODUCTION

Figure 1.2: A metamodel with an OCL invariant indicating a person’s age must
be over 18.

(a) (b)

Figure 1.3: Two instances: Figure 1.3(a) is a valid instance for metamodel in
Figure 1.2, Figure 1.3(b) is an invalid instance.

expressiveness than FOL for specifying advanced properties about a metamodel,

such as using a closure operator to return results from the elements of the elements

of a collection data type. The main purpose of using OCL is to specify invariants

and pre/post conditions for the state of a system. An OCL invariant defined

on a metamodel specifies what any instances of the metamodel have to obey.

For example, Figure 1.2 shows an OCL invariant for a Person metamodel: this

invariant simply requires that every person’s age (instance) must be over 18, such

as in Figure 1.3(a). Any person with an age that does not satisfy this invariant is

simply not a valid instance of the metamodel. For example, Figure 1.3(b) shows

an invalid instance.

1.6 Problem Statement

A central question with the metamodeling approach is: given a metamodel and a

set of constraints defined in OCL, how can one (automatically) generate valid in-

stances? Here valid instances mean that the generated instances have to conform

to the metamodel itself and any defined OCL constraints. Without automatic

instance generation, modelers have to manually design instances (test cases or a

test suite) to test or verify the correctness of their metamodels, and such manually

5

1.9 1. INTRODUCTION

designed instances are infeasible when the structure of a metamodel becomes very

complex and when a large number of OCL constraints are defined. Furthermore,

generating metamodel instances satisfying some properties like coverage criteria

is very useful for modelers to test specific metamodel features such as inheritance

relationships or associations.

1.7 Motivation

Being able to automatically generate such a test suite would have two main

benefits. First, examining the automatically-generated test cases would help to

develop the modeler’s understanding of the metamodel, and help to increase

confidence in its validity. Second, since the metamodel can be used to specify a

programming language, the generated test cases should be valid programs from

that language, and these can then be used as test inputs for tools that process

the language [Wu et al., 2010].

1.8 Challenges

In general, generating metamodel instances is undecidable if no restrictions on the

bounds are given [Balaban and Maraee, 2013; Wu et al., 2013]. This is because a

metamodel can have OCL as its constraints, OCL is more expressive than FOL

and FOL itself is undecidable [Ben-Ari, 2012; Boolos et al., 2003; Cabot et al.,

2008]. The challenge here is not only that the instances have to satisfy the meta-

model structural constraints but that they also need to satisfy the constraints

specified in OCL over a metamodel. Furthermore, ideally each generated meta-

model instance should also meet some properties such as the coverage criteria

required by its users. A test suite can thus be formed by enumerating these

instances.

6

1.9 1. INTRODUCTION

1.9 Summary of Contributions

This thesis focuses on these challenges, and contributes a new solution that con-

sists of two approaches for generating metamodel instances automatically. A

systematic literature review (Chapter 2) on existing techniques used for generat-

ing metamodel instances and background knowledge (Chapter 3) used through

our two approaches is first presented. Chapters 4, 5 and 6 present our solution,

consisting of two approaches to solving the problem and form the main contribu-

tions of this thesis [Wu et al., 2012]. These approaches are:

1. A novel approach that constructs a new foundation that naturally supports

metamodeling and translates the metamodel instance generation problem to

an SMT problem. This translation scheme from metamodel to SMT uses a

new graph concept; a bounded attributed type graph with inheritance, and

this concept acts as an intermediate representation during the translation.

The translation also provides a set of rules for translating a subset of OCL

constraints to SMT (Chapter 4) [Wu et al., 2013].

2. An approach that uses two new techniques to extend the new foundation by

generating meaningful metamodel instances in two different ways: satisfying

partition-based coverage criteria (Chapter 5) and graph-properties based

criteria (Chapter 6).

These approaches have been prototyped in a tool: A Small Metamodel In-

stance Generator (ASMIG). ASMIG is a new tool that is designed to naturally

support metamodels, fully automate the metamodel instance generation process

and utilise an advanced decision procedure (Z3) [De Moura and Bjørner, 2008]

as its back-end reasoning engine. ASMIG is a relatively small tool that consists

of about 23, 000 lines of code (LOC) and with around 12, 000 LOC dedicated to

its key components. Figure 1.4 shows the main components of ASMIG and the

process of generating metamodel instances. We have evaluated ASMIG against

a considerable number of metamodels of different sizes, and the evaluation from

ASMIG reveals both strengths and limitations of this research. This leads to the

discussion of future research in this area (Chapter 7).

7

1.9
1.

IN
T
R
O
D
U
C
T
IO

N

Figure 1.4: The approach and techniques presented in Chapter 4, 5 and 6 have been implemented as a new tool: A
Small Metamodel Instance Generator (ASMIG). Not only can ASMIG automatically generate metamodel instances
satisfying structural and OCL constraints (described in Chapter 4) but also with consideration for partition and
graph based criteria (described in Chapters 5 and 6). The generated formulas from ASMIG conform to the SMT-
Lib Version 2.0 (SMT2) standard, and input to the SMT2 solver (that acts as a black-box engine) for solving the
formulas, and each successful assignment for formulas is converted back into an instance of a metamodel.

8

Chapter 2

A Systematic Literature Review

of Metamodel Instance

Generation Techniques

Although generating metamodel instances can be surprisingly difficult, much re-

search on generating instances using different approaches has been proposed.

However, it is still difficult for modelers and researchers to choose the most suit-

able technique among them to meet their requirements because a lack of reporting

and comparisons for identifying the advantages and drawbacks of each technique.

In this chapter, we present a systematic literature review that discusses these ap-

proaches, outlines the advantages and drawbacks of each approach, and identifies

the deficiencies in the current techniques and outline how they could be rectified.

2.1 Review Research Methods

We first present the steps taken for our systematic literature review. The steps

are in accordance with the systematic review guidelines given in the paper by

Kitchenham [2004].

1. Identify the need for a systematic literature review.

2. Formulate the review research questions.

9

2.2
2. A SYSTEMATIC LITERATURE REVIEW OF METAMODEL INSTANCE

GENERATION TECHNIQUES

3. Conduct a comprehensive, exhaustive search for the primary studies.

4. Assess the quality of the included studies.

5. Extract the data from each included study.

6. Summarise and synthesise the results of the study.

7. Interpret the results and determine their applicability.

8. Write-up the study as a report.

To our best knowledge, no literature review has ever been conducted to iden-

tify the advantages and disadvantages of each approach to metamodel instance

generation. The aim of this literature review is to analyse the state of the art

in the field of metamodel instance generation, and identify any existing research

gaps.

2.2 Defining The Research Questions

In this section, we show that we derive our four research questions from three

angles: the key research domains that have techniques for generating metamodel

instances, the main theoretical frameworks, and the tools available for generating

metamodel instances.

To identify any key research domains that have techniques for generating

metamodel instances without any prior knowledge is difficult. Therefore, our

starting point is to perform an initial study on the topic. For this reason, we

chose Purdom’s sentence generation algorithm as this study [Purdom, 1972]. This

algorithm generates sample sentences from a given grammar. We chose this pa-

per because it uses a very similar idea to metamodeling, but instead it uses a

grammar. This paper possibly can be considered one of the oldest techniques

dealing with instance generation (sentence generation) in the grammar domain.

More importantly, what we learn from this initial study is that it reveals that

metamodel instance generation may come from a grammar research domain. This

is because a metamodel can be used for capturing an abstract syntax tree of a

programming language. Therefore, by considering the abstraction level provided

10

2.2
2. A SYSTEMATIC LITERATURE REVIEW OF METAMODEL INSTANCE

GENERATION TECHNIQUES

by a metamodel, we realise that the research domains that have techniques for

generating metamodel instances may not come from one single domain, but ac-

tually from many domains. Thus, we define our first research question as the

following:

1. Research Question 1.

What are the research domains with techniques that are applica-

ble to metamodel instance generation?

By identifying each specific research domain, we can define our second research

question much more closely with regard to the approaches and techniques within

these domains. We define our second research question as:

2. Research Question 2.

Within those research domains, what theoretical frameworks and

associated algorithms have actually been used for metamodel in-

stance generation?

Based on research question 2, we now can define research questions 3 and 4

about the criteria and tools used in the theoretical frameworks and algorithms.

Thus, we define the rest of the research questions as follows:

3. Research Question 3.

What criteria are applied for selecting metamodel instances?

4. Research Question 4.

What tools exist to implement those algorithms to produce meta-

model instances?

We are particularly interested in the criteria for selecting instances because

we consider this is an important feature in evaluating a technique for generating

metamodel instances. Users may wish to generate a special kind of instance

to test their metamodels based on a predefined criteria. In order to generate

such a customised instance, it requires users to take good control of the instance

generation process.

11

2.2
2. A SYSTEMATIC LITERATURE REVIEW OF METAMODEL INSTANCE

GENERATION TECHNIQUES

Figure 2.1: The relationship between our research questions.

Figure 2.1 shows the relationship between our four research questions. Firstly,

by identifying each specific research domain helps us to concentrate on studying

approaches and techniques used for generating metamodel instances within those

domains. Secondly, research papers that describe theoretical frameworks and al-

gorithms within the identified research domains need to be gathered and reviewed.

Finally, the specific criteria and tools that support the theoretical frameworks and

algorithms are also studied.

2.2.1 Search terms

In this section, we show that our search terms are derived from two aspects of a

metamodel: its structural representations and its applications.

In terms of a metamodel’s structural representations, we focus on the different

representations that a metamodel could be. For example, a metamodel can be

represented as a UML class diagram, or viewed as an abstract syntax tree for a

programming language [Heidenreich et al., 2010a; Object Management Group,

2011a,c]. Other types of model which are outside of the scope of this work

include state machines and sequence diagrams [Briand et al., 2010; Dinh-Trong

et al., 2006; Mahdian et al., 2009; Nayak and Samanta, 2009; Pilskalnsa et al.,

2007; Samuel and Joseph, 2008]. To conform to the MOF standard, metamodels

discussed in this thesis possess some of the features that a UML class diagram

can have. Thus, a metamodel must include one or many of the following features:

12

2.2
2. A SYSTEMATIC LITERATURE REVIEW OF METAMODEL INSTANCE

GENERATION TECHNIQUES

1. Classes

2. Attributes

3. Relationships (Generalisations and Associations) between classes

For example, the metamodel (at level 2) in Figure 1.1 depicts two classes

(Class and Attributes) where the association relationship has indicates that each

class can have multiple attributes.

In terms of metamodel’s applications, we are more interested in the usage of

generated metamodel instances. One of the direct applications is to use generated

instances for testing model transformations because it requires a large number

of instances as test cases. Another application is that a metamodel can also be

used for reasoning about an aspect of a system. This is very close to verifying a

system’s specification. Thus, we also allow our search terms to cover the research

from model reasoning, for example: model checking.

The search terms are generated accordingly from these two aspects. We have

listed these search terms below:

1. (metamodel test case OR data generation OR metamodel instance gener-

ating OR generation OR model transformation testing OR model measure-

ment)

2. (input test models OR automatic model generation OR generating)

3. (grammar testing OR grammar instance generation OR grammar sentence

generation OR attribute grammar testing)

4. (XML schema testing)

5. (graph grammar instance OR graph grammar metamodel OR graph gram-

mar testing)

6. (model reasoning OR constraint programming OR model verification OR

model checking)

13

2.2
2. A SYSTEMATIC LITERATURE REVIEW OF METAMODEL INSTANCE

GENERATION TECHNIQUES

First, some of the terms are directly derived from a metamodel’s representa-

tion such as “XML schema testing”. Second, terms like “model transformation

testing” and “model measurement” are derived from applications of generated

metamodel instances. Other terms are generated for specific research domains.

For example, the term “grammar testing” is formed because a metamodel can

convey the meaning of an abstract syntax tree. Also, the search term “model

verification” allows us to cover the possibility that users may verify an aspect of

a system via verifying models.

The search process is divided into two phases. In the first phase, the search

terms are grouped and input into search engines provided by the following databases:

1. Google Scholar

2. ACM Digital Library

3. IEEE Explore

4. ScienceDirect

We reduce the number of papers by looking at the title and abstract of each

paper. In the second phase of the search, we review the citations from the results

we get in the first phase for any relevant articles, and we repeat this process until

no new papers are identified.

In addition, in order not to overlook any papers, we also manually search

through related conferences and journals for a specific time period (listed in Table

2.1 and Table 2.2). This is because the research on metamodel instance generation

actually overlaps many research domains of software engineering. However, not

every conference and journal we have searched are certain to contain papers

that are related to metamodel instance generation, but to be thorough they are

included. We pick these conferences and journals because we consider that some

of them are the flagships in each different research domain of software engineering

based on their rankings in the field 1, and the others are peer recommended. One

may choose differently based on a different ranking engine but we believe Table

1We use microsoft academic search engine (http://academic.research.microsoft.com) to
check the ranking of each conference and journal in their field.

14

2.3
2. A SYSTEMATIC LITERATURE REVIEW OF METAMODEL INSTANCE

GENERATION TECHNIQUES

2.1 and Table 2.2 give us a good list for catching additional key papers. We list

these conferences and journals in Table 2.1 and Table 2.2 as additional evidence

to support our literature review. For each conference, we widen the time period

from the first proceedings of that conference held to the latest proceedings. For

each journal, we use the search engine provided within each journal and search

through the entire journal.

2.2.2 Paper Selection Study

By judging the titles and abstracts, and studying the related work section for

each paper, a total of 43 papers from the search results were finally chosen. We

categorise them into Table 2.3 based on 7 different research domains and discuss

them in the following sections.

2.3 Discussion

In this section, we provide answers to our each research question defined in sec-

tion 2.2 and discuss the advantages and disadvantages of each key technique for

generating metamodel instances. At the end of this section, we also identify the

existing research gaps via outlining the main advantages and disadvantages of

each important research domain.

2.3.1 RQ1. What are the research domains with tech-

niques that are applicable to metamodel instance

generation?

In this literature review, we are interested in approaches for automatically gener-

ating instances (models) from a metamodel. Answering the first research question

helps us to identify the major research domains concerning metamodel instance

generation.

15

2.3
2. A SYSTEMATIC LITERATURE REVIEW OF METAMODEL INSTANCE

GENERATION TECHNIQUES

Name of the Conferences Time Period Searched
Model Driven Engineering Languages and
Systems (MODELS)

2005 - 2013

International Conference on Fundamental
Approaches to Software Engineering (FASE)

1998 - 2013

International Conference on Automated
Software Engineering (ASE)

1997 - 2013

International Conference on Tools and Algo-
rithms for the Construction and Analysis of
Systems (TACAS)

1995 - 2013

International Conference on Formal Methods
(FM)

1999 - 2013

International Conference on Software Testing
Verification and Validation (ICST)

2008 - 2013

International Conference on Tests and Proofs
(ICTP)

2007 - 2013

International Conference on Software Engi-
neering (ICSE)

1968 - 2013

International Conference on Computer
Aided Verification (CAV)

1999 - 2013

International Conference on Model-Driven
Engineering and Software Development

2012 - 2013

International Conference on Testing Software
and Systems (ICTSS)

2010 - 2013

European Conference on Modelling Founda-
tions and Applications (ECMFA)

2005 - 2013

International Conference on Model-Driven
Engineering and Software Development
(MODELSWARD)

2013 - 2013

International Symposium on Foundations of
Software Engineering (FSE)

1993 - 2013

Table 2.1: Conference proceedings examined

16

2.3
2. A SYSTEMATIC LITERATURE REVIEW OF METAMODEL INSTANCE

GENERATION TECHNIQUES

Name of the Journal
ACM Transactions on Software Engineering and Methodology
Software: Practice & Experience
IEEE Transactions on Software Engineering
Empirical Software Engineering
Science of Computer Programming
Software and Systems Modeling
Journal of Object Technology
Information and Software Technology
Automated Software Engineering
Software Testing, Verification & Reliability
Journal of Systems and Software

Table 2.2: Journals examined

2.3.1.1 Compiler Testing

A computer program can be syntactically parsed into a parse tree, and a parse tree

is a graphical view of an instance of a programming language grammar. In other

words, a syntactically correct computer program must conform to its language’s

grammar. This is similar to the concept of a sample model instance that conforms

to a metamodel. Thus, producing a sample model from its metamodel is related

to the problem of generating programs from a given grammar, which is in the

domain of compiler testing [Boujarwah and Saleh, 1997].

2.3.1.2 Model Transformation Testing

Model transformation testing is also related to instance generation. Model trans-

formations are the essential feature of Model-Driven Engineering (MDE). The

process of model transformation takes as input a model which conforms to a

source metamodel and transforms it into another model which conforms to a

different target metamodel. There are two ways to test this process. One way

is testing the model transformation program code itself [Küster and Abd-El-

Razik, 2006]. For example, making sure that all the statements are executed

at least once. This is a white-box testing technique and it requires testers to

have knowledge of the internal logic or the code structure of the programs. The

other way is to produce a large set of sample models and to run the transfor-

17

2.3
2. A SYSTEMATIC LITERATURE REVIEW OF METAMODEL INSTANCE

GENERATION TECHNIQUES

References Research Do-
main

[Alanen and Porres, 2003] Compiler testing
[Brottier et al., 2006; Fleurey et al., 2004,
2009; Lamari, 2007; Sen and Baudry, 2006]

Model transfor-
mation testing

[Ehrig et al., 2009; Heckel and Mariani,
2005; Hoffmann and Minas, 2011; Winkel-
mann et al., 2008]

Graph grammar

[Anastasakis et al., 2010; Bordbar and Anas-
tasakis, 2005; Jackson, 2002; Torlak and
Jackson, 2006, 2007], [Anastasakis et al.,
2007; Sen et al., 2008, 2009; Soeken et al.,
2011a], [Büttner and Cabot, 2012; Clavel
et al., 2009; Wille et al., 2012; Yatake
and Aoki, 2012], [Garis et al., 2011; Jack-
son et al., 2011; Kuhlmann and Gogolla,
2012; Kuhlmann et al., 2011; McQuillan and
Power, 2008; Soeken et al., 2010, 2011b]

SAT/SMT
based ap-
proaches

[Cabot et al., 2007, 2008, 2009; Cadoli et al.,
2004, 2007; González Pérez et al., 2012]

Constraint
Programming
approaches (CP)

[Bertolino et al., 2007a,b] XML
[Balaban and Maraee, 2013; El Ghazi and
Taghdiri, 2011; Gogolla et al., 2005; Lukman
et al., 2010; Mougenot et al., 2009; Queralt
et al., 2012]

Miscellaneous
Domains

Table 2.3: Papers are grouped by 7 research domains: compiler testing, model
transformation testing, graph grammar, SAT/SMT based approaches, Constraint
Programming, XML and other.

18

2.3
2. A SYSTEMATIC LITERATURE REVIEW OF METAMODEL INSTANCE

GENERATION TECHNIQUES

mation program with them to check the correctness of the results regardless of

the internal structure of the transformation program. This is a black-box test-

ing technique since the testers do not have knowledge of the code at all [Beizer,

1995]. The most recent work on testing model transformation is by Macedo et

al. [Macedo and Cunha, 2013], who encode bidirectional model transformation

QVT-R semantics (Query/View/Transformation Relation) into Alloy (a formal

specification language that supports automatic SAT solving) to perform semantic

checking [Object Management Group, 2011b]. Their approach supports the en-

coding of metamodels annotated with OCL constraints in the Alloy specification

language. Therefore, the research that has been done to automatically produce

sample models in this domain is closely related to our interests.

2.3.1.3 Graph Grammars

Another research domain we are interested in is graph grammars (GG). Graph

grammars provide a theoretical foundation for graphical languages [Rozenberg,

1997]. A graph grammar consists of a set of rules where each rule can be applied if

there are any sub-graphs that match. For example, Figure 2.2 shows an example

of a grammar rule. This rule indicates that if a graph or sub-graph matches with

the pattern on the left hand side (LHS) in Figure 2.2, the right hand side rule

(RHS) applies. Thus, an edge going from node A to node B is established for

the graph on the LHS. This idea is derived from the concept of a context-free

grammar (CFG), except that a CFG deals with strings while a GG is associated

with graphs. Graph grammars can be used to specify a software model and

they provide a natural way of generating instances [Hoffmann and Minas, 2010].

Similarly, a metamodel graphically describes models and can be considered as a

graph in the sense of graph grammars. Therefore, the natural derivation process

of a graph grammar can be adapted for generating metamodel instances. Thus,

the techniques that have been developed in this domain to generate sample models

are also included in this literature review.

19

2.3
2. A SYSTEMATIC LITERATURE REVIEW OF METAMODEL INSTANCE

GENERATION TECHNIQUES

Figure 2.2: A sample rule of a graph grammar

2.3.1.4 SAT/SMT based Approaches

SAT/ Satisfiability Modulo Theories (SMT) solvers are often used to reason about

the consistency of a model [Armando et al., 2009; Chang, 2007; Cordeiro and

Fischer, 2011]. Research has demonstrated that models can be encoded as boolean

logic formulas. The resulting formulas are transformed into Conjunctive Normal

Form (CNF) via a standard transformation, and the final CNFs are solved by

a SAT solver [Jackson, 2000; Tseitin, 1968]. Each successful assignment for the

boolean logic formulas is then translated back into the problem domain. The

major difference between SAT and SMT solvers is that SMT solvers are supported

by rich background theories such as linear integer arithmetic theory, while SAT

solvers only use propositional logic [Barrett et al., 2010]. Using SAT/SMT solvers,

a model’s properties can be verified within a limited search space by finding an

instance. Since a metamodel is a model that describes other models, the research

that employs SAT/SMT solvers to verify model properties is highly relevant.

2.3.1.5 Constraint Programming

Similar to SAT/SMT solvers, constraint programming is another important tech-

nique that can be used for solving constraint problems. A model or specification

can be rewritten as a constraint problem in constraint logical languages. The

problem can be further examined by using different libraries or platforms that

are provided by constraint logical languages. For example, ECLiPSe provides

users with a platform for writing constraint problems and solving them [Apt and

Wallace, 2007]. The difference between constraint programming and SAT/SMT

solvers is that constraint programming allows problems to be programmable,

20

2.3
2. A SYSTEMATIC LITERATURE REVIEW OF METAMODEL INSTANCE

GENERATION TECHNIQUES

while SAT/SMT solvers are used as a black-box engine [Bordeaux et al., 2006].

2.3.1.6 XML & Miscellaneous Domains

Extensible Markup Language (XML) is a simple text format both readable by

machines and humans [World Wide Web Consortium, 2008]. A MOF metamodel

is defined in the format of XML Metadata Interchange (XMI) which is an Ob-

ject Management Group (OMG) standard for exchanging metadata information

via Extensible Markup Language (XML) [Object Management Group, 2011a].

Metamodel instances can possibly be achieved via generating XML instances.

Therefore, the work done in this research domain is also related to metamodel

instance generation. We categories other techniques that can also be used for

generating metamodel instances into Miscellaneous Domains in Table 2.3, and

discuss them in section 2.3.2.7.

2.3.2 RQ2. Within those research domains, what theo-

retical frameworks and associated algorithms have

actually been used for metamodel instance genera-

tion?

In this subsection, we group metamodel instance generation techniques into 7 re-

search domains. These 7 domains (given in Table 2.3) are compiler testing, model

transformation testing, graph grammars, SAT/SMT based approaches, constraint

programming approaches (CP), XML and miscellaneous domains. We examine

the papers that appear in each research domain, and discuss the capabilities of

their theoretical frameworks and algorithms.

2.3.2.1 Compiler Testing

In the domain of compiler testing, Boujarwah and Saleh [1997] present a sur-

vey about existing compiler testing techniques. Most of the techniques in their

survey use context free grammars (CFG) to generate test strings. For exam-

ple, a sentence generation algorithm generates sentences from a CFG [Purdom,

1972]. In order to generate semantically correct programs, Harm and Lämmel

21

2.3
2. A SYSTEMATIC LITERATURE REVIEW OF METAMODEL INSTANCE

GENERATION TECHNIQUES

[2000] propose a framework that generates programs using an attributed gram-

mar. However, this framework only works for small scale grammars and no ev-

idence indicates that it can be applied to the general case. Much research on

grammar testing has already shown a method for direct test case generation from

a given language grammar [Lämmel, 2001; Lämmel and Schulte, 2006]. However,

instance generation is more complicated than the derivation tree of a sentence.

This is because the generation process must take care of additional constraints

defined on a metamodel. For example, a valid instance of a metamodel conforms

to the additional constraints defined for an attribute of a class in a metamodel.

However, the process of constructing a derivation tree for a sentence does not

take these constraints into account. Therefore, the techniques used for testing a

compiler can not be directly applied to metamodel instance generation.

Alanen and Porres [2003] propose two algorithms, one to transform a meta-

model to a context-free grammar, and the other one to derive a metamodel from

a context-free grammar. Their algorithm for the derivation of a grammar from a

metamodel is limited with respect to the structure of the metamodel, as it can

only deal with composite associations in the metamodel. By using their algorithm

to transform a metamodel into a grammar, it is possible to apply an existing string

generation algorithm to get sample strings from the grammar, and then translate

the sample strings back into instances of the metamodel. However, if we define a

metamodel that preserves properties of a UML class diagram, it is not surprising

that their algorithms cannot deal with multiplicities of an association.

2.3.2.2 Model Transformation Testing

In the model transformation testing research domain, some techniques for au-

tomatic model instance generation have been developed. Brottier et al. [2006]

propose an algorithm to automatically generate a set of model instances for test-

ing a model transformation. In this algorithm, the authors use two concepts:

model fragments and object fragments. To form an object fragment, they employ

the classic category-partition testing technique [Ostrand and Balcer, 1988]. They

partition the metamodel into different equivalence classes by using the coverage

criteria for testing the UML class diagram [Andrews et al., 2003]. For example, an

22

2.3
2. A SYSTEMATIC LITERATURE REVIEW OF METAMODEL INSTANCE

GENERATION TECHNIQUES

integer type attribute P of a class C is partitioned into three categories {P = 0,

P < 0, P > 0}. Each element in the set is marked as an object fragment, and

an object fragment specifies a partial instance of the class C. A model fragment

consists of a list of such object fragments. The algorithm takes in a set of model

fragments and outputs a set of models that conform to the metamodel.

The algorithm of Brottier et al. [2006] iterates over the uncovered model frag-

ments and keeps generating model instances until all the model fragments are

covered. Furthermore, this algorithm provides some strategies for testers to meet

specific testing needs. For example, it provides a strategy that reuses generated

model instances as much as possible to achieve the smallest number of instances

to cover most of the model fragments. However, this algorithm has two main

limitations. One is that it supposes that all the model fragments are manually

provided by testers. The other is it does not take Object Constraint Language

(OCL) constraints into account [Warmer and Kleppe, 1999]. Therefore, the con-

straints defined in the metamodel are overlooked and, as a result, the generated

model instances do not satisfy these constraints.

Baudry et al. [2002b] propose a bacteriologic algorithm which is based on

genetic algorithms. This algorithm consists of 4 steps. Before executing the

algorithm, an initial set of the test models has to be provided. In the first step of

the algorithm, the test models are ranked using a fitness function which estimates

the level of the coverage that they can make. In step 2, the test models which

make the most significant contribution to coverage are recorded and added to

the solution set. The test models which can not make any contribution to the

coverage are removed in step 3. In the final step, a mutation operator is applied

to the best test models in order to create new test models. The algorithm keeps

iterating until all coverage items are covered by the test models. Baudry et al.

[2002a] implemented this algorithm. However, the limitation of this algorithm is

that it requires an initial set of test models. Therefore, to compute such a set of

test models is another problem of this approach.

23

2.3
2. A SYSTEMATIC LITERATURE REVIEW OF METAMODEL INSTANCE

GENERATION TECHNIQUES

2.3.2.3 Graph Grammars

We have also studied research on graph grammars. Ehrig et al. [2009] extend the

work by Bardohl et al. [2004], and propose an instance-generating graph gram-

mar for creating metamodel instances. In their approach, they use an attributed

type graph 2 to capture metamodel structures, and the concept of layered graph

grammars to order rule applications. Metamodels are represented as attribute

type graphs, and each rule is applied when a specific metamodel pattern is found

in the attribute type graph and the corresponding application conditions are sat-

isfied. Three layers are defined for the rules. The rules in layer 1 are used for

creating instances of each non-abstract class in the metamodel. Layer 2 consists

of a set of rules that deal with three metamodel patterns. These patterns are

those association relationships defined in the metamodel with a multiplicity of

one. The rules in layer 3 are defined to address associations with multiplicity of

zero to n. The authors illustrated this approach by applying these rules to an

example.

However, in the work of Ehrig et al. [2009] composition associations are not

considered. This was later tackled by Hoffmann and Minas [2011]. Their work

uses graph grammars, called adaptive star grammars, to show how a metamodel

(represented as a class diagram) can be translated into this grammar. Such a

graph grammar can be used to automatically generate instances of the metamodel

[Drewes et al., 2006]. In this approach, a set of adaptive star grammar rules are

introduced to deal with relationships defined in the metamodel. These include

unique, non-unique and composition associations. However, OCL constraints

defined over the class diagram can not be handled by this approach.

To deal with OCL constraints, Winkelmann et al. [2008] present a method

in which OCL constraints can be translated into graph constraints. In their ap-

proach, they show how a list of OCL constraints can be translated into equivalent

graph constraints. These OCL constraints are restricted to equality, size and at-

tribute operations for navigation expressions, called restricted OCL constraints.

They suggest two ways of generating a valid model instance that satisfies the OCL

constraints. One way is to check the translated constraints after an instance is

2We formally describe it in Chapter 3

24

2.3
2. A SYSTEMATIC LITERATURE REVIEW OF METAMODEL INSTANCE

GENERATION TECHNIQUES

generated. The other way is by taking the constraints into consideration during

the instance model generation process. Both ways have their advantages and

disadvantages. The former may lead to a large number of invalid model instances

being generated more quickly, while the later produces only those model instances

which satisfy the constraints, but are generated more slowly.

2.3.2.4 SAT/SMT Based Approaches

SAT/SMT based approaches are popular in the area of formal verification, and

many research have been built upon utilising SAT/SMT solvers to verify pro-

grams or models [Armando et al., 2009; Cordeiro and Fischer, 2011; El Ghazi

and Taghdiri, 2011; Tianhai Liu, 2012]. Among them Alloy is one of the most

popular research that uses SAT solvers [Jackson, 2002]. Alloy, a model finder, is a

well designed tool that can be used for finding instances of a model and counter-

examples in a finite search scope [Chang, 2007; Jackson, 2002, 2006; Jackson et al.,

1998, 2001]. Alloy, unlike other model-finding tools such as MACE [Claessen and

Sörensson, 2003], uses first-order relational logic to describe a model. To speed

up the searching process and guarantee termination, Alloy bounds relational logic,

translates the bounded relational logic into a boolean formula, and then it calls

an external SAT solver to solve the boolean formula. The solutions returned by

the SAT solver then get translated back into the models [Torlak and Jackson,

2006, 2007; Torlak et al., 2008; Torlak, 2009].

Since Alloy can be used to generate instances of a model within a bounded

search space, research with Alloy has been highly active [Anastasakis et al., 2007,

2010; Bordbar and Anastasakis, 2005; Garis et al., 2011; Kuhlmann and Gogolla,

2012; McQuillan and Power, 2008; Sen et al., 2009; Shah et al., 2009]. Anastasakis

et al. [2007] focus on transformation between UML class diagrams and the Alloy

language. In their work, they demonstrate a list of rules which can map a UML

class diagram and a limited number of OCL constraints to the Alloy language.

Sen et al. [2008] are inspired by this approach and present a tool called Cartier

to automatically generate test models for testing model transformations. This

tool can transform a metamodel (in Ecore format) with OCL constraints, model

transformation pre-conditions, model fragments and test objectives into the Alloy

25

2.3
2. A SYSTEMATIC LITERATURE REVIEW OF METAMODEL INSTANCE

GENERATION TECHNIQUES

language [Fleurey et al., 2009]. They also present some strategies based on par-

tition techniques to guide the tool to generate models [Sen et al., 2009]. These

strategies are written as Alloy predicates, combined with models and are solved

by SAT solvers. The solutions returned by SAT solvers are then transformed by

the Cartier tool back to the instances of the input metamodel.

Another related approach is by McQuillan and Power [2008]. They propose a

metric metamodel for the measurement of object-oriented software. In their work,

they firstly transform the metrics metamodel along with the OCL constraints

into an Alloy specification, and then use Alloy to generate possible instances.

To transform the Alloy generated instances back to the metamodel instances,

they developed a tool called Reflective Instantiator. This tool reads an Alloy

specification file and creates an instantiation of the Java implementation of the

metamodel.

Both the approaches of Sen et al. [2008] and McQuillan and Power [2008]

translate a metamodel and OCL constraints to Alloy. However, the problem

for both approaches is that any OCL constraints that involve numbers cause

kodkod (Alloy’s engine) bit-blast [Torlak, 2009]. This significantly slows down

the translation process. The reason for this is that kodkod is based on SAT-

solving, and SAT solvers are not designed to solve numeric constraints. Thus,

numeric constraints are beyond the capability of kodkod. Another difficulty is

that both approaches utilise Alloy’s APIs to invoke the model generation process,

thus both tools are not easy to maintain since they are highly dependent on Alloy.

Kuhlmann and Gogolla [2012] propose a way to translate OCL collection

data types into Alloy’s first-order relational logic. This translation is based on

a uniform representation that they describe in the work. Each collection data

type (Set and Bag) is flattened into a relation which is later translated into

boolean formulas via Alloy’s engine: kodkod. Each successful assignment for

these boolean formulas is converted back into actual values that are contained

by each collection data type. However, their experimental results show that this

approach could only be applied to manually designed examples. Furthermore, any

numerical constraints involved in the collection data types are handled poorly.

This is because kodkod is a SAT-based engine for Alloy, and SAT solvers are not

designed particularly well for solving numerical constraints.

26

2.3
2. A SYSTEMATIC LITERATURE REVIEW OF METAMODEL INSTANCE

GENERATION TECHNIQUES

Many SMT-solvers are well developed and supported by multiple theories,

such as lists, sets etc [Bruttomesso et al., 2008, 2010; De Moura and Bjørner,

2008]. Compared to SAT solvers, SMT-Solvers have a greater advantage because

of the multiple theories defined in the Satisfiability Modulo Theories Library

(SMT-Lib) [Barrett et al., 2010]. Unlike SAT solvers whose input is in Conjunc-

tive Normal Form (CNF), SMT-solvers are formulated according to a specific

theory. A typical example is solving a linear integer arithmetic equation, where

the input is a set of equations written in human readable format and the output

is the assignment for each variable in the equations. Thus, we have also stud-

ied approaches that take advantage of SMT-solvers to find instances of a model

[Jackson et al., 2011; Soeken et al., 2010, 2011b].

Soeken et al. [2010] encode a UML class diagram as a set of operations on

bit-vectors which can be solved by SMT solvers using bit-vector theory. A suc-

cessful assignment for each bit-vector is interpreted as an instance of a UML

class diagram. Soeken et al. [2011b] propose an approach to encode a subset of

OCL constraints as bit-vectors, and provide a list of the corresponding mappings

between OCL collection data types (Set, Bag, Sequence) and bit-vector opera-

tions. Furthermore, allocating an appropriate bound for each entity defined in

the model is essential for bounded model checking and verification [Soeken et al.,

2011a]. Soeken et al. [2011a] propose a linear integer arithmetic approach. This

approach considers different kinds of associations defined in the model, translates

defined multiplicities in each association into linear integer arithmetic equations,

and uses an SMT solver to solve the equations. The bound for each entity can

therefore be determined by solved equations. However, this approach cannot deal

with OCL invariants that specify the number of instances to be created.

Jackson et al. [2011] propose a framework called Formula, which is a MOF-

like framework that can capture metamodeling’s abstraction via a graph-like lan-

guage. This framework consists of three components: a model store to specify

models and metamodels, a list of operations to edit models and metamodels,

and a meta-interpreter which can promote model-level elements to meta-level el-

ements. To be able to verify properties of operations on models and metamodels,

the generated constraints are solved by an SMT-Solver [De Moura and Bjørner,

2008]. However, their framework is different from standard metamodeling ap-

27

2.3
2. A SYSTEMATIC LITERATURE REVIEW OF METAMODEL INSTANCE

GENERATION TECHNIQUES

proach. Thus, a conversion from standard metamodels to their framework is

necessary. This becomes almost infeasible if there are a large number of meta-

models because Formula itself does not provide any tools that can automatically

convert metamodels into their framework.

We have also considered other work that takes advantage of SMT-Solvers to

complement Alloy techniques. El Ghazi and Taghdiri [2011] present work that

translates an Alloy specification into SMT-instances to prove Alloy assertions.

This work also takes advantage of linear integer arithmetic which is supported by

an SMT-solver to perform unbounded integer arithmetic operations.

2.3.2.5 Constraint Programming Approach (CP)

One of the earliest works on finite model reasoning uses description logics to

encode a UML class diagram [Calvanese, 1996]. Cadoli et al. [2004] use this

idea to implement a technique that can encode a UML class diagram into linear

inequalities that can be solved by a constraint programming solver [Calvanese,

1996; Calvanese and Lenzerini, 1994; ILOG, 2001, 2002]. They can construct

a model based on solved inequalities which provides information regarding the

cardinalities of instances of each class. More specifically, they use a boolean

array to represent a finite universe and the size of the universe is determined

by the solution to the inequalities. However, this work does not consider any

OCL constraints, it also requires that users have significant knowledge on how to

encode a UML class diagram into inequalities, and the tool fails to demonstrate

any possibility for automation.

Cabot et al. [2008] propose a procedure that can transform a UML class

diagram with OCL constraints into a Constraint Satisfaction Problem (CP) ac-

cording to a set of rules. The CP is described using the syntax provided by the

ECLiPSe Constraint Programming System [Apt and Wallace, 2007]. The CP

itself is divided into two subproblems. The first subproblem is to determine a

bound for each class and association (variables), and the second is to assign a

value to each variable. If CP has a solution (instance), the user can conclude

that a model satisfies the properties. Cabot et al. [2009] extend their work to

OCL operation contracts by using a similar translation process to the one used

28

2.3
2. A SYSTEMATIC LITERATURE REVIEW OF METAMODEL INSTANCE

GENERATION TECHNIQUES

in their earlier work [Cabot et al., 2008]. Their work is supported by a tool called

UMLtoCSP, and a tool called EMFtoCSP which extends UMLtoCSP to deal

with EMF metamodels [Cabot et al., 2007; González Pérez et al., 2012]. Both

tools are designed for bounded verification and they do not provide an instance

enumeration mechanism like Alloy.

2.3.2.6 XML

Bertolino et al. [2007a] propose an approach called XML-based Partition Test-

ing (XPT) to automatically generate XML instances from a XML Schema. This

approach uses the idea of a classic Category Partition method to derive a set of

XML instances from a preprocessed XML Schema [Ostrand and Balcer, 1988].

The XPT methodology consists of five steps and is partially implemented in a

proof-of-concept tool called “Testing by Automatically generated XML Instances

(TAXI)” [Bertolino et al., 2007b]. In the first step, a XML Schema is prepro-

cessed and some of the elements in the XML Schema are rewritten in order to

facilitate the later steps. Next, an occurrence analysis is adopted to manipulate

the boundary values for the occurrence of each element in the XML Schema. The

third step is to assign a value to each element. These values are either randomly

generated or selected from a database. A set of intermediate instances are then

generated by combining the occurrences of each element in the fourth step. Fi-

nally, the actual XML instances are generated from the intermediate instances.

However, this approach does not handle the associations defined in the model

and furthermore it does not consider any OCL constraints defined in the model.

2.3.2.7 Miscellaneous Domains

Gogolla et al. [2005] propose an approach that uses the language ASSL. ASSL is

an extension language of the USE specification language [Gogolla et al., 2007]. It

provides a list of commands for testers to generate snapshots for finding defects in

a UML class diagram. A snapshot is an object diagram that represents the system

states at any time with objects, attribute values and links. The snapshots can be

created by an ASSL procedure, and moreover the snapshots can be created with

consideration for OCL invariants. With this approach, it is possible to generate a

29

2.3
2. A SYSTEMATIC LITERATURE REVIEW OF METAMODEL INSTANCE

GENERATION TECHNIQUES

number of snapshots to validate the design at an early stage. However, one must

know how to write an efficient ASSL procedure in order to generate appropriate

snapshots.

Mougenot et al. [2009] use an approach that is based on the Boltzmann method

to generate metamodel instances [Duchon et al., 2004]. In their approach, a

metamodel is first transformed into a Boltzmann tree specification and the final

instances are derived from the generated trees. The main purpose of this approach

is to make sure that the instance generation process has no bias, and therefore

the generated instances are uniform. Another feature of this approach is that

the Boltzmann method has a linear property, which means that the instance

generating process is linear with respect to the size of the generated instances.

However, this approach does not take into account any constraints defined in the

metamodel. Hence, instances that do not satisfy constraints can be generated.

Lukman et al. [2010] propose a traversal algorithm for metamodels. In their

algorithm, the root element of a metamodel is first identified. A root element

in a metamodel is a container class that can be used to form a composition

relationship with other classes. This algorithm traverses each class connected by

association, generalisation and composition relationships that are defined in the

metamodel, and marks the paths visited to prevent an infinite iteration of each

class. Although their work does not describe how to generate a model instance,

by applying this algorithm, it is possible to generate an instance from each class

that has been traversed. However, traversing a metamodel is not sufficient to

produce a valid instance from the metamodel. For example, a valid instance

must meet the multiplicities of an association, which requires that the algorithm

be aware of the links between objects.

Lastly, Balaban and Maraee [2013] propose an algorithm (called FiniteSat)

to check the satisfiability of a UML class diagram. This algorithm is particu-

larly concerned with class hierarchy constraints such as disjoint and complete

constraints defined in an inheritance relationship. A disjoint and complete con-

straint means that an instance of a superclass is one of its subclasses and each

instance of a subclass have no members in common [Object Management Group,

2011d]. Their algorithm is also concerned with the multiplicities defined on an

association. The instances of two classes between an association must satisfy

30

2.3
2. A SYSTEMATIC LITERATURE REVIEW OF METAMODEL INSTANCE

GENERATION TECHNIQUES

their corresponding multiplicities. Their algorithm returns an answer to indicate

whether a UML class diagram is consistent or not. However, their algorithm does

not take OCL constraints into account, and it does not generate any instances.

Thus, their approach can only be applied to check the consistency of a metamodel

rather than instance generation.

2.3.3 RQ3. What criteria are applied for selecting meta-

model instances?

Fleurey et al. [2004] propose metamodel coverage criteria. These originate from

existing coverage criteria that have been adapted from UML class diagrams. Since

a MOF metamodel is similar to a UML class diagram, they reuse existing UML

coverage criteria for metamodels. These coverage criteria were first proposed by

Andrews et al. [2003] and are defined for a UML class diagram using three criteria:

1. Association-end multiplicities (AEM): Each representative link in a class

diagram must be covered.

2. Class attribute (CA): In each instantiated class, the set of representative

attribute value combinations in each instance of a class must be covered.

3. Generalisation (GN): Every specialisation defined in a generalisation rela-

tionship of a class diagram must be covered.

Two of the criteria listed above (AEM and CA) use representative values that

are based on partition testing techniques to express their meanings. The represen-

tative values can be selected by applying knowledge-based or default partitioning

approaches. For example, an integer attribute can be partitioned into three values

which are greater, less than and equal to zero. For knowledge-based partitioning,

the values can be provided by testers or determined by the specification of the

model, e.g. by examining the constraints defined over the model. For default-

partitioning, the representative value can be selected by partitioning an attribute

into minimum, non-boundary and maximum values. Fleurey et al. [2004] adapt

these two criteria to achieve metamodel coverage and define their test criterion.

Later this criterion was implemented in the work [Brottier et al., 2006].

31

2.3
2. A SYSTEMATIC LITERATURE REVIEW OF METAMODEL INSTANCE

GENERATION TECHNIQUES

To continue the work in Brottier et al. [2006], Fleurey et al. [2009] proposed

an approach to select model fragments, a list of test criteria and a tool developed

for automatically generating model fragments. They also designed a generic test

criteria metamodel, where the generated model fragments from the tool must

conform to this metamodel. To evaluate whether a set of test models satisfy

the criteria defined by the test criteria metamodel, they use a tool called MMCC

which involves four steps. In the first and second step, the tool automatically

generates a set of model fragments according to the test criteria. Then in step 3

these generated model fragments are checked against the test models. The final

step shows uncovered model fragments, if there are any, and requires a manual

analysis of the reasons why those uncovered model fragments remain. The test

criteria defined in their approach are defined using OCL constraints over the test

criteria metamodel. They propose 6 criteria, which are shown in Table 2.4.

Among the 6 criteria listed in Table 2.4, those criteria marked with the type

“object fragment” can be combined with those marked as a “model fragment” to

form the test criteria. For example, the combination of criteria 3 and 5 results

in one model fragment that contains all possible combinations of ranges of the

properties of a class. However, the criteria defined in their approach produce

quite a high number of object fragments since they use a Cartesian product on

ranges. This may lead to a combinatorial explosion if the input metamodel has

a large number of properties defined in each class.

2.3.4 RQ4. What tools exist to implement those algo-

rithms to produce model instances?

A number of tools have been developed for producing or assisting automatic

instance generation. The tools that support model instance generation can be

mainly grouped into two categories: independent and dependent. An independent

tool can be run without the support of any other tools or platforms, while a

dependent tool requires some support. The tools are given in Table 2.5 with a

column to indicate their category.

As mentioned already in section 2.3.2.4, Alloy is a popular tool used by many

modelers to find instances or counter examples of a model. It was introduced

32

2.3
2. A SYSTEMATIC LITERATURE REVIEW OF METAMODEL INSTANCE

GENERATION TECHNIQUES

Name of the criteria Description Type
1. AllRanges All ranges of a property of a

class to be covered.
N/A

2. AllPartitions All ranges of a property of
a class to be covered in one
test model.

N/A

3. OneRangeCombination Every range of each prop-
erty of a class has to be cov-
ered at least once.

Object Fragment

4. AllRangeCombination One object fragment must
contain all possible combi-
nations of ranges of a prop-
erty of a class.

Object Fragment

5. OneMFPerClass A single model fragment
must contain all possible
combinations of ranges for a
class.

Model Fragment

6. OneMFPerCombination Every model fragment only
contains one possible combi-
nation of ranges for a single
class.

Model Fragment

Table 2.4: Six test criteria defined in Fleurey et al. (2009)

33

2.3
2. A SYSTEMATIC LITERATURE REVIEW OF METAMODEL INSTANCE

GENERATION TECHNIQUES

Name of the tool and Reference Category
Alloy [Jackson, 1998, 2000, 2002; Torlak and
Jackson, 2007]
Formula [Jackson et al., 2011]
OMOGEN [Brottier et al., 2006], Independent
MMCC [Fleurey et al., 2009],
Reflective instantiator [McQuillan and
Power, 2008],
USE [Gogolla et al., 2005]
Echo [Macedo and Cunha, 2013] UML2Alloy
[Anastasakis et al., 2007; Bordbar and Anas-
tasakis, 2005]

Depends on Alloy

Cartier [Sen et al., 2009], Depends on Alloy
USE model Validator plugin [Kuhlmann
et al., 2011],

Depends on kodkod

UMLtoCSP, EMFtoCSP [Cabot et al., 2007;
González Pérez et al., 2012],

Depends on ECL iPSe

A generator as an Eclipse Plugin [Mougenot
et al., 2009]

Depends on Eclipse

Table 2.5: Tools that support or assist automatic model instance generation

in [Jackson et al., 2000] and it uses a relational logic to capture the semantics

of first-order logic, and thus a model is described in a relational logic [Jackson,

1998]. The later version is improved so that it could allow modelers to specify

quantifiers over the relational logic [Jackson, 2002]. The latest version of Alloy

employs a new engine (kodkod) that represents a model as a bounded relational

logic, then translates it into a boolean formula that is represented by compact

boolean circuits [Torlak and Jackson, 2007; Torlak, 2009]. This finally solves

the formula by using external SAT-solvers [Berre and Parrain, 2010; Een and

Sörensson, 2005; Moskewicz et al., 2001]. With the kodkod engine, Alloy is able

to deal with larger models, and find instances or counter examples in seconds.

However, one of the main problems with using Alloy to find model instances is

that it performs poorly in solving numeric constraints. This is because kodkod

uses SAT solvers as its solving engine and SAT solvers are not capable of solving

numeric constraints. Furthermore, it is difficult for users of Alloy to generate

customised instances. For example, generating instances that meet pre-defined

34

2.3
2. A SYSTEMATIC LITERATURE REVIEW OF METAMODEL INSTANCE

GENERATION TECHNIQUES

criteria. This is because in order to be able to generate such instances, users must

gain full control of generation process and Alloy does not grant such control.

USE is a tool that can be used to build a variety of UML diagrams such as

UML class diagrams and sequence diagrams [Gogolla et al., 2007]. It also provides

the user with a way of creating and checking OCL constraints defined over the

model, and fully supports OCL 2.0 [Object Management Group, 2012a]. The

latest research for USE involves integrating it with Alloy’s core engine [Kuhlmann

et al., 2011]. The resulting integration with kodkod yields a USE Model Validator

plugin. This plugin provides users with an interface that allows a user to specify

a lower and upper bound for each class defined in the UML model. Since this

approach is fully dependent on the performance of kodkod, it thus requires a

translation from UML class diagrams and OCL constraints into relational logic,

which complicates the instance generation process.

Brottier et al. [2006] implement their algorithm in a tool called OMOGEN.

This is a prototype tool and it can be used to generate model instances based on

the input of a set of model fragments. However, to generate the model fragments a

tool called MMCC is needed [Fleurey et al., 2009]. This tool is implemented using

the Eclipse Modeling framework (EMF). It generates partitions from a source

metamodel and model fragments according to particular test criteria which were

described in Table 2.4.

The reflective instantiator described in McQuillan and Power [2008], parses

generated instances from Alloy into instances of the Java implementation of the

metamodel. Furthermore, this tool generates a code implementation of a meta-

model.

Gogolla et al. [2005] extend USE features by defining a new language to gen-

erate snapshots of the models. These snapshots are treated as test cases and can

be validated within USE. Their approach allows OCL invariants to be dynam-

ically loaded and certified during execution. However, it does not provide any

test criteria during the generation of snapshots and any test criteria have to be

manually programmed.

The Cartier Tool depends on Alloy [Sen et al., 2009]. It invokes Alloy APIs to

launch the SAT solver to generate model instances. However, Cartier does not

automatically transform the OCL constraints of the input metamodel into Alloy

35

2.3
2. A SYSTEMATIC LITERATURE REVIEW OF METAMODEL INSTANCE

GENERATION TECHNIQUES

facts. Furthermore, Cartier requires that a set of model fragments is generated

before generating model instances. These model fragments are generated by the

tool introduced in [Fleurey et al., 2009]. Therefore, Cartier heavily depends on

other tools and this makes the model generation process quite complicated.

The Boltzmann method is implemented in a generator as an Eclipse Plugin

[Mougenot et al., 2009]. This generator produces a valid model by identifying

properties, generalisation and references in the metamodel. This tool is very

effective for generating a large uniform sample of models. However, this tool can

not generate models that will satisfy the constraints defined with respect to the

metamodel.

Macedo and Cunha [2013] develop a tool called Echo that can be used for

verifying model transformation. Echo is based on Alloy’s engine kodkod. Thus,

it translates a metamodel and OCL constraints into first-order relational logic

(Alloy’s specification). However, Alloy’s specification does not support multiple-

inheritance relationships. Therefore, Echo cannot deal with any multiple-inheritance

relationships in a metamodel. Furthermore, since kodkod uses a SAT solver as

back-end reasoning engine, any numerical constraints in the metamodel can cause

kodkod bit-blasting, and slow down the translation.

2.3.5 Discussion

The majority of the research done on instance (model) generation techniques

comes from four research domains: model transformation testing, graph gram-

mars, SAT/SMT based approaches and constraint programming, as can be seen

in Table 2.3. In order to effectively identify the gap in the metamodel instance

generation, we discuss the advantages of disadvantage of these four research do-

mains and propose a new research direction to the problem of metamodel instance

generation.

In the model transformation testing research domain, algorithms, frameworks

and tools have been developed for generating or assisting metamodel instance

generation [Brottier et al., 2006; Fleurey et al., 2004, 2009; Lamari, 2007; Sen

and Baudry, 2006]. However, most of them cannot handle OCL constraints with

respect to the metamodels. To improve this, Macedo and Cunha [2013] propose

36

2.3
2. A SYSTEMATIC LITERATURE REVIEW OF METAMODEL INSTANCE

GENERATION TECHNIQUES

the most recent technique in this area. Their approach is based on Alloy’s spec-

ification. In their work, metamodels and OCL constraints are both transformed

into an Alloy specification and subsequently solved by Alloy’s solving engine (kod-

kod). Each successful solving returns a valid instance. However, one big drawback

in their approach is that not all metamodel structure features are supported by

the Alloy specification. For example, Alloy does not support multiple-inheritance

relationships. To allow multiple-inheritance relationships, either users must man-

ually edit all multiple-inheritance relationships into single relationships or tune

Alloy’s engine to support this feature. However, both ways require a significant

amount of work. This is almost infeasible when the size of a metamodel is very

big and has many multiple-inheritance relationships. Also, tuning Alloy is not

an easy task since it consists of more than 50, 000 lines of code over 400 classes

[Chang, 2007]. Another big drawback is that since Alloy uses a SAT solver as

its back-end engine, any numeric OCL constraints in the metamodel can cause

bit-blasting and significantly slow down the solving time [Torlak, 2009].

SAT/SMT solvers appear to be very successful in solving constraint problems.

Constraints are expressed as boolean formulas. Among SAT/SMT approaches,

Alloy is the most mature tool in use, with many researchers working with this tool.

[McQuillan and Power, 2008; Sen et al., 2008, 2009]. Alloy uses a SAT solver as

its back-end, and SAT solvers are designed for solving boolean formulas, not

for handling any integer arithmetic reasoning. Any numerical constraint solving

is beyond the capabilities of SAT solvers. Therefore, all research using a SAT

solver as the back-end suffers this problem [Anastasakis et al., 2007; Bordbar and

Anastasakis, 2005; Macedo and Cunha, 2013]. Furthermore, Alloy is not able to

generate instances to meet specific coverage criteria in the first place, so a test case

reduction technique must be applied to remove unnecessary instances [McQuillan

and Power, 2008]. On the other hand, SMT solvers are suitable for solving both

pure boolean formulas and numeric constraints in many areas because of their

well crafted decision procedures for handling different theories [Armando et al.,

2009; Cordeiro et al., 2009; Tianhai Liu, 2012]. However, existing work with SMT

solvers in the area either does not support the standard metamodeling approach

or provides no supporting automated tools [Jackson et al., 2011; Soeken et al.,

2011b].

37

2.3
2. A SYSTEMATIC LITERATURE REVIEW OF METAMODEL INSTANCE

GENERATION TECHNIQUES

Similarly, constraint programming (CP) approaches have been adapted for

generating metamodel instances. In the work of Cabot et al. [2008], they rewrite

the problem of generating UML class diagram instances as a constraint prob-

lem. The main advantage is that CP provides a high-level language (close to

general-purpose programming languages) so that a particular constraint problem

is programmable. CP also offers solvers that can handle both boolean and nu-

meric constraints. However, the disadvantages are that CP is not well-suited to

be used as a black-box engine compared to a SAT/SMT approach, making full

automation difficult. In terms of measurability of progress, constraint program-

ming is very poor compared to SAT/SMT research community 3 [Bordeaux et al.,

2006]. Furthermore, a SAT/SMT approach offers very much on a general purpose

constraint-solving method that could be naturally adapted to the problem, while

constraint programming requires much more expertise and programming skills

for a particular problem. In fact, this is one of the main challenges to improve

constraint programming [Puget, 2004].

Another research domain which has been exploited to overcome the disadvan-

tage of metamodeling is that of graph grammars. Graph grammars offer a natural

way to describe the derivation process and so have an advantage for generating

metamodel instances. The biggest advantage of using graph grammars is that it

transforms a metamodel into a type graph, and a type graph naturally captures

the structure of a metamodel such as inheritance and association relationships.

However, one of the main problems for graph grammars is that graph parsing is

very expensive because it is not always deterministic as a rule may match several

sub-graphs. Another key issue is that in general determining if a given graph

belongs to a particular graph language is undecidable [Ehrig et al., 2006]. This

problem is well-known asmembership problem in formal language theory [Poonen,

2012]. For graph grammars this problem is lifted to graphs. Thus, the program

may never terminate. The other problem is that current techniques that work

with graph grammars do not automatically support selection criteria for meta-

model instances. In order to do that, one must manually write out the grammar

rules and perform the generation process.

We summarise the main advantages and disadvantages for each research do-

3http://www.satcompetition.org

38

2.3
2. A SYSTEMATIC LITERATURE REVIEW OF METAMODEL INSTANCE

GENERATION TECHNIQUES

Research Domain Advantage Disadvantage
Model Supports direct application of Poor OCL support
transformation testing instance generation
SAT Supports boolean constraints Poor integer arithmetic

support
SMT Supports boolean and No automation or standard

integer arithmetic constraints metamodeling approach support
Constraint Supports boolean and Requires expertise in constraint
programming integer arithmetic constraints programming and not suitable

to be used as a black-box engine
Graph grammars Supports metamodel Expensive graph matching

structure and membership problem

Table 2.6: A summary of the advantages and disadvantages of each research
domain identified. Note that we separate the research domain SAT/SMT here
for the sake of clarity.

main discussed above, and list them in Table 2.6. As can be seen, each research

domain has its own advantage and disadvantage on generating metamodel in-

stances. However, in relation to our problem statement described in section 1.6,

none of them provides a mechanism that is able to generate metamodel instances

not only satisfying metamodel structural and OCL constraints but also meeting

some specific criteria to generate more meaningful instances.

Thus, by analysing and understanding the papers we collected and described

in this chapter, we can identify that three knowledge gaps which exist among

those research domains, and thus can propose a new valuable research direction

to the problem of automatic metamodel instance generation.

• There are no existing automated tools that naturally capture a metamodel’s

structure and also solve any OCL constraints defined for a metamodel.

One may think that Alloy could be the best tool for generating metamodel

instances. However, Alloy’s specification is not designed for the purpose

of capturing metamodel structures, it is designed for expressing relational

specifications for more general constraint problems. Thus, it does not pro-

vide enough language features to support metamodels and instance selection

criteria. Furthermore, SAT-based approaches are not particularly suitable

39

2.4
2. A SYSTEMATIC LITERATURE REVIEW OF METAMODEL INSTANCE

GENERATION TECHNIQUES

for solving numeric constraints and these are very important to metamodel

instance generation since one may require a specific number of nodes to be

created in each instance.

• Graph grammars use a type graph representation to naturally capture a

metamodel’s structure, and SMT solvers are particularly good at solving

not only boolean formulas but also numeric constraints. However, there

is no research that combines a type graph representation with the SMT

approach to naturally support metamodel structures and solve the OCL

constraints.

• It would also be useful to construct such an extensible and fully automatic

tool so that users can generate customised instances to meet specific criteria.

Therefore, a valuable research direction would be to combine the type graph

representation used by graph grammars and SMT solvers to not only capture

a metamodel’s structure but also solve the OCL constraints. It would also be

worthwhile to extend this direction to support coverage oriented instance gener-

ation.

2.4 Summary

In this chapter, we have reported on a systematic literature review on metamodel

instance generation. The research domains that concern metamodel instance

generation techniques were identified and papers from those research domains

were discussed in detail with a view to answering our research questions. After

analysing the existing research work, a potentially valuable direction has been

pointed out. This is an approach that can combine both graph and SMT ap-

proaches to not only naturally support metamodel instance generation but also

achieve both generic and specific coverage criteria for a metamodel.

40

Chapter 3

Background: Graphs, SAT and

SMT

In this chapter, we review the essential concepts required for combining graph

theory and SAT/SMT solvers, and applying them to the problem of automatic

metamodel instance generation. These include those graph concepts that are

closely related to metamodels, boolean satisfiability problems (SAT) and Satisfi-

ability Modulo Theories (SMT) solvers. Graph concepts are well developed and

are widely used to capture the structure of a metamodel [Ehrig et al., 2006], while

SAT solvers and solvers with Satisfiability Modulo Theories built-in are particu-

larly suited to solving constraint problems. This chapter also demonstrates the

feasibility of using an SMT solver to solve complicated problems by showing an

SMT-based Sudoku solver as an example.

In the following sections, we describe a set of graph concepts. These include

Typed Graph, Attributed Graph, Attributed Type Graph and Attribute Type Graphs

with Inheritance. In order to help the reader digest those concepts we also provide

a list of the important notations used throughout this chapter in Table 3.1. The

notations used in this section for graphs are the standard notations as described

in [Ehrig et al., 2006]. Note that some of the graph concepts used here may

refer to Category theory. We informally discuss these concepts in this chapter

because we are only concerned with graph representations used for our instance

generation. However, full details on Category theory can be found in the book

41

3.1 3. BACKGROUND: GRAPHS, SAT AND SMT

Notations Description Graph Type
V The set of nodes

Graph (G)/Typed Graph (TG)
E The set of edges
s Source function
t Target function

VG The set of graph nodes

Attributed Graph (AG)
EG The set of graph edges

ENA The set of node attributes
EEA The set of edge attributes
SD Attribute value sorts (types)
D Data signature algebra

TGVG
The set of typed graph nodes

Attribute Type Graph (ATG)

TGVD
The set of typed data nodes

TGEG
The set of typed graph edges

TGENA
The set of typed node attributes

Z Final data signature algebra
TGEEA

The set of typed edge attributes
I Inheritance graph Attributed Type Graph with Inheritance
A A set of abstract nodes (ATGI)

Table 3.1: A list of the important sets and functions used for introducing different
types of graphs.

by Ehrig and Mahr [1985].

3.1 Metamodels and Graphs

Elements in a UML class diagram can be represented as a graph, where each

class can be considered as a node, and the relationships between classes are edges

linking one node to another. Since a metamodel can be defined using a UML

class diagram, a metamodel can also be interpreted as a graph. We consider all

metamodels used in this thesis as being presented as UML class diagrams and

being formally represented as graphs.

42

3.1 3. BACKGROUND: GRAPHS, SAT AND SMT

3.1.1 Typed Graphs

A graph G is a 4-tuple G = (V,E, s, t) contains a set of nodes or vertices V , and a

set of edges E and two functions s, t : E → V which represent source and target

functions respectively.

Graphs are related by graph morphisms that map the nodes and edges of a

graph to those of another one, and preserving the source and target of each edge.

Formally, given two graphs G1 = (V1, E1, s1, t1) and G2 = (V2, E2, s2, t2) a graph

morphism f : G1 → G2, f = (fV , fE) consists of two functions fV : V1 → V2 and

fE : E1 → E2. This means that a graph morphism f can map every node and

edge in a graph G1 to the nodes and edges in another graph G2. Furthermore,

f also preserves the source and target functions, that is fV ◦ s1 = s2 ◦ fE and

fV ◦ t1 = t2 ◦ fE [Ehrig et al., 2006] [Golas, 2011].

The valid instances of a metamodel are graphs that preserve type information

about the classes in a metamodel. Thus, they are graphs typed over a metamodel

(type graph). A graph G with a morphism type, where type is G → TG is called

a typed graph. A typed graph TG is a 4-tuple where TG = (VTG, ETG, sTG, tTG),

where VTG and ETG are called typed nodes and edges in a TG.

For example, given two graphs G = (VG, EG, sG, tG) and T = (VT , ET , sT , tT),

then G will contain a morphism type = (typeV , typeE) where

• typeV : VG → VT

• typeE : EG → ET

Figure 3.1 presents an example of graphG typed over graph T by its morphism

type, defined as:

1. typeV (a) = A

2. typeV (b) = B

3. typeE(e1) = typeE(e2) = E

and morphism type preserves the source and target functions. For example,

typeV (sG(e1)) = sT (typeE(e1)) and typeV (tG(e1)) = tT (typeE(e1)).

43

3.1 3. BACKGROUND: GRAPHS, SAT AND SMT

Figure 3.1: An example of typed graph. Dashed lines describe nodes and edges
in the graph G and are typed over nodes and edges in the graph T .

3.1.2 Attributed Graphs and Attributed Type Graphs

Each class (node) in a metamodel may contain extra attributes for specifying

more information about a class or an association (edge), thus a valid instance of

that metamodel must also contain this information. To capture this information,

a graph with attributes (attributed graph) is defined as follows [Ehrig et al., 2006]:

An attributed graph is a tuple AG = (G,D), with

G = (VG, VD, EG, ENA, EEA, (sj , tj)j∈{G,NA,EA}) and D = (SD, OPD) where

1. VG denotes a set of graph nodes and VD denotes a set of data nodes (ver-

tices).

2. EG, ENA and EEA denote a set of graph edges, node attributes and edge

attributes.

3. sG : EG → VG, tG : EG → VG are source and target functions mapping

graph edges to nodes.

4. sNA : ENA → VG, tNA : ENA → VD are source and target functions for the

node-attribute edges.

5. sEA : EEA → EG, tEA : EEA → VD are source and target functions for the

edge-attribute edges.

44

3.1 3. BACKGROUND: GRAPHS, SAT AND SMT

6. D = (SD, OPD) denotes a data signature algebra, where SD denotes the

implementation of a set of attribute value sorts (types) and OPD denotes

the implementation of a set of operations over SD [Ehrig et al., 2006].

In the above definition, D uses concepts of signature and algebra. These

concepts are fully derived from Category theory. For simplicity reasons, here

we informally discuss these concepts from Category theory (as this section only

concerns graph representations). The detailed and formal concepts can be found

in [Ehrig and Mahr, 1985].

A signature gives the name for sorts and operations of an algebra. It is a syn-

tactical description of an algebra. If we speak of a computer program, a signature

can be considered as a formal description of the interface of that program. On

the other hand, an algebra or a data signature algebra is an implementation of

a particular signature. It implements the semantics of each sort and operation

defined by a signature. Different types of mapping may exist between two alge-

bras, and such mapping is referred to morphisms in Category theory [Ehrig and

Mahr, 1985].

For example, the data signature algebra D may implement two signatures:

STRING and INTEGER. The STRING signature may define a sort named

string, and some operation names such as concat : string string → string. SD

may implement string as a sequence of characters, and OPD may implement the

operation concat as follows:

concat : string × string → string

(a, b) 7→ ab
This implies that operation concat joins two strings a, b together as a new

string ab. The full descriptions for STRING and INT can be found in [Ehrig

et al., 2006].

Figure 3.2 presents an example of attributed graph. In this attributed graph

the set of nodes and edges are formally given as follows:

1. VG = {c1, m1, m2}

2. VD = {2, class1, receive, send}

3. EG = {c1m1, c1m2}

45

3.1 3. BACKGROUND: GRAPHS, SAT AND SMT

Figure 3.2: An example of attributed graph. The dashed nodes are the data
nodes used in VD, and the dashed lines are the edges linking graph nodes in VG

to data nodes in VD

4. ENA = {c1s2, m1name,m2name, c1class1}

5. sG(c1m1) = sG(c1m2) = c1, tG(c1m1) = m1, tG(c1m2) = m2

6. sNA(c1class1) = sNA(c1s2) = c1, tNA(c1s2) = 2, tNA(c1class1) = class1

7. sNA(m1name) = m1, tNA(m1name) = send, sNA(m2name) = m2,

tNA(m2name) = receive

Since there are no attributes for edges given in Figure 3.2, sEA and tEA are

unused.

Since a metamodel is a type graph, and a type graph can also have attributes

associated with its nodes and edges, an attributed type graph can also be used

to depict a metamodel [Ehrig et al., 2006].

An attributed type graph is a tuple ATG = (TG,Z), where

TG = (TGVG
, TGVD

, TGEG
, TGENA

, TGEEA
, (sj, tj)j∈{TV G,TNA,TEA}) is a type graph,

where

1. TGVG
: is the set of graph nodes in typed graph TG.

2. TGVD
: is the set of data nodes in typed graph TG.

3. TGEG
, TGENA

and TGEEA
denote a set of graph edges, node attributes and

edge attributes in the typed graph TG.

46

3.1 3. BACKGROUND: GRAPHS, SAT AND SMT

Figure 3.3: An attributed type graph for the attribute graph in Figure 3.2. The
dashed boxes represent the different sorts. The dashed lines depict the links from
the typed node to the sorts through different node attributes.

4. sTV G : TGEG
→ TGVG

, tTV G : TGEG
→ TGVG

are source and target

functions mapping graph edges to nodes.

5. sTNA : TGENA
→ TGVG

, tTNA : TGENA
→ TGVD

are source and target

functions for the node-attribute edges.

6. sTEA : TGEEA
→ TGEG

, tTEA : TGEEA
→ TGVD

are source and target

functions for the edge-attribute edges.

and Z is the final data signature algebra which means that for any arbitrary

data signature algebra A, there is a unique mapping from A to Z [Ehrig et al.,

2006] [Ehrig and Mahr, 1985]. The nodes and edges in an ATG represent the

types that are used for the typing of an attributed graph.

As an example of an ATG, the graph in Figure 3.3 represents an attributed

type graph for the attribute graph in Figure 3.2.

A typed attributed graph (AG, type) contains an attributed graph AG along

with a morphism type : AG → ATG [Ehrig et al., 2006], where

type = (typeG,VG
, typeG,VD

, typeG,EG
, typeG,ENA

, typeG,EEA
, typeD), where

• typeG,VG
: VG → TGVG

, typeG,VG
is a function that maps a graph node to a

typed graph node in a typed attribute graph.

• typeG,VD
: VD → TGVD

, typeG,VD
is a function that maps a data node to a

typed data node in a typed attribute graph.

47

3.1 3. BACKGROUND: GRAPHS, SAT AND SMT

• typeG,EG
: EG → TGEG

, typeG,EG
is a function that maps a graph edge to

a typed graph edge in a typed attribute graph.

• typeG,ENA
: ENA → TGENA

, typeG,ENA
is a function that maps a node

attribute to a typed node attribute in a typed attribute graph.

• typeG,EEA
: EEA → TGEEA

, typeG,EEA
is a function that maps an edge

attribute to a typed edge attribute in a typed attribute graph.

• typeD : D → Z, typeD is a mapping between two data signature algebras 1

[Ehrig et al., 2006; Ehrig and Mahr, 1985].

Following this definition, a morphism type is added to the attributed graph

presented in Figure 3.2, and the following nodes and edges are derived from the

attributed type graph depicted in Figure 3.3:

1. typeG,VG
(c1) = Class, typeG,VG

(m1) = tG,VG
(m2) = Method

2. typeG,VD
(2) = Integer, typeG,VD

(class1) = typeG,VD
(receive) =

typeG,VD
(send) = String

3. typeG,EG
(c1m1) = typeG,EG

(c1m2) = methods

4. typeG,ENA
(c1class1) = id, typeG,ENA

(cls2) = noOfMethods,

typeG,ENA
(m1name) = typeG,ENA

(m2name) = name

3.1.3 Attributed Type Graph with Inheritance

As can be seen in Figure 3.3, a metamodel is depicted as an attributed type

graph. However, a metamodel may contain an inheritance relationship between

classes. Thus, in order to fully capture all structural elements of a metamodel, a

graph that describes inheritance relationships is also needed.

An attributed type graph with inheritance is a triple ATGI = (ATG, I, A)

where

1. ATG is an attributed type graph.

1This mapping is called a homomorphism in Category theory.

48

3.1 3. BACKGROUND: GRAPHS, SAT AND SMT

Figure 3.4: An example of an Attributed Type Graph with Inheritance

2. I = (VI , EI , sI , tI) is an inheritance graph, where VI = TGVG
, EI = TGEG

,

and sI , tI : EI → VI .

3. A denotes a set of abstract nodes, where A ⊆ VI .

For any node x ∈ VI , clanI(x) is defined as {y ∈ VI |∃ path y
∗
−→ x in I} ⊆ VI

with x ∈ clanI(x)[Ehrig et al., 2006].

The attributed type graph with inheritance is similar as the attributed type

graph except that the inheritance relationship between nodes are described by the

graph I, and the set of abstract nodes are described by the set A. To illustrate

these definitions using the ATGI shown in Figure 3.4, the typed nodes and edges

are listed below (we use the same notation as used in [Ehrig et al., 2006]):

TGVG
= {Person,Worker,Department}

TGVD
= {Integer, Gender}

TGEG
= {worksIn, extends}

TGENA
= {gender, age, code, }

TGEEA
= ∅

The inheritance relationship between typed nodes Person and Worker are

described by the graph I:

1. VI = {Person,Worker,Department}

2. EI = {extends, worksIn}

49

3.2 3. BACKGROUND: GRAPHS, SAT AND SMT

Figure 3.5: The Attributed Type Graph with Inheritance in Figure 3.4 in compact
notation

3. sI(extends) = Worker

4. tI(extends) = Person

5. sI(worksIn) = Person

6. tI(worksIn) = Department

In Figure 3.4, the typed node Person is an abstract node, thus A = {Person}.

In addition, clanI(Person) = {Person,Worker}, clanI(Worker) = {Worker},

and clanI(Department) = {Department}.

An ATGI can also be represented in compact notation as shown in Figure

3.5. The elements of a metamodel in Figure 3.5 are captured by the definition

of an ATGI. Thus, an ATGI is a suitable concept for describing the complete

structure of a metamodel.

Using the definition of an ATGI, a metamodel can be naturally captured,

since the classes are typed nodes, relationships (associations and inheritance) are

edges and fields in each class are attributes related to a particular typed node. The

valid instances are attributed (typed) graphs typed over a metamodel. However,

the structural and OCL constraints defined on a metamodel cannot be simply

captured in this way. In fact, they define rules governing how a valid metamodel

instance is formed, i.e. they address constraint problems. Among many tech-

niques for solving constraint problems, SAT/SMT solvers are particularly suited

for solving constraint and combinatorial problems, not only because they are well

engineered but also because they come with fast solving speeds [Balint et al.,

2013].

50

3.2 3. BACKGROUND: GRAPHS, SAT AND SMT

3.2 Boolean Satisfiability Problem

A boolean satisfiability (SAT) problem is a decision problem. Given a theory T

that consists of a set of propositional boolean logical formulas (F1, F2, ...Fn), the

goal is to find an assignment that satisfies every single propositional formula. If

such an assignment exists, a model of T is found. A computational procedure

that can decide whether the set of boolean formulas is satisfied or not is called

a decision procedure. However, the computation of such an assignment is not

straightforward. The SAT problem has been proven to be the first known non-

deterministic polynomial time complete (NP-Complete) problem [Cook, 1971].

Figure 3.6 shows an example of a SAT problem that is written in conjunctive

normal form (CNF). In this formula, variables x1, x2, x3 and x4 are called literals,

and each sub-formula with the form of x1 ∨ ¬x2 ∨ ¬x3 is called a clause. The

goal here is to determine whether there exists an assignment that satisfies every

single clause.

In order to solve boolean satisfiability problems, many SAT solvers have been

developed for determining the satisfiability of formulas similar to those shown

in Figure 3.6 [Berre and Parrain, 2010; Een and Sörensson, 2005; Goldberg and

Novikov, 2007; Mahajan et al., 2005; Moskewicz et al., 2001]. Many research do-

mains use SAT-solvers as their back-end engines to solve difficult problems [Biere

et al., 1999, 2003; Torlak, 2009]. A SAT solver takes in a large number of boolean

formulas and determines their satisfiability. If the formulas are satisfied (sat),

an assignment of each variable is returned. Otherwise, the SAT solver returns

unsatisfied (unsat). Many SAT solvers are well engineered and can determine up

to a million clauses within seconds using the Davis-Putnam-Logemann-Loveland

(DPLL) algorithm [Davis and Putnam, 1960; Davis et al., 1962]. The DPLL al-

gorithm is bounded by exponential time (EXP) which means that in the worst

case it is very slow. However, in many real examples the algorithm is unlikely to

run in EXP time. To solve the formula in Figure 3.6 is a very straightforward

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

Figure 3.6: A propositional logic formula in conjunctive normal form.

51

3.3 3. BACKGROUND: GRAPHS, SAT AND SMT

task for SAT solvers. One of the possible satisfying assignments for this formula

is x1 = true, x2 = false, x3 = true and x4 = true.

SAT solvers can be used to solve a difficult problem by translating that prob-

lem into SAT. However, the difficulty here is that such a translation is not easy

since a large number of propositional logic formulas are typically needed to ex-

press the problem. Encoding using plain boolean formulas lacks a power of ex-

pressiveness, e.g. it does not directly allow an integer encoding. For this reason,

SMT is introduced to provide theories to express such problems without losing

completeness and automation.

3.3 Satisfiability Modulo Theories

The Satisfiability Modulo Theories (SMT) problem, like the boolean satisfiability

(SAT) problem, is also a decision problem. An SMT problem can be expressed

through a combination of many theories provided by SMT solvers. For example,

SMT solvers can combine a quantified boolean theory, integer theory and bit-

vector theory to specify a problem. Due to this support for a variety of theories,

a problem can be relatively easy to translate to an SMT problem compared to

translating it to a SAT problem.

Many SMT solvers are developed using the abstract DPLL framework. For

each theory, a dedicated solving engine (decision procedure) is designed [Dutertre

and de Moura, 2006; Nieuwenhuis et al., 2005, 2006], within the abstract DPLL

framework. Solving an SMT problem expressed as a combination of different

theories becomes the task of employing several particular solving engines to solve

different sub-problems of that problem. In terms of their performance, SMT

solvers can determine a large sized problem within seconds [Barrett and Tinelli,

2007; Cimatti et al., 2013; De Moura and Bjørner, 2008], and thus have been

applied in many research domains such as model checking and program anal-

ysis [Armando et al., 2009; Cordeiro et al., 2009; Milicevic and Kugler, 2011;

Tianhai Liu, 2012].

52

3.3 3. BACKGROUND: GRAPHS, SAT AND SMT

3.3.1 SMT-Lib version 2

SMT-Lib version 2.0 (SMT2) is the latest standard for SMT solvers, and it defines

a common command language for specifying SMT problems [Barrett et al., 2010].

SMT2 uses a many-sorted first-order logic with equality as its underlying logic.

For example, it supports the types Int, Real and Bool types.

3.3.1.1 Functions

The basic concept in SMT2 formulas is the total function. The command

(declare–fun f (a1, a2, ..., an−1) (an)) defines a function f : a1×a2× ...×an−1 →

an. A constant is simply a function f that takes no arguments. For example,

(declare–fun f () T) defines a constant f .

3.3.1.2 Logic Context

A logic context l is specified using the command (set–logic l) before asserting any

SMT2 formulas. The logic context indicates the combinations of background the-

ories that are used for constructing SMT2 formulas. For example, logic QF LIA

provides the ability for users to write SMT2 formulas with a combination of

boolean functions (QF) and linear integer arithmetic (LIA) functions.

3.3.1.3 Formulas

An SMT2 formula f can be asserted into the current logic context by using the

command (assert f). A simple SMT2 formula has one function application while

a compound SMT2 formula involves multiple function applications. The current

logic context determines special functions that can be used in the SMT2 formulas.

3.3.1.4 Models

SMT2 uses the command (check–sat) to check whether all SMT2 formulas as-

serted in the current logic context have a satisfying assignment. If the formulas

are satisfied, the command (get–model) is used to retrieve a textual representa-

tion of an assignment. SMT2 also provides the command (get–value) to retrieve

an assignment for the individual constants.

53

3.4 3. BACKGROUND: GRAPHS, SAT AND SMT

(set− logic QF LIA)
(declare–fun x () Int)
(declare–fun y () Int)
(declare–fun z () Int)
(assert (> (− z y)(+ x y))
(assert (= z (∗ 2 x)))
(check–sat)
(get–model)

Figure 3.7: An SMT2 example that uses quantifier-free linear integer arithmetic
logic to solve a inequality: z − y > x+ y and z = 2x.

3.3.1.5 Solving An Integer Equation

Figure 3.7 shows an example of using quantifier-free linear integer arithmetic logic

(QF LIA) to solve the inequality x + y > y + z with the extra constraint that

z = 2x. If an SMT solver can find an assignment (model) to satisfy two SMT2

formulas, a model can be retrieved. In Figure 3.7, these constants (x, y and z) are

declared, and two SMT2 formulas (using the assert command) are also specified

within the current logic (QF LIA).

As it can be seen, the arithmetic operators act like functions. For example,

+ is a function that takes in 2 constants (x and y) as its arguments. After

checking with the SMT solver using the command (check–sat), one possible model

is retrieved using the command (get–model), that is when x = 2, y = −1 and

z = 1, both formulas z − y > x+ y and z = 2x are satisfied.

3.4 An SMT-based Sudoku Solver

SMT solvers are powerful solvers that are employed to solve complicated con-

straint problems such as a Sudoku puzzle. Software engineering and verification

are full of problems like the Sudoku puzzle. We partially know the solution and

try to figure out the rest, and it can be even worse when we are given nothing at

all. One can utilise powerful SAT/SMT solvers as black-box solving/reasoning

54

3.4 3. BACKGROUND: GRAPHS, SAT AND SMT

Figure 3.8: An extreme-level Sudoku puzzle

engines to solve surprisingly difficult problems. However, one must know how to

translate a problem to a SAT/SMT problem. Unfortunately, discovering such a

translation is not always straightforward.

In this section, we demonstrate how to translate a Sudoku problem into an

SMT problem in polynomial time. The Sudoku problem is NP-Complete [Yato

and Seta, 2003]. It has rules stating that numbers 1 through 9 only appear once

in each row, column and block (box with heavy solid lines). Each puzzle has a

unique solution and some can be easily solved. Some are surprisingly hard to

solve. For example, the Sudoku puzzle in Figure 3.8 may take hours to solve

[M. Feenstra, 2013].

One can treat a Sudoku puzzle as a metamodel that is defined with a set of

constraints expressing the rules for this game. Thus, each solution is a model

or an instance for the Sudoku puzzle, and every instance has to obey the rules

defined for this game. In order to use an SMT solver to solve a Sudoku puzzle,

we analyse and group the game rules for Sudoku using the following constraints:

• The domain for the numbers in each cell is between 1 and 9.

• Numbers 1 through 9 can only appear once in each row.

• Numbers 1 through 9 can only appear once in each column.

• Numbers 1 through 9 can only appear once in each block.

55

3.5 3. BACKGROUND: GRAPHS, SAT AND SMT

• A solution has to contain the numbers that are already given by the puzzle.

The five constraints above state the general rules for playing Sudoku. In other

words, every valid Sudoku solution must obey these constraints. Thus, these are

invariants for every Sudoku puzzle solution. If one encodes these invariants into

an SMT problem, an SMT solver will decide whether there is a solution to the

puzzle or not. In other words, Sudoku problems can be translated into a decision

problem which can be answered by an SMT solver.

To translate these invariants into an SMT problem, one can use linear integer

arithmetic theory. For each cell in the puzzle, an SMT integer type constant

is created. Thus, a total of 81 constants are needed. These invariants can be

encoded into the SMT2 formulas in Figure 3.9. In the formulas in Figure 3.9,

|row| and |column| denote the number of rows and columns in the Sudoku puzzle,

|blockrow| and |blockcolumn| denote the number of rows and columns in each block,

and |numberrow| and |numbercolumn| denote the number of rows and columns of

a two-dimensional array that stores a list of initial numbers given by the puzzle.

The first SMT2 formula requires 81 SMT integer constants representing each

cell in the puzzle and limits their domain between 1 and 9. The second formula

states that every cell in every row must be filled with a different number between

1 and 9 using inequality. In other words, the number in each cell in each row is

unique. Similarly, the same encoding applies to each column and block. The last

formula implies that the numbers that have already been given by the puzzle must

be assigned to each corresponding cell. For example, the puzzle in Figure 3.8 has

a total of 27 numbers given. Finally, these five formulas are conjoined and solved

by an external SMT solver. After 133 milliseconds, the SMT solver successfully

finds a solution (model) to the Sudoku puzzle in Figure 3.8. The solution is shown

in Figure 3.102. Each formula in Figure 3.9 can be implemented in an algorithm

running in polynomial time and the detailed proofs can be found in Appendix

7.2.4. Therefore, we have transformed a Sudoku puzzle into an SMT2 problem

in polynomial time. Solving the SMT2 formulas in Figure 3.9, we consequently

solve the Sudoku puzzle.

2This SMT-based Sudoku solver is available at:
http://www.cs.nuim.ie/∼haowu/ASMIG/Results/MM/Sudoku/

56

3.5 3. BACKGROUND: GRAPHS, SAT AND SMT

In the following formulas, the row and column denote the Sudoku puzzle’s row
and column respectively. Similarly, blockrow and blockcolumn denote the row and
column of a block in the Sudoku puzzle. The initial values given by the puzzle
are stored in the 2D-array number.

•
|row|
∧

i=1

|column|
∧

j=1

1 ≤ Ci,j ≤ 9

•
|row|
∧

i=1

|column|−1
∧

j=1

|column|
∧

k=j+1

Ci,j 6= Ci,k

•
|column|
∧

i=1

|row|−1
∧

j=1

|row|
∧

k=j+1

Cj,i 6= Ck,i

• For each block, we use the formula:
|blockrow|
∧

i=1

|blockcolumn|
∧

j=1

Ci,j 6= Ck,l, where

i 6= k and j 6= l, k from 1 to |blockrow| and l from 1 to |blockcolumn|. NOTE:
when i = 1 and j = 1 means that the first cell in the block.

•
|numberrow|
∧

i=1

|numbercolumn|
∧

j=1

numberi,j 6= 0 → Ci,j = numberi,j , where number is

a 2D-array, and numberi,j denotes a number that is given at the ith row
and jth column, and a blank cell is represented by 0.

Figure 3.9: SMT2 Formulas for the Sudoku puzzle

Figure 3.10: The solution found by SMT solver to the Sudoku puzzle in Figure
3.8

57

3.5 3. BACKGROUND: GRAPHS, SAT AND SMT

3.5 Summary

In this chapter, the graph concepts that are relevant to metamodeling techniques,

as well as the boolean satisfiability problem (SAT) and Satisfiability Modulo

Theories (SMT) have been reviewed. Essentially, metamodels are graphs and

can be formalised using attributed type graphs with inheritance (ATGI), and

SAT/SMT solvers are well engineered solvers that can solve a large number of

formulas within seconds, which makes them popular in the software verification

domain. The translation from a complicated problem to an SMT problem by

using Sudoku as an example is demonstrated. The next chapter shows how the

metamodel instance generation problem is translated to an SMT problem, and

thus can be tackled by an SMT solver.

58

Chapter 4

Generating Metamodel Instances

Satisfying Structural and OCL

Constraints

The metamodeling approach provides a high-level abstraction for software engi-

neers to model their systems. However, the central question that still needs to

be addressed is: how one can automatically generate valid metamodel instances

that satisfy structural and OCL constraints.

We represent metamodels as graphs with attributes and relationships (inher-

itance and associations), where fields define attributes that are related to nodes,

and relationships constrain how the nodes are connected by edges. Generat-

ing metamodel instances is thus equivalent to generating nodes with relevant

attributes and connecting edges between these nodes. Furthermore, a valid in-

stance must also conform to the OCL constraints specified in the metamodel.

In this chapter, we introduce a novel approach that represents a metamodel

as a bounded Attributed Type Graph with Inheritance (ATGI), derives a finite

universe of all bounded attribute graphs typed over this bounded ATGI and

translates this finite universe into SMT2 formulas which are solved by an external

SMT2 solver. Each successful assignment for SMT2 formulas is interpreted as an

instance of the original metamodel. This approach has been implemented into

a new tool: A Small Metamodel Instance Generator (ASMIG). We also evaluate

59

4.1
4. GENERATING METAMODEL INSTANCES SATISFYING STRUCTURAL

AND OCL CONSTRAINTS

ASMIG against a list of different size metamodels and the results demonstrate

that ASMIG is a very competitive tool in the area.

4.1 Bounded Attributed Type Graphs with In-

heritance

In order to make sure the metamodel instance generation process terminates,

we bound the search space and find all valid metamodel instances within that

bound. To represent this, we develop a new graph concept: a bounded attributed

type graph with inheritance (ATGIb). This approach forms a finite universe of

all bounded attribute graphs AGu typed over a given ATGIb, where this AGu

represents a superset of the instances that will be found.

Bounded Attributed Type Graph with Inheritance: A bounded ATGI is a

tuple ATGIb = (TG,Z, I, A,mults, multt, b), where

• (TG,Z) are the elements of an attributed type graph (ATG), and I, A are

the elements of an ATGI (section 3.1.3).

• mults, multt : TGEG
→ Z

+
⋃

{∗}, where ∗ represents the multiplicity no-

tation ∗ used in an association end.

mults and multt are two functions which define the multiplicities at two

association-ends.

• b is a function, b : TGVG
→ Z

+, defining a finite bound for each type node

in TG with a constraint {∃n ∈ TGVG
| b(n) > 0}.

Since each ATGI contains a bounding function b, each instance of an ATGIb

is bounded and finite. Thus, a bounded attributed graph typed over ATGIb

is defined as (AGb, typeb) with the morphism typeb : AGb → ATGIb, where

typeb = (typeb,VG
, typeb,VD

, typeb,EG
, typeb,ENA

, typeb,EEA
, typeb,D) where

• typeb,VG
: VG → TGVG

, maps VG (the set of graph nodes in AGb) to TGVG

(the set of graph nodes in ATGIb).

• typeb,VD
: VD → TGVD

, maps VD (the set of data nodes in AGb) to TGVD

(the set of data nodes defined in ATGIb).

60

4.1
4. GENERATING METAMODEL INSTANCES SATISFYING STRUCTURAL

AND OCL CONSTRAINTS

• typeb,EG
: EG → TGEG

, maps EG (the set of graph edges in AGb) to TGEG

(the set of graph edges in ATGIb).

• typeb,ENA
: ENA → TGENA

, maps ENA (the set of node attributes defined

for VG in AGb) to TGENA
(the set of nodes attributes in ATGIb).

• typeb,EEA
: EEA → TGEA, maps EEA (the set of edge attributes defined for

EG in AGb) to TGEA (the set of edge attributes in ATGIb).

• typeb,D : D → Z, where D describes a data signature algebra in AGb and

Z describes the final data signature algebra in ATGIb.

Each particular type node n in TGVG
is assigned a bound by b, and this bound

indicates the maximum number of instances of an exact instances of a type node

n that may appear in each metamodel instance. An exact instance of a type

node n means that we only consider type n, any child nodes that inherit from

n are not considered as exact type n. A bound b(n) for a type node n is either

assigned manually by a user or automatically calculated according to the different

multiplicities in the metamodel.

In order to automatically calculate an appropriate bound for each type node

in TGVG
, we have designed a Bound Calculator (this component is shown in

Figure 1.4) that uses rules in Figure 4.1 to restrict the bounds based on different

association-end multiplicities that have been specified. The Bound Calculator

automatically translates these rules into SMT2 formulas, and invokes an SMT2

solver to find an appropriate assignment for the bound of each particular type

node. Note that each rule in Figure 4.1 requires that the bound of A is greater

or equal to 1 (b(A) ≥ 1).

Rule 1 specifies that b(B) (the bound of B) is greater or equal to 1. This is

because it implies that every instance of A can only be associated with exactly

one instance of B, but one instance of B can be associated with multiple instances

of A. For a similar reason, we also require b(B) ≥ 1 for the second association

pattern since each instance of A is associated with at least one instance of B.

Similarly, we have also designed two rules (rule 3 and 4) for bidirectional

association patterns. Rule 3 is for a one–to–one bidirectional association, we

require the bounds for both A and B to be equal. This is because each instance of

61

4.1
4. GENERATING METAMODEL INSTANCES SATISFYING STRUCTURAL

AND OCL CONSTRAINTS

Association Pattern Rule

b(B) ≥ 1 (1)

b(B) ≥ 1 (2)

b(A) = b(B) (3)

b(A) ≤ b(B) (4)

Figure 4.1: Rules for bounding type nodes according to different association-end
multiplicities. Here, we implicitly require b(A) ≥ 1.

A is linked with exactly one instance of B, and each instance of B is also connected

with exactly one instance of A. This implies that the number of instances of A and

B are equal to each other. Rule 4 is for a one–to–many bidirectional association,

this rule specifies that the bound of B is greater or equal to the bound of A. To

see why it is, consider b(B) is less than b(A). This indicates that there are more

instances of A than instances of B. Since each instance of A is linked with at

least one instance of B, b(A) is greater than b(B) would suggest that at least

one of the instances of A is not linked to any instance of B. Therefore, for this

association pattern we require b(B) to be greater or equal to b(A).

For an abstract node, no explicit bound is assigned, but this can be calculated

by summing the bounds of its concrete descendants. Thus, the bound n of a

general or an abstract type of node n is calculated as the summation of each

b(m), where m is a child node of n. Ideally, b(n) will be greater than zero, or else

we consider that the type node n cannot be instantiated through its descendants.

With respect to the bound defined in ATGIb, a finite universe of all bounded

attributed graphs typed over ATGIb can be formed. Each instance of ATGIb can

be derived from this universe.

Finite Universe: The finite universe of all bounded attributed graphs typed

over ATGIb is defined as a pair (AGu, typeu), where (the notations used in the

following text are summarised in Table 3.1)

1. AGu is the finite universe of all bounded attributed graphs typed over

ATGIb.

62

4.1
4. GENERATING METAMODEL INSTANCES SATISFYING STRUCTURAL

AND OCL CONSTRAINTS

2. typeu : AGu → ATGIb, with

typeu = (typeu,VG
, typeu,VD

, typeu,EG
, typeu,ENA

, typeu,EEA
, typeu,D), and where:

• typeu,VG
: VG → TGVG

, maps VG (the set of graph nodes defined in the

finite universe) to TGVG
(the set of graph nodes in ATGIb).

• typeu,VD
: VD → TGVD

, maps VD (the set of data nodes in the finite

universe) to TGVD
(the set of data nodes defined in ATGIb).

• typeu,EG
: EG → TGEG

, maps EG (the set of graph edges in the finite

universe) to TGEG
(the set of graph edges in ATGIb).

• typeu,ENA
: ENA → TGENA

, maps ENA (the set of node attributes de-

fined for VG in the finite universe) to TGENA
(the set of node attributes

in ATGIb).

• typeu,EEA
: EEA → TGEA, maps EEA (the set of edge attributes de-

fined for EG in the finite universe) to TGEA (the set of edge attributes

in ATGIb).

• typeu,D : D → Z, maps a data signature algebra (D) in AGu to the

final data signature algebra (Z) in ATGIb.

For example, Figure 4.2(a) shows an ATGIb. The bound for each type node is

depicted as a circled number in the top-right corner of each type node. Here, there

is a bound of 2 for type nodeWorker, a bound of 1 for type nodeDepartment and

no bound for abstract node Person. The multiplicity function multt(worksIn)

= {1} and mults(worksIn) are unused.

The finite universe of all bounded attributed graphs typed over the ATGIb

depicted in Figure 4.2(a) is shown as follows:

For simplicity reason, we represent every edge in a form of e = (a, b) in the

rest of thesis, where a and b are source and target nodes of an edge e.

1. VG = {w1, w2, d1}.

2. VD = {age1, gender1, age2, gender2, code1}.

3. ENA = {e1 = (w1, age1), e2 = (w1, gender1), e3 = (w2, age2),

e4 = (w2, gender2), e5 = (d1, code1)}.

63

4.2
4. GENERATING METAMODEL INSTANCES SATISFYING STRUCTURAL

AND OCL CONSTRAINTS

Figure 4.2: Examples of (a) a Bounded ATGI in compact notation. (b) an
instance of a Bounded ATGI in explicit notation, where we have only selected
one instance of Worker.

4. EG = {e6 = (w1, d1), e7 = (w2, d1)}.

5. typeu,VG
(w1) = typeu,VG

(w2) = Worker, typeu,VG
(d1) = Department.

6. typeu,VD
(age1) = typeu,VD

(age2) = typeu,VD
(code1) = Integer.

7. typeu,VD
(gender1) = typeu,VD

(gender2) = Gender.

8. b(typeu,VG
(w1)) = b(typeu,VG

(w2)) = 2, b(typeu,VG
(d1)) = 1.

Figure 4.2(b) shows a sample instance derived from the universe of attributed

graphs by selecting {w1} from VG, {age1, gender1, code1} from VD, {e1, e2, e5}

from ENA and {e6} from EG, along with three assignments, of 40 to age1, 101 to

code1, and gender1 to the literal Male.

4.2 Translating an AGu to SMT2 Formulas

Since we represent a metamodel as an ATGIb, metamodel instance generation

becomes the process of instantiating an ATGIb. Thus, our approach to generating

metamodel instances is that nodes and edges defined in the finite universe (AGu)

of all bounded attributed graphs typed over ATGIb are translated into SMT2

64

4.2
4. GENERATING METAMODEL INSTANCES SATISFYING STRUCTURAL

AND OCL CONSTRAINTS

quantifier free formulas, and the SMT2 solver is used to assign appropriate values

for those nodes and edges. Then:

• each successful assignment by the SMT2 solver is interpreted as a bounded

attributed graph typed over ATGIb (an instance of a metamodel).

• an unsuccessful assignment indicates that no graphs (instances) exist in the

current bounds for each type node in ATGIb. In this case the user can

conclude that the metamodel is inconsistent in the current bounds. It is

still, of course, possible to find an instance within larger bounds [Jackson

and Damon, 1996].

4.2.1 Translating the Nodes and Edges

Figure 4.3 summarises the translation rules for graph nodes (VG), data nodes

(VD), node attributes (ENA) and edges (EG) to SMT2 formulas. In this figure,

rules 1-4 show the translation rules for translating nodes and edges, while rules

5-7 show the additional formulas for nodes and edges. In Figure 4.3,

• Every node in VG is translated into a Boolean constant in SMT2, represent-

ing whether or not it will be present in the instance (rule 1).

• The nodes in VD representing basic data types are translated into different

types of constants according to their types (rule 2). The current approach

supports three different basic data types which are Boolean, Integer and

Enumeration type. A node in VD which has an Integer type is directly

translated to an Int constant in SMT2. Similarly, a Boolean type node is

translated to a Bool constant. A node whose type is an Enumeration type

is translated to an SMT2 Int constant with an extra formula. This formula

that limits the domain of an Int constant to between zero and the number

of literals defined in an Enumeration data type, minus one.

• Each edge in EG and EEA is translated to a Boolean constant (rules 3 and

4), representing whether it will be present or not in the instance. For each

edge e in ENA, an additional formula is imposed to indicate that when an e

is selected, both nodes sNA(e) and tNA(e) represented by e are also forced

65

4.2
4. GENERATING METAMODEL INSTANCES SATISFYING STRUCTURAL

AND OCL CONSTRAINTS

to be selected (rule 5). Similarly, an additional formula is also needed for

each edge in EG (rule 6).

• For each data node d in VD, an extra formula is also needed for specifying

that when a graph node n in VG is not selected, none of its data attributes

need to be selected. The assignment for d is restricted to a single fixed

value v so that each time the graph node n is not selected, the value for the

corresponding d is always a fixed default value. This formula is presented

in rule 7 in Figure 4.3, with the fixed value for d determined by its type.

4.2.2 Translating Graph Edges

A metamodel contains inheritance and association relationships between classes.

These two relationships are additional constraints for a metamodel, translated

as extra SMT2 formulas for the graph nodes, node attributes and graph edges

contained in VG, ENA, and EG.

We consider a generalisation relationship between two nodes parent ∈ VG and

child ∈ VG with clanI(typeu(child)) ⊂ clanI(typeu(parent)). First, edges that

represent all data nodes contained by parent are encoded into a set of SMT2

constants called Echild. Second, Echild also encodes the set of edges that represent

all data nodes contained by typeu(child). For a child that has two or more

parents, data nodes contained by all parents are also encoded into Echild.

Associations in a metamodel are categorised into two kinds: unidirectional and

bidirectional. These two kinds of associations are represented as edges in ATGIb,

and decorated with different multiplicities that impose a constraint on how two

nodes are linked in a metamodel instance. To translate constraints for different

multiplicities defined on an association ref , a set of SMT2 boolean constants

Eref is used to encode a subset of edges in AGu (typed over the edge in ATGIb)

that represent an association is extracted from EG (graph edges in AGu). This

Eref encodes all the links between two different type nodes, we group them into a

2D-array, and then use logical connectives to specify the different multiplicities.

In this 2D-array:

• The rows and columns are captured by Erow and Ecol respectively.

66

4.2
4. GENERATING METAMODEL INSTANCES SATISFYING STRUCTURAL

AND OCL CONSTRAINTS

Mv : VG → SMT2 constant
Md : VD → SMT2 constant

1. For each ni in VG, where 1 ≤ i ≤ |VG| we generate
(declare–fun nodei () Bool),
where nodei is a unqiue name for each ni in VG,
|VG| is decided by the bound allocated for a particular type node m ∈ TGVG

in ATGIb (|VG| = b(m)).

2. For each di in VD, where 1 ≤ i ≤ |VD| we generate
(declare–fun datai () T),
where datai is a unique name for each di in VD, and T ∈ {Bool, Int}.
when typeu(di) = Enum we use the following rule:
(declare–fun datai () Int)
(assert (and (>= datai 0) (<= datai |Enum| − 1)))
Here |Enum| denotes the number of literals in an enumeration type.

3. For each ei in ENA, where 1 ≤ i ≤ |ENA| we generate
(declare–fun edgei () Bool),
where edgei is a unique name for each ei in ENA

4. For each ei in EG, where 1 ≤ i ≤ |EG| we generate
(declare–fun edgei () Bool),
where edgei is a unique name for each ei in EG

5. For each ei in ENA, where 1 ≤ i ≤ |ENA|, the following extra formula is
generated:
(assert (=> edgei (and Mv(sNA(ei)) Mv(tNA(ei)))))

6. For each ei in EG, where 1 ≤ i ≤ |EG|, the following extra formula is
generated:
(assert (=> edgei (and Mv(sNA(ei)) Mv(tNA(ei)))))

7. For each ei in ENA, where 1 ≤ i ≤ |ENA|, the following extra formula is
generated:
(assert (=> (not Mv(sNA(ei))) (= Md(tNA(ei)) v)))
where sNA(ei) ∈ VG, tNA(ei) ∈ VD

v =







−1 if typeu(tNA(ei)) = Integer
false if typeu(tNA(ei)) = Bool
0 if typeu(tNA(ei)) = Enum

Figure 4.3: Translation rules for translating graph nodes (VG), data nodes (VD),
node attributes (ENA) and graph edges (EG) to SMT2 formulas.

67

4.2
4. GENERATING METAMODEL INSTANCES SATISFYING STRUCTURAL

AND OCL CONSTRAINTS

• Erow encodes all links (edges) from one instance of A to one instance of B.

• Ecol encodes all links (edges) from one instance of B to one instance of A.

• ei,j is an SMT2 boolean constant that encodes an edge from EG, and placed

at ith row and jth column.

4.2.2.1 Unidirectional Associations

Figure 4.4 summarises the translation rules for unidirectional associations. Here,

only Erow is considered, this is because Erow encodes all links from one instance

of A to one instance of B. Translation rule 1 in Figure 4.4 indicates that only one

boolean constant can be selected from each row. Thus, this means each instance

of A is associated with only one instance of B. Translation rule 2 is designed

for an association ref with the multiplicity 0..1 defined at one end, this rule

uses same formula used in rule 1 which make sure exactly one boolean constant

from each row is selected. Since it is also possible that each instance of A is not

associated with any instances of B, every boolean constant in each row of the

array is also negated to indicate no links are selected. Finally, we join those two

formulas by using disjunction to indicate that either no links get selected at all

or exactly one link from each row is selected. Similarly, translation rule 3 uses

disjunction to indicate that there are at least one of the links can be selected from

each row. Thus, this captures the meaning of each instance of A is associated with

at least one instance of B. For multiplicity 0..∗, the constraint here indicates that

either none of edges is selected or some of them are selected. Since each entry in

2D-array Eref is an SMT2 boolean constant, each of them can be assigned with

either value of true or false. This precisely captures the meaning of either none

or some of them. Therefore, we do not explicitly put this rule in Figure 4.4 but

an explicit version of the formula can be seen in [Wu et al., 2013].

To understand how the translation rules work, we consider translation rule

1 as an example. Suppose we have already formed a 2D-array (as depicted in

Figure 4.5) for the unidirectional association pattern. Let bounds for class A and

B be 2 and 3 respectively. According to translation rule 4 described in Figure 4.3,

in this 2D-array every entry is a boolean constant that encodes a possible link

from an instance of A to an instance of B. Applying translation rule 1 through

68

4.2
4. GENERATING METAMODEL INSTANCES SATISFYING STRUCTURAL

AND OCL CONSTRAINTS

Association Pattern
Translation Rule

(Unidirectional)

|Erow|
∧

i=1

(
|Ecol|
∨

j=1

(
|Ecol|
∧

k=1

k 6= j → ¬ei,k) ∧ ei,j) (1)

(
|Erow|
∧

i=1

|Ecol|
∨

j=1

¬ei,j)
∨

|Erow|
∧

i=1

(
|Ecol|
∨

j=1

(
|Ecol|
∧

k=1

k 6= j → ¬ei,k) ∧ ei,j) (2)

|Erow|
∧

i=1

|Ecol|
∨

j=1

ei,j (3)

Figure 4.4: Translation rules for graph edges typed over the edges in ATGIb that
represent unidirectional associations.

ref =
b1 b2 b3

a1 e1,1 e1,2 e1,3
a2 e2,1 e2,2 e2,3

Figure 4.5: A 2D-array represents an association ref , the bounds here for A and
B are 2 and 3 respectively.

the 2D-array in Figure 4.5, we get the following two formulas (one for each row):

f1 and f2.

f1 = (e1,1 ∧ ¬e1,2 ∧ ¬e1,3) ∨ (¬e1,1 ∧ e1,2 ∧ ¬e1,3) ∨ (¬e1,1 ∧ ¬e1,2 ∧ e1,3)

f2 = (e2,1 ∧ ¬e2,2 ∧ ¬e2,3) ∨ (¬e2,1 ∧ e2,2 ∧ ¬e2,3) ∨ (¬e2,1 ∧ ¬e2,2 ∧ e2,3)

Each fi evaluates to true if only if exactly one of ei,j evaluates to true (i.e. is

selected). Since the 2D-for ref has three columns, there are three possible choices

in the disjunction. This pattern is also shown in Figure 4.6, where we can see that

f1 evaluates to true when exactly one of e1,1, e1,2 or e1,3 evaluates to true. Since

each ei,j encodes a possible link from an instance of A to an instance of B, this

application of rule 1 to the 2D-array ref precisely captures the constraint that

each instance A can only be associated with exactly one instance of B. Finally,

we conjoin f1 and f2 as one complete formula, and input this to the SMT2 solver.

69

4.2
4. GENERATING METAMODEL INSTANCES SATISFYING STRUCTURAL

AND OCL CONSTRAINTS

e1,1 e1,2 e1,3 f1
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

Figure 4.6: Truth table for formula f1 where each 0 denotes false and 1 denotes
true.

4.2.2.2 Bidirectional Association

Figure 4.7 summarises the translation rules for the most commonly used bidirec-

tional associations. The rules for bidirectional associations are similar to unidi-

rectional association. However, for a bidirectional association ref , the transla-

tion rules are applied in two dimensions (Erow and Ecol) according to different

multiplicities defined for both ends of the association ref . After applying the

translation rules, each dimension results in one sub-formula, which is joined via

conjunction.

Since a bidirectional link is symmetric, which encodes an edge of the form

(a, b) is represented as two links, i.e. a link from a to b, and a link that goes

back from b to a. Rule 1 describes a one-to-one bidirectional association. This

is similar to rule 1 for unidirectional associations except that the translation rule

is also applied through Ecol, thus forcing the SMT2 solver to select exactly one

ei,j from each dimension. Rule 2 is similar to rule 1 except that the first sub-

formula in rule 2 ensures that no ei,js from a row are selected, and since all the

links are bidirectional, the same sub-formula is applied through Ecol to indicate

either exactly one link from an instance of B is chosen or no links are chosen.

Rule 3 conjoins a sub-formula from rule 1 with another sub-formula that allows

at least one ei,j from each column to be selected. For rule 4, it is not necessary to

constrain each row here since each instance of A can either connect to no instance

of B or some instances of B, and every ei,j in the array is a boolean constant

that could possibly to be selected or not by the SMT solver. Thus, for rule 4 we

70

4.2
4. GENERATING METAMODEL INSTANCES SATISFYING STRUCTURAL

AND OCL CONSTRAINTS

Association Pattern
Translation Rule

(Bidirectional)
|Erow|
∧

i=1

(
|Ecol|
∨

j=1

(
|Ecol|
∧

k=1

k 6= j → ¬ei,k) ∧ ei,j) ∧

|Ecol|
∧

i=1

(
|Erow|
∨

j=1

(
|Erow|
∧

k=1

k 6= j → ¬ek,i) ∧ ej,i) (1)

(
|Erow|
∧

i=1

|Ecol|
∨

j=1

¬ei,j)
∨

|Erow|
∧

i=1

(
|Ecol|
∨

j=1

(
|Ecol|
∧

k=1

k 6= j → ¬ei,k) ∧ ei,j) ∧

(
|Ecol|
∧

i=1

|Erow|
∨

j=1

¬ej,i)
∨

|Ecol|
∧

i=1

(
|Erow|
∨

j=1

(
|Erow|
∧

k=1

k 6= j → ¬ek,i) ∧ ej,i) (2)

(
|Erow|
∧

i=1

|Ecol|
∨

j=1

ei,j) ∧
|Ecol|
∧

i=1

(
|Erow|
∨

j=1

(
|Erow|
∧

k=1

k 6= j → ¬ek,i) ∧ ej,i) (3)

(
|Ecol|
∧

i=1

|Erow|
∨

j=1

¬ej,i) ∨
|Ecol|
∧

i=1

(
|Erow|
∨

j=1

(
|Erow|
∧

k=1

k 6= j → ¬ek,i) ∧ ej,i) (4)

Figure 4.7: Translation rules for graph edges typed over the edges in ATGIb that
represent bidirectional associations.

only need to constrain the column of the array to make sure each instance of B

can only be connected to exactly one instance of A.

To understand how the translation rules work for bidirectional associations, we

consider translation rule 1 as an example. We use the same 2D-array described in

Figure 4.5 to represent all possible links between an instance of A and an instance

of B. The bounds here for A and B are 2 and 3. By applying translation rule 1

through this 2D-array, we get the following formulas from each row and column.

f1 = (e1,1 ∧ ¬e1,2 ∧ ¬e1,3) ∨ (¬e1,1 ∧ e1,2 ∧ ¬e1,3) ∨ (¬e1,1 ∧ ¬e1,2 ∧ e1,3)

f2 = (e2,1 ∧ ¬e2,2 ∧ ¬e2,3) ∨ (¬e2,1 ∧ e2,2 ∧ ¬e2,3) ∨ (¬e2,1 ∧ ¬e2,2 ∧ e2,3)

f3 = (e1,1 ∧ ¬e2,1) ∨ (¬e1,1 ∧ e2,1)

f4 = (e1,2 ∧ ¬e2,2) ∨ (¬e1,2 ∧ e2,2)

f5 = (e1,3 ∧ ¬e2,3) ∨ (¬e1,3 ∧ e2,3)

From these formulas we can see that the pattern here is the same as applying

translation rule 1 for the unidirectional association pattern except that this time

the columns of the 2D array are also constrained. Since each column of the array

71

4.3
4. GENERATING METAMODEL INSTANCES SATISFYING STRUCTURAL

AND OCL CONSTRAINTS

encodes all possible links from an instance of B to an instance of A, by applying

rule 1 through the column, we capture the meaning that each instance of B can

only be associated with exactly one instance of A. This pattern is illustrated in

f3, f4 and f5. For example, in f3, if e1,1 is selected, then this indicates that a link

is established between a1 and b1. Thus, e2,1 (a2 is linked to b1) can no longer be

selected since each instance of B can only be associated with exactly one instance

of A. Finally, we conjoin all these formulas and input to the SMT2 solver.

4.3 Translating OCL Invariants to SMT2 For-

mulas

Besides the constraints defined on multiplicities for associations, a metamodel

can also have additional invariants expressed in OCL. Since everything in a meta-

model is represented as an ATGIb, we consider OCL invariants defined on a meta-

model as additional formulas over the nodes and edges of the AGu typed over

ATGIb. To deal with additional OCL invariants, we parse OCL invariants into

an abstract syntax tree (AST), traverse the AST nodes to extract relevant nodes

and edges from AGu, and translate them into SMT2 formulas. We conjoin these

formulas along with those produced for the metamodel structural constraints and

transfer them to the SMT2 solver to find an assignment.

The OCL invariants are handled by the following translation rules:

1. OCL integer and logical expressions are directly translated to corresponding

SMT2 functions.

2. Since a metamodel is represented as a bounded attributed type graph, quan-

tifiers over an object type indicates a set of graph nodes (VG) that are

bounded by the type node (TGVG
). The following translation rules define

the translations from quantified OCL expressions to SMT2 formulas.

• OCL expression Obj.allInstances() → exists(expr) is translated to

72

4.3
4. GENERATING METAMODEL INSTANCES SATISFYING STRUCTURAL

AND OCL CONSTRAINTS

b(Obj)
∨

i=1

(expri)

where expri is a specific SMT2 formula over an instance of Obj.

• OCL expression Obj.allInstances() → forAll(expr) is translated to
b(Obj)
∧

i=1

(expri)

where expri is a specific SMT2 formula over an instance of Obj.

• OCL expression Obj.allInstances() → one(expr) is translated to
b(Obj)
∨

i=1

((

b(Obj)
∧

j=1

j 6= i → ¬exprj) ∧ expri),

where expri and exprj are specific SMT2 formulas over an instance of Obj.

3. Users may use quantifiers in a nested way to indicate an operation over two

different sets of instances. For this kind of nested quantifier expression, an

extra translation step is performed by calculating the Cartesian product of

two sets of graph nodes. The following translation rule shows the transla-

tion for a nested quantifier OCL expression.

•
OCL expression A.allInstances() → forAll(B.allInstances()

→ exists(expr)) is translated to
b(A)
∧

i=1

b(B)
∨

j=1

(expri)

where expri is a specific SMT2 formula over an instance of A and B.

4. A navigation used in an OCL expression is interpreted as a reference to a

set of edges in the graph representation of a metamodel. The translation for

a navigation r is performed by extracting relevant edges from EG denoted

as Er, and using the following translation rule to translate them into SMT2

formulas.

• OCL expressions with navigation are translated to

73

4.4
4. GENERATING METAMODEL INSTANCES SATISFYING STRUCTURAL

AND OCL CONSTRAINTS

|Er|
∧

i=1

(edgei) → (expri),

where edgei is an SMT2 constant that encodes an edge from EG

and each expri is a specific SMT2 formula over an instance of class.

As can be seen, the translation rules above support a subset of OCL invariants

and the supported OCL abstract syntax are also summarised in the Figure 4.8.

To understand how the translation rules are applied to an invariant, Figure 4.9

shows an example of the full translation of an OCL invariant step by step. The

expression Manager.allInstances() indicates that all graph nodes having type

Manager are extracted from VG, and the bound for Manager here is 2. The

OCL operators >,< and and are translated to corresponding SMT2 functions,

and the quantifier exists is translated to or over the relevant instances.

4.4 A Graph Colouring Example

This section presents a metamodel of graph colouring as an example to demon-

strate the approach. The metamodel itself is shown in Figure 4.10. This meta-

model is constrained with two OCL invariants. The first one specifies that no

node can have itself as its neighbour, while the second one indicates that a node

and its neighbour cannot share the same colour. From the metamodel to ATGIb,

a finite universe AGu typed over ATGIb to SMT2 formulas, each translation step

is presented in Figure 4.11 and described as follows:

1. The metamodel itself is first translated into anATGIb by defining b(Node) =

5 (as depicted in the right top corner of Node in Figure 4.10), and a finite

universe AGu is formed from ATGIb. We choose 5 for the bound of Node

because we consider a graph with 5 nodes has the appropriate size for pre-

senting this example with regarding the page size here.

2. The typed node Node is translated to a Boolean constant in SMT2 with a

defined bound of 5.

3. The data node Colour is an Enumeration type and thus gets translated into

74

4.4
4. GENERATING METAMODEL INSTANCES SATISFYING STRUCTURAL

AND OCL CONSTRAINTS

Expression := ExpAllInstances
| ExpAttrOp
| ExpConstBoolean
| ExpConstEnum
| ExpConstInteger
| ExpNavigation
| ExpQuery
| OperationalExpression

ExpQuery := ExpExists | ExpForAll| ExpOne
OperationalExpression := [expr1 : Expression] ExpStdOp [expr2 : Expression]
ExpAttrOp := [attr : Type] [expr : Expression]
ExpAllInstances := [source : Type]
ExpStdOp := < | ≤ | = | <> | > | ≥ | or

| not | and | xor | + | − | ∗ | / | →
ExpNavigation := [src : ObjectType] [dst : ObjectType] [expr : Expression]
ExpExists := [var : Type]∗ [range : Expression] [query : Expression]
ExpForAll := [var : Type]∗ [range : Expression] [query : Expression]
ExpOne := [var : Type]∗ [range : Expression] [query : Expression]
ExpConstBoolean := [const : BooleanType]
ExpConstInteger := [const : IntegerType]
ExpConstEnum := [const : EnumType]
Type := BasicType

| EnumType
| ObjectType

BasicType := BooleanType | IntegerType
BooleanType := Boolean
IntegerType := Integer
EnumType := enum
ObjectType := Class

Figure 4.8: A summary of supported OCL abstract syntax. Note that we use the
notation [x : T] to denote that a variable x has a type of T and [x : T]∗ to denote
a list of typed variables.

75

4.4
4. GENERATING METAMODEL INSTANCES SATISFYING STRUCTURAL

AND OCL CONSTRAINTS

Figure 4.9: An example of translating an OCL constraint. Here, b(Manager) =
2 and the OCL constraint is: Manager.allInstances()->exists(m|m.age>50

and m.age<55)

Figure 4.10: A Graph colouring metamodel

76

4.5
4. GENERATING METAMODEL INSTANCES SATISFYING STRUCTURAL

AND OCL CONSTRAINTS

an Integer constant in SMT2 in the range 0 − 2 inclusive (since there are

only three colours here.).

4. Every edge in Eadj extracted from a subset of EG is also translated to a

Boolean constant in SMT2.

5. For the first invariant, the translation process eliminates all the edges e such

that sG(e) 6= tG(e). Thus, the graphs left are those that do not contain

cycles of length 1.

6. The translation for the second invariant iterates the remaining edges, gener-

ating formulas to ensure that each sG(e).colour 6= tG(e).colour. Therefore,

this step makes sure that every SMT2 constant that encodes edge’s source

and target object encoded are selected by SMT2 solver will not share the

same value (literal).

7. Finally, the formulas from steps 2-4 are conjoined with formulas from step

5 and 6, and fed into an SMT2 solver. Each successful assignment found

by the SMT2 solver is interpreted as an instance of the metamodel. Figure

4.12 shows one of the interpreted instances.

4.5 Evaluation

4.5.1 Implementation

To evaluate this approach, we have implemented it in a tool called A Small Meta-

model Instance Generator (ASMIG). ASMIG is purely written in Java and a fully

automated tool. The main steps for ASMIG to generate metamodel instances is

described as follows (can also be seen in Figure 1.4):

1. read in a metamodel in Ecore format [Budinsky et al., 2003],

2. represent it as a bounded attributed graph (AGu) typed over ATGIb,

3. translate AGu and OCL invariants into logic formulas, rewrites logic for-

mulas into SMT2 standard,

77

4.5
4. GENERATING METAMODEL INSTANCES SATISFYING STRUCTURAL

AND OCL CONSTRAINTS

Step 1:
VG = {n1, n2, n3, n4, n5}
VD = {c1, c2, c3, c4, c5}
ENA = {e1 = (n1, c1), e2 = (n2, c2), ..., e5 = (n5, c5)}
EG = {e6 = (n1, n1), e7 = (n1, n2), ..., e30 = (n5, n5)}
typeu(n1) = typeu(n2) = ... = typeu(n5) = Node and Node ∈ TGVG

typeu(c1) = typeu(c2) = ... = typeu(c5) = Colour and Colour ∈ TGVD

typeu(e1) = typeu(e2) = ... = typeu(e5) = colour and
∀i : 1 ≤ i ≤ 5 typeu(sG(ei)) ∈ TGVG

, typeu(tG(ei)) ∈ TGVD

typeu(e6) = typeu(e7) = ... = typeu(e30) = adj and
∀i : 6 ≤ i ≤ 30 typeu(sG(ei)) = typeu(tG(ei)) ∈ TGVG

Step 2-4:
VG = (declare–fun n1 () Bool), ..., (declare–fun n5 () Bool)
VD = (declare–fun c1 () Int), (assert(and(<= 0 c1)(<= c1 2))), ...,
(declare–fun c5 () Int)}, (assert(and(<= 0 c5)(<= c5 2)))
ENA = (declare–fun e1 () Bool), ..., (declare–fun e5 () Bool)
EG = (declare–fun e6 () Bool), ..., (declare–fun e30 () Bool)
adj = (assert(or(and e6 (not e7)...(not e8)), ..., (and e26 (not e27)...(not e30))))
where each ni, ci and ei is an SMT2 constant.

Step 5:
(self.adj <> self) = (assert(or (and (not e6), (not e12), (not e18),

(not e24), (not e30)))),
and where e6 = (n1, n1), e12 = (n2, n2), e18 = (n3, n3), e24 = (n4, n4), e30 = (n5, n5).

Step 6:
(self.adj.colour <> self.colour) = (assert(=> e7 (not(= c1 c2)))),
(assert(=> e8 (not (= c1 c3)))), ...,
(assert(=> e11 (not(= c2 c1)))), ..., (assert(=> e29 (not (= c5 c4))))

Figure 4.11: The illustrated translation steps for the metamodel in Figure 4.10.
Note: In step 6, formulas written in red colour (e7 and e11) indicate that they are
logically equivalent and they can be shared for efficiency.

78

4.5
4. GENERATING METAMODEL INSTANCES SATISFYING STRUCTURAL

AND OCL CONSTRAINTS

Figure 4.12: One of the instances of the graph colouring metamodel found by
Z3. The letter in each node of this graph represents a colour (R:Red, G:Green,
B:Blue), and an edge between two nodes means they are adjacent.

4. invoke an SMT2 solver (the default configuration uses the Z3 SMT2 solver)

to find an assignment for SMT2 formulas,

5. interpret each successful assignment as a valid instance of the metamodel.

To speed up translation, all nodes and edges are stored in a hash table. To

prevent generating repeated solutions for each enumeration, any previous success-

ful assignments for a formula are negated and added as an extra SMT2 formula.

ASMIG also supports partial models, but at present the partial model needs to be

defined internally via relevant APIs. To visualise each instance that is generated,

ASMIG generates a GraphViz representation for each successful assignment and

caches the generated formula to speed up each enumeration [Ellson et al., 2001].

Furthermore, ASMIG can also generate instances that do not conform to the

metamodel (negative test cases) by negating one or more of the SMT2 formula.

The interpretation from pure SMT2 formulas to the original metamodel in-

stances is straightforward, as each SMT2 constant that encodes an edge or node

is stored in a hash table. To fully interpret an assignment from SMT2 solver, we

79

4.5
4. GENERATING METAMODEL INSTANCES SATISFYING STRUCTURAL

AND OCL CONSTRAINTS

only need to iterate every entry in the hash table and reflect each assigned SMT2

constant back into the problem domain which is an instance of a metamodel.

Thus, the time spent on interpretation is negligible compare to the time spent on

translation.

4.5.2 Results

In order to evaluate the approach described in this chapter, we have collected

a set of metamodels with different sizes from different sources, as shown in Ta-

ble 4.1. These metamodels listed in Table 4.1 are well-known examples of the

metamodeling approach such as state machine and royal & loyal [Warmer and

Kleppe, 2003], [Ehrig et al., 2009]. In Table 4.1, “Classes”, “Assocs” and “At-

tribs” indicates the number of (non-abstract) classes, associations and attributes

translated for each metamodel. To evaluate the feasibility of this approach, the

translation time for each metamodel is recorded. The average time spent on find-

ing an instance is also calculated. This is based on the average time for the first

100 instances enumerated (except for the Finite State Machine 1.0 metamodel

were there were only 16 instances enumerated in total with the bound of 1 for

each class) as we consider it is a reasonable number for evaluating the average

generation speed, comparing to other approaches [Cabot et al., 2008; Ehrig et al.,

2009; Yatake and Aoki, 2012].

All instances for the metamodels are conducted on a machine with a 2.8GHz

Intel Core2Quad CPU and 4GB of RAM. In the current version of ASMIG, Z3

is used as the back-end solving engine, so the average time spent on finding an

instance depends on both the formulas generated and the Z3 solving time. All

these metamodel instances are generated by using ASMIG with a default bound

of 1 for each non-abstract class in 19 metamodels. In order to examine the

translation for OCL invariants, bounds of 2 and 3 for classes in the Company

metamodel are chosen.

1available at: http://www.emn.fr/z-info/atlanmod/index.php/Ecore
2an example extends the example metamodel in Figure 4.2, available at website
3from Eclipse Modeling Framework Royal and Loyal Example Project
4extracted from Eclipse Modeling Framework
5available at:http://www.jamopp.org/index.php/JaMoPP Download

80

4.5
4. GENERATING METAMODEL INSTANCES SATISFYING STRUCTURAL

AND OCL CONSTRAINTS

Number of Time in ms
Metamodel Classes Assocs Attribs Translation Avg Finding
Company 2 7 6 6 476ms 38ms
C 1.0 1 34 4 0 388ms 54ms
C++ 1.0 1 16 4 5 372ms 26ms
Java 5 233 104 1 666ms 441ms
Royal&Loyal 3 15 41 2 403ms 36ms
Finite State Machine
1.0 1

6 7 0 368ms 26ms

Ecore 4 22 40 0 439ms 42ms
UML2 Class Dia-
gram 4

40 26 46 442ms 41ms

Web App: Concep-
tual Model1

19 24 0 368ms 42ms

KM3 1 12 7 0 365ms 33ms
Business Process
Model 1

26 15 0 375ms 62ms

CPL1.0 1 32 16 0 384ms 94ms
DoDAF-SV5 1 31 54 1 391ms 99ms
GraphML 1 11 13 2 392ms 37ms
Hierarchical State
Machine 1.0 1

15 16 0 378ms 42ms

Maven(maven.xml)
0.3 1

58 32 0 403ms 74ms

MoDAF0.1 1 48 35 0 398ms 49ms
QualityofService 1 24 26 0 376ms 51ms
DOT1.0 1 26 20 0 386ms 58ms
BibTexML1.2 1 28 4 0 379ms 39ms

Table 4.1: Details of 20 metamodels; 100 instances of these metamodels (except
for the Finite State Machine) were generated by the ASMIG tool.

81

4.5
4. GENERATING METAMODEL INSTANCES SATISFYING STRUCTURAL

AND OCL CONSTRAINTS

We have used metamodels collected from Table 4.1 as a benchmark to evaluate

the speed of translation, average instance finding time and their practical appli-

cations. To analyse the relation between the translation time and metamodel

size, we first define the size of metamodels is counted in terms of the number of

classes. The reason we define this way is that we consider a metamodel with a

large number of classes might have a good probability of having a complex struc-

ture. For example, multiple inheritance relationships, different types of attributes

and associations or a large number of OCL constraints. This also makes it easier

to consult Table 4.1 to do further analysis on translation time according to the

specific numbers for a metamodel feature.

We plot a graph in Figure 4.13 to show the translation time against different

size of metamodels. As Figure 4.13 suggested, the time that ASMIG spends is

not always affected by the size of the metamodels. For example, ASMIG spends

398 milliseconds on translating the MoDAF0.1 metamodel which has 48 classes,

and spends 442 milliseconds on translating the UML2 Class Diagram metamodel

which has 40 classes. By analysing both Figure 4.13 and Table 4.1, it is re-

vealed that the translation time is in fact affected by three factors: the size of

the metamodels, the type of associations in a metamodel and the number of

OCL constraints defined. For example, a metamodel (CPL1.0) with large num-

ber of classes and less associations could spend less time on translation than a

metamodel (Ecore) with relatively smaller number classes but with more asso-

ciations. Regarding the type of associations used in a metamodel, a one–to–one

bidirectional association produces more formulas than a one–to–many bidirec-

tional association as it is more constrained. Having OCL invariants defined on

a metamodel also takes longer time for ASMIG to translate. For example, the

Company metamodel has 7 classes, 6 OCL invariants, which require an additional

30ms for their translation. Thus, combining these three factors together decides

the translation time ASMIG takes on a specific metamodel. All the instances

generated from ASMIG cannot be presented due to the size, but these instances

are available at our website 6.

6http://www.cs.nuim.ie/∼haowu/ASMIG/Results/MM

82

4.5
4. GENERATING METAMODEL INSTANCES SATISFYING STRUCTURAL

AND OCL CONSTRAINTS

350

375

400

425

450

475

500

525

550

575

600

625

650

675

700

5 20 35 50 65 80 95 110 125 140 155 170 185 200 215 230 245

T
ra

ns
la

tio
n

T
im

e
in

 M
ill

is
ec

on
ds

Metamodel Size

Figure 4.13: The time spent on translation by ASMIG with different size of meta-
models. Each point in this graph represents the translation time that ASMIG
takes on a metamodel from Table 4.1.

83

4.5
4. GENERATING METAMODEL INSTANCES SATISFYING STRUCTURAL

AND OCL CONSTRAINTS

4.5.3 Comparison

We first provide the Table 4.2 to cover the comparison with those approaches

that do not provide tool support. Second, we compare ASMIG with other main

tools by using the same set of metamodels presented in Table 4.1.

In Table 4.2, the comparison is based on three factors: the size of metamodel,

OCL range and automated tools. We choose these three factors because we

consider they are the main concerns for a modeler to use a specific approach to

generate instances from their metamodels.

The size of metamodels is an important aspect to measure the scalability

of an approach. In Table 4.2, approaches like graph grammar and SMT bit-

vector work on much smaller metamodels. These examples are specifically and

manually designed [Ehrig et al., 2009] [Soeken et al., 2011b]. Compare with these

approaches, our approach has been tested on a wide range of metamodels collected

from different sources as can be seen from Table 4.1. Constraint programming and

Alloy-based approaches work on relatively large metamodels and they also provide

tool support, thus we compare these two approaches with our tool ASMIG, and

discuss the results later in this section.

For the factor of OCL, all approaches support a certain amount of OCL.

Among them, Alloy-based approaches support quite a wide range of OCL. Alloy

is a fully automatic model finder that uses first-order relational algebra as its

specification language and a SAT solver as its back-end solving engine, this re-

search originates from the Jackson’s work [Jackson, 2002] [Jackson, 1998] [Jackson

and Damon, 1996]. With Alloy’s specification language, quite a number of OCL

constraints can be directly mapped into that language. However, this language

lacks support for solving numeric constraints. This is because solving numeric

constraints is beyond the capability of SAT solvers. Numeric constraints appear

quite frequently in OCL. For example, in a company metamodel, employers may

require the calculation of the payment for employees based on their different roles.

On the other hand, SMT-based approaches such as SMT-bit vector and ASMIG

are much stronger at handling numeric constraints compared to SAT-based ap-

proaches. This is because SMT solvers have particularly well engineered decision

procedures to solve numeric constraints. SMT-bit vector provides a list of map-

84

4.5
4. GENERATING METAMODEL INSTANCES SATISFYING STRUCTURAL

AND OCL CONSTRAINTS

Approaches Metamodel Size OCL Range Tool Automation
Our Approach Large Medium Yes

Graph Grammar Small Medium No
SMT bit-vector Small Medium-high No

Constraint Programming Medium Medium Yes
Alloy-based Approach Medium High Yes

Table 4.2: A comparison with other approaches.

ping from OCL collection data types to SMT bit vector theories. However, users

have to manually write SMT formulas in order to perform such mapping, and this

becomes impossible when users are dealing with a large number of constraints and

are not familiar with any SMT theories.

To be able to effectively compare ASMIG with other tools, we use the same

set of metamodels presented in Table 4.1 as the benchmark. We select three

tools: UML2CSP, EMF2CSP and Echo (UML2CSP and EMF2CSP are constraint

programming approach based, and Echo is based on Alloy). We choose these tools

not only because they are available to access but also they represent the latest

techniques for generating metamodel instances, and they also share the same

input format (ecore) as ASMIG does. For each tool, we test them against our

benchmark, generate one instance for each metamodel and record its translation

time. The translation time for each tool spent on each metamodel is shown in

Table 4.3. In Table 4.3, we use an F to denote that a specific tool fails to translate

a metamodel. We also plot a graph in Figure 4.14 to show the translation time

difference among all four tools. For a fair comparison, Figure 4.14 only shows

these metamodels that are successfully translated by all tools.

For constraint programming approach, we download their latest tools: UML2CSP
7 and EMF2CSP 8, and run them against our benchmark [Cabot et al., 2008][González Pérez

et al., 2012]. Both tools failed to translate a total of 8 metamodels into constraint

search problems without giving specific error messages. Thus, we do not know

the reason why those 8 metamodels cannot be translated. Regarding the trans-

lation time for supported metamodels, both tools are much slower than ASMIG,

as can be seen from Figure 4.14. The main reason is that both EMF2CSP and

UML2CSP require ECLiPSe compilation for the translated code from a meta-

85

4.5
4. GENERATING METAMODEL INSTANCES SATISFYING STRUCTURAL

AND OCL CONSTRAINTS

model and then solve the constraints. However, ASMIG’s translation process

does not require any third-party tool to do such compilation, because all meta-

models are naturally supported by our Bounded Attributed Type Graphs with

Inheritance.

We choose Echo 9 for Alloy-based approaches because it uses the latest engine

of Alloy (kodkod) to generate metamodel instances and reads in a metamodel in

ecore format [Macedo and Cunha, 2013]. As can be seen from Table 4.3, there

are a total of 4 metamodels that cannot be supported by Echo. Two (Java and

UML2 Class Diagram) cannot be supported because of multiple inheritance

relationships. Echo failed to give additional error details for the other two meta-

models (Ecore and Royal &Loyal). The reason Echo does not support multi-

ple inheritance relationships is because Alloy’s specification language only allows

users to define single inheritance relationship from a particular class. This puts

a great limitation on generating metamodel instances since multiple inheritance

relationship is a common type of inheritance used in metamodeling approach. In

Figure 4.14, the translation time for Echo and ASMIG on small and medium size

metamodels is quite close. This indicates that translating a metamodel to SAT

and SMT is more efficient than translating it to constraint search problem.

In summary, the results and comparison show that ASMIG is very competitive

against other well-automated tools with regard to the support of metamodel size,

OCL range and speed of translation. Note that ASMIG is purely designed from

scratch and not built upon other existing tools such as Alloy. Therefore, ASMIG

takes full control of the metamodel instances generation without tuning other

tools. This means ASMIG is not limited by the capabilities of other tools such

as lacking multiple inheritance support for Echo.

7http://qres.uoc.edu/UMLtoCSP
8http://code.google.com/a/eclipselabs.org/p/emftocsp/
9http://haslab.github.io/echo/

86

4.5
4. GENERATING METAMODEL INSTANCES SATISFYING STRUCTURAL

AND OCL CONSTRAINTS

Metamodels
Translation time for different tools in ms
ASMIG UML2CSP EMF2CSP Echo

Company 476 F F 520
C 1.0 388 F F 354

C++ 1.0 372 F F 370
Java 666 F F F

Royal&Loyal 403 775 676 F
Finite State Machine 1.0 368 650 612 377

Ecore 439 F 793 F
UML2 Class Diagram 442 F F F

Web App: Conceptual Model 368 740 743 369
KM3 365 502 485 357

Business Process Model 375 702 707 377
CPL1.0 384 F F 386

DoDAF-SV5 391 697 716 440
GraphML 392 498 448 408

Hierarchical State Machine 1.0 378 530 458 370
Maven(maven.xml) 0.3 403 793 884 429

MoDAF0.1 398 753 783 400
QualityofService 376 458 481 398

DOT1.0 386 565 569 380
BibTexML1.2 379 F F 364

Table 4.3: A comparison with other well-automated tools: UML2CSP, EMF2CSP
and Echo. In this table, the same set of metamodels from Table 4.1 are used, and
an F denotes an individual tool that fails to translate a metamodel.

87

4.5
4.

G
E
N
E
R
A
T
IN

G
M
E
T
A
M
O
D
E
L
IN

S
T
A
N
C
E
S
S
A
T
IS
F
Y
IN

G
S
T
R
U
C
T
U
R
A
L

A
N
D

O
C
L
C
O
N
S
T
R
A
IN

T
S

350

375

400

425

450

475

500

525

550

575

600

625

650

675

700

725

750

775

800

825

850

875

900

5 10 15 20 25 30 35 40 45 50 55 60

T
ra

ns
la

tio
n

T
im

e
in

 M
ill

is
ec

on
ds

Metamodel Size (number of classes)

UML2CSP
EMF2CSP

Echo
ASMIG

Figure 4.14: A comparison with UML2CSP, EMF2CSP and Echo. Each point in this graph represents the translation
time that individual tool takes on a specific metamodel in Table 4.3. Note that only those metamodels that are
successfully translated by the tools listed in Table 4.3 are included.

88

4.6
4. GENERATING METAMODEL INSTANCES SATISFYING STRUCTURAL

AND OCL CONSTRAINTS

4.6 Summary

This chapter presents a novel approach that can generate metamdoel instances

by developing a bounded attributed type graph with inheritance (ATGIb), using

it as an intermediate representation and translating the universe (AGu) derived

from ATGIb to SMT2 formulas. These SMT2 formulas are solved by an SMT2

solver, and each successful assignment is interpreted back into an instance of

the original metamodel. This process has already been successfully automated

into a tool A Small Metamodel Instance Generator (ASMIG). ASMIG reads in

a metamodel in ecore format, along with a subset of OCL constraints, generates

a set of SMT2 formulas and uses an external SMT2 solver to find an assignment

for the SMT2 formulas. The results evaluated for ASMIG show the feasibility of

this approach. The comparison with other main approaches show ASMIG is a

promising tool that is capable of handling large size metamodels, a good amount

of OCL constraints and decent translation speed. However, this approach does

not consider any testing criteria for a metamodel, since a user may desire more

meaningful instances to test their metamodels. This leads to an extension of the

approach described in this chapter, directed towards producing more meaningful

metamodel instances.

89

Chapter 5

Generating Metamodel Instances

Satisfying Partition-Based

Coverage Criteria

An effective technique for generating instances of a metamodel should quickly and

automatically generate instances satisfying the metamodel’s structural and OCL

constraints. Ideally it should also produce quantitatively meaningful instances

with respect to certain criteria, that is, instances which meet specified generic

coverage criteria that help the modelers test or verify a metamodel at a general

level.

This chapter describes a technique that extends the approach described in

the previous chapter to produce such meaningful instances. This technique can

generate meaningful instances based on partition-based criteria which must be

provided by users 1. A set of translation rules have been developed to translate

these criteria to SMT2 formulas which are then solved by an SMT2 solver. Each

successful assignment is then interpreted as a metamodel instance that provably

satisfies a coverage criterion. This technique has been automated into our ASMIG

tool, and the results of our evaluation of ASMIG demonstrate its feasibility.

1Note: the partition-based coverage criteria used in this chapter must be manually provided
by the users.

90

5.1
5. GENERATING METAMODEL INSTANCES SATISFYING

PARTITION-BASED COVERAGE CRITERIA

5.1 Partition-based Coverage Criteria for Meta-

models

Equivalence partitioning is a standard approach to software testing that divides

data into equivalence classes, and seeks to ensure that test cases cover these

classes. This approach has been extended to UML class diagrams [Andrews et al.,

2003].

The coverage criteria defined for a UML class diagram can also be applied

to a metamodel, since a metamodel can be represented as a UML class diagram.

In particular, we are interested in the coverage criteria based on equivalence

partitioning defined by Andrews et al. These partition-based criteria that they

present are:

• Association-End Multiplicity coverage (AEM) which measures association

relationships defined between classes.

• Class attribute coverage (CA) which measures the set of representative

attribute value combinations in each instance of class.

AEM and CA are partition-based testing criteria which means that testing

results depend on the choice of a single value from each partition. All other values

are expected to yield the same results.

A metamodel typically describes the structural elements of classes using at-

tributes from some given types. For example, in Figure 5.1, the attribute

methodCount records the total number of methods contained in a class. The

CA coverage described for an attribute with an integer type could be achieved

using three partitions (< 0, = 0 and > 0) [Andrews et al., 2003]. Thus, to satisfy

the CA criterion for this metamodel a tester might wish to generate instances

with methodCount < 0, methodCount = 0 and methodCount > 0. One might

consider that methodCount should be always greater or equal to 0. In this case, a

specific value v (v > 0) can be chosen to form three partitions: methodCount < v,

methodCount = v andmethodCount > v, as this is shown in Section 5.2.1.1. The

implicit assumption is that any single value from one of the three partitions is

sufficient to test all other values from that partition.

91

5.2
5. GENERATING METAMODEL INSTANCES SATISFYING

PARTITION-BASED COVERAGE CRITERIA

Figure 5.1: A subset of a programming language metamodel, depicted using
bounded ATGI notation. The number in each circle represents the bound on
the number of instances for a particular class (2 and 3 for Class and Method
respectively).

The AEM coverage criterion for an association defines how instances can be

divided into partitions according to the association-end multiplicities defined for

two association-ends. Specifically, the number of partitions for AEM coverage is

calculated by taking the Cartesian product of the multiplicities defined for two

associations ends. For example, the binary association contains in Figure 5.1 has

multiplicities 1 and ∗ defined at each end of the association, specifying that a Class

can have multiple (including zero) Methods, but a Method belongs to exactly one

Class. Thus, the Cartesian product of {1} and {∗} is {(1, 0), (1,MAX)}. Here

MAX defines the maximum number of Methods that can be contained in a Class,

where this value can either be user-defined or default to the maximum integer

value. Thus, to satisfy the AEM criterion for the metamodel in Figure 5.1, two

instances are needed: one instance where a Class has no Methods and another

instance where a Class has the maximum number of Methods.

92

5.2
5. GENERATING METAMODEL INSTANCES SATISFYING

PARTITION-BASED COVERAGE CRITERIA

5.2 Using Partition Switches and Criterial For-

mulas for Partition-based Instance Genera-

tion

To extend the approach as described in Chapter 4, we introduce a partition

set P which contains all the features to be partitioned from the finite universe

(AGu). We use unquantified linear integer arithmetic (QF LIA), described in

Section 3.3.1.5), as a back-end theory for all generated SMT2 formulas, and limit

ourselves to metamodels with OCL constraints as described in 4.3.

The general form of a translation rule described in this chapter is captured

by the following template:

|P |
∧

i=1

|Pi|−1
∨

j=0

(Ti = Vj) ∧ Fi

where

• P is the set of features to be partitioned in the graph, and |P | is the

cardinality of this set.

• Pi is an element in the set P , either from VD or EG.

• |Pi| denotes the total number of partitions for Pi.

• Ti is a partition switch (explained below) for an element Pi in P , and it

ranges from 1 to |Pi|.

• Vj is an integer that ranges from 0 to |Pi| − 1.

• Fi is a criterial formula (explained below) that is used in conjunction with

the partition switch.

All translation rules described in this chapter consist of two elements: a par-

tition switch and a criterial formula (marked with blue colour in each translation

rule). The template for generating a partition switch for each partition created

for Pi is shown in Figure 5.2.

93

5.2
5. GENERATING METAMODEL INSTANCES SATISFYING

PARTITION-BASED COVERAGE CRITERIA

For every partition created for Pi, where Pi ∈ VD or EG, generates:
(declare− fun Ti()Int)
(assert (1 ≤ Ti ≤ |Pi|))
(assert ((Ti = Vj) ∧ Fi))
(assert (0 ≤ Vj ≤ |Pi| − 1))
where Ti is a partition switch for each partition created for Pi,
Vj is an integer and Fi is a criterial formula.

Figure 5.2: The SMT2 template for generating a partition switch used in each
translation rule.

A partition switch Pi determines when a particular partition is to be switched

on or off based on the integer value Vj. This implies that the value for Vj chosen

by an SMT2 solver determines which particular partition Pi is selected.

A criterial formula Fi determines how elements to be selected from the uni-

verse correspond to the particular partition Pi. In other words, Fi puts extra

constraints on the entire formula to specify how nodes and edges are appeared

in an instance to satisfy a partition. The conjunction between a partition switch

and a criterial formula guarantees that the criterial formula has to be applied on

a particular partition (if that partition is to be covered).

For different partition-based criteria, ensuring that the instances generated

by the SMT2 solver achieve those criteria, depends on criterial formulas in each

translation rule. These criterial formulas constrain nodes and edges in a graph,

and are described in the sections 5.2.1 and 5.2.2.

5.2.1 Class Attribute Partitioning

Achieving CA coverage requires that a test suite covers every partition created

for each attribute. Since a metamodel is represented using a bounded attributed

typed graph with inheritance (ATGIb), the set of attributes in each class cor-

responds to the set of data nodes in VD in the universe. Thus, partitioning an

attribute in a class is the same as partitioning a data node in a graph. The

criterial formulas determine what value is to be assigned for a data node.

The translation rule for a data node presented in Figure 5.3 contains criterial

formulas on two different types of attributes (data nodes): integer and boolean.

94

5.2
5. GENERATING METAMODEL INSTANCES SATISFYING

PARTITION-BASED COVERAGE CRITERIA

Md : VD → SMT2 constant

• when typeu(d) = Int generate:
(assert ((Ti = 0) ∧ (Md(d) < p)) ∨ ((Ti = 1) ∧ (Md(d) = p))
∨ ((Ti = 2) ∧ (Md(d) > p)))

• when typeu(d) = Bool generate:
(assert ((Ti = 0) ∧ (Md(d) = false)) ∨ ((Ti = 1) ∧ (Md(d) = true)))

Figure 5.3: The translation rule for data nodes that are integer and boolean type.
The criterial formulas in this translation rule are in blue colour.

As shown in Figure 5.3, a partition switch that has a value of 0, 1 or 2 is

created for each data node d that has an integer type. This indicates three

different partitions: > p, = p and < p. If no particular value is given, a value

p = 0 will be chosen as default. Our technique allows the selection of a single

integer to be chosen to divide an integer type attribute into three partitions.

These three partitions are directly translated into SMT2 formulas. Similarly,

a criterial formula for a boolean data node is formed except that the partition

switch is either 0 or 1, since a boolean value can only be true and false.

5.2.1.1 An Example of Attribute-based Partitions

As an example of how a criterial formula interacts with a data node, we take

the metamodel in Figure 5.1. In this metamodel the class called Class has

an integer type attribute methodCount denoting the total number of methods

contained in that class. The default strategy for an integer type attribute to

achieve 100% is that it uses three partitions: methodCount < 0, methodCount =

0 and methodCount > 0. However, this would conflict with the OCL invariant

which requires thatmethodCountmust not be a negative number. Thus, with the

default strategy only 66.6666% can be achieved. This is because methodCout < 0

cannot be chosen by the SMT2 solver. In order to satisfy both OCL invariant

and 100% coverage, we use a different strategy. We manually choose 3 as the

value to partition methodCount into the three partitions: methodCount < 3,

methodCount = 3 and methodCount > 3.

95

5.2
5. GENERATING METAMODEL INSTANCES SATISFYING

PARTITION-BASED COVERAGE CRITERIA

Given these constraints, the finite universe is formed from which the required

instances are derived as follows:

• VG = {class1, class2}

• VD = {methodCount1, methodCount2}

• ENA = {e1 = (class1, methodCount1), e2 = (class2, methodCount2)}

• typeu,VG
(class1) = Class, typeu,VG

(class2) = Class

• typeu,VD
(methodCount1) = Int, typeu,VD

(methodCount2) = Int

• b(Class) = 2

Here VG contains a set of graph nodes and ENA specifies a set of edges that

connects graph nodes to data nodes. This finite universe is typed over bounded

ATGI by a morphism typeu. According to the translation rules described in

Chapter 4 (rule 2 in Figure 4.3), every element in VD is translated into SMT2

constants based on its type. In this example, data nodes methodCount1 and

methodCount2 are translated into integer type SMT2 constants.

Now a partition set P = {P1, P2} is introduced where the elements P1 and P2

correspond to the data nodes methodCount1 and methodCount2. Two partition

switches are created, one each for P1 and P2, ranging from 0 to 2 to repre-

sent the three possible partitions (methodCount < 3, methodCount = 3 and

methodCount > 3). Each partition switch has a one-to-one mapping to a cri-

terial formula. Each mapping is conjoined with a criterial formula which puts

an extra constraint on each data node. Thus, the final formula generated is the

conjunction of the partition switches for P1 and P2, where

P1 = ((T1 = 0) ∧ (methodCount1 < 3))

∨ ((T1 = 1) ∧ (methodCount1 = 3))

∨ ((T1 = 2) ∧ (methodCount1 > 3)).

P2 = ((T2 = 0) ∧ (methodCount2 < 3))

∨ ((T2 = 1) ∧ (methodCount2 = 3))

∨ ((T2 = 2) ∧ (methodCount2 > 3)).

96

5.2
5. GENERATING METAMODEL INSTANCES SATISFYING

PARTITION-BASED COVERAGE CRITERIA

Figure 5.4: Three instances are needed to achieve a maximum class attribute
coverage for the class Class in the metamodel from Figure 5.1.

The disjunction inside P1 and P2 makes sure that at least one of the partitions

is selected for each instance, and thus at least three instances must be found

by the SMT2 solver to achieve 100% coverage for class attribute methodCount.

Figure 5.4 shows the output generated by our tool in this case, depicting the three

instances. These three instances show that the three partitions (methodCount <

3, methodCount = 3 and methodCount > 3) for the integer type attribute

methodCount have been covered.

5.2.2 Association-End Multiplicity Partitioning

Associations between classes are an important part of a metamodel, and it is

desirable that generated instances should cover these associations in some mean-

ingful way. Andrews et al. have defined an Association-End multiplicity (AEM)

coverage criterion for UML class diagrams [Andrews et al., 2003], and this sec-

tion shows how this can be extended to metamodels and incorporated into a new

approach.

To implement AEM coverage, criterial formulas (in each translation rule) cor-

responding to the most frequently used association types defined in a metamodel

are specified. These criterial formulas determine how each graph node in an in-

stance are linked to others. In the finite universe (AGu, typeu), all the possible

edges from one graph node to another are stored in the set EG (graph edges). To

constrain a particular association, a subset of edges are extracted from EG and a

translation rule is applied.

In order to facilitate the translation to SMT2 formulas, a 2D-arrayEref is used

to encode the set of edges between two typed graph nodes A and B as described

97

5.2
5. GENERATING METAMODEL INSTANCES SATISFYING

PARTITION-BASED COVERAGE CRITERIA

in section 4.2.2. The rows (Erow) of Eref encode all links from one instance of A

to one instance of B, and the columns (Ecol) encode all links from one instance

of B to one instance of A.

5.2.2.1 Partitioning Unidirectional Associations

Figure 5.5 summarises the translation rules for three different kind of unidirec-

tional associations from a class A to a class B. For each association pattern in

Figure 5.5, there is a partition switch in each translation rule that is 0 or 1 indi-

cating that the association is divided into two partitions. For example, rule 1 in

Figure 5.5 states that when the partition switch T1 is set to the value 0, no edge

encoded by ei,j is chosen, and when T1 is set to the value 1 only one ei,j is chosen,

which indicates that the edge between each instance of A and B is allowed to

be presented. The second and third association pattern have a multiplicity of ∗

which indicates that multiple instances of B are allowed to be associated with an

instance of A.

The partitions must know the exact k number of instances of B that can be

associated with an instance of A. To capture this information, we introduce a

new auxiliary 2D-array (Aux), where each element in that array is an integer-

type SMT2 constant which is called an auxiliary constant Auxi,j . Each auxiliary

constant can only have a value of either 1 or 0. If Auxi,j is assigned a value of 1,

ei,j is then selected. If Auxi,j is assigned a value of 0, ei,j is disabled.

To understand how the auxiliary array in the translation rules works, consider

rule 2 as an example. Suppose we assign bounds 3 and 5 to the classes A and B.

According to the translation rules described in section 4.2.2, a 2D-array (ref) in

Figure 5.7 can be formed to represent all possible links between an instance of

A and an instance of B. In the meanwhile, we also create an auxiliary 2D-array

(Aux) which has the same size as ref . However, every entry in Aux is an SMT2

integer constant. This array is shown in Figure 5.7. Each Auxi,j in this array can

only have a value of either 1 or 0. A value of 1 indicates that a corresponding ei,j

from ref is selected otherwise ei,j is not chosen. For illustration purpose, in this

example, we choose k = 3. Applying translation rule 2, this generates a series of

summation equations from each row of Aux, and each equation is either equal to

98

5.2
5. GENERATING METAMODEL INSTANCES SATISFYING

PARTITION-BASED COVERAGE CRITERIA

Association Pattern
Translation Rule

(Unidirectional)

(1) ((T1 = 0) ∧
|Erow|
∧

i=1

|Ecol|
∨

j=1

¬ei,j)

∨ ((T1 = 1) ∧ (
|Erow|
∧

i=1

(
|Ecol|
∨

j=1

(
|Ecol|
∧

k=1

k 6= j → ¬ei,k) ∧ ei,j)))

(2) ((T1 = 0) ∧
|Erow|
∧

i=1

(
|Ecol|
∑

j=1

Auxi,j) = 1)

∨ ((T1 = 1) ∧
|Erow|
∧

i=1

(
|Ecol|
∑

j=1

Auxi,j) = k ∧ |Ecol| > 1)

where 1 < k ≤ |Ecol|

(3) ((T1 = 0) ∧
|Erow|
∧

i=1

|Ecol|
∨

j=1

¬ei,j)

∨ ((T1 = 1) ∧
|Erow|
∧

i=1

(
|Ecol|
∑

j=1

Auxi,j) = k ∧ |Ecol| ≥ 1)

where 1 ≤ k ≤ |Ecol|

Figure 5.5: Translation rules for graph edges typed over the edges in ATGIb that
represent unidirectional associations. The criterial formulas in translation rule
are marked in blue colour.

99

5.2
5. GENERATING METAMODEL INSTANCES SATISFYING

PARTITION-BASED COVERAGE CRITERIA

ref =

b1 b2 b3 b4 b5
a1 e1,1 e1,2 e1,3 e1,4 e1,5
a2 e2,1 e2,2 e2,3 e2,4 e2,5
a3 e3,1 e3,2 e3,3 e3,4 e3,5

Figure 5.6: The 2D-array representing the second association pattern in Figure
5.5.

Aux =

b1 b2 b3 b4 b5
a1 Aux1,1 Aux1,2 Aux1,3 Aux1,4 Aux1,5

a2 Aux2,1 Aux2,2 Aux2,3 Aux2,4 Aux2,5

a3 Aux3,1 Aux3,2 Aux3,3 Aux3,4 Aux3,5

Figure 5.7: The auxiliary 2D-array created for capturing information about the
exact number of instances of B that an instance of A can be associated with.
Each Auxi,j is an SMT2 integer constant.

1 or 3. For example, Figure 5.8 shows the resulting formula from the first row of

ref . Thus, translation rule 2 precisely captures the meaning of two partitions:

each instance of A is associated with exactly one instance of B and each instance

of A is associated with multiple instances of B.

Figure 5.9 shows a possible assignment for each entry in the Aux array. The

summation from each row in Aux here is 3. This indicates that each instance of

A is associated with exactly three instances of B. This information is reflected

back to the original 2D-array (ref). For example, if Aux1,2 is assigned to a value

of 1, then e1,2 in ref is also selected. This represents a link between a1 and b2 is

established.

Therefore, each auxiliary array (Aux) used in the translation rules in Figure

5.5 controls the exact k number of the instances of B associated with an instance

of A by writing the formula as a summation of a selection of values in Auxi,js. To

cover a partition, the upper bound of k is constrained by |Ecol|, the bound on the

number of instances of B. We also allow users to constrain any number between 1

and Ecol for other usages such as generating instances that have a specific number

((Aux1,1 + Aux1,2 + Aux1,3 + Aux1,4 + Aux1,5) = 1)
∨((Aux1,1 + Aux1,2 + Aux1,3 + Aux1,4 + Aux1,5) = 3)

Figure 5.8: The resulting formula for the first row of the array ref .

100

5.2
5. GENERATING METAMODEL INSTANCES SATISFYING

PARTITION-BASED COVERAGE CRITERIA

Aux =

b1 b2 b3 b4 b5
a1 0 1 0 1 1
a2 1 0 1 0 1
a3 0 1 1 1 0

Figure 5.9: An example of a possible assignment found by an SMT2 solver for
array ref in Figure 5.7.

of links. Thus, rule 3 in Figure 5.5 also captures two partitions: each instance of

A is associated with zero instance of B and each instance of A is associated with

one or more instances of B.

5.2.2.2 Partitioning Bidirectional Associations

The translation rules used for bidirectional association are similar to those for uni-

directional associations except that the maximum possible number of instances

of B that each instance of A can connect to, must be calculated. Figure 5.10

summarises the translation rules for the most commonly used bidirectional as-

sociations. The partition switch T1 in each translation rule selects between two

criterial formulas indicating that each bidirectional association pattern is parti-

tioned into two.

The first and second criterial formulas for the first association pattern (1:0..1)2

specifies that either no instances or one instance ofB is connected to an instance of

A. The first criterial formula for the second association pattern (1:1..∗) is similar

to the one used for unidirectional associations. However, for the second criterial

formula the maximum possible number of instances of B that an instance of A

can connect to needs to be calculated. That is the upper bound of this number

k. This is computed by calculating the difference between the bound of B and

the bound of A, and adding 1. Since |Erow| specifies the bound of A while |Ecol|

gives the bound of B, to understand how to calculate the upper bound of k, we

consider the following three scenarios:

• |Ecol| = |Erow|, meaning that we have an equal number of instances of A

and B. Since the multiplicities for two association-ends (1 and 1..∗) state

2We use x:y to denote the multiplicities x and y at two association-ends.

101

5.2
5. GENERATING METAMODEL INSTANCES SATISFYING

PARTITION-BASED COVERAGE CRITERIA

Association Pattern
Translation Rule

(Bidirectional)

(1) ((T1 = 0) ∧
|Erow|
∧

i=1

|Ecol|
∨

j=1

¬ei,j)

∨ ((T1 = 1) ∧
|Erow|
∨

i=1

(
|Ecol|
∑

j=1

Auxi,j) = 1)

(2) ((T1 = 0) ∧
|Erow|
∨

i=1

(
|Ecol|
∑

j=1

Auxi,j) = 1)

∨ ((T1 = 1) ∧
|Erow|
∨

i=1

(
|Ecol|
∑

j=1

Auxi,j) = k) ∧ |Erow| < |Ecol|

where 1 < k ≤ |Ecol| − |Erow|+ 1

(3) ((T1 = 0) ∧
|Erow|
∧

i=1

|Ecol|
∨

j=1

¬ei,j)

∨ ((T1 = 1) ∧
|Erow|
∨

i=1

(
|Ecol|
∑

j=1

Auxi,j) = k) ∧ |Erow| ≤ |Ecol|

where 1 ≤ k ≤ |Ecol| − |Erow|+ 1

Figure 5.10: Translation rules for graph edges typed over the edges in ATGIb that
represent bidirectional associations. The criterial formulas in each translation rule
are marked in blue colour.

that one instance of A must be connected to at least one instance of B,

and one instance of B can only be linked to one instance of A, this scenario

now implies that each instance of A connects each instance of B, and vice

versa. Thus, the maximum number of instances of B that an instance of A

can connect to is k = 1.

• |Ecol| > |Erow|, meaning that we have more instances of B than A. Every

instance of A is first connected to one instance of B, and every instance of B

connects to only one instance of A. Now, the remaining number of instances

of B is added to one of the existing connections between an instance of A

and and instance of B, where any link that has already been established

must be counted (k = |Ecol| − |Erow| + 1). Thus, k gives the maximum

number of B’s that one of the instances of A can connect to.

• |Ecol| < |Erow|, meaning that we have less instances of B than A. How-

102

5.2
5. GENERATING METAMODEL INSTANCES SATISFYING

PARTITION-BASED COVERAGE CRITERIA

Aux =

b1 b2 b3 b4 b5
a1 1 0 0 1 1
a2 0 0 1 0 0
a3 0 1 0 0 0

Figure 5.11: An example of an assignment found by an SMT2 solver for an
association between two classes A and B, where the bounds for A and B are
manually allocated and they are 3 and 5, respectively. In this example an instance
of A is linked with a maximum of 3 instances of B. Since the sum of each column
is 1, an instance of B is only connected to a single instance of A.

ever, this scenario violates the constraint implied by the association-end

multiplicities, and is thus ruled out.

Thus, in both possible cases the minimum number of instances of B has to

be equal to the number instances of A. Figure 5.11 shows an example where one

instance of A can connect to at most 3 instances of B. The bounds for A and B

is manually allocated here.

The third association pattern (1:∗) in Figure 5.10 has a criterial formula that

combines the first criterial formula from the first association-pattern with the

second criterial formula from the second association-pattern. Users can specify

the exact number of links for an association between 1 and |Ecol| − |Erow| + 1,

since the lower bound for this association is captured by the first sub-formula in

rule 3.

5.2.3 Better Control of Instance Enumeration

With respect to the coverage criteria presented in previous sections, we devise a

way to reduce the number of instances during the enumeration. We first group

partition switches that have the same number of partitions, and then apply For-

mula 5.1 to block unnecessary assignments. To group them together, we store

every partition switch in a hash table, indexed by their number of partitions.

Then we apply Formula 5.1 on each group of switches. The first sub-formula in

Formula 5.1 indicates that every partition switch that has the same number of

partitions must be equal to each other. This allows us to achieve the coverage

criteria partitions by partitions. The second sub-formula indicates that it is also

103

5.2
5. GENERATING METAMODEL INSTANCES SATISFYING

PARTITION-BASED COVERAGE CRITERIA

2 T1, T2, T3, T4

3 T5, T6

Table 5.1: Partition switches are grouped by the number of partitions

possible for switches that have the same number of partitions to have different

combinations. This allows us to achieve the coverage criteria using a combina-

tion of partitions. Finally, we conjoin all the formulas from each group to have a

combination of partition switches that have different partitions.

(
n−1
∧

i=1

Ti = Ti+1) ∨ (
n−1
∧

i=1

Ti 6= Ti+1), where n > 2. (5.1)

To understand how this works, please consider the following example:

Suppose a total of six partition switches (T1, T2, T3, T4, T5, T6) were created,

four of them (T1, T2, T3, T4) have two partitions and two of them (T5, T6) have

three partitions. We first group those six partition switches, as in Table 5.1, by

their partitions. Then we apply Formula 5.1 to these two groups. This results in

the following formulas:

f1 = ((T1 = T2)∧(T2 = T3)∧(T3 = T4))∨((T1 6= T2)∧(T2 6= T3)∧(T3 6= T4))

f2 = (T5 = T6) ∨ (T5 6= T6)
3

We observe these formulas, not every assignment that makes f1 and f2 sat-

isfiable is possible now. For example, T1, T2, T3, T4 can have a total of sixteen

possible assignments (T1 ∨ T2 ∨ T3 ∨ T4). However, after applying Formula 5.1,

only four possible assignments are left. These four possible assignments are listed

in Table 5.3. The first two assignments satisfy the first sub-formula of Formula

5.1, and the remaining two satisfy the second sub-formula. Thus, by applying

Formula 5.1, we block twelve other possible assignments. Furthermore, the first

two assignments achieve full coverage via partitions. The last two assignments

achieve full coverage via a combination of partitions. Therefore, by enumerat-

ing these four possible assignments, we can cover all the partitions for partition

switches (T1,T2,T3 and T4) in two different ways.

3Note that when there are only two partition switches (Ti and Tj), we use formula (Ti =
Tj) ∨ (Ti 6= Tj).

104

5.4
5. GENERATING METAMODEL INSTANCES SATISFYING

PARTITION-BASED COVERAGE CRITERIA

T1 T2 T3 T4

1 1 1 1
2 2 2 2
1 2 1 2
2 1 2 1

Table 5.2: Four possible assignments for formula f1. Here, 1 and 2 denote two
different partitions.

T1 T2 T3 T4 T5 T6

1 2 1 2 3 2

Table 5.3: One possible assignment for formula f1 and f2. Here, 1, 2 and 3 denote
three different partitions.

Finally, in order to have a different combination from partition switches that

have different partitions, we conjoin the two formulas (f1∧f2) and feed the entire

formula to an SMT2 solver. For example, Table 5.3 shows one possible assignment

for all partition switches (T1, T2, T3, T4, T5, T6).

5.3 An Example of Achieving CA and AEM Cov-

erage Criteria

To demonstrate partition-based generation, we use a subset of the Ecore meta-

model as depicted in Figure 5.12 [Steinberg et al., 2008]. This metamodel de-

scribes the relationships among EPackage, EClass, EAttribute, and EOperation

in the Ecore metamodel. The bound for each non-abstract class is shown as a

number in a circle.

In order to achieve the maximum coverage for both CA and AEM , the trans-

lation rules described in section 5.2 are applied to this metamodel, and result in

a total of 8 instances. Thus, one can conclude that only 8 instances are needed to

achieve the full coverage of CA and AEM for this metamodel. These 8 instances

cover a range of combinations from different partition switches defined during the

translation to SMT2 formulas. For example, two of the instances in Figure 5.13

and 5.14 show a combination of different partitions from different associations

and attributes defined in the metamodel.

105

5.4
5. GENERATING METAMODEL INSTANCES SATISFYING

PARTITION-BASED COVERAGE CRITERIA

Figure 5.12: A subset of the Ecore metamodel showing the relationship between
EPackage, EClass, EAttribute, EReference and EOperation, where a bound
for each non-abstract class is depicted as a number in a circle.

Figure 5.13: In this generated instance of the Ecore metamodel of Figure 5.12, at
least one EClass instance is associated with a maximum number of EAttribute,
EOperation and EReference instances.

106

5.4
5. GENERATING METAMODEL INSTANCES SATISFYING

PARTITION-BASED COVERAGE CRITERIA

Figure 5.14: In this generated instance of the Ecore metamodel of Figure 5.12,
each EClass instance is associated with a maximum number of other instances
(EAttribute, EOperation and EReference) according to the bound defined on
each class in metamodel.

5.4 Evaluation

To effectively evaluate the technique described in this chapter, we have imple-

mented it in our tool (ASMIG), and a list of metamodels have been collected for

testing purpose. This section presents the results from our evaluation for ASMIG.

5.4.1 Implementation

The ASMIG tool has been extended by adding a new component that caches a

set of formulas representing associations in a metamodel (as can be seen in Figure

1.4). The cached formulas are used when ASMIG generates the partition switches

and criterial formulas for each translation rule. Finally, the newly generated for-

mulas (partition switches and criterial formulas) are conjoined with the formulas

described in Chapter 4, and input to the SMT2 solver.

5.4.2 Results

The evaluation for ASMIG for partition criteria are conducted on a machine with

a Intel Core 2 Duo (E7500) CPU 2.93GHz, and a 4GB memory. The results

are shown in Table 5.4. We use the same set of metamodels from Table 4.1

except that we replaced two of them (C and DoDAF-SV5) with Ant and HTML

as most of the associations in C and DoDAF-SV5 metamodels are 1:1 which

are not helpful for testing our partition-based criteria instance generation. To

107

5.4
5. GENERATING METAMODEL INSTANCES SATISFYING

PARTITION-BASED COVERAGE CRITERIA

apply ASMIG to these metamodels, an appropriate bound for each class in a

metamodel is calculated. The total bounds, as listed in Table 5.4 indicates the

sum of each bound allocated for each non-abstract class of a metamodel. The

bound for each class is automatically calculated by using linear integer arithmetic

theory. 0 is manually chosen as a default value for three partitions (< 0,= 0 and

> 0) for each integer type class attribute. For the Association-End Multiplicity

criterion (AEM), a minimum of 3 connected instances is chosen to show multiple

connections for an association that have a ∗ as one of the association ends. We

choose 3 because we consider it can give us a relatively reasonable size of a graph

and it can also facilitate anyone to validate visually.

To analyse the factors that affect the translation time, we use a similar ap-

proach as described in section 4.5.2. We define the size of a metamodel as the

number of classes in a metamodel. We define it in this way because a metamodel

with a larger number of classes is more likely to have a complex structure. We

then plot a graph for translation time against different sized metamodels from

Table 5.4 in Figure 5.15.

Through analysing Figure 5.15 and Table 5.4 together, we note that the

translation time is not affected by a single factor. In fact, it is affected by

three factors: the size of a metamodel, the number of associations and the num-

ber of attributes. A smaller metamodel with more associations and attributes,

ASMIG might need more time for translation than a larger metamodel with

less associations and attributes. This is because each association and attribute

needs to be additionally constrained in order to achieve partition-based cover-

age criterion. For example, the metamodel HTML has more classes than the

UML2 Class Diagram metamodel, but ASMIG spends much more time on

translating the UML2 Class Diagram metamodel than HTML because the

UML2 Class Diagram has 26 associations and 46 attributes while HTML only

has 7 associations and no attributes. Therefore, translation time from a meta-

model to formulas depends on its size, associations and attributes.

The average finding time indicates average instance enumeration for each

metamodel and it mainly depends on the total bounds defined for a metamodel.

The total instances indicates the number of instances needed for achieving full

coverage for CA and AEM criteria. As can be seen, the metamodels with no

108

5.4
5. GENERATING METAMODEL INSTANCES SATISFYING

PARTITION-BASED COVERAGE CRITERIA

attributes are covered by 4 instances. This is because the associations of those

metamodels are partitioned into two partitions, each partition is covered by one

instance, plus extra two instances for a combination of partitions (as this is shown

in the example in section 5.2.3). The metamodels with attributes need more in-

stances to achieve a full CA and AEM coverage separately, and a combination

of both. All instances generated for each metamodel in Table 5.4 are available at

our website4.

4http://www.cs.nuim.ie/∼haowu/ASMIG/Results/PartitionBased

109

5.4
5. GENERATING METAMODEL INSTANCES SATISFYING

PARTITION-BASED COVERAGE CRITERIA

470

495

520

545

570

595

620

645

670

695

720

745

770

795

820

845

870

895

920

945

970

5 20 35 50 65 80 95 110 125 140 155 170 185 200 215 230 245

T
ra

ns
la

tio
n

T
im

e
in

 M
ill

is
ec

on
ds

Metamodel Size (number of classes)

Figure 5.15: Translation time affected by different sized metamodel in Table 5.4.
Each point in this graph represents the translation time that ASMIG takes on a
specific metamodel from Table 5.4.

110

5.4
5.

G
E
N
E
R
A
T
IN

G
M
E
T
A
M
O
D
E
L
IN

S
T
A
N
C
E
S
S
A
T
IS
F
Y
IN

G
P
A
R
T
IT

IO
N
-B

A
S
E
D

C
O
V
E
R
A
G
E

C
R
IT

E
R
IA

Number of Total Time in ms
Metamodel Classes Assocs Attribs Bounds Instances Translation Avg Finding
Ant 5 48 27 0 56 4 673ms 71ms
Company 6 7 6 6 13 12 487ms 36ms
C++ 1.0 5 16 4 5 20 8 499ms 22ms
Java 9 233 104 1 183 8 971ms 2629ms
Royal&Loyal 7 15 41 2 40 8 535ms 65ms
Finite State Machine 1.0 5 16 7 0 16 4 485ms 30ms
Ecore 8 22 40 0 31 4 585ms 195ms
UML2 Class Diagram 8 40 26 46 35 8 721ms 966ms
Web App: Conceptual
Model5

19 24 0 25 4 505ms 45ms

KM3 5 12 7 0 16 4 490ms 40ms
Business Process Model 5 26 15 0 28 4 511ms 63ms
CPL1.0 5 32 16 0 38 4 513ms 90ms
GraphML 5 11 13 2 20 8 496ms 53ms
Hierarchical State Machine
1.0 5

15 16 0 33 4 510ms 72ms

Maven(maven.xml) 0.3 5 58 32 0 65 4 539ms 108ms
MoDAF0.1 5 48 35 0 70 4 531ms 76ms
QualityofService 5 24 26 0 37 4 502ms 69ms
DOT1.0 5 26 20 0 21 4 512ms 50ms
BibTexML1.2 5 28 4 0 18 4 510ms 28ms
HTML 5 59 7 0 59 4 673ms 1562ms

Table 5.4: Results of 20 metamodels for evaluating partition-based instance generation, and all instances were
automatically generated by the ASMIG tool.

111

5.5
5. GENERATING METAMODEL INSTANCES SATISFYING

PARTITION-BASED COVERAGE CRITERIA

5.5 Summary

This chapter describes our unique technique for generating instances that achieves

partition-based criteria. This technique introduces the concepts of a switch par-

tition and criterial formula. A set of translation rules have been developed based

on these two concepts. The partition switch controls which particular partitions

are selected, and a criterial formula manages the instance corresponds to a partic-

ular partition. The translation rules are successfully implemented into a ASMIG

tool, and evaluation results show the feasibility of this technique on different size

of metamodels.

5available at: http://www.emn.fr/z-info/atlanmod/index.php/Ecore
6simple example similar to Figure 4.2, available at website
7from Eclipse Modeling Framework Royal and Loyal Example Project
8extracted from Eclipse Modeling Framework
9available at: http://www.jamopp.org/index.php/JaMoPP Download

112

Chapter 6

Generating Metamodel Instances

Satisfying Graph-Based Criteria

The technique presented in the previous chapter will help testers to enumerate

instances that contribute to partition based coverage. However, partition-based

instance generation is not enough, as a tester may seek an instance that can be

used beyond coverage contribution. In particular, testers may want instances

(programs) from a general purpose or domain specific metamodel, and use these

instances for testing tools such as compilers, formatters, refactoring tools, metrics

calculators, etc.

For example, consider the metamodel in Figure 6.1. This presents a subset of

a Java programming language metamodel capturing the language features class,

method and fields. [Heidenreich et al., 2010a]. A tester may require a metamodel

instance generator to generate a valid Java program with a particular call depth

for testing Java compilers or a particular value of a cohesion metric for testing

metric calculators.

Generating this type of instance is the same as generating instances that have

specific graph properties, since we represent our metamodel in a bounded graph

(ATGIb). Thus, in order to achieve such instance generation, we present another

unique technique that encodes common graph-based properties into SMT2 formu-

las according to different scenarios. With this technique, it is possible to generate

metamodel instances beyond coverage contribution. This technique has already

113

6.1
6. GENERATING METAMODEL INSTANCES SATISFYING

GRAPH-BASED CRITERIA

Figure 6.1: A subset of the Java metamodel representing relationships between
classes and their members, which are fields or methods.

been implemented into our ASMIG tool, and our evaluation of the ASMIG tool

demonstrates the feasibility of this technique.

Recall that we represent a metamodel as a bounded graph (ATGIb) and trans-

late the finite universe (AGu) to SMT2 formulas via a set of translation rules

described in sections 4.2.1 and 4.2.2. This includes our encoding of possible links

for a particular association into a 2D-array (every entry is an SMT2 boolean

constant). It is possible to manipulate this 2D-array to form new formulas that

can express how graph nodes are connected to each other. Note that formu-

las 6.1 through 6.5, described in this chapter are translation rules for encoding

graph-based properties according to different scenarios.

6.1 Directed Acyclic Graphs

Directed acyclic graphs (DAGs) are commonly used in many areas, for example,

the topology of a network, data flow diagrams, etc. Regarding metamodeling,

one may require a program to have a particular depth of inheritance tree, or a

particular call depth. Thus, to ensure the generation of a DAG from a reflexive

114

6.2
6. GENERATING METAMODEL INSTANCES SATISFYING

GRAPH-BASED CRITERIA

Figure 6.2: A DAG with all nodes in one line.

association in a metamodel, we only enable the elements that are in the upper

triangle of the 2D-array, and disable the rest of the ei,js in the 2D-array, breaking

all the cycles in the graph. Our approach is similar to the one used in [Shlyakhter,

2007], but differs by the addition of quantitative constraints, as expressed in the

following formula:

(
|Q|
∨

i=1

Qi) ∧ (
|Erow|−1
∧

i=1

((
|Ecol|
∨

j=1

ei,j) → (
|Erow|
∧

k=i+1

¬ek,j))) (6.1)

The longest path length that a DAG (contains at least one node) can contain

is never greater than b(N) − 1, where N is a graph node. To see why this is

b(N)− 1:

Suppose we have a DAG with |V | nodes, where V is the set of nodes and

|V | ≥ 1. The longest path length varies between 0 and |V | − 1. Because for a

fully connected DAG, one can always organise the nodes from this DAG into a

line shape. All nodes are connected and the edges between two nodes going to the

same direction. This also illustrates with the Figure 6.2. We know the number

of nodes can be calculated from bound function b(N). Therefore, b(N)− 1 is the

longest path length a DAG can possibly contain.

Since the number of elements in the upper triangle of the 2D-array is finite, we

compute every possible path that has this particular length by iterating through

every element in the upper triangle of the 2D-array, and save them into a set Q.

Each element (Qi) in Q is a conjunction over a subset of edges extracted from

2D-array, and it encodes a possible path to be selected by the SMT2 solver. Thus,

the disjunction in Formula 6.1 ensures the selection of at least one possible path

from the set Q.

To guarantee that every graph found contains a particular path length, we

add an extra formula specifying that when some elements from a row in the

triangle are selected then nothing from the rows below can be chosen. As before,

Erow and Ecol in formula 6.1 are used to capture the rows and columns of the

upper-triangular 2D-array.

115

6.2
6. GENERATING METAMODEL INSTANCES SATISFYING

GRAPH-BASED CRITERIA

6.2 Sharing and Non-Sharing Nodes

The association multiplicities defined on a metamodel constrains how the nodes

are linked. However, a user may wish to specify the connectivity of each node in

a metamodel instance to achieve a particular shaped graph for some situations

such as measuring cohesion metrics. In order to facilitate instance generation

with such properties, we introduce the following new properties.

In a graph, some nodes can have their out-going edges all going to the same

nodes and some do not. We consider these nodes having sharing and non-sharing

properties. Sharing and non-sharing properties can only be applied to a non-

reflexive association. Before we precisely define sharing and non-sharing proper-

ties, we first define two functions (f and g).

1. Function f is an out-adjacency function (Adj+) that computes a set of graph

nodes from all out-going edges of a particular graph node. f : VG → 2VG,

where VG is the set of graph nodes, and 2VG is the power set of VG.

2. Function g is an in-adjacency function (Adj−) that computes a set of graph

nodes from all in-coming edges of a particular graph node: g : VG → 2VG,

where VG is the set of graph nodes, and 2VG is the power set of VG.

With functions f and g, we are able to calculate a set of nodes based on their

in-coming and out-going edges. Now we can use these two functions to define the

following sharing and non-sharing properties:

• A set of graph nodes S = {N1, N2, ..., Nj}, where |S| ≥ 2 are said to be

strong sharing nodes iff (
j
⋂

i=1

f(Ni)) 6= ∅, ∀Sx ∈
j
⋃

i=1

f(Ni) and g(Sx) ⊆ S.

• A set of graph nodes S = {N1, N2, ..., Nj}, where |S| ≥ 2 are said to be

weak sharing nodes iff (
j
⋂

i=1

f(Ni)) 6= ∅, ∃Sx ∈
j
⋃

i=1

f(Ni) and S ⊂ g(Sx).

• A set of graph nodes S = {N1, N2, ..., Nj}, where |S| ≥ 2 are said to be

strong non-sharing nodes iff ∀Ni ∈ S, |f(Ni)| = 1 and f(Na) ∩ f(Nb) = ∅,

where 1 ≤ a < b ≤ j.

116

6.2
6. GENERATING METAMODEL INSTANCES SATISFYING

GRAPH-BASED CRITERIA

Figure 6.3: An example of sharing nodes in a graph

Figure 6.4: An example of non-sharing nodes in a graph

• A set of graph nodes S = {N1, N2, ..., Nj}, where |S| ≥ 2 are said to be

weak non-sharing nodes iff ∀Ni ∈ S, |f(Ni)| > 1 and f(Na) ∩ f(Nb) = ∅,

where 1 ≤ a < b ≤ j.

To understand these concepts, we use two examples to illustrate sharing and

non-sharing properties. In Figure 6.3, a solid line is used to denote the existing

links and a dashed line is used to represent possible links. The set of nodes

n1 and n2 (with solid lines) are considered as strong sharing nodes since their

both out-adjacency functions return n3 (f(n1) = f(n2) = {n3}), and n3’s in-

adjacency function returns n1 and n2 (g(n3) = {n1, n2}) . In other words, n3

can only be accessed by both n1 and n2 and no other nodes. However, if a link

from n4 to n3 is connected, then the set of nodes n1 and n2 are regarded as weak

sharing nodes because n3’s in-adjacency function this time returns three nodes:

g(n3) = {n1, n2, n4}. Thus, the set of nodes n1, n2 and n4 are considered as

strong sharing nodes (f(n1) ∩ f(n2) ∩ f(n4) = n3), and g(n3) ⊆ {n1, n2, n4}).

Similarly, in Figure 6.4 the solid lines between nodes n1, n2 and n4, n5 make

the set of nodes n1 and n4 strong non-sharing nodes in the graph (|f(n1)| =

|f(n4)| = 1, and f(n1) ∩ f(n4) = ∅). If n1 also connects to n3 (a possible link),

and n4 connects to n6, then the set of nodes n1 and n2 are weak non-sharing

nodes, since they all connect to more than one other node (|f(n1)| = |f(n4)| > 1).

Since all possible links are encoded in the 2D-array (as described in section

117

6.2
6. GENERATING METAMODEL INSTANCES SATISFYING

GRAPH-BASED CRITERIA

a1 a2 a3 a4
b1 e1,1 e1,2 e1,3 e1,4
b2 e2,1 e2,2 e2,3 e2,4
b3 e3,1 e3,2 e3,3 e3,4

Figure 6.5: An example of transposed 2D-array for illustrating sharing and non-
sharing properties.

4.2.2) and each element in the 2D-array is an SMT2 constant that encodes an

edge, sharing and non-sharing nodes indicate that all the edges encoded by SMT2

constants in the array may have out-going edges going to the same set of nodes

(encoded by SMT2 constants) or not. In order to help readers visualise these

properties, we first transpose our 2D-array and interpret the column of the 2D-

array as all out-going edges from one particular graph node to other nodes. For

example, Figure 6.5 shows an array has been transposed with columns that denote

all out-going edges from a′s to b′s. For example, in column 1, e1,1 indicates an

out-going edge from a1 to b1.

Formulas 6.2 to 6.5 are used to constrain the 2D-array in order to get a

specific sharing or non-sharing property. In each formula, the set L contains a

list of column numbers of the 2D-array. We use this L to denote a set of graph

nodes to be assigned with one of the four properties, and Lk denotes the kth

element in this set. For example, L = {1} indicates that the first element (L1)

specifies a graph node in the first column from 2D-array, and that is graph node

a1 in Figure 6.5. Additionally, we require that |L| ≥ 2 because we need sharing

and non-sharing property can only be applied to at least two nodes.

Formula 6.2 specifies the strong sharing property. The first sub-formula indi-

cates that a set of nodes must share some common nodes by listing all possible

choices while the second sub-formula turns off all other nodes which are not spec-

ified in L. To understand how this works, we use the array in Figure 6.5 as an

example. Suppose we want to give strong sharing property to nodes: a1 and a4

(L = {1, 4}). This indicates that at least one of the b′s must be shared by them.

For example, e1,1 and e1,4 could be selected at the same time or e2,1 and e2,4 are

chosen ((e1,1 ∧ e1,4)∨ (e2,1 ∧ e2,4)). This represents that a1 and a4 they both have

out-going edges to b1 or b2. This is captured by the first sub-formula in Formula

118

6.2
6. GENERATING METAMODEL INSTANCES SATISFYING

GRAPH-BASED CRITERIA

6.2. Now, suppose e1,1 and e1,4 are selected, then anything between them cannot

be selected otherwise they are not strong sharing nodes. Thus, e1,2 and e1,3 are

disabled when e1,1 and e1,4 are selected ((e1,1 ∧ e1,4) → (¬e1,2 ∧ ¬e1,3)). This is

captured by the second sub-formula in Formula 6.2.

For the weak sharing property, Formula 6.3 is similar to Formula 6.2 except

that we drop the second sub-formula. Instead, we add a formula that states that

at least one of the a′s not specified in L can be linked to the b′s. Considering

the example in Figure 6.5, when e1,1 and e1,4 are both selected, e1,2 or e1,3 can

possibly be selected as well ((e1,1 ∧ e1,4) ∧ (e1,2 ∨ e1,3)). This means that a graph

node can also be shared by other nodes.

(

|Erow|
∨

i=1

|L|
∧

k=1

ei,Lk
) ∧ (

|Erow|
∧

i=1

(

|L|
∧

k=1

ei,Lk
→

|Ecol|
∧

j=1,j /∈L

¬ei,j)) (6.2)

|Erow|
∨

i=1

|L|
∧

k=1

ei,Lk
∧

|Erow|
∧

i=1

|Ecol|
∨

j=1,j /∈L

ei,j (6.3)

A similar approach is used for generating strong and weak non-sharing nodes

in the graph, and these constraints are encoded in Formula 6.4 and 6.5 respec-

tively.

(
|L|
∧

k=1

|Erow|
∨

i=1

(
|Erow|
∧

j=1

j 6= i → ¬ej,k) ∧ ei,Lk
) ∧ (

|Erow|
∧

i=1

(
|L|
∧

k=1

ei,Lk
→

|Ecol|
∧

j=1,j /∈L

¬ei,j))

(6.4)

(

|L|
∧

k=1

|Erow|
∨

i=1

ei,Lk
) ∧ (

|Erow|
∧

i=1

(

|L|
∧

k=1

ei,Lk
→

|Ecol|
∧

j=1,j /∈L

¬ei,j)) (6.5)

Formula 6.4 indicates that only one edge can be selected from a corresponding

column. Again, here we store all corresponding column numbers in the set L.

It is easy to see that as long as one edge is selected all other edges in the same

row and column are switched off. For example, if we select e1,1 from the array

in Figure 6.5, then e2,1 and e3,1 are disabled. This is captured by the first sub-

formula. Meanwhile, e1,2, e1,3 and e1,4 are also disabled. This is captured by the

119

6.3
6. GENERATING METAMODEL INSTANCES SATISFYING

GRAPH-BASED CRITERIA

second sub-formula. Thus, this is precisely saying that b1 can only be connected

to a1.

Similarly, for weak non-sharing property, the first sub-formula in Formula 6.5

indicates that there could be multiple edges selected from a corresponding column.

This indicates that a node can connect to at least one or more nodes. This is

captured by using disjunction. Since connection to multiple nodes is allowed, all

other nodes in the same row must be disabled. For example, in Figure 6.5, if e1,1

and e3,1 are selected, then e1,2, e1,3, e1,4, e3,2, e3,3 and e3,4 are disabled. Thus, this

allows a1 to connect both b1 and b3. Meanwhile, b1 and b3 cannot be connected

by other nodes other than a1. This is captured by the second sub-formula.

6.3 Quantity of Nodes and Edges

While establishing bounds on the number of instances of given classes allows for

a degree of control over the model size, it is sometimes desirable to achieve more

fine-grained control. For example, the McCabe cyclomatic complexity metric

could be calculated on an instance of a metamodel representing the control-flow

graph of a program [McCabe, 1976]. This metric is calculated as J −K +2 for a

connected graph with J edges and K nodes. Specifying a desired value, or value

range, for this metric simply involves specifying a linear inequality over the size

of the graph.

In order to specify the generation of graphs satisfying constraints on the num-

ber of nodes and edges, two phases of encodings are needed. Phase 1 decides an

appropriate list of nodes to be selected by the SMT2 solver, along with the number

of edges (J). This is shown in Formula 6.6 (Note that K and J are SMT2 integer

constants, their values are not fixed unless users write additional constraints.).

(
b(N)
∧

i=1

(K = i) → (J ≤

(

i

2

)

)) ∧ ((
b(N)
∑

i=1

Ni) = K) ∧ (
b(N)
∧

i=1

0 ≤ Ni ≤ 1) (6.6)

The first sub-formula covers all the possibilities for a value of K can be as-

signed, and it also restricts the number of edges (J) to be within the possible

120

6.3
6. GENERATING METAMODEL INSTANCES SATISFYING

GRAPH-BASED CRITERIA

number of nodes that can appear in an instance. That is J cannot exceed the

maximum possible number of edges for a corresponding value of K assigned. The

second sub-formula determines which particular nodes get selected from the set

of graph nodes VG. Since we need to know which node(s) to be chosen, we use

Ni (an SMT2 integer constant) to encode each graph node from VG. The last

sub-formula constrains Ni to be either 0 or 1, controlling whether it is omitted or

selected respectively. Note that the possible values for K varies from 1 and b(N)

inclusive. Thus, the results of phase 1 are that an appropriate number of edges

J is computed and a list of nodes (N ′
is) are chosen.

To understand how this works, please consider the following example.

Suppose b(N) = 3 and a user specifies 3 (K = 3) nodes to be included in the

graph. By expanding Formula 6.6, we have the following formulas 1:

(K = 1) → (J ≤ 0) ∧

(K = 2) → (J ≤ 1) ∧

(K = 3) → (J ≤ 3) ∧

((N1 +N2 +N3) = K) ∧

(0 ≤ N1 ≤ 1) ∧ (0 ≤ N2 ≤ 1) ∧ (0 ≤ N3 ≤ 1)∧

(K = 3)
Observe the formulas above, we note that when a user specifies K = 3, this

forces each Ni is to be selected. That is each Ni must be assigned with value of 1.

K = 3 also implies that J ≤ 3, which means that the number of edges allowed in

the graph cannot exceed 3. After checking these formulas with an SMT2 solver, a

list of nodes (N1, N2, N3) and the number of edges J can be decided. One possible

assignment from an SMT2 solver is N1 = 1, N2 = 1, N3 = 1, K = 3, and J = 3.

In phase 2, since the nodes (N ′
is) to be presented in the graph are already

known (from phase 1), those nodes that are not chosen at phase 1 are switched

off and those that are chosen are turned on. Based on the set of nodes and the

number of edges that have been chosen, a subset of SMT2 constants (S) that

encode edges from the 2D-array which describes each association relationship is

specified.

In order to keep our formula simple at this phase, we flatten S into 1D-array.

1To help readers understand the formula, we put the complete SMT2 formula at
http://www.rise4fun.com/Z3/QkP9 for validation.

121

6.4
6. GENERATING METAMODEL INSTANCES SATISFYING

GRAPH-BASED CRITERIA

We now can sum up all SMT2 constants that encode edges from S. Formula

6.7 uses an SMT2 integer constant Si which can only be assigned a value of

1 or 0, to represent whether or not an edge is selected. This formula states

that the summation of all such SMT2 constants meets the required number of

edges J computed from Formula 6.6. Note that Formula 6.7 can also be used for

computing the number of edges connected for a specific node in a general case.

For example, a user may require a certain number of links to be established in

each instance.

(

|S|
∑

i=1

Si) = J (6.7)

6.4 Examples: Class Cohesion andMcCabe Com-

plexity

This section demonstrates two examples to show the generation of instances hav-

ing graph properties. The first example is the generation of a particular class

cohesion value and a limited length of a call graph, while the second example

shows how to generate a graph with a particular McCabe complexity value.

6.4.1 Class Cohesion and Call Graphs

For the first example, we use the same metamodel presented in Figure 6.1, and

provide sample bounds for the non-abstract classes in this metamodel as shown

in Figure 6.6. This subset of the metamodel represents the relationship (a field

can be accessed by multiple methods, and a method can call multiple methods)

between Class, Method and Field. From this metamodel, instances of programs

with a particular value of a cohesion metric (LCOM) can be generated [Chidamber

and Kemerer, 1994b], and with a particular depth of the call graph [Li and Henry,

1993].

LCOM is a structural class cohesion metric that measures the number of

disjoint components in a graph, where each node represents a method and an

edge indicates that two methods share at least one common field. In order to

122

6.4
6. GENERATING METAMODEL INSTANCES SATISFYING

GRAPH-BASED CRITERIA

Figure 6.6: A subset of the Java metamodel represented as a bounded graph
representing relationships between classes and their members, which are fields or
methods.

generate instances, an SMT2 solver is used to compute how the graph should be

connected according to the bounds defined over the metamodel.

Thus, an SMT2 solver is used for finding assignments for the constraints

encoded in Formula 6.8:

(
c
∧

k=1

b(Method)
∨

j=1

mj = k) ∧ (

b(Method)
∧

j=1

1 ≤ mj ≤ c) (6.8)

Here, c is the desired value for the LCOM metric specified by the user, for

example LCOM should be evaluated to 3 that means a graph has 3 connected

components. Thus, c denotes the number of connected components. We use an

SMT2 integer, mj to encode a method. The possible values of an mj can get

indicates that whether the corresponding method is connecting to another.

If two methods are assigned the same integer, this indicates that they are con-

nected in the graph (one connected component), otherwise they are disconnected.

Note that we require that c varies between 1 and b(Method) inclusive, that is be-

cause the connection of a list of methods varies from not being connected at all

123

6.4
6. GENERATING METAMODEL INSTANCES SATISFYING

GRAPH-BASED CRITERIA

to being fully connected.

To understand how Formula 6.8 works, we use the following example.

Suppose we have five methods (method1, method2, method3, method4, and

method5), and we would like them to form a graph with three connected com-

ponents. That means three different integer values should be assigned to those

methods to indicate three different connected components (c = 3). Any two

methods get assigned to the same integer means that they are connected. Now,

we expand Formula 6.8, we get the following terms 2:

((m1 = 1) ∨ (m2 = 1) ∨ (m3 = 1) ∨ (m4 = 1) ∨ (m5 = 1)) ∧

((m1 = 2) ∨ (m2 = 2) ∨ (m3 = 2) ∨ (m4 = 2) ∨ (m5 = 2)) ∧

((m1 = 3) ∨ (m2 = 3) ∨ (m3 = 3) ∨ (m4 = 3) ∨ (m5 = 3)) ∧

(1 ≤ m1 ≤ 3) ∧ (1 ≤ m2 ≤ 3) ∧ (1 ≤ m3 ≤ 3) ∧

(1 ≤ m4 ≤ 3) ∧ (1 ≤ m5 ≤ 3)
In the expanded formulas above each mj denotes a method, for example m1

denotes method1. Now observe these formulas, we note that three of the m′
js

can be assigned with value of 1,2 and 3. Because of the additional constraints

1 ≤ mj ≤ 3, this guarantees that the remaining two m′
js share some integers

with other m′
js , since there are only 3 possible integer values to be assigned to

5 methods.

One possible solution (Note that one might get a different solution, this de-

pends on the SMT solver.) derived from Formula 6.8 is shown in Figure 6.7, where

m2, m3 and m4 are assigned with the same value of 3, indicating that method2,

method3 and method4 are connected together in the graph. That means that

these three methods share at least one common field. On the other hand, m1

and m5 are assigned values that are different from others. This specifies that

method1 and method5 are disjoint from other methods. Therefore, a graph with

an LCOM value of 3 has been constructed, and we can enumerate each successful

assignment for this formula to get every possible graph with this LCOM value.

Now that how the graph is structured for an LCOM value of 3 is known,

sharing and non-sharing formulas on the five methods can be applied. More

specifically, the column can be located from the 2D-array capturing the ac-

2To help readers understand the formula, we put the complete SMT2 formula at:
http://www.rise4fun.com/Z3/s1jz for validation.

124

6.4
6. GENERATING METAMODEL INSTANCES SATISFYING

GRAPH-BASED CRITERIA

Figure 6.7: One of the successful assignments for the formula for deciding how
the graph is connected, based on the bounds defined on metamodel in Figure 6.6
and given a desired LCOM value of 3. Here m1 through m5 represent methods,
and the numbers 1 through 3 represent three sets in a partition of these methods.

cess association, and two lists are constructed, one each for the sharing and

non-sharing nodes. In this example, we simply use weak sharing formulas on

method2, method3 and method4, and strong non-sharing formulas on method1

and method5. As Figure 6.8 shows, method2, method3 and method4 all have

access to field3, while method1 and method5 have accesses to field2 and field4

respectively.

To generate the call graph with a depth of 3 for Method in the metamodel in

Figure 6.6, Formula 6.1 is applied to the association calls. Figure 6.8 shows the

series of method calls giving a depth of 3: method1 calls method4 and method4

calls method5 which calls method3.

125

6.4
6.

G
E
N
E
R
A
T
IN

G
M
E
T
A
M
O
D
E
L
IN

S
T
A
N
C
E
S
S
A
T
IS
F
Y
IN

G
G
R
A
P
H
-B

A
S
E
D

C
R
IT

E
R
IA

Figure 6.8: A generated instance of the Java metamodel from Figure 6.6. This Java program has an LCOM value
of 3, as well as a call-graph depth of 3.

126

6.4
6. GENERATING METAMODEL INSTANCES SATISFYING

GRAPH-BASED CRITERIA

6.4.2 McCabe Complexity

McCabe complexity (cyclomatic complexity) was first introduced in 1976, it mea-

sures the number of independent paths of a program’s source code so that de-

velopers are sensitive to the number of test cases needed for testing a program

[McCabe, 1976]. The program source code is represented as a control flow graph,

and a control flow graph is a directed graph. Thus, in terms of this representation,

McCabe complexity is a metric that measures the complexity of a graph. The

formal measurement of McCabe complexity M can be calculated as the following

formula (For simplicity reason, we consider a graph that only has one connected

component.).

M = J −K + 2

where

J specifies the total number of edges in a graph.

K specifies the total number of nodes in a graph.

(6.9)

For example, Figure 6.9(b) has 7 nodes, 8 edges and 1 connected component

in total within a graph. Thus, the McCabe complexity of this graph is calculated

as 8− 7 + 2 which is 3.

In section 6.3 a way of generating a particular number of nodes and edges in

graph is provided, and using this we can produce a graph that has a particular

McCabe complexity of M . In order to do so, for a given McCabe complexity

of M , the number of edges (J) and nodes (K) in a graph is calculated. This

calculation is done by using an SMT2 solver to solve the conjoined formulas 6.6

and 6.9 with respect to the bounds defined on the class in a metamodel. Based on

the results of this calculation, the exact number of edges (J) and nodes (K) that

make equation 6.9 evaluate M is known. Now a graph with McCabe complexity

of M can be generated by using Formula 6.7 to get a correct number of subsets

of edges that equals J .

For example, suppose we wanted to generate a graph that has a McCabe

complexity of 3, with respect to the bound of 8 defined on Node class in the

metamodel in Figure 6.9(a). First, the correct number of edges (J) and nodes (K)

are calculated by using an SMT2 solver to solve the conjunction of 3 = J−K+2

127

6.5
6. GENERATING METAMODEL INSTANCES SATISFYING

GRAPH-BASED CRITERIA

(a) (b)

Figure 6.9: A metamodel that describes directed graphs with a bound of 8 on
the Node class in Figure 6.9(a). An instance, with a McCabe complexity of 3, of
the metamodel in Figure 6.9(b).

and formula 6.6 with respect to the bound of 8 for Node class. One of the possible

solutions found by SMT2 solver for J and K is 7 and 6. This means a graph

has to contain 7 edges and 6 nodes in total. The assignment of the formula 6.6

also tells that 6 nodes have been selected from the universe. Thus, the formula

6.7 now can be applied to generate graphs that has a McCabe complexity of 3.

Figure 6.10 shows one of the instances of metamodel in Figure 6.9(a) that has a

McCabe complexity of 3.

6.5 Evaluation

6.5.1 Implementation

We have extended our ASMIG tool to support graph-based criteria instance gen-

eration by adding an extra component as shown in Figure 1.4. This component

collects information about the association in a metamodel during the translation

stage, and translates the scenarios specified by a user to a set of SMT2 formulas.

Each satisfied assignment for the formulas is then interpreted as an instance hav-

ing particular graph properties. We have evaluated ASMIG on a machine with a

CPU of Intel Core 2 Duo (E7500) 2.93GHz, and a 4GB memory, and the results

128

6.5
6. GENERATING METAMODEL INSTANCES SATISFYING

GRAPH-BASED CRITERIA

Figure 6.10: A generated instance (6 nodes and 7 edges) of the metamodel in
Figure 6.9(a) that has a McCabe complexity of 3.

are shown in Table 6.1.

6.5.2 Results

Since graph-based criteria focus on a particular association in a metamodel, Chi-

damber and Kemerer (CK) metrics are used to evaluate this approach against a

subset of the Java programming language metamodel [Chidamber and Kemerer,

1994a]. This metamodel is depicted in Figure 6.1. We did not choose the previous

metamodels as a test suite because the formulas described in this chapter focus on

a specific association within a language metamodel. It is sufficient enough to test

these formulas on a specific association in a metamodel because a metamodel that

describes either a general purpose of programming language or domain specific

language has the same language properties such as method invocation, class in-

heritance, attribute references, etc. We are particularly interested in CK metrics

because not only were they proposed for measuring different aspects of an object-

oriented design but also they can be treated as certain graph properties involving

numeric constraints. CK metrics has a total of 6 different metrics [Chidamber

and Kemerer, 1994a]:

129

6.5
6. GENERATING METAMODEL INSTANCES SATISFYING

GRAPH-BASED CRITERIA

1. Weighted methods per class(WMC): WMC is calculated by summing

the complexities of all methods in a class. However, the authors of WMC

have not given a precise definition of complexities in order to allow for

the most general application of this metric. In our view, we consider the

complexities as the count of the methods in a class.

2. Depth of inheritance (DIT): DIT of a class is calculated based on the

maximum length from the root of the inheritance tree to that class.

3. Number of children (NOC): NOC is calculated by counting the number

of immediate subclasses that a class can have.

4. Lack of cohesion in methods (LCOM): LCOM is calculated by the

number of non-intersecting sets of methods based on the common usage of

instance variables.

5. Coupling between object classes (CBO): CBO is calculated by count-

ing the number of non-inheritance related couples with other classes. Two

classes are considered coupled classes if the method of one class reference

at least one attribute or invoke at least one method from the other class.

6. Response for a class (RFC): RFC is calculated by the size of response

set of a class, and the response set is defined as the set of distinct methods

can be invoked from that class.

As can be seen, these 6 metrics involve measuring quite a number of different

aspects of object-oriented design based on numeric values. Thus, we consider the

set of CK metrics as a suitable test suite for testing instance generation involving

both graph and numeric constraints. For each metric, we apply different formula

described in this chapter. For example, for metrics WMC and NOC, we apply

Formula 6.7 to a specific association because Formula 6.7 precisely constrain the

number of edges to be selected, and both WMC and NOC require a specific

number of links associated with a specific class. For DIT metric, it is easy to see

that we can just apply Formula 6.1 to a specific reflexive association. For LCOM

metric, the example in section 6.4.1 have already shown the detailed steps.

130

6.5
6. GENERATING METAMODEL INSTANCES SATISFYING

GRAPH-BASED CRITERIA

We have tested ASMIG against different bounds for each metric to measure

its scalability. The graph in Figure 6.11 shows that the translation time is af-

fected by the bounds defined. In general, the translation and average finding

time is proportional to the size of bounds allocated on both association-ends.

However, ASMIG tries to utilise cache mechanism as much as possible to pre-

vent formula regeneration, and this depends on a specific association defined in

a metamodel. Table 6.1 provide more detailed results and the bounds chosen

for testing ASMIG. The “Total Bound” in Table 6.1 specifies summation of the

individual bound allocated for two association ends, and all bounds are manually

allocated. The specific bound allocated for each specific class can be found at

our website 3. In reality, it is rare that a large bound would be allocated to two

particular association ends. Therefore, a maximum bound of 10 is chosen for

both association ends. The average finding time in Table 6.1 is calculated based

on the generation of 100 instances for each metric. Figure 6.11 also reflects that

the translation time significantly increases when we set bound equal to 10, but it

is still considered to be fast (below 500 milliseconds). Thus, this indicates that

even under a very rare situation the translation time ASMIG takes is still very

acceptable.

Interestingly, ASMIG cannot generate two coupling metrics: Coupling be-

tween object classes (CBO) and Response for a class (RFC). The reason that

ASMIG cannot work for metrics CBO and RFC is that Formula 6.1 to Formula

6.7 only work on an individual association. In other words, these formulas work

with a single 2D-array. However, both CBO and RFC require additional con-

straints over more than one single array. For example, in order to constrain

CBO, the constraints must be defined over at least two associations: one for

attribute and one for method invocation. In the meantime, an intermediate con-

straint is also needed in order to specify the constraints for those two associations

actually referring to the same class. Similarly, for RFC, we also need to express a

constraint over two associations: one for calculating number of distinct methods,

and one for calculating the size of response set of a class. An intermediate is

also needed here to express that the number of response set of a class depends

on the number of distinct methods of that class. However, the formulas listed in

this chapter do not capture such constraints over two arrays. Thus, this type of

131

6.5
6. GENERATING METAMODEL INSTANCES SATISFYING

GRAPH-BASED CRITERIA

440

445

450

455

460

465

470

475

480

485

490

495

0 2 4 6 8 10

T
ra

ns
la

tio
n

T
im

e
in

 M
ill

is
ec

on
ds

Bound Size

WMC
DIT

NOC
LCOM

Figure 6.11: Translation time against different size of bound for four metrics.
Each point in this graph represents one specific translation time that ASMIG
takes based on a specific bound. Points and bounds are derived from Table 6.1.

132

6.6
6. GENERATING METAMODEL INSTANCES SATISFYING

GRAPH-BASED CRITERIA

Chidamber and Kemerer Metric Total Time in ms
Metric Value Bound Translate Avg Find

Weighted methods per class (WMC)
2 3 446ms 31ms
3 6 444ms 59ms
5 10 461ms 120ms

Depth of inheritance (DIT)
2 3 456ms 53ms
4 6 457ms 54ms
8 10 460ms 180ms

Number of children (NOC)
2 3 469ms 64ms
4 6 481ms 65ms
8 10 489ms 180ms

Lack of cohesion in methods (LCOM)
2 3 476ms 63ms
2 6 470ms 42ms
3 10 484ms 138ms

Table 6.1: Results of generating 100 instances of metamodel in Figure 6.1. Each
metric was constrained using three values, and the calculated bounds are shown,
as well as two measures of the time taken to generate appropriate instances.

constraints is not supported by the current version of ASMIG.

6.6 Summary

This chapter describes a unique technique that provides a set of translation rules

which can be used to encode some scenarios based on common graph properties.

With this technique, the instances generated from a metamodel go beyond making

a contribution to coverage criteria, as they can be used for other purposes such as

testing a compiler, refactoring tools, metrics calculator, etc. The examples and

evaluation results shown in this chapter demonstrate feasibility for such purpose.

However, the disadvantage of this technique is that the current version of ASMIG

cannot capture a scenario that requires constraints over two or more associations.

This limits instance generation to a certain number of graph properties, but we

still believe this technique uniquely provides a degree of instance generation for

achieving graph properties.

3http://www.cs.nuim.ie/∼haowu/ASMIG/Results/GraphBased

133

Chapter 7

Conclusion

The high abstraction level provided by metamodels makes the metamodeling ap-

proach popular among software engineers. However, one of the biggest drawbacks

is that it does not naturally provide a way of generating metamodel instances.

The instances are particularly important for software engineers to test their meta-

models. However, generating instances from a metamodel is not an easy task.

The challenge here is that the generated instances have to satisfy both structural

and OCL constraints defined over a metamodel. Furthermore, software engineers

may also seek more meaningful instances that are beyond satisfying structural

and OCL constraints such as achieving coverage criteria, testing a compiler or

metrics calculator.

The contribution of the research presented in this thesis is that it presents

a new way consisting of two approaches, that uniquely combine graph represen-

tation and Satisfiability Modulo Theories (SMT) to the problem of metamodel

instance generation. The first approach presents a new way of generating meta-

model instances by translating a metamodel to an SMT problem via a bounded

graph representation (Chapter 4). The second approach investigates generating

meaningful metamodel instances based on two techniques. The first technique

generates instances that meet partition-based coverage criteria by using criteria

formulas to further constrain the entire generation process (Chapter 5). The

second technique aims to generate instances that satisfy graph-properties based

criteria by encoding graph properties into SMT2 formulas according to different

scenarios (Chapter 6). The two approaches have been prototyped into our tool

134

7.1 7. CONCLUSION

ASMIG, to demonstrate the feasibility of automatic metamodel instance genera-

tion.

This chapter concludes the thesis with a summary of the key features behind

our approaches, a discussion of our approach’s capability compared to others, and

an outline of direction for future work.

7.1 Discussion

The key feature of this research is a new foundation that is based on an inter-

mediate representation (Bounded Attribute Typed Graph with Inheritance) that

naturally captures the definition of a metamodel. Two techniques governing in-

stance generation, achieving partition-based coverage criteria, and graph-based

criteria, have been successfully implemented in our automated tool, ASMIG. We

first list these features in Table 7.1, and then assess our solution against the other

main approaches. We then use a more detailed Table 7.2 to compare our solution

against the other main approaches, in order to identify the relative advantages

and limitations of our solution.

We introduce a new graph concept: a Bounded Attributed Type Graph with

Inheritance to naturally support the metamodeling approach and this concept

acts as an intermediate representation to facilitate SMT-based instance genera-

tion. Graph grammars also use attribute type graphs with inheritance. How-

ever, without bounds on the graph, the program for generating metamodel in-

stances may never terminate. We differ from graph grammars (described in sec-

tion 2.3.1.3) by adding an extra bound for each typed graph node to bound our

search space, and this guarantees the termination of our generation process. We

consider a metamodel structure consisting of classes, attributes (Integer, Boolean

and Enumeration types), inheritance and the most frequently used kinds of as-

sociation (uni/bi-directional). However, not all of these metamodel structural

features are supported by other approaches. For example, approaches like Echo

fails to support multiple inheritance relationships (this is shown in section 4.5.3).

This is because Echo is based on Alloy’s specification which does not allow mul-

tiple inheritance relationships. Other approaches like the SMT bit-vector does

135

7.1 7. CONCLUSION

B
ou
nd
ed

A
T
G
I

M
et
am

od
el
St
ru
ct
ur
e

O
bj
ec
t
C
on
st
ra
in
t
La
ng
ua
ge

P
ar
ti
ti
on
-b
as
ed

C
ov
er
ag
e
C
ri
te
ri
a

G
ra
ph
-b
as
ed

C
ri
te
ri
a

In
st
an
ce
E
nu
m
er
at
io
n

R
ea
so
ni
ng

E
ng
in
e

To
ol
Su
pp
or
t

Approach

Our Approaches SMT2 Solver
Alloy SAT Solver
Constraint
Programming (CP) ECL iPSe

Graph Grammars AGG
Echo Alloy
USE Alloy
SMT bit-vectors SMT Solver
Description Logic CSP

Table 7.1: A comparison of key features between our approach and other ap-
proaches. A solid box indicates that a feature is fully supported, a half of a
solid box indicates that a feature is partially supported, a mostly empty box in-
dicates that a relatively small portion of a feature is supported, and an empty
box indicates that a feature cannot be supported at all.

not support general metamodel structural features such as association. This is

because it is only concerned with OCL data types [Soeken et al., 2010, 2011b].

We currently support a relatively small portion of OCL features, namely con-

straints on attributes, quantifiers over objects and navigation on an association.

This puts a limitation on our current approaches for those metamodels that fre-

quently use advanced OCL features such as operations over a collection data

type. The reason for this limited support of OCL is that our approaches lack a

formal language for describing constraints on nodes and edges translated from a

metamodel. This is because the graph representation used during our transla-

tion does not provide language features for capturing OCL constraints. Though

136

7.1 7. CONCLUSION

it is possible to use OCL to write graph-based constraints, OCL is more than

a declarative language. For example, features involving expressions like condi-

tions and loops make the translation very difficult and expensive for describing

a simple graph property such as a directed acyclic graph. Other approaches like

SMT bit-vector, Constraint Programming (CP), Alloy [Anastasakis et al., 2007;

Kuhlmann et al., 2011; Soeken et al., 2011b,b], support quite a number of OCL

features such as collection data types (sequence, bag and set), and operations

(union, intersect) on those data types. Most of them directly benefit from the

first-order relational algebra provided by Alloy. Thus, a substantial subset of

OCL language features can be easily mapped to this algebra [Anastasakis et al.,

2007; Bordbar and Anastasakis, 2005; Kuhlmann et al., 2011].

However, the research built around Alloy suffers from the same fundamental

problem as Alloy does. Alloy translates a relational specification to SAT. SAT-

solvers are designed to solve boolean satisfiability problems. Any constraints

that involve integer arithmetic operations causes bit-blasting on Alloy’s engine

(kodkod) [Torlak, 2009]. On the other hand, SMT solvers have a list of ded-

icated algorithms which perform operations on integers or real numbers. The

translation from a particular integer equation, especially those with inequalities,

to SMT-instances is straightforward, since SMT-instances have a more powerful

expressiveness than the plain SAT-instances. Using SMT solvers as back-end

reasoning engines are popular in many areas [Armando et al., 2009; Cordeiro

et al., 2009; Milicevic and Kugler, 2011; Tianhai Liu, 2012]. Though constraint

programming approach is also popular, it requires much more expertise and pro-

gramming skills for a particular problem than SAT/SMT [Puget, 2004]. Fur-

thermore, SMT solvers are more promising in terms of future research directions

[De Moura and Bjørner, 2011; Malik and Zhang, 2009].

The solution described in this thesis provides a technique that uniquely gen-

erates metamodel instances based on partition-based coverage criteria. One can

utilise Alloy’s symmetry detection algorithm to break symmetries in the instances

to achieve a certain degree of coverage.[Crawford et al., 1996a; Shlyakhter, 2007;

Torlak and Jackson, 2007]. However, the purpose of using a symmetry break-

ing algorithm is to remove similarities between graphs, not for partition-based

instance generation [Crawford et al., 1996b; Katebi et al., 2012; McKay, 1981].

137

7.1 7. CONCLUSION

Thus, the algorithm produces irrelevant instances in terms of the coverage crite-

ria.

We also provide a unique technique for generating instances that meet cer-

tain graph-based properties, and these properties are particularly important to

produce instances for other purposes. For example, users may require a metrics

oriented instance generation like in the McCabe complexity example we illus-

trated in section 6.4.2. This unique technique enables us to provide a degree of

instance generation for meeting graph properties unlike other approaches. For

example, graph grammars deal with graphs, but they do not support any graph-

properties based instance generation [Ehrig et al., 2009]. In order to support this

instance generation, a set of new grammar rules has to be created. Alloy’s first-

order relation language can be used to describe some graph properties such as a

directed acyclic graph. However, it performs poorly when the graph properties

involve numeric constraints such as depth of inheritance tree, lack of cohesion

between two classes.

Approaches like CP, graph grammars, SMT-bit vectors and description logics

verify a metamodel by constructing only one single instance. Therefore, these

approaches have a major limitation when producing a set of instances (e.g., a

test suite) from a metamodel [Cabot et al., 2007; Cadoli et al., 2004; Ehrig et al.,

2009; González Pérez et al., 2012; Macedo and Cunha, 2013]. Using logic formulas

to encode the problem is elegant and deterministic since instance enumeration can

easily be achieved by adding extra formulas to prevent all previous assignments

found by SAT/SMT solvers [Torlak, 2009; Wu et al., 2013].

In terms of implementation, most of existing approaches provide fully auto-

matic tool support except for the approach using SMT bit-vector theory [Soeken

et al., 2011b]. However, all tools (except for Alloy) are built primarily for the

purpose of generating UML or metamodel instances. By comparison, ASMIG is

designed to not only provide metamodel instance generation but also to tackle

general model finding. ASMIG is a relatively small, but fully automatic tool, and

it consists of about 23, 000 lines of source code with around 7, 000 lines dedicated

to the core engine. Its core engine can be plugged into other tools for solving

general constraint problems such as n-queens, the Sudoku example in section 3.8.

The downside is that it requires knowledge of using APIs from the core engine to

138

7.1 7. CONCLUSION

M
et
am

od
el

O
C
L

C
ov
er
ag
e

G
ra
ph

To
ol

Related Approaches A
tt
ri
b
u
te

A
ss
o
ci
at
io
n

M
u
lt
i-
in
h
er
it
an

ce

S
u
p
p
or
te
d
S
iz
e

N
av
ig
at
io
n

C
ol
le
ct
io
n

Q
u
an

ti
fi
er

A
tt
ri
b
u
te

A
ss
o
ci
at
io
n

M
et
ri
cs

A
u
to
m
at
io
n

ASMIG X X X L X ✗ X X X ✽ X

Alloy X X ✗ M X X X ✗ ✗ ✗ X

Constraint Programming X X X M X ✗ X ✗ ✗ ✗ X

Graph Grammars X X X S X ✗ X ✗ ✗ ✗ ✗

Echo X X ✗ M X ✗ X ✗ ✗ ✗ X

USE X X X M X ✗ X ✗ ✗ ✗ X

SMT bit-vectors X ✗ ✗ S X X X ✗ ✗ ✗ ✗

Description Logic X X X S ✗ ✗ ✗ ✗ ✗ ✗ ✗

Table 7.2: A detailed comparison with other approaches. NOTE: a X means a
feature can be fully supported, and a ✽ means a feature is partially supported
and a ✗ means that a feature cannot be supported. An L denotes large size
metamodels, an M denotes medium size metamodels and an S denotes small size
metamodels.

encode the constraints before applying the tool.

To be able to identify both the advantages and disadvantages of ASMIG, we

provide Table 7.2 to illustrate a detailed comparison with other approaches. Ta-

ble 7.2 lists detailed features for five main categories that are: Metamodel, OCL,

Coverage, Graph and Tool. The first two categories focus on metamodel struc-

tural and OCL constraints, the next two focus on the unique features provided by

ASMIG, and the last one shows the automation of each tool. To the best of our

knowledge, we are the first to present the comparison of related work at different

levels: metamodel, OCL, coverage, graph and tool.

For metamodel, ASMIG has an advantage over Alloy-based approaches like

Echo. This is because Alloy’s specification cannot support features like multiple

inheritance relationships. ASMIG uses the concept of Bounded Attributed Type

139

7.2 7. CONCLUSION

Graph with Inheritance that can naturally capture all metamodel features such as

associations and multiple inheritance relationships. Apart from that, ASMIG is

also capable of handling quite a wide range of different size metamodels compared

to other approaches, as the results have shown in section 4.5.3.

Compared to SAT-based approaches, the disadvantage of ASMIG is that we

support less OCL features. In general, SMT instances are more expressive than

pure SAT instances. This is because SMT solvers provide different kinds of theo-

ries. In fact, SMT-based approaches like SMT-bit vector shows that it is possible

to use SMT bit vector theory to encode advanced OCL data types such as sets

and bags [Soeken et al., 2011b]. However, these encodings must be manually

provided by users. This is impossible for users who are not familiar with SMT en-

codings. In terms of our approach, the disadvantage here is that the intermediate

representation (Bounded Attribute Typed Graph with Inheritance) used during

our translation lacks a way of integrating OCL advanced language features into

the graph. This is because OCL is not designed for expressing graph structural

elements and constraints over a graph. The advantage is that using this graph

representation we can naturally capture metamodel structural features. Thus, the

trade off for our approach here is between graph structural elements and OCL

language advanced features. However, we still consider ASMIG to be a worthy

tool in the area, as this can be seen from both Table 7.2 and the comparison in

section 4.5.3.

ASMIG provides two unique techniques: partition-based and graph-properties

based instance generation. These two features enable users to generate meta-

model instances more closely for testing purposes. With partition-based instance

generation, a user is able to generate metamodel instances according to pre-

defined partitions, and this allows users to perform tests on their metamodels

using partition-based criteria. With graph-properties based instance generation,

users are able to generate metamodel instances that concern certain graph prop-

erties. For example, two nodes cannot share other nodes. Though there are

graph properties that may not be captured by this technique, compared to other

approaches, we consider this technique as a unique feature for metrics oriented

instance generation as demonstrated in section 6.5.

140

7.2 7. CONCLUSION

7.2 Future work

The research presented in this dissertation extends the knowledge of solving the

metamodel instance generation problem to another dimension: a combination of

graph and Satisfiability Modulo Theories (SMT). Though our approaches build

a new foundation that naturally supports generating metamodel instances, a

number of problems still remain at both the graph (language) and the SMT

(formula) level. We discuss these issues in the sections that follow.

7.2.1 Shared SMT2 Formulas

Though an SMT solver can generally solve a large number of formulas within a

short amount of time, it still would be a valuable feature if one could remove

any redundant formulas to achieve faster solving. The translation scheme in our

approach does not remove redundant formulas and this leads to a waste of memory

and time spent on translation. For example, translation step 6 in the graph

colouring example, in Figure 4.11, causes redundant formulas. Thus, one future

direction is to add a new mechanism that can detect and share common SMT2

formulas at the translation stage, and remove redundant formulas for efficiency.

One possible solution is that this new mechanism could use a hash function to

detect possible shared SMT2 formulas, and build reduced abstract syntax trees

for these formulas.

7.2.2 Unsat Core Analysis

A formula encoding a problem found to be unsatisfiable (unsat) means that at

least one contradiction exists in the formula, and extracting such a contradiction

is useful for further analysis on the cause of conflict in the encodings. Most of the

SMT2 solvers support a feature called unsat core extraction, where this feature

allows users to retrieve a set of formulas that trigger an unsatisfiable result, when

an SMT solver fails to find an assignment for the given formulas. Thus, it will be

useful to have a feature that can analyse unsat formulas and reflect them in the

problem domain. For example, identifying conflicting OCL constraints defined

141

7.2 7. CONCLUSION

on a metamodel. This work could be extended by adding an extra component

that can track every formula (including sub-formulas) in the translation engine.

An analysis engine could identify the formulas from SMT unsat core, retest the

entire formula by removing part of the formulas until a successful assignment is

found, and interpret the formulas back to the metamodel and OCL constraints.

7.2.3 Extending OCL Support

The need for supporting a large subset of OCL constraints is necessary for those

metamodels which rely heavily on OCL. In our current approach, only a small

subset of OCL constraints are supported. Thus, it would be useful to extend

our current approach to support other OCL features: for example, operations

on different data types such as strings or collections [Büttner and Cabot, 2012].

The difficulty here is that a pre-defined size for collection data types is needed

before encoding the actual contents into logic formulas. Existing work includes

an encoding that captures data collection types by using SMT bit-vector theory

[Soeken et al., 2011b]. It would be valuable to first incorporate this work into our

approach, and then extend it to operations on data collection types such as select

and reject. A technique could then be proposed for calculating the pre-defined

size for a collection by scanning through any operators which involve defining the

size of that collection. This technique would thus require a detailed analysis of

every OCL expression involving numeric calculations.

7.2.4 Special Graph-Properties Based Language

Though a technique that can handle some graph properties has been discussed

in this thesis, this technique does not scale well enough to support more gen-

eral graph-properties such as a bipartite graph. The main reason is the lack of a

formal language that can effectively capture those graph-properties at a more gen-

eral level. Thus, a promising future direction is to design a new graph-properties

based language that can easily capture more complex graph structures than a

metamodel can have. This would lead to a new translation scheme that could ef-

ficiently encode these properties into SMT2 formulas. With this graph-properties

142

7.2 7. CONCLUSION

based language, metamodel and OCL constraints for describing graph properties

can be transformed into that language. However, the idea of having this lan-

guage is to capture more complex graph structures than metamodel can possess.

This is because solving complex graph constraints is much more general topic

than the focus of this particular research (metamdoel instance generation). The

challenge in that case would be to allow users to write logical constraints over a

graph structure in a simple way without losing the power of expressiveness. This

would require a sophisticated design at both the language and formula level. The

research presented in this thesis can be viewed as a starting point for combining

graph representations (language) with SMT solvers (formula) that with further

development would offer an alternative perspective to those tackling more general

complex graph constraint problems.

143

Appendix A

To see why the Sudoku problem presented in section 3.4 can be translated into

an SMT problem in polynomial time, we show each formula in Figure 3.9 can

be implemented into an algorithm that runs in polynomial time to output final

SMT formula. In particular, we consider that each algorithm is measured by its

worst-case time complexity [Cormen et al., 2001; Sipser, 1997]. For each of the

algorithms listed below, we assume each increment, assignment and comparison

statement takes only one step to evaluate. Expr in each algorithm denotes a

boolean logic formula. |row| and |column| denote the size of a Sudoku grid

(number of rows and columns). We use S to denote the total number of steps for

an algorithm runs through under worst-case time complexity. Note that in each

following algorithm, the operations ∧, ≤ and 6= do not get evaluated during the

algorithm execution and they are only evaluated by the SMT2 solver.

Proof. For the first formula:

|row|
∧

i=1

|column|
∧

j=1

1 ≤ Ci,j ≤ 9 (1)

One can implement it into the Algorithm 1:

In Algorithm 1, the variable i in the outer loop gets evaluated for |row| + 1

times (one extra evaluation of i for quitting the loop). Similarly, the variable j in

the inner loop gets incremented from 1 to |column|+1 every time the outer loop

executes. The statement in the inner loop consists of an assignment statement

144

.0 . APPENDIX A

Algorithm 1 Expand Formula 1

Input: A Sudoku Grid
Output: True ∧ (1 ≤ C1,1 ≤ 9) ∧ (1 ≤ C1,2 ≤ 9) ∧ ... ∧ (1 ≤ C|row|,|column| ≤
9)

Require: Expr = True ∧ |row| ≥ 1 ∧ |column| ≥ 1
1: for i = 1 to |row| do
2: for j = 1 to |column| do
3: Expr = (Expr) ∧ (1 ≤ Ci,j ≤ 9)
4: end for
5: end for

that gets evaluated 1 time. Every time the outer loop is executed, the inner loop

is executed for |column| times. Thus, to calculate total number steps (S) we just

add them together:

S = |row|+ 1 + |row|(|column|+ 1 + |column|)

= |row|+ 1 + |row||column|+ |row|+ |column||row|

= |row||column|+ |column||row|+ 2|row|+ 1

= 2|row||column|+ 2|row|+ 1

We use a constant n to denote the Sudoku grid size is n by n. Now we

have S = 2n2 + 2n + 1, and by using the big O notation we can write O
(

n2
)

[Cormen et al., 2001; Sipser, 1997]. Note that Algorithm 1 is for a standard 9x9

Sudoku puzzle, if the Sudoku grid size is n, one might change (1 ≤ Ci,j ≤ 9) to

(1 ≤ Ci,j ≤ n). �

145

.0 . APPENDIX A

Proof. For the second formula:

|row|
∧

i=1

|column|−1
∧

j=1

|column|
∧

k=j+1

Ci,j 6= Ci,k (2)

One can use the following algorithm to implement this formula:

Algorithm 2 Expand Formula 2

Input: A Sudoku Grid
Output: True ∧ (C1,1 6= C1,2) ∧ ... ∧ (C|row|,|column|−1 6=
C|row|,|column|)

Require: Expr = True ∧ |row| ≥ 1 ∧ |column| ≥ 1
1: for i = 1 to |row| do
2: for j = 1 to |column| − 1 do
3: for k = j + 1 to |column| do
4: Expr = (Expr) ∧ (Ci,j 6= Ci,k)
5: end for
6: end for
7: end for

The variable i in the most outer loop gets evaluated for |row|+ 1 times, and

the variable j in the middle loop gets evaluated for |column| times (one extra

evaluation of j for quitting the loop). Observe the most inner loop, we found

k starts from j + 1 up to |column|. This means that when j = 1, k starts

from 2 to |column|. This tells us that k gets evaluated for |column| times (one

extra evaluation of k for quitting the loop). When j = 2, k gets evaluated for

|column| − 1 times. So the pattern becomes obvious, when j starts from 1 to

|column|, k gets evaluated for |column| + (|column| − 1) + (|column| − 2) +

(|column|−3)+ ...+1 times. That is |column|(|column|+1)
2

. By the same observation,

the assignment statement (line 4 in Algorithm 2) in the most inner loop gets

executed for (|column|−1)+(|column|−2)+(|column|−3)+ ...+1 times. That

is |column|(|column|−1)
2

. The assignment in step 4 takes one step to evaluate. Now

146

.0 . APPENDIX A

we can compute S (total number of steps):

S = |row|+ 1 + |row|((|column|+
|column|(|column| − 1)

2
+

|column|(|column|+ 1)

2
))

= |row|+ 1 + |row|(|column||column|+ |column|)

= |row||column||column|+ |row||column|+ |row|+ 1

We use constant n to denote the Sudoku size is n by n. So S = n3 + n2 + n+ 1,

by using the big O notation we have O
(

n3
)

. �

Proof. For the third formula:

|column|
∧

i=1

|row|−1
∧

j=1

|row|
∧

k=j+1

Cj,i 6= Ck,i (3)

One can implement a similar Algorithm 3 as the one for Formula 2.

Algorithm 3 Expand Formula 3

Input: A Sudoku Grid
Output: True ∧ (C1,1 6= C2,1) ∧ ... ∧ (C|row|−1,|column| 6=
C|row|,|column|)

Require: Expr = True ∧ |row| ≥ 1 ∧ |column| ≥ 1
1: for i = 1 to |row| do
2: for j = 1 to |column| − 1 do
3: for k = j + 1 to |column| do
4: Expr = (Expr) ∧ (Cj,i 6= Ck,i)
5: end for
6: end for
7: end for

In a similar way to what we have already shown for Formula 2, we can derive

the result here. The two formulas (Formula 2 and Formula 3) are identical except

that Formula 2 is for specifying rows and Formula 3 here is for specifying columns.

147

.0 . APPENDIX A

Figure 1: For a standard 9x9 Sudoku puzzle, each two dimensional block is flatten
into a list, b1 denotes the first cell in each block and b9 denotes the last cell.

As can be seen in Formula 3, the three conjunctions correspond to three loops

(nested). Thus, using the same approach for Algorithm and big O notation we

have the same time complexity as Algorithm 2, that is O
(

n3
)

. �

Proof. The fourth formula describes the rules for each block in the Sudoku puzzle:

|blockrow|
∧

i=1

|blockcolumn|
∧

j=1

Ci,j 6= Ck,l, (4)

where i 6= k and j 6= l, k from 1 to |blockrow| and l from 1 to |blockcolumn|.

NOTE: when i = 1 and j = 1 means that the first cell in the block.

This formula specifies that each cell in each block does not share values that

the other cells can have. In other words, it indicates that every cell in the block

has a unique value. To implement Formula 4 into an algorithm, one can simplify

each x by x two dimensional block into a single list with the length of x2 (denoted

as list.length). Figure 1 shows this idea and each bi represents a particular cell

from the original block. Now, saying that every cell in the block is unique is the

same as saying each bi in the list is not identical to other b′is (except for itself).

Thus, one can implement this using the Algorithm 4:

In Algorithm 4, for simplicity reason we use notation bi to denote a corre-

sponding cell in each block. We now analyse the Algorithm 4, we can see that

variable i gets evaluated for list.legnth times. From i = 1 to list.length − 1,

148

.0 . APPENDIX A

Algorithm 4 Expand Formula 4

Input: A simplified block represented as a single list
Output: True∧ (b1 6= b2)∧ ...∧ (blist.length−1 6= blist.length)

Require: Expr = True ∧ list.length ≥ 1
1: for i = 1 to list.length− 1 do
2: for j = i+ 1 to list.length do
3: Expr = (Expr) ∧ (bi 6= bj)
4: end for
5: end for

j gets evaluated for list.length + (list.length − 1) + (list.length − 2) + ... + 1

times. That is list.length(list.length+1)
2

. Similarly, the assignment statement in the

inner loop gets evaluated for (list.length − 1) + (list.length − 2) + ... + 1 times.

That is list.length(list.length−1)
2

. Now, we can add them all together:

S = list.length +
list.length(list.length + 1)

2
+

list.length(list.length − 1)

2

= list.length2 + list.length

Suppose the size of a Sudoku grid is n by n, for each block (with n cells) we

now have S = n2+n. For n blocks, we have n(n2+n). Using the big O notation,

the time complexity of this algorithm for n blocks is: O
(

n3
)

. �

Proof. For the last formula:

|numberrow|
∧

i=1

|numbercolumn|
∧

j=1

numberi,j 6= 0 → Ci,j = numberi,j (5)

where number is a 2D-array, numberi,j denotes a number that is given at the

ith row and jth column, and a blank cell is represented by 0. Note that number

is a 2D-array that has the same size as the Sudoku’s grid.

149

.0 . APPENDIX A

One can implement Formula 5 into the the following algorithm:

Algorithm 5 Expand Formula 5

Input: Pre-defined values in Sudoku (stored in 2D-array number)
Output: True ∧ (C1,1 = number1,1) ∧ (C1,2 = number1,2) ∧ ... ∧
(C|numberrow|,|numbercolumn| = number|numberrow|,|numbercolumn|)

Require: Expr = True ∧ |numberrow| ≥ 1 ∧ |numbercloumn| ≥ 1
1: for i = 1 to |numberrow| do
2: for j = 1 to |numbercolumn| do
3: if numberi,j 6= 0 then
4: Expr = (Expr) ∧ (Ci,j = numberi,j)
5: end if
6: end for
7: end for

By analysing this algorithm, we note that variable i gets evaluated for |numberrow|+

1 times and j gets evaluated for |numbercolumn|+1 times. The comparison state-

ment (if) evaluates numberi,j 6= 0 for |numbercolumn| times, every time the inner

loop executes. Since we assume the worse case, the assignment statement also

gets evaluated for |numbercolumn| times. Thus, by adding them together we have:

S = |numberrow|+ 1 + |numberrow|(|numbercolumn|+ 1 + 2|numbercolumn|)

= |numberrow|+ 1 + |numberrow||numbercolumn|+ |numberrow|

+ 2|numbercolumn||numberrow|

= 3|numbercolumn||numberrow|+ 2|numberrow|+ 1

Suppose we use a constant n for denoting Sudoku’s grid is n by n. Since

the size of number is the same as the size of a Sudoku’s grid, we now have

S = 3n2 + 2n + 1. By using the big O notation, the time complexity for this

algorithm is: O
(

n2
)

. �

150

Bibliography

Marcus Alanen and Ivan Porres. A relation between context-free grammars and

meta object facility metamodels. Technical Report 606, Turku Center for Com-

puter Science, Finland, 2003. 18, 22

Diego Alonso, Cristina Vicente-Chicote, Pedro Sánchez, Bárbara Álvarez, and

Fernando Losilla. Automatic Ada code generation using a model-driven engi-

neering approach. In Reliable Software Technologies –Ada Europe 2007, volume

4498, pages 168–179. Springer, 2007. 2

Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and Indrakshi Ray.

UML2Alloy: A challenging model transformation. In ACM/IEEE 10th In-

ternational Conference on Model Driven Engineering Languages and Systems,

pages 436–450, Nashville, TN, 2007. Springer. 18, 25, 34, 37, 137

Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and Indrakshi Ray. On

challenges of model transformation from UML to Alloy. Software and System

Modeling, 9(1):69–86, 2010. 18, 25

Anneliese Andrews, Robert France, Sudipto Ghosh, and Gerald Craig. Test ad-

equacy criteria for UML design models. Software Testing, Verification and

Reliability, 13(2):95–127, 2003. 22, 31, 91, 97

Krzysztof R. Apt and Mark Wallace. Constraint Logic Programming using

Eclipse. Cambridge University Press, 2007. 20, 28

Alessandro Armando, Jacopo Mantovani, and Lorenzo Platania. Bounded model

checking of software using SMT solvers instead of SAT solvers. International

151

.0 BIBLIOGRAPHY

Jounrnal on Software Tools for Technology Transfer, 11(1):69–83, Jan 2009.

20, 25, 37, 52, 137

Colin Atkinson and Thomas Kühne. Model-driven development: A metamodeling

foundation. IEEE Software, 20(5):36–41, 2003. 2

Paul Baker, Shiou Loh, and Frank Weil. Model-Driven Engineering in a large

industrial context—motorola case study. In The 8th International Conference

on Model Driven Engineering Languages and Systems, pages 476–491, Montego

Bay, Jamaica, 2005. Springer. 2

Mira Balaban and Azzam Maraee. Finite Satisfiability of UML Class Diagrams

with Constrained Class Hierarchy. ACM Transcation on Software Engineering

and Methodology, 22(3):24:1–24:42, 2013. 6, 18, 30

Adrian Balint, Anton Belov, Marijn J.H. Heule, and Matti Järvisalo. 2013 sat

competition. In Proceedings of SAT Competition 2013, 2013. 50

Roswitha Bardohl, Hartmut Ehrig, Juan de Lara, and Gabriele Taentzer. In-

tegrating meta-modelling aspects with graph transformation for efficient vi-

sual language definition and model manipulation. In 7th International Con-

ference on Fundamental Approaches to Software Engineering, pages 214–228,

Barcelona, Spain, 2004. Springer. 24

Clark Barrett and Cesare Tinelli. CVC3. In Tthe 19th International Conference

on Computer Aided Verification, pages 298–302, Berlin, Germany, 2007. 52

Clark Barrett, Aaron Stump, Cesare Tinelli, Sascha Boehme, David Cok, David

Deharbe, Bruno Dutertre, Pascal Fontaine, Vijay Ganesh, Alberto Griggio,

Jim Grundy, Paul Jackson, Albert Oliveras, Sava Krstić, Michal Moskal,

Leonardo De Moura, Roberto Sebastiani, To David Cok, and Jochen Hoenicke.

The SMT-LIB Standard: Version 2.0. In 8th International Workshop on Sat-

isfiability Modulo Theories, Edinburgh, UK, 2010. Elsevier Science. 20, 27,

53

B. Baudry, F. Fleurey, J.-M. Jezequel, and Y. Le Traon. Genes and bacte-

ria for automatic test cases optimization in the .NET environment. In 13th

152

.0 BIBLIOGRAPHY

International Symposium on Software Reliability Engineering, pages 195–206,

Annapolis, MD, 2002a. IEEE Computer Society. 23

Benoit Baudry, Franck Fleurey, Jean-Marc Jézéquel, and Yves Le Traon. Auto-

matic test cases optimization using a bacteriological adaptation model: Appli-

cation to .NET components. In 17th International Conference on Automated

Software Engineering, pages 253–256, Edinburgh, UK, 2002b. IEEE Computer

Society. 23

Boris Beizer. Black-box Testing: Techniques for Functional Testing of Software

and Systems. John Wiley & Sons, 1995. ISBN 0-471-12094-4. 19

Mordechai Ben-Ari. First-order logic: Undecidability and model theory *. In

Mathematical Logic for Computer Science, pages 223–230. Springer, 2012.

ISBN 978-1-4471-4128-0. 6

Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2. Journal on

Satisfiability, Boolean Modeling and Computation, 7(2-3):59–64, 2010. 34, 51

Antonia Bertolino, Jinghua Gao, Eda Marchetti, and Andrea Polini. Automatic

test data generation for XML schema-based partition testing. In 2nd Inter-

national Workshop on Automation of Software Test, Minneapolis, MN, 2007a.

IEEE Computer Society. 18, 29

Antonia Bertolino, Jinghua Gao, Eda Marchetti, and Andrea Polini. Systematic

generation of XML instances to test complex software applications. In 3rd

International Conference on Rapid Integration of Software Engineering Tech-

niques, pages 114–129, Geneva, Switzerland, 2007b. Springer. 18, 29

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Sym-

bolic model checking without BDDs. In The 5th International Conference on

Tools and Algorithms for Construction and Analysis of Systems, pages 193–207,

London, UK, 1999. Springer. 51

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yun-

shan Zhu. Bounded model checking. Advances in Computers, 58:117–148, 2003.

51

153

.0 BIBLIOGRAPHY

Georg S. Boolos, John P. Burgess, and Richard C. Jeffrey. Computability and

Logic. Cambridge University Press, 2003. 6

Behzad Bordbar and Kyriakos Anastasakis. UML2Alloy: A tool for lightweight

modelling of discrete event systems. In International Conference on Applied

Computing, pages 209–216, Algarve, Portugal, 2005. IADIS. 18, 25, 34, 37, 137

Lucas Bordeaux, Youssef Hamadi, and Lintao Zhang. Propositional satisfiability

and constraint programming: A comparative survey. ACM Computing Surveys,

38, 2006. 21, 38

A S Boujarwah and K Saleh. Compiler test case generation methods: a survey

and assessment. Information and Software Technology, 39(9):617–625, 1997.

17, 21

Lionel Briand, Y. Labiche, and Q. Lin. Improving the coverage criteria of UML

state machines using data flow analysis. Software Testing, Verification and

Reliability, 20(3):177–207, 2010. 12

Erwan Brottier, Franck Fleurey, Jim Steel, Benoit Baudry, and Yves Le Traon.

Metamodel-based test generation for model transformations: an algorithm and

a tool. In 17th International Symposium on Software Reliability Engineering,

pages 85–94, Raleigh, NC, 2006. IEEE Computer Society. 18, 22, 23, 31, 32,

34, 35, 36

Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Griggio, and

Roberto Sebastiani. The mathsat 4 SMT solver. In 20th International Con-

ference on Computer Aided Verification, pages 299–303, Princeton, NJ, 2008.

Springer. 27

Roberto Bruttomesso, Edgar Pek, Natasha Sharygina, and Aliaksei Tsitovich.

The OpenSMT solver. In 16th International Conference on Tools and Algo-

rithms for the Construction and Analysis of Systems, pages 150–153, Paphos,

Cyprus, 2010. Springer. 27

Frank Budinsky, David Steinberg, Ed Merks, Ray Ellersick, and Timothy J.

Grose. Eclipse Modeling Framework. Addison Wesley Professional, 2003. 77

154

.0 BIBLIOGRAPHY

Fabian Büttner and Jordi Cabot. Lightweight string reasoning for OCL. In The

8th European conference on Modelling Foundations and Applications, pages

244–258, Lyngby, Denmark, 2012. Springer. 18, 142

Jordi Cabot, Robert Clarisó, and Daniel Riera. UMLtoCSP: a tool for the for-

mal verification of UML/OCL models using constraint programming. In 22nd

International Conference on Automated Software Engineering, pages 547–548,

Atlanta, GA, 2007. IEEE Computer Society. 18, 29, 34, 138

Jordi Cabot, Robert Clarisó, and Daniel Riera. Verification of UML/OCL class

diagrams using constraint programming. In IEEE International Conference on

Software Testing Verification and Validation Workshop, pages 73–80, Berlin,

Germany, 2008. IEEE Computer Society. 6, 18, 28, 29, 38, 80, 85

Jordi Cabot, Robert Clarisó, and Daniel Riera. Verifying UML/OCL operation

contracts. In 7th International Conference on Integrated Formal Methods, pages

40–55, Düsseldorf, Germany, 2009. Springer. 18, 28

Marco Cadoli, Diego Calvanese, and Toni Mancini. Finite satisfiability of UML

class diagrams by constraint programming. In 2004 International Workshop

on Description Logics, British Columbia, Canada, 2004. 18, 28, 138

Marco Cadoli, Diego Calvanese, Giuseppe Giacomo, and Toni Mancini. Finite

model reasoning on UML class diagrams via constraint programming. In 2007

Artificial Intelligence and Human-Oriented Computing, volume 4733, pages

36–47. Springer, 2007. 18

Diego Calvanese. Finite model reasoning in description logics. In The 5th Interna-

tional Conference on the Principles of Knowledge Representation and Reason-

ing, pages 292–303, Cambridge, Massachusetts, USA, 1996. Morgan Kaufmann.

28

Diego Calvanese and Maurizio Lenzerini. On the interaction between ISA and

cardinality constraints. In The 10th IEEE International Conference on Data

Engineering, pages 204–213. IEEE Computer Society Press, 1994. 28

155

.0 BIBLIOGRAPHY

Felix Chang. The Alloy Analyzer 4.0. http://alloy.mit.edu/, 2007. URL

http://alloy.mit.edu/. 20, 25, 37

S.R. Chidamber and C.F. Kemerer. A metrics suite for object oriented design.

IEEE Transactions on Software Engineering, 20(6):476–493, June 1994a. 129

S.R. Chidamber and C.F. Kemerer. A metrics suite for object oriented design.

IEEE Transactions Software Engineering, 20(6):476–493, 1994b. 122

Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and Roberto

Sebastiani. The mathSAT5 SMT solver. In The 19th International Conference

on Tools and Algorithms for the Construction and Analysis of Systems, pages

93–107, Rome, Italy, 2013. 52

Koen Claessen and Niklas Sörensson. New techniques that improve mace-style fi-

nite model finding. In CADE-19 Workshop on Model Computation - Principles,

Algorithms, Applications, Miami, FL, 2003. 25

Manuel Clavel, Marina Egea, and Miguel Angel Garćıa de Dios. Checking un-

satisfiability for OCL constraints. Electronic Communication of the European

Association of Software Science and Technology, 24, 2009. 18

Stephen A. Cook. The complexity of theorem-proving procedures. In The 3rd

Annual ACM Symposium on Theory of Computing, pages 151–158, New York,

NY, USA, 1971. ACM. 51

L. Cordeiro and B. Fischer. Verifying multi-threaded software using SMT-based

context-bounded model checking. In The 33rd International Conference on

Software Engineering, pages 331–340, 2011. 20, 25

Lucas Cordeiro, Bernd Fischer, and Joao Marques-Silva. SMT-based bounded

model checking for embedded ANSI-C software. In 28th International Confer-

ence on Automated Software Engineering, pages 137–148, Palo Alto, California,

USA, 2009. IEEE Computer Society. 37, 52, 137

Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.

Introduction to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

ISBN 0070131511. 144, 145

156

http://alloy.mit.edu/

.0 BIBLIOGRAPHY

James Crawford, Matthew Ginsberg, Eugene Luks, and Amitabha Roy.

Symmetry-breaking predicates for search problems. In The 5th International

Conference on Principles of Knowledge Representation and Reasoning, pages

148–159, Cambridge, Massachusetts, USA, 1996a. Morgan Kaufmann. 137

James Crawford, Matthew Ginsberg, Eugene Luks, and Amitabha Roy.

Symmetry-breaking predicates for search problems. In The 5h International

Conference on Principles of Knowledge Representation and Reasoning, pages

148–159, San Francisco, USA, 1996b. Morgan Kaufmann. 137

Martin Davis and Hilary Putnam. A computing procedure for quantification

theory. Journal of the ACM, 7(3):201–215, July 1960. 51

Martin Davis, George Logemann, and Donald Loveland. A machine program for

theorem-proving. Communications of the ACM, 5(7):394–397, July 1962. 51

Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In 14th

International Conference on Tools and Algorithms for the Construction and

Analysis of Systems, pages 337–340, Budapest, Hungary, 2008. Springer. 7, 27,

52

Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo theories: introduc-

tion and applications. Communications of the ACM, 54(9):69–77, September

2011. 137

Trung. T. Dinh-Trong, Sudipto Ghosh, and B. France Robert. A systematic

approach to generate inputs to test UML design models. In 17th International

Symposium on Software Reliability Engineering, pages 95–104, Raleigh, NC,

2006. IEEE Computer Society. 12

Frank Drewes, Berthold Hoffmann, Dirk Janssens, Mark Minas, and Niels

Van Eetvelde. Adaptive star grammars. In 3rd International Conference on

Graph Transformations, pages 77–91, Natal, Rio Grande do Norte, Brazil, 2006.

Springer. 24

157

.0 BIBLIOGRAPHY

Philippe Duchon, Philippe Flajolet, Guy Louchard, and Gilles Schaeffer. Boltz-

mann samplers for the random generation of combinatorial structures. Combi-

natorics, Probability and Computing, 13:577–625, July 2004. 30

Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver for

DPLL(T). In The 18th International Conference on Computer Aided Veri-

fication, pages 81–94, Seattle, WA, USA, 2006. Springer. 52

N. Een and N. Sörensson. An Extensible SAT-solver. In 6th International Con-

ference on Theory and Applications of Satisfiability Testing, pages 502–518,

Santa Margherita Ligure, Italy, 2005. Springer. 34, 51

H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic

Graph Transformation. Springer, 2006. ISBN 3540311874. 38, 41, 43, 44, 45,

46, 47, 48, 49

Hartmut Ehrig and B. Mahr. Fundamentals of Algebraic Specification I. Springer,

1985. ISBN 0387137181. 42, 45, 47, 48

Karsten Ehrig, Jochen Malte Küster, and Gabriele Taentzer. Generating instance

models from meta models. Software and Systems Modeling, 8(4):479–500, 2009.

18, 24, 80, 84, 138

Aboubakr Achraf El Ghazi and Mana Taghdiri. Relational reasoning via SMT

solving. In 17th International Conference on Formal Methods, pages 133–148,

Limerick, Ireland, 2011. Springer. 18, 25, 28

Maged Elaasar and Adam Neal. Integrating modeling tools in the development

lifecycle with OSLC: A case study. InModel-Driven Engineering Languages and

Systems, volume 8107 of Lecture Notes in Computer Science, pages 154–169.

Springer, 2013. 2

John Ellson, Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and

Gordon Woodhull. Graphviz - Open Source Graph Drawing Tools. Graph

Drawing, pages 483–484, 2001. 79

158

.0 BIBLIOGRAPHY

Franck Fleurey, Jim Steel, and Benoit Baudry. Validation in model-driven en-

gineering: testing model transformations. In First International Workshop on

Model, Design and Validation, pages 29–40. IEEE Computer Society, 2004. 18,

31, 36

Franck Fleurey, Benoit Baudry, Pierre-Alain Muller, and Yves Traon. Qualifying

input test data for model transformations. Software and Systems Modeling, 8:

185–203, 2009. 18, 26, 32, 34, 35, 36

Ana Garis, Alcino Cunha, and Daniel Riesco. Translating Alloy Specifications to

UML Class Diagrams Annotated with OCL. In 9th International Conference

on Software Engineering and Formal Methods, pages 221–236, Montevideo,

Uruguay, 2011. Springer. 18, 25

Martin Gogolla, Jörn Bohling, and Mark Richters. Validating UML and OCL

models in USE by automatic snapshot generation. Software and Systems Mod-

eling, 4:386–398, 2005. 18, 29, 34, 35

Martin Gogolla, Fabian Büttner, and Mark Richters. USE: A UML-based speci-

fication environment for validating UML and OCL. Science of Computer Pro-

gramming, 69(1-3):27–34, 2007. 29, 35

Ulrike Golas. Analysis and correctness of algebraic graph and model transforma-

tions. PhD thesis, Berlin Institute of Technology, 2011. 43

Eugene Goldberg and Yakov Novikov. Berkmin: A fast and robust SAT-solver.

Discrete Applied Mathematics, 155(12):1549–1561, June 2007. 51

Carlos Alberto González Pérez, Fabian Buettner, Robert Clarisó, and Jordi

Cabot. EMFtoCSP: A tool for the lightweight verification of EMF models.

In Formal Methods in Software Engineering: Rigorous and Agile Approaches,

Zurich, Suisse, 2012. 18, 29, 34, 85, 138

Jörg Harm and Ralf Lämmel. Testing attribute grammars. In 3rd Workshop

on Attribute Grammars and their Applications, pages 79–99, Ponte de Lima,

Portugal, 2000. 21

159

.0 BIBLIOGRAPHY

Reiko Heckel and Leonardo Mariani. Automatic conformance testing of web ser-

vices. In 8th International Conference on Fundamental Approaches to Software

Engineering, pages 34–48, Edinburgh, UK, 2005. Springer. 18

Florian Heidenreich, Jendrik Johannes, Mirko Seifert, and Christian Wende. Clos-

ing the gap between modelling and Java. In 2nd International Conference on

Software Language Engineering, pages 374–383, Denver, CO, 2010a. Springer.

12, 113

Florian Heidenreich, Jendrik Johannes, Mirko Seifert, and Christian Wende. Clos-

ing the gap between modelling and Java. In 2nd International Conference on

Software Language Engineering, pages 374–383, Denver, CO, 2010b. Springer.

2

Berthold Hoffmann and Mark Minas. Defining models - meta models versus graph

grammars. Electronic Communications of the EASST, 29:1–14, 2010. 19

Berthold Hoffmann and Mark Minas. Generating instance graphs from class

diagrams with adaptive star grammars. In 3rd International Workshop on

Graph Computation Models, 2011. 18, 24

ILOG. ILOG Solver system version 5.1 user’s manual. IBM, 2001. 28

ILOG. ILOG OPL Studio system version 3.6.1 user’s manual. IBM, 2002. 28

D. Jackson and C.A. Damon. Elements of style: analyzing a software design

feature with a counterexample detector. IEEE Transactions on Software En-

gineering, 22(7):484–495, 1996. 65, 84

Daniel Jackson. An intermediate design language and its analysis. In 6th Inter-

national Symposium on Foundations of Software Engineering, pages 121–130,

Lake Buena Vista, FL, 1998. ACM. 34, 84

Daniel Jackson. Automating first-order relational logic. In The 8th International

Symposium on Foundations of Software Engineering, pages 130–139, San Diego,

CA, 2000. ACM. 20, 34

160

.0 BIBLIOGRAPHY

Daniel Jackson. Alloy: a lightweight object modelling notation. ACM Transac-

tions on Software Engineering Methodologies, 11(2):256–290, 2002. 18, 25, 34,

84

Daniel Jackson. Software Abstractions: logic, language and analysis. MIT Press,

2006. 25

Daniel Jackson, Somesh Jha, and Craig A. Damon. Isomorph-free model enumer-

ation: a new method for checking relational specifications. ACM Transactions

on Programming Languages and Systems, 20(2):302–343, March 1998. 25

Daniel Jackson, Ian Schechter, and Hya Shlyahter. Alcoa: the Alloy constraint

analyzer. In International Conference on Software Engineering, pages 730–733,

Limerick, Ireland, 2000. ACM. 34

Daniel Jackson, Ilya Shlyakhter, and Manu Sridharan. A micromodularity mech-

anism. ACM SIGSOFT Software Engineering Notes, 26(5):62–73, September

2001. 25

Ethan Jackson, Tihamér Levendovszky, and Daniel Balasubramanian. Reasoning

about metamodeling with formal specifications and automatic proofs. In 14 In-

ternational Conference on Model Driven Engineering Languages and Systems,

pages 653–667, Wellington, New Zealand, 2011. Springer. 18, 27, 34, 37

Dirk Jäger, Ansgar Schleicher, and BernhardWestfechtel. Using UML for software

process modeling. In 7th European Software Engineering Conference, pages 91–

108. Springer, 1999. 2

Hadi Katebi, Karem A. Sakallah, and Igor L. Markov. Conflict anticipation in

the search for graph automorphisms. In The 18th International Conference on

Logic for Programming, Artificial Intelligence, and Reasoning, pages 243–257,

Mérida, Venezuela, 2012. Springer. 137

Barbara Kitchenham. Procedures for performing systematic reviews. Technical

report, Keele University, 2004. 9

161

.0 BIBLIOGRAPHY

Mirco Kuhlmann and Martin Gogolla. Strengthening SAT-based validation of

UML/OCL models by representing collections as relations. In Modelling Foun-

dations and Applications, volume 7349 of Lecture Notes in Computer Science,

pages 32–48. Springer, 2012. 18, 25, 26

Mirco Kuhlmann, Lars Hamann, and Martin Gogolla. Extensive validation of

OCL models by integrating SAT solving into USE. In 49th International

Conference on Objects, Models, Components, Patterns, pages 290–306, Zurich,

Switzerland, 2011. Springer. 18, 34, 35, 137

Jochen M. Küster and Mohamed Abd-El-Razik. Validation of model transfor-

mations: first experiences using a white box approach. In 9th International

Conference on Models in Software Engineering, pages 193–204, Genoa, Italy,

2006. Springer. 17

Maher Lamari. Towards an automated test generation for the verification of model

transformations. In 22nd Symposium on Applied Computing, pages 998–1005,

Seoul, Korea, 2007. ACM. 18, 36

Ralf Lämmel. Grammar testing. In 4th International Conference on Fundamen-

tal Approaches to Software Engineering, pages 201–216, Genova, Italy, 2001.

Springer. 22

Ralf Lämmel and Wolfram Schulte. Controllable combinatorial coverage in

grammar-based testing. In 18th International Conference on Testing of Com-

municating Systems, pages 19–38, New York, USA, 2006. Springer. 22

Craig Larman. Applying UML and Patterns: An Introduction to Object-Oriented

Analysis and Design and Iterative Development (3rd Edition). Prentice Hall,

2003. 2

Wei Li and Sallie M. Henry. Object-oriented metrics that predict maintainability.

Journal of Systems and Software, 23(2):111–122, 1993. 122

Tomaž Lukman, Marjan Mernik, Zekai Demirezen, Barrett Bryant, and Jeff Gray.

Automatic generation of model traversals from metamodel definitions. In 48th

162

.0 BIBLIOGRAPHY

Annual Southeast Regional Conference, pages 78:1–78:6, Oxford, Mississippi,

USA, 2010. ACM. 18, 30

Den Haag M. Feenstra. Sudoku. http://www.sudoku.ws/extreme.htm, August

2013. 55

Nuno Macedo and Alcino Cunha. Implementing QVT-R bidirectional model

transformations using Alloy. In The 16th International Conference on Funda-

mental Approaches to Software Engineering, pages 297–311. Springer, Rome,

Italy, 2013. 19, 34, 36, 37, 86, 138

Yogesh S. Mahajan, Zhaohui Fu, and Sharad Malik. Zchaff2004: an efficient SAT

solver. In The 7th International Conference on Theory and Applications of

Satisfiability Testing, pages 360–375, Trento, Italy, 2005. Springer. 51

Alireza Mahdian, Anneliese Amschler Andrews, and Orest Pilskalns. Regression

testing with UML software designs: a survey. Journal of Software Maintenance

and Evolution: Research and Practice, 21(4):253–286, 2009. 12

Sharad Malik and Lintao Zhang. Boolean satisfiability from theoretical hardness

to practical success. Communications of the ACM, 52(8):76–82, 2009. 137

T.J. McCabe. A complexity measure. IEEE Transactions on Software Engineer-

ing, SE-2(4):308–320, 1976. 120, 127

Brendan D. McKay. Practical graph isomorphism. Congressus Numerantium, 30:

45–87, 1981. 137

Jacqueline A. McQuillan and James F. Power. A metamodel for the measure-

ment of object-oriented systems: An analysis using Alloy. In 1st International

Conference on Software Testing Verification and Validation, pages 288–297,

Lillehammer, Norway, 2008. IEEE Computer Society. 18, 25, 26, 34, 35, 37

Aleksandar Milicevic and Hillel Kugler. Model checking using SMT and theory

of lists. In The 3rd International Conference on NASA Formal Methods, pages

282–297, Pasadena, CA, USA, 2011. Springer. 52, 137

163

.0 BIBLIOGRAPHY

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and

Sharad Malik. Chaff: Engineering an efficient SAT solver. In 38th Design

Automation Conference, pages 530–535, Las Vegas, Nevada, United States,

2001. ACM. 34, 51

Alix Mougenot, Alexis Darrasse, Xavier Blanc, and Michèle Soria. Uniform ran-

dom generation of huge metamodel instances. In 5th Europrean Conference

on Model Driven Architecture - Foundations and Applications, pages 130–145,

Enschede, The Netherlands, 2009. Springer. 18, 30, 34, 36

Ashalatha Nayak and Debasis Samanta. Model-based test cases synthesis using

UML interaction diagrams. Software Engineering Notes, 34(2):1–10, 2009. 12

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Abstract DPLL and

abstract DPLL modulo theories. In Logic for Programming, Artificial Intelli-

gence, and Reasoning, volume 3452, pages 36–50. Springer, 2005. 52

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT

modulo theories: From an abstract davis-putnam-logemann-loveland procedure

to DPLL(T). Journal of the ACM, 53(6):937–977, November 2006. 52

Object Management Group. Meta Object Facility Core Specification v2.4.1, Au-

gust 2011a. 2, 4, 12, 21

Object Management Group. Meta Object Facility 2.0 Query/View/Transforma-

tion/Specification Version 1.1, January 2011b. 19

Object Management Group. Unified Modeling Language, Infrastructure Version

2.4.1, August 2011c. 4, 12

Object Management Group. Unified Modeling Language, Superstructure Version

2.4.1, August 2011d. 4, 30

Object Management Group. Object Constraint Language Version 2.3.1, Jan

2012a. 35

Object Management Group. Object Constraint Language Version 2.3.1, January

2012b. 4

164

.0 BIBLIOGRAPHY

T. J. Ostrand and M. J. Balcer. The category-partition method for specifying

and generating fuctional tests. Communications of the ACM, 31(6):676–686,

1988. 22, 29

Stephan Philippi. Automatic code generation from high-level Petri-Nets for model

driven systems engineering. Journal of Systems and Software, 79(10):1444–

1455, 2006. 2

Orest Pilskalnsa, Anneliese Andrews, Andrew Knight, Sudipto Ghosh, and

Robert France. Testing UML designs. Information and Software Technology,

49(8):892–912, 2007. 12

B. Poonen. Undecidable problems: a sampler. ArXiv e-prints, 2012. 38

Jean-Francois Puget. Constraint programming next challenge: Simplicity of use.

In 2004 Principles and Practice of Constraint Programming, volume 3258,

pages 5–8. Springer, 2004. 38, 137

P. Purdom. A sentence generator for testing parsers. BIT Numerical Mathematics,

12(3):366–375, 1972. 10, 21

Anna Queralt, Alessandro Artale, Diego Calvanese, and Ernest Teniente. OCL-

Lite: Finite reasoning on UML/OCL conceptual schemas. Data & Knowledge

Engineering, 73:1–22, 2012. 18

Grzegorz Rozenberg. Handbook of Graph Grammars and Computing by Graph

Transformation: Volume 1. Foundations. World Scientific Publishing, 1997.

ISBN 98-102288-48. 19

Philip Samuel and A.T. Joseph. Test sequence generation from UML sequence

diagrams. In 9th International Conference on Software Engineering, Artificial

Intelligence, Networking, and Parallel/Distributed Computing, pages 879–887.

IEEE Computer Society, 2008. 12

Sagar Sen and Benoit Baudry. Mutation-based model synthesis in model driven

engineering. In 2nd Workshop on Mutation Analysis. IEEE Computer Society,

2006. 18, 36

165

.0 BIBLIOGRAPHY

Sagar Sen, Benoit Baudry, and Jean-Marie Mottu. On combining multi-formalism

knowledge to select models for model transformation testing. In 1st Inter-

national Conference on Software Testing, Verification, and Validation, pages

328–337, Lillehammer, Norway, 2008. IEEE Computer Society. 18, 25, 26, 37

Sagar Sen, Benoit Baudry, and Jean-Marie Mottu. Automatic model generation

strategies for model transformation testing. In 2nd International Conference

on Theory and Practice of Model Transformations, pages 148–164. Springer,

2009. 18, 25, 26, 34, 35, 37

Seyyed M. A. Shah, Kyriakos Anastasakis, and Behzad Bordbar. From UML to

alloy and back again. In 6th International Workshop on Model-Driven Engi-

neering, Verification and Validation, pages 4:1–4:10. ACM, 2009. 25

Ilya Shlyakhter. Generating effective symmetry-breaking predicates for search

problems. Discrete Applied Mathematics, 155(12):1539–1548, June 2007. 115,

137

Michael Sipser. Introduction to the theory of computation. PWS Publishing

Company, 1997. ISBN 978-0-534-94728-6. 144, 145

M. Soeken, R. Wille, M. Kuhlmann, M. Gogolla, and R. Drechsler. Verifying

UML/OCL models using boolean satisfiability. In Design, Automation Test in

Europe Conference Exhibition, pages 1341–1344, Dresden, Germany, 2010. 18,

27, 136

Mathias Soeken, Robert Wille, and Rolf Drechsler. Towards automatic determi-

nation of problem bounds for object instantiation in static model verification.

In 8th International Workshop on Model-Driven Engineering, Verification and

Validation, pages 2:1–2:4, Wellington, New Zealand, 2011a. ACM. 18, 27

Mathias Soeken, Robert Wille, and Rolf Drechsler. Encoding OCL data types for

SAT-based verification of UML/OCL models. In 5th International Conference

on Tests and Proofs, pages 152–170, Zurich, Switzerland, 2011b. Springer. 18,

27, 37, 84, 136, 137, 138, 140, 142

166

.0 BIBLIOGRAPHY

David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. Eclipse

Modeling Framework. Addison-Wesley Professional, 2nd edition, 2008. 105

Mana Taghdiri Tianhai Liu, Michael Nagel. Bounded program verification us-

ing an SMT solver: A case study. In IEEE 5th International Conference on

Software Testing, Verification and Validation, pages 101–110, Montreal, QC,

Canada, 2012. IEEE Computer Society. 25, 37, 52, 137

Emina Torlak and Daniel Jackson. The design of a relational engine. Technical

Report MIT-CSAIL-TR-2006-068, Computer Science and Artificial Intelligence

Laboratory, Massachusetts Institute of Technology, 2006. 18, 25

Emina Torlak and Daniel Jackson. Kodkod: a relational model finder. In 13th

International Conference on Tools and Algorithms for the Construction and

Analysis of Systems, pages 632–647, Braga, Portugal, 2007. Springer. 18, 25,

34, 137

Emina Torlak, Felix Sheng-Ho Chang, and Daniel Jackson. Finding minimal un-

satisfiable cores of declarative specifications. In The 15th International Sym-

posium on Formal Methods, pages 326–341, Turku, Finland, 2008. Springer.

25

Eminate Torlak. A constraint solver for software engineering: finding models

and cores of large relational specifications. PhD thesis, Department of Electri-

cal Engineering and Computer Science, Massachusetts Institute of Technology,

Cambridge, MA, 2009. 25, 26, 34, 37, 51, 137, 138

G S Tseitin. On the complexity of derivation in propositional calculus. Studies

in Mathematics and Mathematical Logic, 2:115–125, 1968. 20

Jos Warmer and Anneke Kleppe. The Object Constraint Language: Precise Mod-

eling with UML. Addison-Wesley Longman Publishing, 1999. 23

Jos Warmer and Anneke Kleppe. The Object Constraint Language: Getting

Your Models Ready for MDA. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 2 edition, 2003. ISBN 0321179366. 80

167

.0 BIBLIOGRAPHY

R. Wille, M. Soeken, and R. Drechsler. Debugging of inconsistent UML/OCL

models. In 2012 Design, Automation Test in Europe Conference Exhibition,

pages 1078–1083, 2012. 18

Jessica Winkelmann, Gabriele Taentzer, Karsten Ehrig, and Jochen M. Küster.

Translation of restricted OCL constraints into graph constraints for generating

meta model instances by graph grammars. Electronic Notes in Theoretical

Computer Science, 211:159–170, 2008. 18, 24

World Wide Web Consortium. Extensible Markup Language (XML) 1.0 (Fifth

Edition), November 2008. 21

Hao Wu, Rosemary Monahan, and James F. Power. Test case generation for pro-

gramming language metamodels. In Doctoral Symposium of the 3rd Interna-

tional Conference on Software Language Engineering, Eindhoven, Netherlands,

2010. 6

Hao Wu, Rosemary Monahan, and James F. Power. Metamodel instance gen-

eration: A systematic literature review. Computing Research Repository,

abs/1211.6322, 2012. 7

Hao Wu, Rosemary Monahan, and James F. Power. Exploiting attributed type

graphs to generate metamodel instances using an SMT solver. In 7th Inter-

national Symposium on Theoretical Aspects of Software Engineering, Birming-

ham, UK, 2013. 6, 7, 68, 138

Kenro Yatake and Toshiaki Aoki. SMT-based enumeration of object graphs from

UML class diagrams. ACM SIGSOFT Software Engineering Notes, 37(4):1–8,

July 2012. 18, 80

T. Yato and T. Seta. Complexity and completeness of finding another solution and

its application to puzzles. IEICE Transactions on Fundamentals of Electronics

Communications and Computer Sciences, E86-A(5):1052–1060, 2003. 55

168

	Contents
	List of Figures
	Nomenclature
	1 Introduction
	1.1 Model Driven Engineering
	1.2 Model and Metamodel
	1.3 MetaObject Facility
	1.4 Metamodels and UML Class Diagrams
	1.5 Object Constraint Language
	1.6 Problem Statement
	1.7 Motivation
	1.8 Challenges
	1.9 Summary of Contributions

	2 A Systematic Literature Review of Metamodel Instance Generation Techniques
	2.1 Review Research Methods
	2.2 Defining The Research Questions
	2.2.1 Search terms
	2.2.2 Paper Selection Study

	2.3 Discussion
	2.3.1 RQ1. What are the research domains with techniques that are applicable to metamodel instance generation?
	2.3.1.1 Compiler Testing
	2.3.1.2 Model Transformation Testing
	2.3.1.3 Graph Grammars
	2.3.1.4 SAT/SMT based Approaches
	2.3.1.5 Constraint Programming
	2.3.1.6 XML & Miscellaneous Domains

	2.3.2 RQ2. Within those research domains, what theoretical frameworks and associated algorithms have actually been used for metamodel instance generation?
	2.3.2.1 Compiler Testing
	2.3.2.2 Model Transformation Testing
	2.3.2.3 Graph Grammars
	2.3.2.4 SAT/SMT Based Approaches
	2.3.2.5 Constraint Programming Approach (CP)
	2.3.2.6 XML
	2.3.2.7 Miscellaneous Domains

	2.3.3 RQ3. What criteria are applied for selecting metamodel instances?
	2.3.4 RQ4. What tools exist to implement those algorithms to produce model instances?
	2.3.5 Discussion

	2.4 Summary

	3 Background: Graphs, SAT and SMT
	3.1 Metamodels and Graphs
	3.1.1 Typed Graphs
	3.1.2 Attributed Graphs and Attributed Type Graphs
	3.1.3 Attributed Type Graph with Inheritance

	3.2 Boolean Satisfiability Problem
	3.3 Satisfiability Modulo Theories
	3.3.1 SMT-Lib version 2
	3.3.1.1 Functions
	3.3.1.2 Logic Context
	3.3.1.3 Formulas
	3.3.1.4 Models
	3.3.1.5 Solving An Integer Equation

	3.4 An SMT-based Sudoku Solver
	3.5 Summary

	4 Generating Metamodel Instances Satisfying Structural and OCL Constraints
	4.1 Bounded Attributed Type Graphs with Inheritance
	4.2 Translating an AGu to SMT2 Formulas
	4.2.1 Translating the Nodes and Edges
	4.2.2 Translating Graph Edges
	4.2.2.1 Unidirectional Associations
	4.2.2.2 Bidirectional Association

	4.3 Translating OCL Invariants to SMT2 Formulas
	4.4 A Graph Colouring Example
	4.5 Evaluation
	4.5.1 Implementation
	4.5.2 Results
	4.5.3 Comparison

	4.6 Summary

	5 Generating Metamodel Instances Satisfying Partition-Based Coverage Criteria
	5.1 Partition-based Coverage Criteria for Metamodels
	5.2 Using Partition Switches and Criterial Formulas for Partition-based Instance Generation
	5.2.1 Class Attribute Partitioning
	5.2.1.1 An Example of Attribute-based Partitions

	5.2.2 Association-End Multiplicity Partitioning
	5.2.2.1 Partitioning Unidirectional Associations
	5.2.2.2 Partitioning Bidirectional Associations

	5.2.3 Better Control of Instance Enumeration

	5.3 An Example of Achieving CA and AEM Coverage Criteria
	5.4 Evaluation
	5.4.1 Implementation
	5.4.2 Results

	5.5 Summary

	6 Generating Metamodel Instances Satisfying Graph-Based Criteria
	6.1 Directed Acyclic Graphs
	6.2 Sharing and Non-Sharing Nodes
	6.3 Quantity of Nodes and Edges
	6.4 Examples: Class Cohesion and McCabe Complexity
	6.4.1 Class Cohesion and Call Graphs
	6.4.2 McCabe Complexity

	6.5 Evaluation
	6.5.1 Implementation
	6.5.2 Results

	6.6 Summary

	7 Conclusion
	7.1 Discussion
	7.2 Future work
	7.2.1 Shared SMT2 Formulas
	7.2.2 Unsat Core Analysis
	7.2.3 Extending OCL Support
	7.2.4 Special Graph-Properties Based Language

	Appendix A
	Bibliography

