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Abstract 
This thesis describes the development of a dynamic spatial microsimulation model 

for Irish agriculture and its use in providing a spatially disaggregated profile of 

resultant emissions. Following the establishment of a baseline spatial agricultural 

emissions inventory, a dynamic microsimulation model is developed and is used to 

simulate agricultural activity forward in time to provide an estimation of future 

emissions outcomes based on previous historical trends. Finally, in the context of 

potentially conflicting economic and environmental policies for Irish Agriculture a 

scenario analysis is undertaken in order to assess the potential emissions impact of 

achieving the expansionary targets outlined for the dairy sector in the Food Harvest 

2020 programme. 

 

An adaptation of the SMILE (Simulated Model of the Irish Local Economy) quota 

sampling procedure involving the incorporation of a novel stocking rate ranking 

methodology was found to dramatically improve results for the preservation of 

spatial heterogeneity of stocking levels and associated agri-emissions. Results from a 

dynamic spatial microsimulation model based on the Teagasc National Farm Survey 

project a gradual decline in agricultural activity based on historical trends over a ten 

year simulation period with a concomitant marginal reduction in associated 

emissions. Results from a multi-scenario analysis in the post-quota era reveal the 

potential future spatial locations of new dairy farms required to enter in order to meet 

target. For three alternative dairy expansion scenarios, total emissions from 

agriculture are projected to fall by between 2-5% by 2020.  

 

Information on the potential future spatial disaggregation of emissions related 

activities provides an opportunity for the advanced planning and design of novel 

mitigation strategies at the sub-national level. This thesis offers a solution to this 

information deficit for Irish agriculture, the largest contributor to non-Emissions 

Trading Scheme emissions. It also provides a unique contribution to knowledge by 

establishing a framework under which economic and environmental policies for the 
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agricultural sector can be assessed in tandem in terms of their future consequences 

for national emissions.  
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CHAPTER ONE: INTRODUCTION 

1.1 Introduction 
The body of evidence to support the conclusion that the emission of greenhouse 

gases arising from human activity has been the dominant force behind the current 

period of global warming is compelling. The recent Intergovernmental Panel on 

Climate Change (IPCC) Fifth Assessment Report states that it is extremely likely 

that human influence has been the dominant cause of the observed warming of the 

world’s atmosphere and oceans; reductions in ice and snow, global mean sea level 

rises and changes in climate extremes particularly since the middle of the last 

century (IPCC, 2013). The Fifth Assessment Report is the latest in a series of reports 

considering the influence of human activities on global climate change, the long term 

implications of which pose a substantial threat to the planet’s long-term ability to 

sustainably support a growing global population in the face of reduced air quality, 

flooding and inundation, droughts, food security and more extreme weather events 

(IPCC, 2013).  

 

While the theory of anthropogenic climate change first reached international 

attention almost 35 years ago at the World Climate Conference in 1979, its presence 

on the international political agenda is a relatively recent phenomenon. The adoption 

of the Kyoto Protocol in 1997 represented the first legally binding international 

agreement on greenhouse gas emissions and involved the setting of individual 

country specific emissions targets which were to be attained over the 2008-2012 

commitment period (UN, 1998). At a supranational level, Member States of the 

European Union (EU) have subsequently committed to individual emissions targets 

to achieve a collective 20% reduction in EU emissions by 2020 with even deeper 

cuts proposed if international agreement is reached between developing countries on 

comparable emissions reductions (Council Decision, 2009). 

 

However, while the effects of increased emissions concentrations have global 

consequences, the implementation of international policy on climate change is 
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ultimately the responsibility of individual national governments. This presents many 

significant challenges. The setting of individual country specific emissions targets 

raises complex difficulties in relation to the accurate measurement of national 

emissions. These difficulties have been mitigated to some extent by the provision of 

a simplified universal accountancy framework (IPCC, 1996; IPCC, 2000) but the 

suitability of a macro-level national accounting system in the context of a globalised 

international trade market has been subject to significant criticism (Subak, 1999; 

Schils et al., 2006; Crosson et al., 2011). While national decisions on production 

systems and mitigation strategies may be optimal in terms of the individual nation’s 

emissions inventory they may be sub-optimal in terms of achieving a net reduction in 

global emissions. There is however a significant trade off in measuring emissions 

from individual unit processes as such methods can be laborious, time-consuming, 

subject to large uncertainties, and therefore difficult to verify (Schulte & Lanigan, 

2011).  

 

In addition to the computational challenges surrounding national governments’ 

commitments to international climate change policy obligations, public acceptance 

of the implementation of market and/or regulatory climate change policies at the 

national level is also a cause for concern (Lockwood, 2013). Recent evidence 

suggests that the level of public concern relating to climate change issues has seen a 

decline in the face of economic insecurity bought about by the recent global 

recession (Scruggs & Benegal, 2010). The level of uncertainty surrounding the 

economic costs of climate change and the emissions footprint of individual consumer 

products presents significant challenges to attempts to relate the “true” costs of 

emissions to the individual consumer. Thus the effective implementation of climate 

change policy in the face of market failure (Bator, 1958) is a key challenge for 

national governments. 

 

Specifically examining the implementation of climate change policy, there has been 

an increasing focus in the climate change literature on the role of local governance in 

delivering policy objectives (Collier & Löfstedt, 1997), with a view that it is at the 



 3 

local level where greenhouse gas emission reductions and mitigation measures will 

ultimately take place (Kates et al., 1998). Broad national and international policy 

goals ultimately require the co-operation of local and regional authorities such as 

county, city and town councils if they are to be successfully implemented (Allman et 

al., 2004).  

There is however, an information deficit that these local authorities suffer from 

(Allman et al., 2004). The International Council for Local Environmental Initiatives 

(ICLEI) has identified the establishment of a baseline emissions inventory against 

which progress on climate change mitigation efforts can be measured  as the first of 

5 steps towards sustainable cities (ICLEI, 2006). The generation of individual 

emissions inventories at a local level would however be an impractical and 

extremely costly process. Moreover, it has been suggested that there is a need for an 

analytical policy tool to assist local authorities in choosing appropriate mitigation 

and/or adaptation options (Laukkonen et al., 2009). 

 

Recent developments in the area of spatial microsimulation modelling have provided 

an opportunity to address this information deficit (Clarke, 1996b; Ballas & Clarke 

2001; O’Donoghue et al., 2013) at sub-national scales. The disaggregation of 

nationally representative micro-level data
1
 at various spatial scales provides the 

opportunity to model baseline emissions from the recorded activities of those micro 

units (Hynes et al., 2009; Tirumalachetty et al., 2013). Spatial microsimulation 

models also provide the opportunity to conduct policy analysis enabling decision 

makers to analyse the potentially differential spatial impacts of climate change 

policy measures at a disaggregated level (Holm et al., 1996; Hynes et al., 2006). 

These models have the capacity to facilitate not only the study of the effect of 

climate change policies on the spatial disaggregation of emissions but also the study 

of other potentially conflicting policies which may have a significant impact on 

national emissions.  

 

                                                 
1
 On micro units such as individuals/households/farms or firms 
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In Ireland, considerable discussion has centred on the potentially conflicting targets 

between the achievement of a significant expansion of the agricultural sector via the 

aims of the Food Harvest 2020 (FH2020) programme and Ireland’s national and 

international commitments to emissions reductions (Donnellan & Hanrahan, 2011b). 

Agriculture currently accounts for over 40% of total national greenhouse gas 

emissions
2
 (EPA, 2012).  Furthermore, the Environmental Protection Agency (EPA) 

has projected that agriculture will be responsible for 48% of total emissions from the 

non-Emissions Trading Scheme (ETS) sector by 2020 (EPA, 2013b). While it has 

been acknowledged that no specific national target for emissions reductions from 

agriculture has been set (Donnellan & Hanrahan, 2011b), the EPA (2013b) notes the 

important role that agriculture will play in developing mitigation options for 

achieving 2020 targets in relation to non-ETS sector emissions. Thus it is likely that 

considerable emissions reductions will have to be achieved from the agri-sector in 

order for Ireland to meet its commitment to reduce national emissions by 20% by 

2020 (Council Decision, 2009). 

 

The presence of spatial information on agricultural activity has been shown to be 

able to contribute to the design of policies which can reduce emissions related to the 

agricultural sector (Quinlan et al., 2006). It may also be asserted that advanced 

insight into the potential future spatial disaggregation of agricultural activity can 

contribute to the design of long term policies which may reduce emissions associated 

with agriculture. This has been previously demonstrated by Quinlan (2013) who 

examined the optimal location of agricultural processing facilities in order to 

minimise emissions associated with the transportation of milk. 

 

Thus there is a requirement for a sophisticated spatial analytical tool to effectively 

assess and inform the implementation of climate change policy. It is in the context of 

this requirement that this thesis seeks to provide a unique contribution to knowledge 

in establishing a framework under which economic and environmental policies for 

                                                 
2
 Agriculture accounts for over 40% of Irish emissions from the non-Emissions Trading Scheme 

(ETS) sector. The emissions reductions targets discussed also refer to the non-ETS sector 
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the agricultural sector can be assessed in tandem in terms of their future 

consequences for national emissions.  

 

1.2 Aims and Objectives 
The central aim of this thesis is to provide a means for policy makers to make 

informed decisions when considering the implementation of policies which may 

affect emissions outcomes for the agricultural sector in Ireland, and to provide for 

the construction of an analytical tool which can be used to provide feedback to the 

development of agri-environmental policy in the future. To achieve this aim the 

following research objectives have been outlined: 

 

1. To comprehensively review Ireland’s national and international climate 

change commitments and to investigate the conditions required for the 

effective implementation of climate change policy. 

2. To develop and validate a baseline spatial emissions inventory of emissions 

for Irish agriculture, enabling the analysis of policy measures at the micro-

level.  

3. To construct and validate a dynamic spatial microsimulation model for Irish 

agriculture in order to provide a framework for the design and 

implementation of localised measures to mitigate future emissions outcomes 

for the agricultural sector. 

4. To perform a multi-scenario analysis in order to assess the potential 

emissions impact of achieving the target for the expansion of the dairy sector 

outlined the Food Harvest 2020 programme 

5. To consider the implication of the outputs from this thesis, and the potential 

development of the model framework for future research. 

1.3 Structure of this Thesis  
 

In order to provide a coherent summary of work undertaken, the structure of this 

thesis is now outlined with a brief summary outline of each chapter,    
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Following an outline of the current climate change policy framework Chapter 2 

investigates the role of local authorities and the role of networked governance in the 

form of co-operation between authorities, agencies and departments in the 

facilitation, implementation and adaptation of national and EU climate change policy 

at the local level. Highlighting the work of Allman et al. (2004) the devolution of 

Irish climate change policies to local agents is reviewed. The chapter concludes with 

a discussion outlining the need for an efficient and effective, analytical policy tool 

for the assessment of climate change policies at the local level. 

 

Chapter 3 conducts a comparative analysis of greenhouse gas emissions modelling 

and considers the Irish experience reviewing the National GHG inventory service 

provided by the EPA under the direction of the IPCC reporting guidelines. Having 

established in the previous chapter that information at a sub-national level is deemed 

as essential to inform effective local climate change policy, this chapter assesses the 

adequacy of the default inventorying system which reports aspatially at a national 

level and reviews the currently available options for the spatial modelling of 

greenhouse gas emissions. 

 

In search of a solution to the deficit of local level spatial information on emissions, 

Chapter 4 discusses the recent developments in the area of microsimulation 

modelling and traces the development of several types and forms (Clarke, 1996b; 

Ballas & Clarke, 2001; O’Donoghue et al., 2013) The chapter discusses the 

evolution and previous  applications of the SMILE microsimulation model and 

highlights its potential use for the inventorying of greenhouse gas emissions at the 

micro level thus enabling a spatial distribution of emissions to be created.   

 

Chapter 5 outlines the development of a baseline spatial emissions model for Irish-

Agriculture. A comparison of the agricultural output captured in the Teagasc 

National Farm Survey (NFS) with the output reported in the national accounts is 

carried out in order to provide a basis for a valid comparison of emissions calculated 

in the National Inventory Report. It describes the development and validation of a 

novel method used to preserve the spatial heterogeneity of Irish agricultural 



 7 

emissions activities through an adaptation of the SMILE-NFS sampling process 

using a stocking rate ranking variable and concludes with a discussion on the 

benefits and limitations of the technique. 

 

Chapter 6 describes the construction of the NFS-DSM, a dynamic spatial 

microsimulation model for Irish Agriculture using a system of panel equations 

constructed from data from the Teagasc NFS which facilitate the simulation of 

changes in agricultural output over time.  In the context of ambitious targets for the 

agricultural sector in the form of the Food Harvest 2020 policy goals and Ireland’s 

potentially conflicting emissions reduction obligations, these models are employed 

to simulate production forward to 2020 based on historical trends. The projected 

spatial emissions outcomes from a business as usual scenario are disaggregated to 

electoral district level using the adapted SMILE-NFS spatial microsimulation model. 

The chapter concludes with suggested options for further scenario analysis in the 

agri-sector. 

 

Chapter 7 outlines the performance of a multi-scenario analysis in order to assess 

the potential spatial emissions impact of achieving the target for the expansion of the 

dairy sector outlined the Food Harvest 2020 programme. For all scenarios, the 

number and location of additional new entrants required to meet target is projected 

spatially and disaggregated to electoral district level using the SMILE-NFS spatial 

microsimulation model. The resultant emissions outcomes are mapped and compared 

at an aggregate level to assess the implications for Ireland’s 2020 emission 

obligations. The chapter concludes with an assessment of the level of structural 

change required in the dairy sector in order to meet targets set out in Food Harvest 

2020.   

 

Chapter 8 summaries the main findings of the thesis and discusses the potential 

future applications of the methodologies outlined and the opportunities for future 

research. Limitations of the approach and model are outlined and discussed. 
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1.4 Summary 
 

The international community has recognised the need for urgent action in the face of 

compelling evidence that anthropogenic climate change presents a substantial threat 

to the planet and its long-term ability to sustainably support future generations. 

International agreement on climate change policies may go some way to mitigating 

the most deleterious effects of anthropogenic climate change, however, the effective 

implementation of these policies present a number of significant challenges. The 

pursuit by governments of market based climate change policies against the 

backdrop of the economic anxiety induced by the recent global recession may not 

however be politically acceptable. Policy conflicts may, and do, arise between the 

achievement of emissions reductions and demands for expansionary policies in 

emissions intensive areas, such as agriculture, in order to stimulate economic growth.  

 

There are also practical difficulties which include the accurate measurement and 

availability of information on emissions not just nationally, but also at the local level 

against which, local authorities can set targets and assess progress. Therefore, there 

is a requirement for sophisticated analytical tools to effectively assess and inform the 

implementation of climate change policy. It is in the context of this requirement that 

this thesis seeks to provide a unique contribution to knowledge in establishing a 

framework under which economic and environmental policies for the agricultural 

sector can be assessed at a spatial scale of relevance in tandem with their 

consequences for national emissions.  

 

The thesis outlines the development of a dynamic spatial microsimulation model for 

Irish agriculture and its use in providing a spatially disaggregated profile of 

agricultural emissions. A baseline spatial model of Irish agricultural emissions is 

first constructed, and is then simulated forward in time to provide an estimation of 

future emissions outcomes based on historical trends. Finally, a scenario analysis is 

undertaken in order to assess the potential emissions impact of achieving the target 
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for the expansion of the dairy sector outlined the Food Harvest 2020 programme. 

Chapter 2 will undertake a comprehensive review of Ireland’s national and 

international climate change commitments and investigate the role of local 

governance in the effective implementation of climate change policy. It provides the 

overarching policy context within which this work is framed. 
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CHAPTER TWO: IRISH CLIMATE CHANGE POLICY 

AND THE ROLE OF LOCAL NETWORK 

GOVERNANCE 

In the context of meeting challenging national, international and European Union 

(EU) targets for climate change mitigation and adaptation measures for Ireland in the 

coming decade, this chapter considers the role of local authorities and the role of 

networked governance in the facilitation, implementation and adaptation of national 

and EU climate change policy. Following a brief summary of current policy, the 

form of co-operation between authorities, agencies and departments at the local level 

is considered, revealing that the delivery of targets relies on both the presence of a 

robust legislative framework and effective co-ordination between local authorities, 

regional authorities and agencies. A deficit of information however, on emissions 

related activities at the local level, is identified as a key barrier to the effective 

implementation of climate change policy by agents at the local level. The need for an 

efficient, effective, analytical policy tool for the assessment of policies at the local 

level is highlighted, not only in terms of effective inventorying, target setting and 

monitoring; but also in assessing mitigation and adaptation options and potential 

trade-offs for local authorities with limited resources. 

 

2.1 Introduction 

The nature of anthropogenic climate change and the resultant efforts towards 

mitigation are such that policies necessarily relate to a wide range of human 

activities across multiple sectors such as energy, agriculture, industry, buildings, 

forestry and waste (IPCC, 1995). Thus for cross-sectoral policies and measures, 

networked or joined up approaches involving the dense interaction of multiple state 

actors and departments are required to deliver collective goals (Agranoff, 2003). 

While the achievement of shared objectives across sectors through collaborative 

action between public bodies has been more broadly identified as the next phase of 

public governance, referred to as networked governance by Benington and Moore 
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(2010), the lack of joined up thinking and a networked approach between actors has 

been identified as a key barrier to progress on climate change measures at the local 

authority level (Allman et al., 2004). 

Local authorities are typically responsible for the construction, maintenance and 

operation of civil, social, economic and environmental infrastructure. They are also 

charged with the eventual implementation of national policies at the regional or local 

scale (UN, 1992). As such, local governments have significant capacity to influence 

change across many sectors. At the 1992 Rio Summit the role of local government 

was identified as a key factor in successfully implementing sustainable development 

policies, with an agreement to develop Local Agenda 21 projects for local 

authorities. The United Nations (UN) viewed local authorities as a determining 

factor in fulfilling the programs objectives as they are the system of government 

closest to the people and as such play a vital role in educating, mobilizing and 

responding to the public in promoting sustainable development (UN, 1992). 

In specifically examining the implementation of climate change policy, there has 

been an increasing focus in the literature on the role of local authorities in delivering 

policy objectives (Collier & Löfstedt, 1997). Furthermore, Kates et al. (1998) submit 

that it is at the local level where greenhouse gas emission reductions and mitigation 

measures will ultimately take place. 

Significant progress has been made in the formation of climate change policy at 

national and international level. However, broad national and international policy 

goals such as those contained in the Irish National Climate Change Strategy 

(Department of Environment Heritage and Local Government, 2000), and the EU 

Commissions 20-20-20
3
 project (European Commission, 2008) ultimately require the 

co-operation of local and regional authorities such as the county, city and town 

councils if they are to be successfully implemented (Allman et al., 2004). 

There is however, an information deficit that local authorities suffer from (Allman et 

al., 2004). The International Council for Local Environmental Initiatives (ICLEI) has 

                                                 
3
 20% EU-wide reduction in GHG emissions on 2005 levels, 20% reduction in projected EU energy 

and 20% of energy to come from renewable resources in the EU by 2020 
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identified the establishment of a baseline emissions inventory against which progress 

on climate change mitigation efforts can be measured as the first of 5 steps towards 

sustainable cities (ICLEI, 2006).  Moreover, it has been suggested that there is a 

need for an analytical policy tool to assist local authorities in choosing appropriate 

mitigation and/or adaptation options (Laukkonen et al., 2009). 

A substantial proportion of the literature on the role for/of local authorities has been 

conducted in the UK, however, there is a notable absence of literature analysing the 

effective dissemination of Irish climate change policy. In contrast to the more 

formalised institutionalised legislative implementation frameworks of the UK
4
, there 

is a lack of such frameworks in Ireland. The Department of the Environment 

Heritage and Local Government (DEHLG) is the fiduciary state body charged with 

setting climate change policy. However, an over-arching framework to manage the 

required cross-coordination between many state and semi-state partners under 

several different Government departments is currently lacking. Significantly there 

are no targeted statutory obligations on Irish local authorities for the development 

and implementation of climate change policy and no framework of co-operation 

between agencies and state departments. While significant progress towards the 

development of an Irish Climate Change Response Bill was made (Climate Change 

Bill, 2009), a change of national government has put the passing of the Bill on hold 

and its future is now uncertain.  

The deadline for a 20% reduction in greenhouse gas emissions (Council Decision, 

2002) and 16% of energy to come from renewable resources is less than 6 years 

away. Considering the challenges associated with these targets, this chapter reviews 

the current local authority structure for the implementation of policy and investigates 

the linkages between the setting of national policy at departmental level and its 

adoption at local level (Benington & Moore, 2010; Department of Communications, 

2010). This structure is compared to recent developments in the UK with the 

formation of the Department of Energy and Climate Change and the publication of 

                                                 
4
 Climate Change Act (c.27) 2008. UK: HMSO. Energy Act (c.27) 2010. UK: HMSO. Climate 

Change Act (c.27) 2008. UK: HMSO. and the establishment of the Department of Energy and 

Climate Change 
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the UK Climate Change Act 2008. The multi-governance approach and its suitability 

for environmental policy is considered.  This chapter traces the development of 

climate change policies and strategies by local and regional authorities and discusses 

the challenges of information deficit (Laukkonen et al., 2009) and the opportunity for 

a spatial-analytical model of greenhouse gas emission to assist in the evaluation of 

measures and the achievement of shared goals. 

2.2 Policy Background 
Following a review of the global evolution of the climate change agenda this section 

tracks the development of International, Regional (EU) and national climate change 

policy and reviews the current Irish Climate Change Policy framework. In evaluating 

that framework the context in which the relevant authorities make their decisions 

must be understood. Ireland’s commitments stem from a number of agreements both 

national and international which reflect the current stages of political consensus on 

climate change policy at both global and European level. 

2.2.1 Evolution of the Global Climate Change Agenda  

The first major appearance of the climate change debate on a global level was at the 

inaugural World Climate Conference (WCC) in Geneva in 1979, held under the 

auspices of the World Meteorological Organisation (WMO), from which the World 

Climate Programme (WCP) was developed. In a declaration noted as “An Appeal to 

Nations” the WCC called for the nations of the world to “take full advantage of 

man's present knowledge of climate... take steps to improve significantly that 

knowledge...[and] to foresee and to prevent potential man-made changes in climate 

that might be adverse to the well-being of humanity”  (WMO, 1979:1). 

 

While there was a general international consensus that a greater understanding of the 

issue was needed, it was almost 10 years before the United Nations Environment 

Programme (UNEP) and the WMO established the Intergovernmental Panel on 

Climate Change (IPCC); an international body comprised of scientists (currently 

numbering over 2,500) and policymakers to provide the world “with a clear 

scientific view on the current state of climate change and its potential environmental 
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and socio-economic consequences”  (IPCC, 2007:5). In the IPCC’s first report, the 

First Assessment Report (1990), the panel expressed concerns about the growing 

body of scientific evidence supporting the theory of anthropogenic climate change 

brought about through direct radiative forcing caused by the increased concentration 

of greenhouse gases
5
 in the earth’s atmosphere (Houghton et al., 1990). The contents 

of this report greatly contributed to the establishment of the United Nation’s 

Framework Convention on Climate Change (UNFCCC) at the UN Conference on 

Environment and Development (also known as the “Earth Summit”) held in Rio de 

Janeiro in 1992, which was eventually adopted by 154 countries and the European 

Community (EC). 

 

The stated objective of the Convention was “to achieve, in accordance with the 

relevant provisions of the Convention, stabilization of greenhouse gas concentrations 

in the atmosphere at a level that would prevent dangerous anthropogenic interference 

with the climate system”  (UN, 1992:Art2). The convention also conferred upon 

signatories a number of commitments relating to the reporting and inventorying of 

greenhouse gas emissions as well as a number of measures requiring parties to 

commit to adopting national policies “...and take corresponding measures on the 

mitigation of climate change, by limiting its anthropogenic emissions of greenhouse 

gases (GHGs) and protecting and enhancing its greenhouse gas sinks and reservoirs” 

(UN, 1992:Art4). As part of these measures, developed (Annex I) countries were 

encouraged to cut their GHG emissions to 1990 levels with no binding commitment 

on developing (Annex II) countries on the principle of “...common but differentiated 

responsibilities...” This view was taken in the recognition that the developed Annex 

1 countries were historically largely responsible for global GHG emissions. 

 

While these commitments were viewed as essential steps, the lack of stated targets 

for parties meant that the convention lacked authoritative pressure. The release of the 

IPCC’s Second Assessment Report in December 1995, stated that “…increases in 

greenhouse gas concentrations since pre-industrial times...have led to a positive 

                                                 
5
CO2, CH4, N2O, HFC’s PFC’s and SF6 (developed specifically for industrial applications)  
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radiative forcing
6
 of climate, tending to warm the surface and to produce other 

changes of climate...and the balance of evidence suggests a discernible human 

influence on global climate…”   (IPCC, 1995:21). The second assessment report was 

largely responsible for increased urgency among the international community 

surrounding climate change leading to the adoption of the Kyoto Protocol in 1997, 

the first legally binding international agreement on greenhouse gas emissions 

reductions. Parties to the protocol were faced with clear emissions targets during the 

commitment period 2008-2012. The protocol was ratified by the vast majority of 

nations with one major exception (UNFCCC, 2009b). Despite initially being a 

signatory to the protocol, the United States did not ratify the agreement domestically 

and as such the protocol was non-binding on the United States. Russia’s decision to 

ratify was crucial as it resulted in the reaching of the 55% threshold allowing the 

protocol to come into effect on the 16
th

 February 2005.  

 

Since Kyoto, the international community has been attempting to establish 

agreement on a follow-on mechanism. Despite the publication of the IPCC’s fourth 

(IPCC, 2007) and fifth (IPCC, 2013) assessment reports progress on further 

agreement has been slow. The UNFCCC’s Copenhagen accord, stated inter alia, that 

parties “...agree that deep cuts in global emissions are required according to science, 

and as documented by the IPCC Fourth Assessment Report with a view to reduce 

global emissions so as to hold the increase in global temperature below 2 degrees 

Celsius, and take action to meet this objective consistent with science and on the 

basis of equity…” (UNFCCC, 2009:2).  However, while it has been acknowledged 

that this was the first time there was effectively international consensus
7
 on the risks 

associated with anthropogenic climate change, there was considerable 

disappointment with the failure to agree on any specified targets to curb emissions, a 

failure that was, mooted to be attributable to conflict between developed and 

developing countries over burden sharing (Vidal et al., 2009). Subsequent meetings 

                                                 
6
 Radiative forcing is a measure of the influence that a factor has in altering the balance of incoming 

and outgoing energy in the Earth-atmosphere system and is an index of the importance of the factor as 

a potential climate change mechanism. Positive forcing tends to warm the surface while negative 

forcing tends to cool it.  
7
 Crucially including China and  the U.S 
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of the conference of parties at Durban (2011) and Doha (2012) have resulted in 

incremental progress with a follow on agreement to the Kyoto Protocol currently
8
 

absent. 

 

Aside from the burden-sharing political barriers, there have also been number of 

public challenges to the accuracy of the modelling of future climate change and the 

associated economic costs, which have led to the permeation of a considerable 

amount of climate change scepticism in the public sphere (Antilla, 2005; Poortinga 

et al., 2011; Webb, 2007; Whitmarsh, 2011). Such challenges have the potential to 

encourage nations to proceed with a more cautious “wait and see” approach.  

 

While the examination of those arguments is outside the scope this thesis, it should 

be noted that the debate on climate change is likely to continue with the 

consequences for future international policy as yet unknown. Sudhakara and Assenza 

(2009:3006) state that “...the clash between sceptics and supporters is likely to 

endure, and may even become more pitched as the stakes on climate change are 

raised. The expansion of scientific knowledge is unlikely to end the debate, as each 

side will get more data to confirm their case. Sceptics will continue to assail 

supporters for blending science with environmental activism, and supporters will 

maintain their doubts about the scientific credibility of sceptics, because of their 

links to economic interests”.  

 

2.2.2 Ireland’s National and International Policy Commitments  

Ireland’s international climate change commitments stem from two main policy 

drivers, i.e. the Kyoto Protocol to the UNFCCC; and EU legislation which is applied 

either directly (through regulations) or indirectly (through directives) in Ireland.  

Kyoto Protocol 1997 

 

In line with the UNFCCC’s stated objective to reduce GHG emissions in order to 

prevent climate change, the Kyoto protocol sets out a range of policy measures 

                                                 
8
 As of Feb 2014 
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relating to inter alia. energy efficiency, renewable energy research and sustainable 

agriculture which parties must implement in order to comply; and includes a baseline 

emissions target of 5% below 1990 levels for all Annex I (i.e. developed countries). 

The protocol also included a number of “Flexible Mechanisms” such as International 

Emissions Trading, Clean Development Mechanism and Joint Implementation in 

order to allow parties to achieve their targets more practically (UN, 1998). 

  

With all EC
9
 Member States and the EC itself ratifying the protocol, the opportunity 

arose for burden sharing among countries under the principle of joint 

implementation. The EC’s total emissions reduction target under Kyoto was set at 

92% of 1990 base level emissions over the 2008-12 commitment period. Under the 

principle of burden sharing, Ireland’s Kyoto target was to limit emissions to 13% 

above 1990 levels (Council Decision, 2002). In practical terms this represented a 

target of 62.8 Mtonnes of Carbon Dioxide equivalent (CO2eq) per annum over the 5-

year period 2008-12 (EPA, 2010). It should be noted that under the terms of the 

Kyoto protocol, the targets refer specifically to the greenhouse gases of CO2, CH4, 

N2O, HFCs PFCs and SF6 (developed specifically for industrial applications). CFCs 

and HCFCs are not included in Kyoto as they are included under the Montreal 

Protocol (UNEP, 2000). 

 

European Community Legislation 

 

The issue of climate change has long been on the European agenda with the EU 

playing a key role in the development of both the UNFCCC and Kyoto. In addition 

to those commitments the EU has continually introduced regulations and directives 

designed to curb GHG emissions and mitigate the effects of climate change. In the 

late 1990s the European Commission introduced measures such as the Commission 

Recommendation on the Reduction of CO2 Emissions from Passenger Cars 

(European Commission, 1999). However, it was recognised that more robust 

                                                 
9
 There is a legal distinction between laws European Community (EC) law and laws enacted by the 

European Union, the appropriate citation of which has been preserved throughout this document for 

the purposes of accuracy. 
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measures would be needed in order to ensure that the EU would reach its Kyoto 

commitments and in response the Council of Ministers asked the Commission to 

propose a list of priority actions and policy measures, the result of which was the 

European Climate Change Programme (ECCP).  

 

(i) European Climate Change Programme (ECCP) 

The first ECCP was launched in 2000, with the aim of identifying and developing all 

the necessary elements of an EU strategy to implement the Kyoto protocol. It 

identified 36 different policies and measures for implementation covering eight 

different areas, namely; cross cutting measures, energy supply, energy demand, 

transport, industry including waste, agriculture & forestry, research & development 

and structural & cohesion funds. Details of existing, imminent and planned 

regulations
10

 and directives
11

 which formed the substantive body of the programme 

were outlined. The most significant measures included Council Directive (1996) on 

the prevention of GHG emissions from Industrial & Agricultural installations 

(bringing pre-1999 installations into conformity by October 2007); the EU 

Emissions Trading Scheme (Council Directive, 2003); and, the directives relating to 

promotion of renewable energy resources and the use of bio-fuels in transport. In 

addition, a number of key energy efficiency measures for the consumer including 

Council Directive (2002), on the Energy Performance of Buildings Directive and 

Council Directive (1992), on Appliance Labelling were included. The second 

programme, launched in 2005, is still in operation and is tasked with investigating 

further measures relating to aviation, CO2 capture and storage, climate change 

adaptation and private transport emissions as well as performing a review of the 1
st
 

programme and the EU ETS.  

 

(ii) EU Climate Action and Renewable Energy Package 2008 

Following a firm commitment from the Spring 2007 European Council meeting on 

GHG emission reductions, the European Commission announced the agreement of a 

Climate Action and Energy package (Council Decision, 2009). The package outlines 

                                                 
10

 Have direct effect in Member States 
11

 Member States are obliged to implement  deliver through domestic legislation 
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the EU’s commitment to reducing GHG emissions to 20% below 1990 levels by the 

year 2020, primarily through a strengthening and expansion of the EU-ETS scheme 

(Council Directive, 2009b) and the promotion of the use of energy from renewable 

resources (Council Directive, 2009a). In addition, a directive on the geological 

storage of CO2 was introduced to regulate the investigation of carbon sequestration 

as a bridging technology to ensure that the technology would be deployed in an 

environmentally safe way (Council Directive, 2009c) 

 

The EU GHG emissions target for Ireland for non-ETS sector emissions is to reduce 

emissions by 20% by 2020 relative to 2005 levels which equates to 37.9 Mtonnes of 

CO2eq emissions in 2020 (calculated by the EU Commission in 2008) (EPA, 2010). 

The renewable directive establishes a binding target of 20% of overall EU energy 

consumption coming from renewable sources by 2020, as well as a binding 10% 

minimum target for energy from renewable resources in the share of transportation 

fuels. The directive states that the aims are to be achieved through individual binding 

national targets which, if met, will be in line with the overall EU target. Ireland’s 

national target under the directive is for renewable resources to account for 16% of 

total energy consumption by 2020.   

 

In addition to existing targets, the European Commission (2014) has also outlined a 

proposal to legislate for a further binding target of a reduction of 30% of EU 

emissions relative to 1990 by 2030, indicating a commitment by Member States 

towards the continued decarbonisation of the European economy. 

 

2.2.3 Irish National Policy on Climate Change  

Ireland’s ability to achieve its international, European and national commitments is 

dependent on the ability of national government to effectively delegate authority to 

the appropriate government departments, state agencies and semi-state bodies. This 

includes the role of government in ensuring that the appropriate mechanisms exist to 

enable the effective co-ordination between state-partners necessary to achieve cross-

sectoral targets. To date, national policy on climate change and GHG abatement has 
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been predominately based on statutory legislation and a National Climate Change 

Strategy (Department of Environment Heritage and Local Government, 2007).  

Irish Legislation 

 

Irish legislation relating specifically to Climate Change and the abatement of GHG 

emissions is covered by a number of Legislative Acts and Statutory Instruments. 

However, what is instantly noticeable about the Irish Statutory Legislation is that 

there are very few “Irish” measures initiated from the Irish Oireachtas with the 

majority of legislation coming from the adoption of EU Directives though statutory 

instruments, investing responsibility for legislative implementation with state bodies 

such as Sustainable Energy Ireland (SEI), The EPA and The Single Electricity 

Market (SEM) Committee.   

 

(i) Acts and Statutory Instruments of the Oireachtas 

There are five Acts of the Oireachtas which explicitly refer to the climate change 

agenda namely: 

a. Sustainable Energy Act (2002) – Provides for the Establishment of 

Sustainable Energy Ireland whose functions include the promotion and 

assistance of measures to the reduce  GHG emissions and transboundary air 

pollutants associated with the production, supply and use of energy. 

b. Protection of the Environment Act (2003) – Integrated pollution prevention 

and control - providing for the implementation of Council Directive (1996), 

defines emissions including GHGs within the description, defines six GHGs 

and allows for the addition of any others as prescribed insofar as it 

contributes to Climate Change, amends the Environmental Protection Agency 

Act (1992), Waste Management Act (1996) and the Litter Pollution Act  

(1997). 

c. Carbon Fund Act (2007) – Establishing Fund to acquire Kyoto units 

necessary to satisfy obligations under the UNFCCC 

d. Electricity Regulation (Amendment) (SEM) Act (2007)– Establishes SEM and 

requires the SEM Committee to inter alia secure a diverse, viable and 
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environmentally sustainable long-term energy supply in the state and 

Northern Ireland where the latter “includes the need to guard against climate 

change”. 

e. Finance Act (2008) – Section 120: Regulations relating to the 

imposition/non-imposition of stamp duty on GHG emission allowances and 

Section 36:  Definition of an allowance as a financial asset. 

 

In addition, there are several other acts which are indirectly related to the climate 

change agenda, such as the Energy (Biofuel Obligation and Miscellaneous 

Provisions) Act (2010) and related amendments which give effect to certain 

provisions of  Council Directive (2009a) on the promotion of the use of energy from 

renewable sources.  

 

The above Acts are key moves towards the meeting of targets, the adoption of 

sustainable forms of energy and the forming of the administrative framework needed 

to support the NCCS. However, given climate change’s current prioritisation on both 

the national and international political agenda in terms of targets, the absence of a 

specific climate change Act is conspicuous.  

 

The eight statutory instruments
12

 specifically related to climate change 

predominately deal with the regulation of GHG trading in compliance with the 

Kyoto protocol and the EU-ETS; the establishment of the EPA as Ireland’s “agency” 

for GHG inventories and projections; waste management regulation; and a number 

of EC Directives.  

 

National Climate Change Strategy (NCCS) 

There have been two national climate change strategies. The first NCCS launched in 

2000 outlined measures in energy, transport, built environment & residential, 

industry, commercial & services, agriculture, sinks (additional sequestration) and 

waste. This was followed by the second National Climate Change Strategy 2007-

                                                 
12
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2013. The stated purpose of this strategy was to ensure the achievement of Ireland’s 

2008-12 commitments under the Kyoto Protocol and to show how such measures 

position Ireland post 2012, with a view to meeting our eventual 2020 target 

commitments (Department of Environment Heritage and Local Government, 2007). 

 

The 2007-2013 strategy is a comprehensive document outlining a broad range and 

type of market and non-market measures, including specific targets, procedures and 

behavioural and awareness campaigns across nine national sectors. It outlines 

Ireland’s requirements in order to meet its commitments under the Kyoto protocol 

with a target of 63.032 Mt CO2eq. The strategy projects emissions without any 

abatement measures to be 79,829 Mt CO2eq with existing measures reducing that 

figure to 71.169 Mt CO2eq. The strategy also identifies a further emission reduction 

target of 8.137 Mt CO2eq and proposes that additional reduction measures of 4.953 

Mt CO2eq combined with flexible mechanisms allowing a further 3.607 Mt CO2eq 

reduction, sufficient to meet targets.  

 

The most apparent difficulty relating to the NCCS is the challenge of cross-sector 

compliance. While the Department of the Environment, Heritage and Local 

Government is the ultimate State body responsible for implementation of the NCCS, 

the ultimate success of the strategy relies on effective co-ordination between many 

state and semi-state partners under several Government departments
13

. Enforcement 

mechanisms and/or prescriptive implementation guidelines necessary to achieve 

cross-sectoral targets are absent. 

Additional Key Initiatives 

 

(i) Joint Oireachtas Committee 2007-2011 

A number of additional steps have been taken by Government policymakers 

including the 2007 establishment of the Joint Oireachtas Committee on Climate 

Change and Energy Security (JOCCES) tasked with considering inter alia. the 

medium and long term climate change targets and the key measures needed; the role 
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 Including cross-border institutions such as in the case of the Single electricity market.   
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of the agriculture sector in providing bio-fuel and biomass crops and consequential 

implications; the levels of power supply from renewables or other new power 

supplies; the projected energy demand from transport and the implications for energy 

security and emissions targets (Dáil Eireann, 2007). 

 

The JOCCES’ second report in October 2009 focused on the case for climate change 

legislation. It reviewed and assessed the climate change legislative provision in 6 

other jurisdictions
14

 and having “...the shared belief that climate change legislation is 

needed...” it suggests 17 core provisions for which an Irish Climate Change act could 

provide the framework conditions  (Joint Oireachtas Committee, 2009:11). On the 

basis of these provisions the Joint Committee report included an explanatory 

memorandum of an accompanying Climate Change Bill 2009. The report concludes 

that “…unless and until Government, State bodies, businesses, farmers, employees 

and householders operate and live within a legal framework, including binding 

climate change targets, changes in personal and corporate behaviour that are critical 

if GHG emissions reductions are to become a reality will not happen at the pace 

required...” (Joint Oireachtas Committee, 2009:11). 

 

(ii) Framework for Climate Change Bill 2010 

In response to the work of the JOCCES, the Irish Government’s Climate Change 

Response Bill (2010) proposed among other measures an 80% cut on 1990 GHG 

Missions by the year 2050, the establishment of a climate change committee, and the 

introduction of domestic carbon offsetting schemes and trading. It proposed to put 

such measures on a statutory footing. However, following a change of government 

the legislative process has been postponed. Until the text of such a bill is published, 

finalised and passed, an analysis and appraisal of any implementation measures and 

the adequacy and/or provision of enforcement mechanisms would be premature. 

 

(iii) National Renewable Energy Action Plan 
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As part of their Member State obligations under Article 4 of Council Directive 

(2009b), the Department of the Communications, Energy and Natural Resources 

(DCENR) submitted a National Renewable Energy Action Plan (NREAP) to the 

European Commission consisting of 38 existing and planned measures, 10 of which 

were regulatory based (Department of Communications Energy and Natural 

Resources, 2010). The regulatory measures reported are a mixture of planned and 

existing measures across a variety of areas such as building and planning regulations, 

energy market trading and offshore licensing. While the NREAP is a comprehensive 

document that meets the requirements of Council Directive (2009b), it does not 

come under a broader national climate change or emissions reduction strategy. This 

may ultimately prove problematic when it comes to interdepartmental conflicts 

which may arise in the future as the hierarchy of competing interests remains 

unclear. Such conflicts may jeopardise the reaching of targets. 

 

(iv) Carbon Tax 

The 2010 budget from the Department of Finance marked the introduction of 

Ireland’s first carbon tax. Annex E outlined the establishment tax of €15/Tonne 

carbon tax for transport fuels, non-transport fuels and solid fuels which does not 

apply to participants in the EU-ETS and consequently does not have an impact on 

electricity generators. 

 

With regard to the carbon tax, set at €15/Tonne CO2 
15

, it is as yet unclear as to the 

adequacy of its level. Wissema and Dellink (2007:679) hypothesize using an applied 

general equilibrium model that “...the reduction target for energy related CO2 

emissions in Ireland of 25.8% compared to 1998 levels can be achieved with a 

carbon energy tax of 10–15 euros per tonne of CO2...”. However, it should be noted 

that their model included the application of a carbon tax to the ETS traded energy 

sector which currently falls outside the remit of the carbon tax. 

 

(v) Appointment of the EPA as “the agency” 

                                                 
15

 The proposed National Recovery Plan 2011-2014 proposes increasing the carbon tax to €30/tonne 

by 2014 
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Statutory Instrument S.I.244 (2006) established the Environmental Protection 

Agency as “the agency” as the Irish Focal Point pursuant to Article 6, the national 

registry administrator pursuant to Article 7 and as the Irish National Authority 

pursuant to Article 12 of the Kyoto Protocol. It also delegates responsibility to the 

EPA as a national registry to ensure accurate accounting of emission reduction units 

(ERUs), certified emission reduction units (CERs), assigned amount units (AAUs) 

and removal units (RMUs). 

 

The EPA is also tasked at the state body responsible for the inventorying of year on 

year GHG emissions and future projections in line with the Annual Inventories 

Reporting Guidelines from the UNFCCC.   

 

(vi) 40% Renewable Electricity Target for 2020 

In addition to existing targets, the Department of Communications, Energy and 

Natural Resources has set a target of 40% of electricity generation to come from 

renewable sources by 2020 (Department of Communications Energy and Natural 

Resources, 2010). Given that 16% of total energy consumption (and consequent 

GHGs) comes from the electricity sector, it is anticipated that achieving the 40% 

target in the electricity sector will be necessary if Ireland is to achieve its obligations 

under the renewables directive. 

 

While there are a considerable number of policy instruments, it would seem that the 

absence of any over-arching legislative framework on climate change and emissions 

reductions is a notable omission. The lack of any firm statutory or regulatory 

structure for the majority of measures outlined in the NCCS may ultimately prove 

problematic in the absence of any enforcement/performance mechanisms, with cross-

sector measures likely to pose the most difficulty.  

 

The precise impacts some policy instruments such as the carbon tax will have in 

terms of the distributional and substitution effects, are as of yet unknown. Callan et 

al. (2009:1) discuss the distributional implications of the imposition of a €20/Tonne 

CO2 carbon tax and conclude that “...if the tax revenue is used to increase social 
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benefits and tax credits, households across the income distribution can be made 

better off without exhausting the total carbon tax revenue...”. However, without an 

accurate way to measure consumption spatially it is unclear as to how a social 

welfare or tax reallocation could counter-act the potentially unequal spatial 

distribution effects of a carbon tax on significantly inelastic consumption.  

 

There is also the difficulty of attempting to ascertain or measure the effectiveness of 

public awareness campaigns designed to encourage behavioural change such as those 

relating to saving energy or recycling. A significant part of the NCCS centres around 

non-market mitigation measures. However, the benefits of such measures are 

typically difficult to quantify, which in turn makes it difficult to make cost benefit 

decisions in order to prioritise government expenditure. 

2.3 Network Governance and Climate Change Policy 
While governments have some recourse to market based mechanisms designed to 

reduce carbon emissions, they are limited both by the public acceptance of such 

policies in terms of their application and by their coverage due to the complexities 

involved in estimating the carbon cost of potentially millions of consumer products. 

Thus a key aspect of climate change policy is the promotion by governments of 

efficiency based mitigation measures for firms, households and individuals. This 

section examines the governance systems under which these measures have typically 

been implemented and discusses the role of multi-level governance in the 

implementation of climate change policy.  

2.3.1 Evolving Governance Systems 

Governments and Local Authorities are constantly subjected to changing ideological 

concepts of governance of which three phases have been identified (Benington & 

Moore, 2010). The first phase of governance was traditional public administration 

characterised by the theory of a public good identified and designed by 

“knowledgeable” professionals, provided by public servants to homogenous citizens 

and delivered through state and semi-state hierarchy top-down structures. This 

conception of governance was then largely superseded by the sweeping movement 
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toward New Public Management (NPM). NPM describes the tendency of 

governments and their agents to more towards more market and customer orientated 

public administration in the 1980s and 1990s with the privatisation and contracting 

out of service provision a key feature (Benington & Moore, 2010). 

  

However, Alford and Hughes (2008) report that NPM came under heavy criticism 

from public administration academia with a focus on the inappropriate likening of 

the public sector to the private sector and inter alia its “real” agenda of cutting 

government spending. In the search for an alternative approach, concepts of public 

management, dependent on networked or joined up approaches involving the dense 

interaction of multiple agents to deliver collective decision making emerged. This 

approach coupled with principles such as the development and achievement of 

shared goals through co-operation and through knowledge transfer gave rise to the 

third generation of governance ideology, termed Networked Governance.  

 

While various different forms and types of network governance have been 

identified/proposed (Dunleavy et al., 2005; Osborne, 2006; Stoker, 2006), Alford 

and Hughes (2008) submit that while the area of networked governance is by no 

means fully developed, previous incarnations of networked governance still suffer 

the same one-best way problem as traditional public administration and NPM. In 

response, Alford and Hughes (2008) propose a system of Public Value Pragmatism 

which recognises that different circumstances demand different managerial tools and 

sets out a framework for a set of design rules for determining which managerial 

device is required, be it classical contracting, in-house production, partnering or 

provision by a service agency. 

 

Despite these differences in approach, it seems clear that the role of modern 

governments, agencies and more significantly local authorities are changing with 

these ideological shifts as government bodies become less important in terms of 

direct service provision and more concerned with the fostering and management of a 

“diverse web” of multi-level organisational, multi-governmental and multi-sectoral 

relationships (Eggars & Goldsmith, 2003).   
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This shift towards networked governance has been identified specifically in the UK 

in parallel with the evolving political administrations (Bevir & Rhodes, 2003). In the 

US, Agranoff (2003) promotes the exploitation of networks for public managers 

working across organisations, highlighting informational, developmental, outreach 

and action networks. 

 

These moves away from the more hierarchal and contract based construction of 

governance potentially increase the role, and subsequently opportunities, for local 

authorities to become contributors towards policy development and become co-

ordinators of co-operation and collaboration. With respect to certain policy areas, 

local authorities may be in a better position to engage with local agents than national 

or regional organisations. 

2.3.2 Multi-Level Governance & Climate Change Policy 

 

While the general movement toward networked governance is acknowledged, the 

pragmatic approach proposed by Alford and Hughes (2008) would appear to support 

the recognition of opportunities for dissemination of climate change policy through a 

networked multi-level governance framework. 

First espoused by Hooghe (1996) and subsequently by Hooghe and Marks (2001b), 

multi-level governance emerged as a framework which attempted to conceptualise 

the second wave of European integration with the EU’s competencies on moving 

from strictly the management of international relations and co-operation towards the 

sphere of supranational policy formation. The importance of multi-level governance 

or the vertical and horizontal co-ordination of policy delivery has been increasingly 

highlighted by authors (Bulkeley et al., 2009 ) in the context of the dispersed nature 

of climate change governance (Betsill & Bulkeley, 2007). 

Hooghe and Marks (2003) identify and distinguish two types of multi-level 

governance, Type I and Type II. Type I systems are characterised by a more 

traditional, inverted tree structured, system wide architecture of nested non-
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intersecting membership jurisdictions organized in a limited number of levels while 

Type II systems are defined as a more flexible multi-level governance design with 

task specific jurisdictions encompassing intersecting traditional jurisdiction 

memberships with no limit to the number of jurisdictional levels. More traditional 

examples of Type II systems would include the differentiated nations of the United 

Kingdom; Wales, Scotland and Northern Ireland; all of whom have different 

relations and interaction with the Crown with regard to policing, self-governance, 

etc. A more modern example of Type II governance can be viewed in some of the 

larger urban centres where responsibility for different public services and functions 

are divested in different organisations which may have different geographical 

boundaries or responsibility and require different levels of sub division. 

Hooghe and Marks (2001a:16) argue that “…[in order]… to internalise externalities, 

governance must be multi-level…” and submits that “more decentralised institutions 

can better reflect the heterogeneity of preferences among citizens”, assuming that is, 

that heterogeneity can be captured jurisdictionally.  However, far from seeing Type I 

and Type II systems as being substitutes, Bache and Flinders (2004) submit that they 

can be complementary and used in parallel.  Type I governance is orientated towards 

a set of policies which are strengthened by community and a strong sense of self-

determination leading to jurisdictional competition. In contrast, Type II governance 

can deliver pareto-optimal outcomes to policies where additional efficiency gains 

can be made by combining resources over non-traditional areas due to some 

homogenous aspect of the region.  

In an analysis of the UK transport sector and the related climate change policy 

adopted by UK government, Marsden and Rye (2010) use a multi-level governance 

analysis framework to consider the capability of governance structures to deliver 

changes required to limit the UK’s greenhouse gas (GHG) emissions from transport. 

They assess the policies, powers and application for GHG emissions reduction from 

a modal shift in transport and outline a range of transport policies implementable at 

the local government level in the UK such as parking allocations for new 

development, smarter choices and improvements to walking, cycling and public 
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transport (bus) infrastructure (Marsden & Rye, 2010). However, the authors note that 

without demand side restraint, such measures are unlikely to achieve their full 

potential in changing travel patterns.  They also acknowledge an information deficit 

and note that “…there is, as yet, no guidance on how ambitious a local authority 

should be and little understanding of the marginal abatement costs in different 

authorities and areas... the analysis in this section suggests that there are few tools 

which are currently deemed practicable which would make the adoption of a 

substantial carbon reduction target a rational policy position to adopt…” (Marsden & 

Rye, 2010:676).  

While the potential for networked multi-level governance gains with regard to 

climate change measures exists, there is a technical information deficit at the local 

authority level which needs to be addressed. The provision of such information is 

likely to improve the chances of the successful implementation of climate change 

measures at the local level (Marsden & Rye, 2010).  

2.4 Local Authorities Matter  

The role of local authorities in the implementation of climate change policy has been 

given increasing prominence in the climate change policy literature. Allman et al. 

(2004:273) submit that recent trends in the literature have focused on the potential 

role of local authorities in meeting climate change objectives and managing 

emissions over the last decade with a growing realisation that “measures to reduce 

greenhouse gases will be implemented locally and that this can only be achieved 

when climate change is accepted as a local issue”. 

The importance of settlements and the concentration of emissions in urban areas is 

highlighted by Mills (2007), who reports that while just 2-3% of the world’s [non-

ice] land mass is classified as urban; over half of the world’s population live on 

urban land-cover. Mills (2007) identifies cities as chief causes of, and solutions to, 

anthropogenic emissions, with 50% of global emissions arising from just 3% of the 

global land mass and highlights the opportunities for mitigation, with greater 
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geographic detail likely to show the bulk of emissions contained within urban 

administrative boundaries. 

It would appear that as the over-arching climate change policy framework improves, 

the potential for local authorities to make mitigation and adaptation improvements 

also increases (Allman et al., 2004). In parallel, the emergence of transnational 

municipal network organisations, such as the ICLEI-Local Governments for 

Sustainability and the C40 Cities Climate Leadership Group, have increased the 

prominence of local authorities in the setting of the global climate change agenda. 

However, ultimately the potential impact of local authorities is highly dependent on 

the powers, responsibilities and powers afforded to them by national governments. 

2.4.1 Evolving Role of Local Authorities and the Experience of the 

UK 

Collier (1997) examines, within a framework of global, EU and national action, the 

role of local authorities in climate protection through examples of local strategies 

from five EU countries and submits that climate change, while a global 

environmental problem, requires action at all levels of government. In identifying the 

main obstacles to the implementation of climate change strategies at local level, 

Collier (1997:55) concludes that even with high levels of commitment from local 

authorities, an unfavourable policy context (e.g. through nationally imposed budget 

constraints or low energy prices) can “frustrate the best intentions”. Advocating a 

more effective interpretation of the principle of subsidiarity
16

 which should imply the 

co-operation and co-ordination of activities between relevant levels of government, 

the author submits that greater effort needs to be made to encourage local authorities 

to formulate climate change strategies and suggests providing grants for the drawing 

up of emission inventories and strategies (Collier, 1997).  

In comparing the cases of local climate change policies in Sweden and the United 

Kingdom, Collier and Löfstedt (1997) contrast extensive powers afforded to Swedish 
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 Under Article 5 of the EC Treaty the principle of subsidiarity is intended to ensure that decisions 

are taken as closely as possible to the citizen i.e. that the EU will not legislate (apart from areas under 

its exclusive competency) where possibilities for legislation/regulation are available at national, 

regional or local level.  
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local authorities with the erosion of local powers in the UK. As a response to the 

1970s oil shock, the Swedish government passed the municipal energy planning act 

which required local authorities to develop a municipal energy plan promoting 

energy efficiency and security of supply. This movement towards a more Type II 

governance system for energy supply gave local authorities greater autonomy in 

terms of energy management (with municipal companies serving the community 

shareholder) and consequently greater control over a sector usually associated with 

generating a high proportion of total emissions. In contrast, the privatisation and 

liberalisation of the UK energy sector has limited UK local authorities’ roles in the 

energy sector. In addition, it was submitted that budget constraints and the lack of 

legislative competencies afforded to local authorities further limited their scope for 

local climate change policies. Collier and Löfstedt (1997) conclude that while 

considerable potential for climate change policies at local level exists the actual 

potential depends both on the competences and past achievements of local 

authorities in crucial areas. Greater autonomy afforded to local authorities in Sweden 

with regard to embedded generation and improvements in energy efficiency through 

community schemes, combined with previous experience of such activities, greatly 

increased their potential contribution toward climate change mitigation measures, 

while the erosion of local authority powers in the UK over the same period weakens 

their ability to make a significant impact (Collier & Löfstedt, 1997).  

Allman et al. (2004) analyse the progress of local authorities in England and Wales 

in adopting mitigation and planning adaptation measures by considering the results 

of the 2000 Improvement and Development Agency (IDeA) survey and the 2002 

Local Government Association (LGA), IDeA and De Monfort University survey, on 

the progress of local authorities on climate change. The results showed that while 

local authorities did make progress in areas under which they had direct control such 

as the use of renewable energy and the purchase of green electricity, more complex 

and strategic activities such as energy policy and greenhouse gas emissions 

inventories and targets had shown little progress with over 70% of authorities still 

without a dedicated climate change strategy (Allman et al., 2004). When the local 
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authorities were asked to consider the main barriers to progress on the dedicated 

strategy the authors identified five main reasons for lack of progress citing; 

 

 The lack of a statutory requirement for local authorities to tackle climate 

change, resulting in climate change not being a priority for local authorities 

 The lack of availability of accurate energy use data at the postcode level 

 The problem of inter-departmental cooperation: climate change is a multi-

disciplinary issue therefore strategies or targets to reduce greenhouse gas 

emissions will only be achieved if there is cooperation between different 

council departments 

 Problems engaging the wider community in activities to reduce climate 

change 

 Staff and skills shortages: there may be sufficient technical level skills to 

address specific technical issues but there is a shortage of professionals with 

wide-ranging strategic skills in climate change  

(Allman et al., 2004) 

Allman et al. (2004) used the ICLEI-Climate Protection Programme (CPP) 

methodology to identify “successful” and “less successful” authorities and 

highlighted the key elements of support (funding and guidance) and co-ordination 

(other departments, authorities and the public sector) as the main differences 

between the two groups. The ICLEI-CPP’s 5-step milestone methodology provides a 

simple and concise method of evaluating local authority progress on climate change 

policies encouraging local authorities to: 

 

 Conduct an Emissions inventory 

 Establish a target 

 Develop a local Action Plan 

 Implement policies and measures and  

 Monitor and verify results 
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(ICLEI, 2006) 

Acknowledging the work of Allman et al. (2002), Fleming and Webber (2004) 

assessed the impact and role of local government in GHG with considerable focus on 

the energy sector. The authors note the lack of clear guidance from the national 

government and the absence of specific legislation requiring local and regional 

government to produce GHG reduction strategies or to implement measures to 

reduce GHGs (Fleming & Webber, 2004). They report that where authorities have 

made significant progress in reducing emissions (>20%) the key factors which have 

contributed to their success were; 

 

 Strong political/chief officer support  

 Strong technical knowledge of the issues amongst energy professionals. 

 Strong knowledge amongst other professionals. 

 Increased awareness amongst the general public. 

Fleming and Webber (2004:770) conclude that local authorities can “…be effective 

at reducing greenhouse gas emissions and targets could be achieved through 

partnerships with key stakeholders and more effective exchange of experience 

between the successful and less successful local authorities...”. While opportunities 

exist for local authorities to make a real contribution to climate change policy and 

mitigation measures, deficiencies in the areas of legislative competency, the 

availability of emissions data and the lack of a coherent networked strategy, 

substantially diminish a local authority’s ability to make and meet climate change 

policy targets. 

It should be noted that the most recent Climate Change Survey of Local Authorities 

by the Local Government Group (LGG) reports that a climate change strategy or 

plan has been adopted by over 65% of local authorities; increasing from just 30% in 

2002. This suggests a significant improvement in the implementation of national 

climate change policy goals at the local level (LGG, 2010). This may be attributable 

to changes in the over-arching UK policy framework discussed in the next section. 
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2.5 Climate Change Policy Governance in Ireland and the 

UK 

With the potential of local authorities’ contribution to climate change policy 

established and the networked multi-governance structure under which it may 

flourish recognised, the current Irish climate change governance structure is now 

considered and compared with the UK which operates a similar hierarchical 

authority structure. The analysis is followed by an appraisal of the involvement of 

Irish local authorities in climate change policy implementation. 

2.5.1 UK Climate Change Framework  

While Ireland’s legislative provisions on climate change consist mostly of directly 

applicable EU regulations and adopted EC directives
17

, the legislative framework in 

the UK is significantly more evolved. In addition to their international targets, the 

UK has developed additional legislative frameworks with regards to GHG emissions 

and renewable energy targets (e.g. the Climate Change Act 2008 which followed the 

Climate Change and Sustainable Energy Act 2006).  The provisions of the Climate 

Change Act (2008) give legal and statutory effect to a wide range of GHG mitigation 

measures including a binding legal target to reduce emissions by 80% on 1990 levels 

by 2050; as well as establishing a Committee on Climate Change (CCC) and 

outlining reporting and dissemination mechanisms. In addition, subsequent energy 

legislation
18

 takes account of certain definitions set out in the 2008 act and requires 

that reporting on the progress of de-carbonisation of the electricity generation sector 

and carbon capture and storage should have regard to any relevant points raised by 

the reporting of the CCC. 

The publication of the 2008 Act in the UK was contemporaneous with the 

establishment of the Department for Energy and Climate Change (DECC) combining 
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 While Ireland’s International Commitments are legally binding on the state, Ireland’s dualist legal 

system means that any such international law only has legal effect within the state if it is adopted 

through a change in the constitution (i.e. specific assent to be bound by an international treaty) and/or 

complementary legislation passed/enacted by the Dáil. 
18

 Climate Change Response Bill 2010.& Energy Act 2010. UK. 
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previous competencies of the Department of Business Enterprise and Regulatory 

Reform (DBERR) and the Department of the Environment Food Rural Affairs 

(DEFRA) and investing specific responsibility for UK policy on climate change 

within a single government department. A high level of sophistication exists both in 

governing the operation of the CCC and in the co-ordination of action across 

departments and the devolved authorities
19

 In 2010, the DECC published the 

Committee on Climate Change Framework Document, outlining the roles and 

statutory responsibilities of the CCC and the Adaptation Sub-Committee (ASC) and 

their operations (Committee on Climate Change, 2010). In addition the Climate 

Change Act Concordat (HM Government, 2008) sets out the respective roles and 

responsibilities of each Government department and national authority and the 

procedure for consultation and resolution in the case of disputes. In comparison to 

the Irish framework, the UK has evolved a much more focused and deliberate 

mechanism for the delivery of climate change goals and targets. 

 

2.5.2 Climate Change Governance: Ireland v UK  

At the national level therefore, it would appear that the UK has a far more 

sophisticated system of climate change governance to rely upon for the 

implementation of its climate change policy. With an overarching legislative 

framework overseeing the formation and the creation of a system of networked 

departments via a guiding concordat, the UK would appear to have the necessary 

governance framework in place to facilitate and resolve policy impasses between 

conflicting departments and to achieve shared national climate change goals through 

climate change policy networks.  

While some legislative measures have been adopted in Ireland, the chief over-

arching framework is the National Climate Change Strategy which has no legal 

effect. While the strategy does provide for the establishment of a climate change 

commission to review progress and a high level group on climate change to co-
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ordinate implementation of the strategy, to date, neither the commission nor the high 

level group have been established and the first Annual Implementation Status Report 

has yet to be published. 

Consequently, it would appear that the continued absence of an overarching legal 

framework is hampering progress towards adequately co-ordinated climate change 

governance in Ireland. 

 

2.6 The Devolution of Climate Change Policy in Ireland 

Government policy in Ireland (Section 2.2) is primarily disseminated through local 

authorities and certain non-central government agencies. Noting the structure and 

form of local authorities and state agencies in Ireland, this section reviews the 

current status of climate change policy at the local authority level and considers the 

presence of and opportunities for multi-level climate change governance in Ireland. 

2.6.1 Local Authorities 

Ireland is served by a two-tiered local authority structure with 34 County and City 

(Tier 1) councils and 80 Town and Borough (Tier 2) councils. Tier 1 councils are 

responsible for the large scale provision and support of core public services and 

infrastructure with the Tier 2 nested authorities providing a smaller set of local 

services, typically in co-operation with their relevant county council. In parallel, 

there are also 8 regional authorities
20

 which are responsible for co-ordinating larger 

scale infrastructure and development projects which are amalgamated into two 

regional assemblies for the purposes of EU structural fund projects.  

In the area of climate change mitigation, local authorities have crucial competences 

in areas such as water and waste management, planning, housing regulation and can 

devise/support community projects designed to improve energy efficiency e.g. 

district heating. They are also responsible for transport infrastructure and traffic 
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management with the power to promote and incentivise the increased use of public 

transport and the creation of “green” lanes for non-motorised commuters.  

In addition to the government structured nested co-ordination at the regional level, 

local authorities have identified commonalities and have grouped together to co-

ordinate activities in areas where resources and expertise are scare. For the purposes 

of waste management, Ireland is divided into 10 different regions with management 

agreements established between the local authorities in each region (Department of 

Environment Heritage and Local Government, 2004). There have been also been 

progressive moves towards the establishment of energy agencies
21

 by local 

authorities to act as advisory bodies to both the authority itself and local 

communities and businesses.  

In the 2006 review of Ireland’s first climate change strategy (Department of 

Environment Heritage and Local Government, 2000) the DEHLG recognises the 

importance of local authorities in implementing climate change policy noting that 

local authorities have an important role in contributing to reduced GHG emissions, 

through their functions in relation to planning, transport, housing and waste disposal 

(Department of Environment Heritage and Local Government, 2006). As such, local 

authorities in Ireland have a potentially large influence in terms of effecting 

behavioural change when it comes to climate change mitigation measures. 

2.6.2 Climate Change and Irish Local Authorities 

In the Office for Local Authority Management’s 2008 Best Practice and Current 

Guidelines, the authors recognise that a number of different approaches to climate 

change have already been developed by local authorities with regard to local 

requirements but recommend that “all local authorities adopt a written climate 

change policy” (Office for Local Authority Management, 2008:1). In addition, the 

guidelines recommend that each policy should refer to the following, as outlined in 

the NCCS: energy use; housing/building projects; waste management; transport; 
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planning policies; procurement activities; raising awareness; and other statutory 

functions (Office for Local Authority Managment, 2008). 

Approximately one third of County Councils
22,23

 have a dedicated climate change 

strategy with another 6 reporting strategies in the pipeline. However, there is a large 

amount of variance in the scope and detail of county climate change strategies. 

While some strategies are quite detailed and set out specific targets and policy 

programmes for energy efficiency and community schemes, other strategies are 

comparatively quite weak and focus on basic information dissemination and 

awareness campaigns. Some strategies merely acknowledge the provisions of the 

NCCS and do not propose any individual measures. Of the councils that do not have 

a specific climate change strategy, there is substantial variance in the prominence 

that climate change policy receives in the county development plans; ranging from 

statements of strong deference to national policy objectives on climate change and 

renewable development; to declarations that the council will have regard to such 

policies when considering applications for renewable development.    

2.6.3 Irish Local Authorities and Multi-level Climate Change 

Governance  

With regard to the presence of multi-level governance in Ireland, both Type I and 

Type II arrangements could be said to be in operation. While Ireland’s county 

councils operate for the most part, within a nested hierarchy of Type I multi-level 

governance, there are a number of examples of Type II governance in operation 

where county councils band together and co-operate in order to achieved shared 

climate change goals; the most prevalent of which are the waste management 

schemes some of which are managed by the regional authorities.  

In addition, many county councils have sought the help of (and in some cases 

established) local energy agencies in developing and delivering on the energy goals 
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outlined in their own climate change strategies. The Limerick Clare Energy Agency 

funded by both Clare and Limerick County Council is a typical example of a 

horizontal partnership between two councils whereby both reap the benefits of the 

shared knowledge and expertise of dedicated experts while sharing the burden of 

costs. Similarly, CODEMA acts as the main energy advisory to the four local 

authorities in Dublin city.   

2.6.4 Agencies 

There are a large number
24

 of government agencies (predominantly made up of 

statutory bodies, departmental agencies and support/information agencies) involved 

in the dissemination of government policy. There are however, a small number of 

key large government agencies which have a potentially strong role to place in 

climate change policy. Agencies governing broad emissions sectors such as 

agriculture, public transport, planning, and energy and natural resources have a large 

potential to influence the development of appropriate and effective mitigation 

measures.  

The nature of these agencies is such that their sphere of influence and competency is 

nationwide yet their application is experienced primarily at the local level. However, 

despite the potential for efficiency gains and the dissemination of mitigation 

incentives, many of these key agencies with large networks, resources and staffing 

do not have a specific climate change policy. Co-operation and co-ordination 

between these key agencies and the local authorities under an over-arching 

networked governance framework is essential if real progress towards the 

achievement of climate change objectives is to be made.  

However, in evaluating the current and future potential of local authorities in Ireland 

to effectively contribute to climate change mitigation and adaptation we consider the 

findings of the evaluation of progress of the UK local authorities by Allman et al. 

(2004). Currently a number of the barriers to progress on climate change which 

                                                 
24

 Over 600 reported in 2005 McGauran, A.-M., Verhoest, K. & Humphreys, P. 2005. The Corporate 

Governance of Agencies in Ireland. Dublin: IPA. 



 41 

Allman et al. (2004) identified are applicable in the Irish context. These are as 

follows: 

 Currently there are no statutory obligations on climate change for local 

authorities. Thus there is a strong possibility of climate change not being 

considered a priority area for action.  

 For those authorities that do consider it to be a priority action there is an 

information deficit in terms of accurate energy use (and consequent 

emissions) data at a spatially disaggregated level.  

 With regards to co-operation and co-ordination at the national level, Ireland 

is lacking in comparison to the more institutionalised arrangements for inter-

departmental co-ordination which have been advanced in the UK with the 

publication of the Committee on Climate Framework Document and the 

Climate Act Concordat.   

 

Thus while it would appear that the potential is there for local authorities and 

agencies in Ireland to make a real impact towards the implementation of climate 

change policy, certain barriers to progress remain apparent. In addition to the 

absence of legislative provisions and a framework for collaboration and joined-up 

action between local authorities, agencies and government departments, the 

substantial information deficit raised by Allman et al. (2004) exists in relation to the 

lack of available and appropriate information against which local authorities and 

agencies can assess progress. 

2.7 Assisting Local Policy and the Evaluation of Mitigation 

and Adaptation 

 

While undoubtedly deficiencies exist in the Irish climate change policy framework, 

the progress shown by some local authorities in the development of individual 

climate change strategies is a positive step in the right direction. While the Irish 
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system of governance remains predominantly hierarchal, the relative success of Type 

II networked governance approaches such as the multi-authority energy agencies and 

the waste management system show that there are opportunities to move the 

implementation of climate change and broader national policy forward through 

networked governance (McGauran et al., 2005). A more robust institutionalised 

framework for implementation and co-operation could see these systems replicated 

and repeated for other mitigation measures nationally.  

However, even with a more robust over-arching policy framework, challenges for 

the implementation of policy and the assessment of mitigation measures at a local 

level remain. Laukkonen et al. (2009) consider these challenges and note that 

mitigation and adaptation measures are not necessarily complementary and may in 

some cases counter act each other. This may be due to the unavoidable carbon costs 

associated with certain adaptation measures. Such conflicts may necessarily create 

difficulties for authorities in their decision-making process as the costs and benefits 

associated with different mitigation and adaptation options would have to be 

calculated. Heterogeneity of outcomes for agents in the community could increase 

the complexity of such a calculation. Current methods for conducting climate change 

mitigation/adaptation cost-benefit analyses are likely to be overly onerous for poorly 

resourced local authorities while developing communities will also have to balance 

economic objectives with sustainable development. Cognisant of this, Laukkonen et 

al. (2009:291) argue for the development of a “methodology and a tool to help 

individuals, communities, countries or regions in the decision making process 

towards the best response to climate change…”. 

 

In 2006, with the aim of providing nationally consistent estimates, AEA Energy and 

Environment provided DEFRA with a spatial map (Figure 2.1) of CO2 emissions for 

the UK (Department for Environment Food and Rural Affairs, 2006). The high 

resolution map reported emissions at the local authority and regional level for 2004 
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and broadly grouped those emissions into 6 sectors
25

. The stated reasons for the 

initiation of the mapping project included an aspiration that the continued 

development of the dataset would facilitate action plans to reduce carbon emissions. 

Quoting the UK’s Climate Change Programme, the document sees local authorities 

as vital contributors to national emissions reduction as they are “uniquely placed to 

provide vision and leadership to local communities” (Department of Environment 

Food and Rural Affairs, 2006:1). 

 

 

 

Figure 2.1 Spatial map of CO2 emissions for the UK 

(Source: Department for Environment Food and Rural Affairs 2006) 
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2.8 Discussion 

It is clear from the literature and the continued growth of transnational associations 

such as the ICELI-CCP and the C40 that local authorities have a significant role to 

play, both in the formation of local climate change policy, and the implementation of 

broader national and international climate change strategies.  

The results of the 2010 Climate Change Survey of Local Authorities for the Local 

Government Association, show considerable improvement in the engagement of 

local authorities with the climate change in the UK with over 65% of local 

authorities reporting the adoption of a climate change strategy or action plan while 

over one third of Ireland’s county councils have adopted a climate change strategy 

with several other councils reporting it as a work in progress . 

While the Department of the Environment Heritage and Local Government is 

currently the state body charged with setting climate change policy in Ireland, 

ultimately the delivery of targets relies on both the presence of a robust legislative 

framework and effective co-ordination between local authorities, regional authorities 

and agencies under several Government departments and their effective 

implementation of policy through networked multi-level governance. 

 

The need for a policy tool to provide local authorities, agencies and departments with 

both a baseline emissions inventory for their respective areas of influence and a 

decision-making process to make informed choices when faced with competing 

mitigation and/or adaptation options is evident. Such a tool could also be used to 

consider the redistributive and localised economic impacts and assist in the wider 

development of optimal burden-sharing across sectors and regions resulting in more 

efficient and favourable outcomes both locally and nationally. 

 

It is submitted that there is a clear need for an efficient, effective, analytical policy 

tool for the assessment of climate change policies at the local level, not only in terms 

of effective inventorying, target setting and monitoring but also to enable the 
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assessment of both mitigation and adaptation options and the potential trade-offs for 

local authorities with limited resources. 
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CHAPTER THREE: MODELLING GREENHOUSE GAS 

EMISSIONS: A COMPARATIVE ANALYSIS OF 

NATIONAL AND INTERNATIONAL METHODS 

3.1 Introduction 

The primary motivation behind the requirement to model greenhouse gas emissions 

derives from the obligations conferred on parties to the United Nations Framework 

Convention on Climate Change (UNFCCC) in response to anthropogenic threats to 

the Earth’s climate system. This chapter discusses the form, development and 

structure of various models designed to estimate anthropogenic greenhouse gas 

emissions in the context of reporting obligations under both the UNFCCC and the 

Kyoto Protocol. While an in-depth review of the Intergovernmental Panel on Climate 

Change (IPCC) assessment report structure is outside the scope of this work, 

Ireland’s national emissions inventory submitted by the EPA under the IPCC 

reporting guidelines is considered. Having established that information at a sub-

national level is deemed as essential to inform effective local climate change policy 

(Chapter 2) we assess the adequacy of a default inventorying system which reports 

aspatially at a national level and review current options both national and 

international for the spatial modelling of greenhouse gas emissions. 

3.2 National Inventorying of Greenhouse Gas Emissions 

The generation of a national emissions inventory is an onerous task. However, 

without information on past, present and potential future emissions, governments 

lack a framework under which they can balance the current costs of implementing  

mitigation and adaptation measures against the potential future costs of climate 

change through inaction (den Elzen & Meinshausen, 2005). Without such a 

framework, key economic questions such as how quickly countries should 

implement and/or enforce mitigation measures are extremely difficult to answer 

(Nordhaus, 2013).  With the level of public concern relating to climate change at risk 

in the face of economic insecurity bought about by the recent global recession 
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(Scruggs & Benegal, 2010) the public acceptance of the implementation of market 

and/or regulatory climate change policies at the national level is not guaranteed   

(Lockwood, 2013).  

In order to achieve stable atmospheric GHG concentrations while maintaining global 

political support, highly detailed information on past and current global emissions is 

required in order to create a baseline emissions inventory and project future 

emissions; thereby allowing policy makers to determine the highest acceptable future 

emission paths required to maintain stable atmospheric concentrations (den Elzen & 

Meinshausen, 2005). The accurate inventorying of emissions may facilitate policy 

makers in determining appropriate goals and targets to reduce or limit future 

emissions.  The presence of these targets then allows individual nations to make 

informed economic decisions determining optimal mitigation paths by balancing the 

costs of mitigation against the costs of a business as usual scenario (BAU). 

In response to the objectives of the UNFCCC, parties to the convention are obliged 

to submit a National Inventory Report (NIR) providing a high level of detail on 

annual emissions estimates from 1990-present in order to  comply with the 

requirements of Articles 4 and 12 of the UNFCCC as per Decision 18/CP.8. In 

addition those parties who have also ratified the Kyoto protocol and assumed 

national emissions targets for the commitment period 2008-2012 are required to 

submit supplementary information required under Article 7.1 on emissions and 

removals from Land Use- Land Use change and Forestry (LULUCF) under Article 

3.3. 

 

3.2.1 IPCC Inventory Requirements 

As an Annex 1 party to the UNFCCC, Ireland is bound by the requirements set out in 

the guidelines for the preparation of national communications for both the 

submission of an NIR and the reporting of GHG emissions by sources and removals 

by sinks in the common reporting format (CRF)  (UNFCCC, 2003:13). In addition to 

the reporting guidelines, the IPCC publish accompanying guidance on uncertainty 
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management, land use, land-use change and forestry activities under Article 3, 

paragraphs 3 and 4, of the Kyoto Protocol (UN, 1998). Parties to the convention are 

now obliged to consider the 2006 version of the IPCC guidelines. However, as yet, 

parties are only required to submit their reports in accordance with the provisions of 

the revised 1996 guidelines.   

The IPCC (1996) guidelines for the formation of the National Inventory Reports are 

highly detailed, providing parties with a prescribed structure for the summary 

reporting of institutional arrangements, overall emission trends and emissions by 

sector as well as providing parties with a common reporting format (CRF) to be used 

for the quantitative data submission of annual emissions.  In order to assist parties 

who experience information deficit with respect to any of the emissions factors for 

sectoral categories and sub-categories with their emissions calculations, the IPCC 

also provide standard ‘default’ emissions factors which parties may use. However, 

the guidelines state that “[in general]…default assumptions and data should be used 

only when national assumptions and data are not available”  (IPCC, 1996:6).  

Parties’ submissions are reviewed by an appointed Expert Review Team (ERT) 

which issues a report on the party submission.  

In terms of the sophistication of any calculation methodology, the IPCC have 

identified three different ascending Tiers (1, 2 & 3) in order enable parties to use 

methods “consistent with their resources and to focus their efforts on those 

categories of emissions and removals that contribute most significantly to national 

emission totals and trends”  (IPCC, 1996:8). The guidelines also require that parties 

develop and report on quality control/quality assurance (QC/QA) measures when 

using country-specific factors and provide decision tree guidance on the selection of 

the appropriate Tier method and emission factor based on the parties available 

resources.  

The IPCC accounting methodologies and emissions factors are continuously being 

improved and updated, however, limitations of accuracy were noted by Subak 

(1999a) citing discrepancies between top-down validation models and self-reporting 

inaccuracies when forming comparisons of emissions associated with beef 
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production in the US, UK and Canada. In addition, Subak (1999b) cites the format of 

the basket approach towards target and inventories as having the potential to allow 

countries to induce favourable outcomes and that in some cases countries may meet 

targets reducing emissions from sources with uncertain baselines such as methane 

associated with historical fertiliser application; thus allowing increases or non-

reductions in emissions from sources that can be estimated more accurately such as 

emissions from energy.  

While the likelihood of direct under-reporting in emissions inventories may be 

relatively small in the longer term, the incentive for counties to choose the more 

favourable tier methodology is present. While this may have a positive effect 

towards the development of more sophisticated sector methodologies for countries 

who suspect they are below average unit emitters in those sectors, the delay of the 

use of more accurate methodologies may benefit countries with above average unit 

emissions.  

3.2.2 Ireland’s Submission under the UNFCCC 

The Irish Government established, by statutory instrument, the EPA as “the agency”, 

the Irish focal point pursuant to Article 6, the national registry administrator pursuant 

to Article 7 and as the Irish National Authority pursuant to Article 12 of the Kyoto 

Protocol (Statutory Instrument S.I.244, 2006). It also delegated responsibility to the 

EPA as a national registry to ensure accurate accounting of emission reduction units 

(ERUs), certified emission reduction units (CERs), assigned amount units (AAUs) 

and removal units (RMUs). 

In addition to its commitments under the UNFCCC and the Kyoto protocol, Ireland 

has also committed to submitting biennial greenhouse gas projection estimates to the 

EU commission. Submissions are carried out in compliance with Council Decision 

280/2004/EC concerning a mechanism for monitoring Community greenhouse gas 

emissions and for implementing the Kyoto Protocol  (Council Decision, 2004). Its 

purpose is to assist and to enable the commission to monitor progress in terms of the 

EU Kyoto commitments and in terms of its own targets under Council Decision 
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(2009) on the effort of Member States to reduce their greenhouse gas emissions to 

meet the Community’s greenhouse gas emission reduction commitments up to 2020. 

In order to complete Ireland’s NIR and derive estimates of projected future 

emissions the EPA acquires a large amount of data from numerous government 

agencies. To facilitate this, institutional arrangements for co-operation between the 

EPA and data providers were established with Memoranda of Understanding 

(MOUs) developed for key data providers such as Sustainable Energy Authority of 

Ireland (SEAI), the Department of Agriculture, Food and the Marine (DAFM) 

Central Statistics Office (CSO). The available information is then examined to 

determine the appropriate tier methodology and emissions factors to be used based 

on the national data, research and studies available before the NIR is submitted for 

external review in advance of submission to the UNFCCC secretariat (EPA, 2010). 

An overview of the structure of the national inventory system is given in Figure 3.1. 
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Figure 3.1 National inventory system overview 

(Source: EPA, 2010) 

 

Upon submission to the UN secretariat the report is then reviewed by a UNFCCC 

Expert Review Team (ERT) which then makes recommendations to the party in 

respect of any incompatibility with the reporting requirements. The party then 

responds/addresses the issues raised by the ERT in the following annual review.  
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While the IPCC’s inventorying methodology may be appropriate in terms of its 

accuracy of reporting national incident emissions, its aspatial format does little to 

assist Member States in the design and implementation of effective mitigation 

policies at the local and regional level.  

 

3.3 Alternative Approaches to Emissions Modelling 

Internationally, the modelling literature has largely focused on the constant 

improvement and revision of emissions factors and the development of new 

emissions factors at an increasingly disaggregated accounting scale (Huang et al., 

2006; Lovett et al., 2008; Mohareb et al., 2008). Scientific improvements with 

respect to more accurate and differentiated emissions factors can deliver the potential 

for higher tier methodologies to be used for inventory reporting either by a party 

adopting that method as a country-specific emissions factor (EF) or through the 

adoption of that EF by the UNFCCC through the National Greenhouse Gas 

Inventories Programme (NGGIP) thereby enabling more accurate emissions 

modelling.  

However, the IPCC’s Good Practice Guidance and Uncertainty Management in 

National Greenhouse Gas Inventories recognises the need for independent 

verification of the national inventories (IPCC, 2000) and while approaches to the 

modelling of greenhouse gas emissions have been dominated by improving 

emissions factors to help assist with the IPCC’s bottom up accounting methods; 

alternative top-down backwards trajectory inverse modelling approaches have been 

used to estimate GHG emissions   (Polson et al., 2010; Corazza et al., 2011).
 26

 

 

3.3.1 Top-Down Models 

Top-down models have only been possible in recent years with the advent of modern 

computing. Optimum emissions estimates are calculated out on a large number of 
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possible distributions using statistical theory (Janssen et al., 1999). Critically they 

provide an opportunity to investigate the efficacy and accuracy of bottom up 

approaches. These models are typically informed by aggregate observations 

measured at a limited number of data collection points which are then statistically 

modelled backwards to their point of origin (e.g. footprint analysis).  Two inverse 

modelling methods have been prominently used in Europe. The first method 

involves the use of appropriate proxies to derive higher resolution inventories from 

aggregated estimates using bottom-up inventories as “a priori” constraints 

(Bergamaschi et al., 2005). 

Working as part of the European Commission’s Joint Research Centre, Bergamaschi 

et al. (2005) use a two-way nested atmospheric model to estimate CH4 emissions for 

the EU-15 countries aggregating modelled CH4 emissions for a European wide 

domain, at a spatial scale of 1
o 

x 1
o
. They compare the inverse modelled methane 

emissions to the national bottom up inventories and find overall agreement with 

national inventories and that EU-15 emissions are “very close” to the UNFCCC 

value for the year 2001 (Bergamaschi et al., 2005). However, the authors concede 

that as their model uses bottom-up estimated constraints it is not completely 

independent of the national inventories. Additionally, they conclude that while top-

down approaches are an important element of inventory validation, the adequacy of 

the models in terms of verifying relatively small emissions reductions has yet to be 

established advocating a further expansion of the atmospheric observation network 

(Bergamaschi et al., 2005). 

An alternative inverse modelling approach incorporating early Lagrangian trajectory 

(FLEXTRA) and dispersion (FLEXPART) models in order to backward track air 

parcels (backward trajectories) and spatially track GHG exchanges from the baseline 

background emissions level was used by Forster et al. (2001). Forster et al. (2001) 

used the Lagrangian models to track Canadian Forest Fire Emissions over Europe 

using baseline observations from Mace Head research station and a small number of 

observation stations in central Europe and showed that 2 periods of enhanced 

“black” carbon could be linked to the Canadian Forest Fires.  
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The spatial resolutions of the latest inverse models have been significantly improved. 

Corazza et al. (2011) makes use of an increased number of monitoring stations 

through the Continuous High PrecisOn Tall Tower Observations of Greenhouse 

Gases (CHIOTTO) programme in attempting to inverse model European N2O 

emissions. Polson et al. (2011) use an inverse modelling technique to estimate the 

spatial apportionment of GHGs for the UK using a spatial sampling technique that 

involved the filling and subsequent analysis of telder bag observations collected 

during 5 hour flight plans circumnavigating the UK. Using the NAME Lagrangian 

dispersion model, Polson et al. (2011) attempt to independently validate the UK’s 

national emissions inventory. Polson et al. (2011)  report that for CO2 emissions, the 

IPCC based National Atmospheric Emissions Inventory (NAEI) would appear to 

provide reasonable estimates while for N2O and CH4, employing the NAEI would 

appear to underestimate emissions significantly
27

. 

Polson et al. (2011) derived the ‘history’ or footprint of the air at each observation 

location, running until all air parcels had left the domain at a spatial scale of 0.3
o 

x 

0.18
o
. However, while this higher resolution spatial scale provided a much more 

detailed and accurate top-down estimation of emissions than previous models, the 

accuracy of its localised spatial data in terms of its suitability to aid policy 

development and implementation is questionable given the inability of the model to 

identify emission sources. Acknowledging non-uniform data quality and the 

averaging method used, Polson et al. (2011) concede that the spatial estimates are 

known to be less reliable than other types of modelling, citing regional disparities 

between the NAEI and the dispersion model.  While regional disparities may exist, 

the improvement and use of top-down models are important in terms of validation of 

aggregate emissions reported by current bottom up modelling which are required in 

order to help nations design and implement abatement strategies. 
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3.3.2 Bottom-up Approaches  

While more sophisticated emissions factor methodologies may deliver more accurate 

IPCC national inventory reports they continue to be aspatial in nature. Given that 

information at a local and regional level can; better inform physical transport models 

(Zhang et al., 2009), account for spatially heterogeneous emissions (Li et al., 2010), 

and enable effective policy implementation and analysis (Allman et al., 2004); 

methods for spatially modelling emissions at a sub-national level have been 

developed. 

In the area of emissions from agriculture, Li et al. (2010) note that significant errors 

can occur when applying the same Tier 1 emissions factors to heterogeneous 

geographical regions. Specifically in relation to emissions from soil, Li et al. (2010) 

review the role of the DNDC (Denitrification-Decomposition) model in predicting 

the soil fluxes of N2O, CO2 and CH4. Developed for predicting carbon sequestration 

and trace gas emissions from upland agri-systems, the DNDC model provides a basis 

for constructing regional inventories for greenhouse gas emissions. Thus the DNDC 

model can identify high GHG emitting agricultural regions and enable the modelling 

of alternative practical management practices and mitigation methods suitable for 

each agricultural area. Similarly, Leip et al. (2010) use the DNDC model to develop 

spatially stratified N2O factors for Europe by combining information on nitrogen 

application with the geographically varied environmental conditions. The authors 

simulate emissions fluxes for over 200,000 land units for 3 different crop types over 

10 different meteorological years and report emissions at a national and EU-25 level. 

They conclude that while a single emissions factor is suitable for emissions 

assessments at a scale as large as the EU-25, “a stratified approach considering 

fertilizer type, soil characteristics and climatic parameters is preferable at scales from 

individual countries in Europe or smaller” (Leip et al., 2010:9)  

The importance of geographical variations in differentiating emissions is also 

outlined by Zhang et al. (2009) who consider the variance of ammonia emissions 

from rice paddies. Zhang et al. (2009) submit that the development of a spatial 

emissions inventory would provide indispensible input data for atmospheric 
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transport models, N deposition, critical load models and future abatement strategies 

for China in future research. 

UK Spatial Emissions 

In terms of a more comprehensive greenhouse gas emissions mapping methodology, 

the National Atmospheric Emissions Inventory (NAEI) uses a combination of point 

source data and a distribution map of diffuse emissions to construct a greenhouse gas 

emissions map across 11 source sectors for the UK, from which local statistics are 

compiled.  

 

Figure 3.2 Spatial emissions map of CO2 for England at 1km
2
 resolution 

Source: AEA Energy and Environment (2011) 
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Emissions are mapped using several data sources including the NAEI, the Centre for 

Ecology and Hydrology (CEH) (N2O & CH4) and local authority consumption data, 

which has been made available to the Department of Environment Food and Rural 

Affairs and the Department of Energy and Climate Change (AEA Energy and 

Environment, 2011). Emissions are then modelled at a resolution of 1km
2
, and draw 

on the structured compilation of numerous data sources. However it differs from the 

previous models in that some emissions have been redistributed from national 

inventory totals rather than having being modelled from the bottom-up directly. 

 

3.4 Spatial Emissions Modelling in Ireland 

There have been a number of studies which have attempted to model the spatial 

distribution of certain greenhouse gases in Ireland at varying resolutions and show 

the benefits and application of additional spatial information on emissions.   

de Kluizenaar et al. (2001) describe a technique used to model the spatial distribution 

of SO2 and NOx emissions for 1995 which was carried out by assigning emission 

totals, from different emission-source categories, to a 1kmx1km resolution map of 

Ireland. Emissions were disaggregated by applying a spatially weighted distribution 

of emission sources onto matched suitable land cover types using the Co-Ordination 

of information of the Environment (CORINE) land cover map.  The resultant map 

allowed the authors to investigate and identify emissions sources and sinks with the 

potential to contribute to improved long range transport models and aid in the 

evaluation of critical load exceedence for nitrogen in the form of both eutrophication 

and acidification in Ireland.  

In discussing the distributional effects of a carbon tax in Ireland, Leahy et al. (2009) 

consider spatially modelled consumption (based on regressed averaged incomes) and 

production emissions (sector-weighted employment data) using an energy use 

income model and industrial EFs to calculate CO2 emission totals disaggregated to 

electoral district (ED) level. The benefit of such studies allows policy makers to 
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assess the likely impact of abatement strategies and balance reduced emissions 

benefits against potentially spatially inequitable welfare re-distributions.  

Hynes et al. (2009) examine the spatial distribution of methane (CH4) emissions 

across Irish farms using a technique called simulated annealing to match the Irish 

Census of Agriculture data to the National Farm Survey and develop a spatial 

microsimulation
 
model (Chapter 4). Micro-datasets are primarily either official 

census publications or individual/household survey data. In general, census data 

includes a variety of socio-economic variables, such as age, marital status and 

education level, and a geographical component. However, variables such as income 

level, health, information on farming activity, etc. are not included due to data 

confidentiality. As such, using the census data for explanatory research is restricted 

due to data limitations. Microsimulation offers a useful technique to overcome some 

of these data limitations. Employing this method, Hynes et al. (2009) simulated the 

effects of a carbon equivalent tax on average family farm income at both the farm 

and regional level reporting the impacts for each quintile for both REPS and non-

REPS farmers at ED level. Figure 3.3 illustrates the average tax take per farm per 

electoral district from a €7.50 per tonne of CO2eq methane emissions tax. This 

spatial disaggregation of methane emissions by Hynes et al. (2009) enabled an 

analysis of the heterogeneity of welfare outcomes as a result of the tax across space 

and the impacts of a potential redistribution mechanism. 
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Figure 3.3 Average tax take per farm per ED from a €7.50 per tonne of CO2eq 

methane emissions tax 

(Source: Hynes et al., 2009) 
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3.5 Discussion 

Having established the need for GHG modelling at a high spatial resolution in terms 

of the implementation of effective abatement strategies at the local level (Chapter 2), 

the adequacy of currently available modelling methods is considered. While the 

procedures and processes for the calculation of national emissions inventories may 

be comprehensive and provide accurate accounts for the purposes of calculating EU 

and indeed overall international emissions, the emphasis of the UNFCCC on an 

aspatial submission is perhaps questionable. 

While the purpose of the national inventory accounts is to help parties and Member 

States, calculate total emissions, set reduction/limitation targets and analyse 

progress, the absence of a higher spatial resolution for a baseline emissions inventory 

against which local authorities can design, implement and manage abatement 

strategies is still a problem. If the ultimate use of UNFCCC emissions modelling is 

as an international accounting exercise rather than as effective tool to influence 

behaviour at the local level, than its purpose or more accurately its usefulness to end 

users i.e. policy implementers may be called into question. 

It is clear from an analysis of the national and international literature, and a review of 

modelling techniques, that there is a need for a sophisticated analytical tool for 

modelling greenhouse gas emissions in order to enable the effective implementation 

of climate change policy at the local level. The following chapter investigates the 

potential use of microsimulation modelling in solving this information deficit.  
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CHAPTER FOUR: MICROSIMULATION MODELLING 

AND THE DEVELOPMENT OF SMILE 

 

This chapter investigates the potential role for microsimulation modelling in 

providing a solution to the information deficit experienced by authorities in relation 

to greenhouse gas emissions (GHG) emissions at the local level. Following a review 

of recent developments in the area of microsimulation modelling and the emergence 

of several types and forms this chapter discusses the evolution and applications of 

the SMILE microsimulation model and highlights its potential use for the 

inventorying of greenhouse gas emissions at the micro level enabling the estimation 

of a spatially disaggregated distribution of GHG emissions. 

 

4.1 Introduction 
Public policy makers and implementation bodies have a difficult task. Where 

competition for public resources is high and the tolerance for mismanagement is low, 

policy makers are challenged with designing policies which satisfy certain basic 

evaluation criteria. Reviewing evaluation frameworks, Ballas (2001) states that when 

evaluating policy, basic questions include; Do the measures achieve the effect for 

which they were designed? If not, why not? What are the indirect and induced 

effects? What are the spatial impacts?  

 

Unrau (1993) observed that the analysis of social policy requires an awareness of 

complex interrelations of societal conditions that include what individuals need, how 

institutional systems operate, and what social cultural and political actions are aimed 

at human survival. However Clarke (1996b) and Birkin et al. (1996) noted a lack of 

work on the evaluation of social and economic policies at the household or 

individual level. Yet macro level analysis tools (such as input-output modelling and 

income inequality using the Gini co-efficient) are still predominantly used today. 

While these models are useful and can give a good indication of the nature of 

impacts of a particular policy, they are somewhat blunt instruments. Such models do 
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not observe the spatial and demographic distribution of benefits and may miss key 

interactions between individuals, households, and firms which can be important in 

determining outcomes. Ballas (2001) argues that there is a need to understand, 

estimate or predict which socio-economic groups and areas are mostly affected from 

a specific social or economic policy change.  

 

Thus while social policy has long been evaluated at the aggregate or macro level, in 

order to more effectively evaluate and inform social policies, a greater understanding 

of interactions at the micro level is desirable. Morrissey (2008) argues that policy 

relevant modelling is a challenging research area which is better suited to a 

modelling framework which emphasises individual-level processes at the local level 

rather than aggregated process at the macro-level. Hynes (2007) highlights the need 

for impact assessment and analysis of either area-based or national socio-economic 

policies at the micro-scale. Ballas (2001) submits that these micro-level modelling 

requirements could be addressed in a spatial microsimulation framework. 

 

This chapter will discuss the concepts, origins and demands of microsimulation 

modelling and traces the development of several types and forms as well as 

reviewing the current state of advancement of the methodology and the limitations of 

the modelling technique.  It then considers the development of the Simulated Model 

of the Irish Local Economy (SMILE) which forms the substantive modelling 

framework of this thesis. The penultimate section discusses the applications of 

microsimulation modelling for the inventorying of greenhouse gas emissions at the 

micro level, enabling a spatial distribution of emissions to be created. 

 

4.2 Microsimulation Modelling 
 

Microsimulation modelling offers a solution to the practical difficulty relating to the 

availability of micro data to be used for more sophisticated analysis of the diverse 

and complex interactions within a large macro system. Typically at a national level, 

the availability of micro level data is confined to two sources; national census data 



 63 

and/or the availability of sample survey data. Census data generally includes a 

variety of demographic and socio-economic variables, such as age, sex, marital 

status, level of education and some spatial or geographical component. However due 

to issues surrounding the maintenance of data confidentiality, personal socio-

economic variables such as income level, pension information, health status, and 

information on economic activity are not included. In addition, typically, as in the 

case of the Irish census of population, observations are also aggregated to a minimal 

spatial scale to preserve confidentiality. As such, using a population census or a firm 

census such as the Irish census of agriculture for explanatory research at the micro 

level is restricted due to data limitations (Hynes, 2007). Survey data on the other 

hand generally contains a wealth of socio-economic information at the micro-level 

for individuals, households and firms. However survey data by its nature is often 

difficult to obtain and can be prohibitively expensive. This has the effect of limiting 

survey sample size. With a small scale survey, inferences drawn from the resultant 

models may be misrepresentative of the total population due to selection bias and the 

non-capture of spatial heterogeneity.  

 

4.2.1 Origins and Basic Principals 

 

Originating in the early 1960s, microsimulation modelling was developed in 

response to the issue of data limitation and availability of adequately representative 

survey data.  The idea evolved from Orcutt (1957) reflecting on the inadequacy of 

the use of macro or aggregate accounting methods being used to attempt to explain 

complex economic interactions. Orcutt (1957) submitted that there was an inherent 

difficulty in attempting to aggregate anything but absurdly simple relationships 

about elemental decision-making units into comprehensible relationships between 

large aggregative units such as industries, the household sector, and the government 

sector. Without knowing the micro-characteristics and being able to reasonably 

predict the individual unit response to input changes, aggregate estimate can suffer 

“disastrous loss of accuracy of representation” (Orcutt, 1957:116). Where 

relationships between inputs and outputs are non-linear and are dependent on other 
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unit characteristics, inferences drawn from aggregate figures are in danger of missing 

the true relationships. 

 

Orcutt (1957) envisaged that the achievement of a realistic model of the socio-

economic system would require reinterpretation and reformulation of many existing 

research results, extensive research directed at filling in gaps, and involve 

considerable programming effort and computing time in connection with simulating 

the model on a “large electronic machine” (Orcutt, 1957:122). The solution proposed 

by Orcutt et al. (1961) was to pursue a microsimulation modelling approach which 

involved building synthetic, large-scale, attribute rich datasets from simulated data, 

using reweighting algorithms in order to match the synthetic data set to observed 

aggregate data as closely as possible while maintaining the integrity of the individual 

unit. While the principle involves the creation of a synthetic data set with many 

identical units (receiving identical input changes in the case of policy modelling) the 

outcomes for those units will not necessarily be the same. This is because the unit 

characteristics and given input changes only determine the probabilities associated 

with each possible output. Actual outputs are then determined by one or more 

random drawings from the specified probability distributions (Orcutt, 1957). 

 

As such, microsimulation models seek not only to explain the mean E(Y/X) of 

endogenous models generating Y variables, such as farm/household disposable 

income, as macro-economic models do, but also their distribution, given exogenous 

variables X (for example, family farm incomes, and farm activity characteristics), 

and institutional policy variables P (for example hypothetical emissions tax rates or 

command and control policies). The joint distribution of the exogenous variable Y 

and the endogenous variables X conditional on the policy variables P can be 

described as follows: 

 

f Y X P f Y X P f X PXY Y X X( , / ) ( / , ) ( / )/ 1 2         (4.1) 

where ),/( 1/ PXYf XY  is essentially the microsimulation describing how the 

exogenous X specify the distribution of Y and )/( 2PXf X
 the distribution of 
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exogenously specified input variables, given institutional characteristics P2 

(O’Donoghue, 2001). The first microsimulation models were primarily focused on 

the tax-benefit systems and were concerned with the first-order effects of policy 

changes/impacts/shocks to that system. Early examples of the use of microsimulation 

models to predict tax-benefit impacts include the US Office for Tax Analysis (OTA) 

model for and the RIM model (Nelissen, 1993). The OTA model was used for 

personal income tax analysis and investigated potential outcomes by simulating the 

effects of thousands of proposals for tax changes. Additionally, Bekkering (1995) 

describes a microsimulation model to analyse the effect of abolishing marriage relief 

in the Dutch tax system  on income tax individualization.   

 

At their simplest, microsimulation models typically employ a method to initially 

create data at the individual, firm or household scale if such data is missing from 

available datasets (O'Donoghue et al., 2013a). Once created, the data from 

microsimulation models may be used to simulate the distributional impact of 

differing policies or a change in policy at the micro-level (Callan, 1991; Ballas, et 

al., 2006).  In essence simulation techniques are used to generate a micro-level 

population enabling the individual unit to be used as the basis of analysis when 

assessing or predicting the impact of social or economic policies (Ballas et al., 

2006a). Ballas (2001) maintains that it could be argued that the microsimulation 

method typically involves four major procedures: (i) The construction of a microdata 

set (when this is not available), (ii) Monte Carlo sampling from this data-set to 

‘create’ a micro-level population, (iii) What-if simulations, in which the impacts of 

alternative policy scenarios on the population are estimated and (iv) Dynamic 

modelling to update a basic microdata set. 

 

Microsimulation modelling can also use existing data, usually from individuals or 

households (Mot, 1992) but can also include firms  (Eliasson, 1986), to build a data 

set based on the real-life attributes of those individuals, households and firms and 

then simulate the effect of changes in policy on each of those units. Household 

specific relationships between inputs and outputs can be estimated and used to 

predict the outcomes of policy changes through probabilistic modelling at the micro 
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level. By permitting analysis at the individual unit, microsimulation enables 

researchers to model the distributional effects of different policies (Callan, 1991;  

Merz, 1991; Ballas et al., 2006a). By corollary it follows that microsimulation 

models can be used to inform policy making by defining the goals of economic and 

social policy, the instruments employed and also the structural changes of those 

affected by socio-economic policy measures (Krupp, 1986).  

 

While a review of the main types of microsimulation models and a number of spatial 

matching methodologies has been carried below, an in-depth analysis of individual 

model methodologies is beyond the scope of this chapter. More generally it is useful 

to consider that if we assume that it is desired to create a synthetic data set as close 

as possible to the observed aggregate, the actual method for any particular 

microsimulation model is driven by obtaining the highest level of statistical accuracy 

possible for the alignment parameters available subject to practical computational 

constraints. The nature of these alignment parameters/constraints (e.g. size of farm, 

system, stocking rate) will determine the particular model structure required. For an 

extensive review and survey of microsimulation models see Mot (1992), 

Klevmarken (1997), O’Donoghue (2001) and Li and O'Donoghue (2013).   

 

4.2.2 Types of Microsimulation Models  

 

Traditionally microsimulation models could be classified into two types, static or 

dynamic (Mitton et al., 2000).  However in recent times as microsimulation attempts 

to describe more complex economic and social events by modelling the behaviour of 

individual agents at aggregate spatial levels, a third type of microsimulation, spatial 

microsimulation modelling, is becoming increasingly useful (O'Donoghue et al., 

2013a).  
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Static Microsimulation Models  

 

Static microsimulation models simulate individual unit outcomes for “day after” 

first-order effects as a result of the application of a shock or treatment. Typically a 

static model consists of a cross-sectional database at a fixed point in time which is 

then “treated” with a policy measure (O'Donoghue et al., 2013a). Static models 

enable policy makers to evaluate the impact of that policy measure by studying the 

direct effect on the micro level unit (Equation 4.1). They generally have less 

complexity than their dynamic model counterparts, and are less expensive to 

construct  (Hynes, 2007).  

 

Figure 4.1 illustrates the typical sources of complexity in a static microsimulation 

model. First-order policy effects can be simulated on the micro population with a 

modelled behavioural response. For example, in a static model if we consider an 

environmental policy change on households such as the imposition of a carbon tax 

and/or a reduction in water charges, a static model enables us to study the direct 

income effects of each policy change and provides a means to identify household 

winners and losers 

 

 

Figure 4.1 Typical sources of complexity in a static microsimulation model 
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Static models consider the effect for a snapshot in time and do not take account of 

effects resulting from event outcomes in future time periods such as a reduction in 

carbon consumption or an increase in water usage. Static models are therefore used 

principally to calculate the impact of institutional changes in the tax and benefit 

system (O’Donoghue, 2001).  

 

Examples of static models include the TAXMOD model (Atkinson & Sutherland, 

1988) and STINMOD, Australia’s Static Incomes  model (Lambert, 1994).  

TAXMOD, developed by Atkinson and Sutherland (1988) was initially used in order 

to calculate and analyse the impacts of changes to the tax and benefit system in the 

UK. In addition, Pudney and Sutherland (1996) used TAXMOD to simulate a series 

of individual attributes including income tax, employee and self-employed National 

Insurance Contributions (NICs), Income Support, Family Credit, Housing Benefit, 

Child Benefit and One Parent Benefit. STINMOD (Static Incomes Model) is a static 

microsimulation model of Australia's income tax and transfer system (Lambert, 

1994).  The model is updated annually incorporating the latest changes to the 

Commonwealth Tax and Transfer system. 

 

Dynamic Microsimulation Models  

Dynamic microsimulation models facilitate the simulation of micro unit populations 

such as individuals, firms and households forward through time at the individual 

level (Li & O’Donoghue, 2012a). For example, for a given time period each micro-

unit of the sample is aged individually by an empirically based survivorship 

probability simulating life or death for the following year (Falkingham & Lessof, 

1992; Merz, 1991).   

 

In dynamic microsimulation modelling agents change their characteristics as a result 

of endogenous factors within the model. From equation 4.1 above, )/( 2PXf X
 is one 

example of a dynamic process, where the set of farm variables X are made 

endogenous in response to institutional characteristics P2. Examples include models 

where farm labour supply responds to changes in agri-environmental policy. Another 
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form of dynamic process is where a dynamic model projects a sample over time, 

modelling life course events such as demographic changes like marriage and birth, 

educational attainment or labour market movements (Hynes, 2007). In this case, the 

dynamics relate to the fact that characteristics in time (t), Yt depend on 

characteristics in time (t-j) Yt-j and exogenous characteristics X. This model gives 

estimates of both time dependent cross-sections and estimates of mobility over time 

(O’Donoghue, 2001). 

 

Figure 4.2 illustrates the additional layer of complexity which may accompany the 

addition of a dynamic element to the microsimulation process. At their most basic 

level of complexity, dynamic microsimulation models may be used to simulate 

simple population transitions over time such as births, marriages, deaths etc.  By 

adding more complexity to the model, effects on the population from policy changes, 

modelled behavioural change, or both can be simulated forward in time.   

 

 

Figure 4.2 Additional layers of complexity in a dynamic microsimulation model 

 

Li and O’Donoghue (2012b) state that dynamic microsimulation models in theory, 

could offer more insights than static models as they usually integrate long-term 
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projections and behaviour simulations.  Dynamic models are able to support attempts 

to forecast and, as a result, play an important role in informing social scientific 

thinking about the future (O’Donoghue, 2001).  Examples of dynamic models 

include the dynamic population simulation model DYNOMOD (Antcliff, 1993) and 

the DESTINIE model used to study intergenerational transfers in Canada and France 

respectively (Bonnet & Mahieu, 2000). 

Spatial Microsimulation Models  

Spatial microsimulation models, which are also known as geographical 

microsimulation models, simulate ‘virtual’ or ‘synthetic’ populations of individuals 

(usually within households) in given geographical areas (Cullinan et al., 2011). The 

purpose of this is to ensure that the characteristics of these simulated populations 

will be as close as possible to their ‘real-world’ counterparts (Ballas et al., 2005a). 

Spatial microsimulation models link individuals, households or firms with a specific 

location and can be used to explore spatial relationships and to analyse the spatial 

implications of policy scenarios (Ballas et al., 2006b). Static spatial microsimulation 

is designed to analyse effects among regions and localities in order to project the 

spatial implications of economic development and policy changes in at a more 

disaggregated level (Holm et al., 1996;  Hynes et al., 2006) 

 

Figure 4.3 illustrates a typical spatial microsimulation process whereby a sample 

micro-level data set such as the Irish National Farm Survey or the Household Budget 

Survey is sampled to a spatially disaggregated population data set such as the Census 

of Agriculture or the Census of Population. The allocation is constrained to the 

national aggregate total by totals reported at a lower spatial level in order to preserve 

the spatial heterogeneity of the population distribution. 
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Figure 4.3 Illustration of a typical spatial microsimulation process 

 

The development and application of spatial microsimulation models offers 

considerable scope and potential to analysis the individual composition of an area so 

that specific policies may be directed to areas with the highest need for that policy 

(Morrissey et al., 2008). This is a significant influencing factor in the context of the 

choice of model needed for the analysis of climate change policy with respect to 

greenhouse gas emissions mitigation strategies, considering the importance of 

emissions estimates at the local level (Allman et al., 2004). 

 

There is however a potential trade off to be made with the addition of further layers 

of complexity to the microsimulation process. Figure 4.4 illustrates the additional 

layer of complexity that the inclusion of an additional dimension, in this case space, 

can bring. 
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Figure 4.4 Additional layers of complexity in a dynamic spatial microsimulation 

model 

While more sophisticated microsimulation methodologies provide new opportunities 

for researching impacts on micro-level populations their increasing complexity 

makes them more costly, time consuming and hard to interpret. In addition, there is 

no guarantee that a model with a high level of complexity will provide significantly 

more accurate results or insight than a more parsimonious version. The primary 

challenge for microsimulation designers is to incorporate the required level of 

complexity in order to make a model useful, while maintaining a level of parsimony 

which allows the model to be built and utilised efficiently. 

 

4.3 Advantages and Disadvantages of Microsimulation 

Modelling 
 

Microsimulation methodologies have become accepted tools in the evaluation of 

economic and social policy particularly in the area of tax-benefit models (Hancock & 

Sutherland, 1992) and with the continued advancement of modern computing, the 

practical barriers to increasingly complex microsimulation methods are gradually 

eroding. Williamson et al. (2009) anticipate that microsimulation models of all types 
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will continue to become ever more firmly embedded as key tools in national policy 

making. However, it should be noted that all microsimulation models are constrained 

by both the quality of the base micro-data set used (if not constructed) and the 

availability of a sufficient validation methodology. The following section discusses 

the advantages, disadvantage and potential limitations of microsimulation modelling. 

 

4.3.1 Advantages 

One of the primary advantages of microsimulation as a modelling technique is that it 

artificially generates data for the most elemental units in a system and allows the 

conduction of analysis at a micro-level that was not possible previously. These 

elemental units may be individuals, farms, households, employers, housing stock, 

and in some cases are geographical areas (Hynes, 2007). Instead of focusing on 

aggregate behavioural relationships as in many macro-economic models (e.g., 

econometric, input-output, computable general equilibrium), these elemental units 

serve as the basic building blocks of the system and their behaviours can be 

modelled (Morrissey, 2008). Clarke and Holm (1987) note that microsimulation 

models permit micro unit relations and nested hierarchical relationships to be driving 

forces in micro unit growth and change while Ballas et al. (1999) highlight that 

complicated relationships can be represented with modern object-oriented 

programming languages in a way that is elegant, simple, and computationally 

efficient. Microsimulation models have advantages over both alternative micro and 

macro-based models.  

 

Nelissen (1994) argues that microsimulation’s benefits stem from their ability to 

incorporate second-order (induced behavioural) effects in addition to the usual first-

order (direct effects due to policy change) effects. One ramification is that household 

processes (i.e., demographic processes) are of greater importance to individual 

income development than socioeconomic changes such as becoming unemployed 

(Nelissen, 1994). 
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A further advantage of microsimulation modelling is the type and quality of potential 

outputs generated. These can be used to look at both aggregate and 

disaggregate/distributional effects of population and economic change (Merz, 1991; 

Ballas et al., 1999) and to generate longitudinal micro unit “biographies” that 

provide a better intuitive feel for the diverse outcomes of complex, non-linear 

economic-demographic processes. Because of their complexity and the variety of 

data elements that can be generated, perverse, unintended, or unexpected impacts of 

policies can be thoroughly investigated.  

 

Specifically with regard to spatial modelling, Ballas et al. (2006b) submit that spatial  

microsimulation models also contain a number of structural advantages over 

comparable micro-based models. Firstly, microsimulation allows data from various 

sources to be linked if datasets contain at least one attribute in common, such as, the 

Irish Census of Agriculture and the National Farm Survey or the Household budget 

survey and the Census of Population (Hynes et al., 2006). Secondly, the models are 

flexible in terms of scale; that is data can be re-aggregated to higher levels of 

aggregation such as from individual to household to district and so on. This is 

especially beneficial in in cases where impacts are to be aggregated and analysed at 

varying spatial scales. Thirdly microsimulation models store data efficiently as lists, 

as opposed to other formats such as matrices; the lists generally consisting of 

unidentifiable units with associated characteristics obtained from a survey or census. 

 

4.3.2 Disadvantages 

Historic resistance to microsimulation modelling has focused on the practical and 

physical constraints of the modelling technique and on the complexities involved. 

The development of spatial microsimulation models also requires substantial 

additional time and resource investment (Haveman & Hollenbeck, 1980). For many 

years the computational requirements of microsimulation were beyond reach of 

modern computing power resulting in the slow progress of model development 

(Holm et al., 1996). While modern computing power and processor development 

have removed the computational barriers to development, microsimulation 
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modelling requires intensive design investment in terms of human resources with 

development and maintenance costs remaining high in terms of man-years in the face 

of increasing complexity (Fredrickson, 1998; Williamson, 1992).  

 

Complexity can be experienced in several different dimensions, including the 

characteristics of the population, the extent of potential behaviours, the lagged time 

response of those potential behaviours and interactions within the spatial dimension. 

Models abstracting from the real world can help to provide insights from complex 

systems. However, increased complexity may increase the cost of validation and lead 

to an over simplification of processes. Williamson (1999) comments that 

microsimulation models are regarded as “black boxes” by many. Klevmarken (1997) 

describes microsimulation as a data-intensive endeavour that is too disconnected 

from microeconomic theoretical foundations while Nelissen (1994) argues that 

microsimulation models do not usually incorporate “third-order” effects (i.e. induced 

changes in economic output because of markets, e.g., export-base, input-output 

multiplier effects). However this view is not shared by Isard et al. (1998) who 

describe several ways in which third order effects can be captured.  

 

In summary many of the criticisms of large scale models cited by Lee (1973) retain 

their relevance for microsimulation modelling today. Outlining his “seven sins” Lee 

(1973) states that large models are computationally intensive, data hungry, make 

extreme demands on our theoretical understanding of spatial processes and our 

methodological capabilities for capturing that understanding within operational 

computer code, as well as being difficult to estimate and validate. These criticisms 

indicate that the future may not necessarily be one of bigger and more complicated 

models, but perhaps more on focused and targeted modelling structures. 
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4.4 Development of the SMILE Model 
 

SMILE is an over-arching framework for a series of spatial microsimulation models 

developed by Teagasc’s
28

 Rural Economy Development Programme (REDP) in 

partnership with other external collaborators. These models are a means of 

synthetically creating large-scale micro-datasets for Ireland at various geographical 

scales in order to better understand the diverse and complex interactions of 

individuals, household and farms and how they might response to induced policies 

and/or change over time (Ballas et al., 2005b). The development of SMILE was an 

acknowledgement of the considerable change in the nature and scope of regional 

policy development in Ireland. The economic and social development of rural areas 

could no longer be taken as synonymous with agricultural development. 

Consequently, SMILE has incorporated demographic, economic and geographic 

components allowing for medium term population projections at a high spatial 

resolution, the simulation of labour market characteristics of individuals and the 

exploration of the relationship between an individual’s place of work and their place 

of residency (Hynes, 2007). 

 

SMILE has gone through several iterative processes which over time have 

contributed to improvements in the accuracy and computational efficiency of the 

spatial matching process moving from iterative proportional fitting (Ballas et al., 

2005b) to simulated annealing  (Morrissey, 2008) and then more recently, quota 

sampling (Farrell et al., 2010). Using several combinations of sample micro data and 

aggregate spatial data, SMILE has been used to assess the potential impacts of 

environmental policy on Irish farms (Hynes et al., 2009), access to health care 

services in rural Ireland (Morrissey et al., 2008) and more recently in the 

distributional analysis of the economic impacts of wave energy device deployment 

(Farrell, 2012).  The modelling development of SMILE and its current format is 

outlined in the following section 

 

                                                 
28

 Teagasc is the agriculture and food development authority in Ireland. 



 77 

4.4.1 Iterative Proportional Fitting 

Ballas et al. (2005b) describe the development of the first SMILE model which was 

both a static and dynamic population spatial microsimulation model. The aim was to 

create a method of dynamically simulating the basic components of population 

change at a high spatial resolution using a two stage process. The first static process 

involved the synthetic reconstruction of a micro population data set from the 1996 

Census of Population Small Area Populations Statistics (SAPS). The 1996 SAPS 

contained aggregate totals for key demographic characteristics such as age group, 

sex, employment status, marital status and industry for every electoral district (ED) 

in Ireland. These characteristics were cross-tabulated and categorised in terms of 

other demographics e.g. gender by 5-year age groups by marital status (SAPS table 

2) and industry by employment status by gender (SAPS table 2). From these 

tabulations, conditional probabilities were calculated/attached to certain 

characteristics for each spatial unit. Where one set of conditional probabilities 

overlaps with another set via a common variable (or multiple sets overlap via at least 

one common), the opportunity to create conditional probabilities for a larger set of 

demographics exists. For example, the conditional probabilities for individual i in 

area x of age, marital status and gender can be expressed as px,i(A, MS, G). The 

conditional probabilities for gender, marital status and employment status can be 

expressed as px,i(A, MS, G). Similarly the conditional probabilities for individual i in 

area x for gender, employment status and industry can be expressed as 

px,i(G,ES,IND). Using Iterative Proportional Fitting (IPF), the known conditional 

probabilities, for individual i in area x can be used to estimate the probability 

px,i(A,G,IND,MS,ES), whereupon Monte Carlo sampling is used to assign age, 

gender, marital status and employment status attributes to each individual in each 

spatial unit  (Ballas et al., 2005b). The second dynamic process involved the 

dynamic simulation of mortality, fertility and migration forward in time using 

mortality and fertility probabilities from the 1991 Report on Vital Statistics and 

calculated migration probabilities derived from the 1991 and 1996 Census of 

Population data at county level.  Ballas et al. (2005b) reported a mean error at the ED 

level of circa 6% for both the 1996 and 2002 models.  

 



 78 

However, IPF can potentially produce unrealistic data as probabilities are used to 

create synthetic micro data from regional aggregates, rather than using real survey 

data  (Norman, 1999). While the IPF methodology has been used widely in spatial 

microsimulation models (e.g. Birkin, 1987; Clarke, 1996a; Williamson et al., 1996; 

Ballas et al., 1999; Ballas & Clarke, 2000) there has been a gradual recognition that 

reweighting techniques have some advantages over the synthetic reconstruction of 

micro-data  (Rahman et al., 2010). In addition, difficulties arise when attempting to 

carry out policy analysis on economic and welfare micro-units such as household or 

firms. This is due to the fact that IPF creates individual data based on individual 

constraints rather than a grouped socio-economic unit such as a households or farm. 

However, many policy analyses require modelled outcomes at the household-level, 

using micro data of individuals grouped into households. The IPF procedure is 

somewhat deficient in handling the additional degree of dimensionality imposed by 

reweighting individuals grouped into households according to individual level 

constraints, and thus is unsuitable for synthesising SMILE (O'Donoghue et al., 

2013b). 

 

4.4.2 Simulated Annealing-Combinatorial Optimisation  

 

Reweighting is a procedure used in spatial microsimulation modelling in order to 

transform micro-unit information contained in a sample survey to estimates for  the 

micro population (Chin & Harding, 2006). Two prominent methods of reweighting 

are the deterministic GREGWT approach (Bell, 2000; Chin & Harding, 2000;  

Rahman et al., 2010) and probabilistic combinatorial optimisation techniques (Ballas 

et al., 2003; Williamson, 2007; Hynes et al., 2009). GREGWT is a constrained 

distance minimisation function which uses a generalised regression technique to get 

an initial weight and iterates the regression until an optimal set of household or 

individual weights for each small area is derived (O'Donoghue et al., 2013a). Using a 

regression approach to minimise the difference between census total and the 

estimated total, the iterations stop when the residual difference is at or close to zero, 

(Chin & Harding, 2006). This process is known as convergence (Tanton et al., 
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2007a). However, while the method is suitable for larger spatial scales one of the 

drawbacks of GREGWT approach is that for some small areas convergence does not 

exist. That means that the GREGWT algorithm is unable to produce estimates for 

those small areas (Rahman et al., 2010). As many Irish EDs are of low population 

density (25% contain less than 100 households, 57% contain less than 200), 

significant barriers to convergence may exist if a generalised regression weight 

based method such as GREGWT were to be used for SMILE. (O'Donoghue et al., 

2013a). 

 

An alternative approach to reweighting is Combinatorial Optimisation techniques 

which include methods such as deterministic reweighting, probabilistic reweighting 

and simulated annealing (Ballas et al., 2005a). Combinatorial Optimisation allows 

microsimulation models to overcome dimensionality issues where survey data for 

the unit of interest is reweighted to fit small area population data (Ballas et al., 

2005a). One of the key advantages in using a combinatorial optimisation technique is 

that it results in a more realistic representation of micro population as it generates 

simulated cases based on “real” people living in “real“ households, and does not 

produce synthetically reconstructed individuals (Ballas & Clarke, 2001). 

 

Combinatorial optimisation involves the selection of an appropriate combination of 

micro-units from a sample survey data to attain the defined combined “benchmark” 

in totals at the small area level using an optimization tool (Tanton et al., 2007b). A 

combination of sample units e.g. households, are selected. Then a random household 

from the initial set of combinations is replaced by a randomly chosen new household 

from the remaining survey data to assess whether there is an improvement of fit. The 

iterative process continues until an appropriate combination of households that best 

fits known small area benchmarks is achieved (Williamson et al., 1998a; Voas & 

Williamson, 2000; Huang & Williamson 2001; Tanton et al., 2007a) While it is 

theoretically possible to find an optimal single “solution”, Rahman et al. (2010)  note 

that in practice, it is almost unachievable, due to computing constraints for a very 

large number of all possible solutions. 
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Simulated annealing is an “intelligent searching” combinatorial optimisation 

technique which is also less sensitive to convergence issues (Rahman et al., 2010). 

Williamson et al. (2009) found that in an Australian simulation, SA performed 

slightly better at matching than GREGWT for both constrained and unconstrained 

variables. This was particularly the case in districts where there was no convergence. 

It also contains mechanisms to avoid becoming trapped at local minima (Wang et al., 

1998). In the second stage of development of SMILE, Morrissey et al. (2008) use a 

simulated annealing approach which draws on SimLeeds Spatial Model. Like other 

combinatorial optimisation approaches, an initial combination is selected from the 

sample data set to fill the small area target numbers and calculates the error. Once 

filled a number of cases are replaced at random and the error is recalculated. If the 

error is smaller the changes are accepted and the model moves to the next iteration. 

If the error is larger, the originally selected cases are kept and a new selection of 

cases is chosen to be replaced. The process continues until error is less than a 

selected value or the number of iterations reaches a preset maximum. While 

simulated annealing provides a high level of statistical accuracy at smaller spatial 

scales it is computationally intensive technique due to the repeated sampling process. 

Hynes et al. (2009) found that it took two days to generate almost 140,000 individual 

farm records from 1200 survey data points on a 2G Dell workstation. O'Donoghue et 

al. (2013a) note that using this process to simulate a micro-level population of over 4 

million individuals with a number of additional constraints would take a 

considerably longer period of time. The time cost of this level of computational 

intensity is prohibitively expensive and onerous, and can be accentuated by the 

requirement to perform repeated simulations for sensitivity analyses and simulations 

of future population projections (Farrell et al., 2010). 

 

This computational limitation was a key motivation in the development of a more 

efficient matching process for the SMILE model. This resulted in the development of 

Quota Sampling; a more efficient spatial matching algorithm achieved through a 

reduction in the number of required computations. This methodology represents the 

the third stage of development of the SMILE model.  
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4.4.3 Quota Sampling 

Quota Sampling (QS) is a probabilistic reweighting methodology developed by 

Farrell et al. (2010).  A novel adaptation of this method provides the spatial 

microsimulation framework for the static and dynamic emissions modelling carried 

out in this thesis. Like simulated annealing, this matching procedure reweights 

survey data according to key constraining totals for each small area provided by a 

second aggregate spatial data set such as census of population or farms. However, 

unlike simulated annealing, when cases are selected from the sample data set and 

allocated to a spatial unit they are not replaced and are deemed to be selected. This 

mechanism of sampling without replacement avoids the repeated sampling procedure 

of SA and is fundamental to the efficiency gains of the quota sampling procedure 

(O'Donoghue et al., 2013b). 

 

Running totals, termed “bins” are created for all match constraint variables.  Each 

bin is assigned a constraining quota total provided by the aggregate spatial data set. 

All bins are updated after each individual case is selected and allocated to each 

spatial unit. This process continues until one of the quotas filled. The process is 

illustrated in Table 4.1 below. 

 

Table 4.1 Quota Sampling selection process 

Spatial Match 

Variables 

Sex 

(Female) 

Age 

25-44 

Education 

Level (3
rd)

 

Household 

Size 2-5 

No. Of  

Children 

Running Total X-10 Y-15 Z-6 H-3 C 

Spatial Unit i 

Quotas 

X Y Z H C 

 

Spatial unit i is assigned quotas for sex (X), age(Y), education level (Z), household 

size (H) and number of children (C) respectively. The quota totals are summed 

simultaneously with the addition of each observation until the first quota is filled in 

this case the number of children (C). Once the quota for any of the match variables is 
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reached, the model then reduces the sample space from which observations are 

drawn by dropping those observations which would “overfill” the quota for that 

match variable. This process continues with more observations dropped in a similar 

manner as more quotas are filled.  Cases are again selected without replacement until 

a second quota is filled and the sample space is further reduced. It is possible that 

this process can be repeated until all quotas are filled; however it is more likely that 

sample space will shrink to zero with the last few quotas remaining unfilled. This is 

usually because the characteristics required for the last few remaining cases are so 

specific, no such cases exist in the survey data that satisfies the constraints required 

to fill the remaining quotas (e.g. a five person household, containing 5 females aged 

over 65, all with third level education). 

 

It is at this point that the quota constraints are relaxed to expand the sample space.  

Constraints should be lifted in reverse order of those variables which are the most 

influential determinants of the key characteristic(s) the method is attempting to 

model. While this may result in some quotas being overfilled for some spatial units 

the methodology also contains mechanisms to counteract practical convergence 

problems and minimise the accuracy vs. efficiency trade off. One of these methods 

involves the profiling of each constraint in each spatial unit in terms of the national 

distribution. In this way, the initial fill order for spatial units which are particularly 

“unusual” can be manipulated so that the most difficult constraint quota is filled first. 

For example a particular urban spatial unit could contain an unusually high number 

of young households due to its proximity to an educational institution. The model 

would then attempt to fill this constraint quota first by selecting young households 

from the sample survey first. The model then moves on to next most unusual 

constraint in terms of the national distribution and repeats the process. 

 

 

 

 



 83 

4.5 Previous Applications of the SMILE model 
 

The Teagasc SMILE methodology has evolved through a number of development 

phases moving from IPF to simulated annealing and currently to quota sampling. 

During that time, the SMILE-framework has been used for a variety of applications. 

 

In the first phase of development Ballas et al. (2005a), used the IPF SMILE model to 

dynamically simulate mortality, fertility and migration in the Irish population 

forward in time from 1991-1996 and compared results from the SMILE model to the 

1996 census of population in order to calculate the accuracy of the modelled 

demographic transitions.  Ballas et al. (2005a) report a mean population error of 

6.4% at ED level and just 2.7% at the higher county level spatial scale. Ballas et al. 

(2006b) use the SMILE model to study the implications of CAP reforms for the 

National Spatial Strategy (NSS) outlining the potential of microsimulation to address 

small-area impacts of major national or international rural policy changes. By 

examining the likely spatial distribution of winners and losers from CAP reform and 

the spatial distribution of employment, Ballas et al. (2006b) show that the spatial 

effects of decoupling on rural farm incomes in areas of low employment density 

could have the potential to frustrate regional development policy goals and 

highlights the potential use of the SMILE framework in identifying policy conflicts.  

 

Hynes et al. (2009) used the second generation of the SMILE model based on 

simulated annealing, to statistically match data from the annual Teagasc NFS to 

aggregate spatial farms totals contained in Census of Agriculture (CoA) creating the 

SMILE-NFS. The Teagasc NFS is a highly detailed farm-level survey which collects 

farm-level data for circa 1000+ farms on an annual basis and contains variables on 

inputs and outputs, costs and incomes and stocking rates. The CoA classifies farms 

by size, economic type and geographical location reporting aggregate totals at the 

electoral district (ED) level. The CoA 2000 presents aggregate totals for a total farm 

population of circa 140,000 farms. By creating a baseline methane emissions model 

for the resultant SMILE-NFS farm micro-population, Hynes et al. (2009) studied the 

static effects of a €7.50 carbon equivalent methane emissions tax and calculated that 
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such a tax could raise approximately €64m in tax revenue. Hynes et al. (2009) report 

the spatial outcomes on average family farm incomes and the spatially 

heterogeneous welfare outcomes as a result of a redistribution scheme based on 

participation in an environmental protection scheme, showing the potential use of the 

SMILE framework in informing rural policy analysis. In an analysis of responses to 

subsidy reform, Shrestha et al. (2007) use the SMILE-NFS model to dynamically 

study the regional effect of decoupling on farming in Ireland by using price and cost 

projections from the FAPRI
29

 model in a linear programming model to estimate 

farmers' likely response to policy change. Shrestha et al. (2007) highlight differential 

regional impacts with farmers in South-West, West, Midland and Border regions 

likely to engage de-stocking in contrast to those in the mid-East and South-East.   

 

Morrissey et al. (2008) use the SMILE simulated annealing framework to 

statistically match the LII survey to the SAPS, creating the SMILE-LII in order to 

analyse both demand for, and supply of, health care services at the ED level in 

Ireland. The Living in Ireland (LII) survey is a 7-year panel data set containing 

individual, demographic and socio-economic characteristics including detailed 

information on individual health status and health service utilisation rates from 1994-

2007. The survey captured information from individuals from approximately 4,000 

households annually. The SMILE-LLI model matches the LII survey to the Small 

Area Population Statistics SAPS; a rich set of aggregated demographic census 

information for over 3,400 EDs. Using the SMILE-LLI, Morrissey et al. (2008) 

examine access to both acute and community psychiatric facilities for individuals 

who reported suffering from depression and find a spatial mismatch between service 

need and service provision with areas with the highest rates of depression suffering 

from low levels of access to mental health services  (Morrissey et al., 2010).  

 

Using quota sampling (the latest iteration of the SMILE spatial matching 

framework), Farrell (2012) uses the SMILE-EUSILC to perform an economic 

evaluation of wave energy devices by considering the localised economic impacts 

                                                 
29

 Food and Agriculture Policy Research Institute of Missouri 
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for those areas near deployment zones and re-distributional impacts of the cost of 

support schemes and concludes that the employment benefit deployment of 

renewable energy technologies may help alleviate between-region inequality. The 

EU Survey of Income and Living Conditions (EUSILC) contains in-depth micro data 

detailing income, poverty and other such indicators of welfare. The SMILE-EUSILC 

statistically matches the SAPS with EU SILC to create a spatially explicit dataset of 

individuals grouped into households through which distributional welfare analyses 

may be carried out.  

 

4.6 Conclusions 
The SMILE framework has proved to be a useful method of creating simulated 

national level populations from sample survey data in Ireland. Various iterations of 

the model have been used to statistically match several sample data sets to aggregate 

national census data. The generation of these micro-populations facilitates the 

modelling of additional non-match variables in order to broaden the possibilities for 

the analysis of various economic, social and environmental policies. The nature of 

the modelling technique is such that the potential future number of applications in 

new policy areas is far-reaching. However the ability to validate outputs to both 

preserve spatial heterogeneity and to calibrate modelled outcomes is an essential 

restraining force which must be addressed.  
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CHAPTER FIVE: DEVELOPMENT OF A BASELINE 

SPATIAL EMISSIONS MODEL FOR IRISH 

AGRICULTURE 

 

This chapter describes the construction of an analytical tool to assess the impact of 

policy measures on Irish agricultural greenhouse gas emissions. A baseline spatial 

emissions model for Irish agriculture is constructed from the SMILE-NFS model 

using a novel adaptation of the Quota Sampling (QS) microsimulation method. 

Activity data from a simulated farm population is used in conjunction with emissions 

factors from the Environmental Protection Agency (EPA) (based on the 

Intergovernmental Panel on Climate Change methodology protocol) to estimate 

greenhouse gas emissions for each farm and provide a spatial map of Irish agri-

emissions reported at the electoral district level. Comparative results for the 

inclusion of a stocking rate ranking variable in the match process are reported. 

Estimates for greenhouse gas emissions from agriculture for 2008 are analysed and 

compared with the EPA’s National Inventory Report (NIR), informed by a 

comparison of activity captured in the Teagasc National Farm Survey (NFS) with the 

national accounts. 

 

5.1 Introduction 
 

While its contribution to GDP has declined since the highs of the 1960s, agriculture 

and the related agri-food industry is still an important contributor to the Irish 

economy as Ireland’s largest indigenous industry, contributing to around 7% of GDP 

(CSO, 2012). The majority of Irish agricultural produce is exported with Ireland’s 

agri-food sector representing 10% of Ireland’s entire export economy (Department of 

Agriculture Fisheries and Food, 2012). Considering current population projections, 

Bruinsma (2009) estimates that agricultural production would need to increase by 

70% by 2050 to cope with a 40% increase in world population (Food and 
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Agriculture Organization, 2009). With the abolition of the milk quota in 2015 and 

increasing global demand for quality food produce, Ireland’s agricultural sector has 

been identified as having high potential for growth in the medium to long term and 

has been targeted as one of several key sectors which have the capacity to contribute 

to Ireland’s return to economic prosperity (Department of Agriculture Fisheries & 

Food, 2010). Ireland’s agricultural sector has been earmarked for significant 

expansion under the aims of Food Harvest 2020 programme (FH2020) with targets 

outlined for the dairy
30

, beef and sheep sectors
31

 (Department of Agriculture 

Fisheries & Food, 2010).  

 

Concurrently, the EU is committed to a 20% reduction in greenhouse gas (GHG) 

emissions on 1990 levels by 2020 under the terms of the 2008 Climate Action and 

Renewable Energy Package (Council Decision, 2009). As part of this target, Ireland 

is committed to reducing non-Emissions Trading Scheme (ETS) sector emissions by 

20% by 2020 relative to 2005 levels (EPA, 2010). However, Ireland’s agri-sector 

accounts for almost one third of Irelands’ total reported emissions output, with 

agriculture representing 43% of emissions from the non-ETS sector in 2010 (EPA, 

2012). Additionally, agriculture’s contribution to total emissions from the non-ETS 

sector is currently projected to rise to 48% by 2020 (EPA, 2013b).  Consequently, it 

is highly likely that the effective implementation of carbon abatement strategies and 

improved carbon efficiency measures in agriculture will be required if both these 

policy objectives are to be achieved. 

 

The absence of spatial micro information on GHG emissions has been identified as a 

barrier to the effective implementation of mitigation policies, since it as at the local 

level where GHG reductions will ultimately take place (Kates, 1998; Allman, 2004). 

As outlined in Chapter 4, information at the micro level enables policy makers to 

study the dense interactions between agents at the smallest scale and model the 

magnitude and diversity of outcomes for individual firms and households arising as a 

result of policy changes. In the case of GHG mitigation policies, the presence of 

                                                 
30

 Target increase in quantity of output of 50% 
31

 Target increase in value output of 20% set for both the beef and sheep sectors 
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spatial information further enables policy makers to examine the spatial equity of 

outcomes as well as providing the opportunity to design and tailor strategies to local 

and regional characteristics. A spatial microsimulation model for Irish agricultural 

emissions based on the IPCC methodology is considered. 

 

5.2 Agricultural Emissions Modelling 

5.2.1 Modelling approaches  

 

As outlined in Chapter 3, a number of different methods for the modelling of 

greenhouse emissions have developed largely from two basic approaches; top-down 

(Bergamaschi et al., 2005; Corazza, 2011)  and bottom up  (O’Mara, 2006; O’Brien, 

2011). Top-down approaches typically estimate emissions from aggregate 

observations measured at a limited number of data collection points which are then 

statistically modelled backwards to their point of origin, now possible due to the 

advancement of modern computing power and appropriate modelling techniques. 

Bottom-up approaches typically calculate emissions by applying emissions factors or 

weightings to certain activities or processes and aggregating those processes to the 

required scale of interest subject to the available source data. While top-down 

methods have been used to model point source emissions from specific 

environmental events (Forster et al., 2001) and as a validation reference point for 

national inventories (Polson et al., 2011), their use is limited in terms of modelling or 

apportioning emissions from specific sectors of an economy and are not considered 

in this thesis.  

 

Considering bottom-up approaches, the scope of agricultural emission models is 

considerable. In line with the IPCC provision for participating nations to submit 

more detailed country specific emissions factors, O'Mara (2006) developed a tier 2 

emissions methodology for the Irish cattle herd.  Emission factors for methane from 

enteric fermentation (ENF) and manure management (MM) were calculated for 

categories of the Irish cattle herd for which data on animal numbers could be 

obtained from the Central Statistics Office (CSO). Focusing on the New Zealand 
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dairy herd, Beukes et al. (2010) combine IPCC emissions factors, information on-

farm management practices and methane emissions estimates based on a 

metabolizable energy intake model to investigate the impacts of management 

decisions on emissions and profitability with the goal of reducing unit emissions (per 

ha/kg) by improving production efficiency. 

  

Kulshreshtha et al. (2000) use a “whole farm” approach to calculate emissions using 

activity data from the Canadian Regional Agriculture Sub-Model (CRAM) and 

project emissions to 2010 under alternative fertiliser application scenarios while 

Gibbons et al. (2006) model uncertainty in emissions estimates for UK agriculture 

using Farm-Adapt, a farm-level optimisation model using a monte-carlo simulation 

to estimate a resultant range of emissions scenarios.   

 

In relation to modelling emissions from dairy farming, O'Brien et al. (2011) compare 

the current IPCC national inventorying method and a life cycle analysis (LCA) 

approach and find that when modelling emissions on a per hectare basis, both 

systems report that reductions in intensity of production result in lower emissions per 

unit area. However, O'Brien et al. (2011) submit that reporting emissions on a per 

hectare basis does not adequately reflect the impact that differential feed systems can 

have on milk production and conclude that farming systems should be assessed on an 

emissions per unit of product basis in order to ensure the lowest resulting GHG 

emissions for the projected increases in world meat and milk production. 

 

From basic inventorying approaches such as the IPCC methodology to more 

complex life cycle analyses such as O'Brien et al. (2011), the applications of 

agricultural emissions models are diverse and cover areas such as the refinement of 

emissions factors, the modelling of more emissions efficient production systems and 

the projection of future emissions paths. 
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5.2.2 IPCC vs. LCA Approach 

 

Due to its predominantly grass based production system, the Irish dairy and beef 

sectors are capable of producing some of the lowest emission agriculture produce per 

unit output available and could compare very favourably internationally in terms of a 

Life Cycle Analysis (LCA) approach to agri-emissions modelling (Schulte & 

Lanigan, 2011). However, while there has been a substantial shift in the literature 

towards whole farms systems analysis for modelling emissions at the farm level, 

significant challenges for using LCA in the construction of national inventories 

remain; such as the availability of accurate emissions information on indirect inputs, 

outputs and processes (Crosson et al., 2011).   

 

The design of any emissions model is ultimately determined by its intended purpose. 

The IPCC employs a basic methodology to model national emissions from the 

traditional sectors of most modern economies. Its effect is to enable as many 

countries as possible to use a consistent methodology for the purposes of tracking 

national emissions over a period of time and use them as a basis for setting any 

country specific emissions targets set by international treaties. In addition to the 

emissions factors published by the IPCC, there is also a provision for countries to 

submit their own higher tier emissions factors to take into account national variations 

in processes and production systems such as in the case of Irish agriculture (O'Mara, 

2006). The IPCC methodology provides each country with a structured baseline 

method for modelling GHG emissions and allows flexibility for the inclusion of 

country specific emissions factors.  

 

A significant drawback to the IPCC methodology however, is that it seeks to 

accomplish an international objective within national boundaries. The IPCC 

methodology only requires countries to report emissions originating or emitted 

within national boundaries and thus does not necessarily seek to identify or reward 

countries which develop the most carbon efficient process, the exploitation of which 

may contribute greatly to that countries total emissions but result in lower overall 

global emissions. The IPCC method was developed to prepare transparent and 
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simple inventories on a national scale (Schulte & Lanigan, 2011). Its purpose was 

not to determine precise levels emissions or assess strategies to reduce emissions on 

a lower scale, i.e. at micro/unit level (Schils et al., 2006). A typical example of this 

drawback is in the area of agriculture. While total emissions per unit area originating 

from the Irish dairy sector may be high, its emissions efficient grass-based 

production system means that emissions per unit of output are low. Thus reductions 

in Irish production levels, in order reduce Irish reported emissions, may result in less 

emissions efficient production elsewhere thus raising global emissions.  

 

Life Cycle Analysis (LCA) can be used to assess and evaluate the impacts that 

products or processes have on the environment over their entire life span (Crawford, 

2008). Emissions models based on LCA attempt to model the emissions arising from 

the entirety of the activity/process of interest including emissions involved in the 

delivery of inputs and outputs as well as emissions arising from the process itself. 

LCA can therefore be used to calculate the total global emissions arising from a 

specified activity or process. LCA allows for the comprehensive evaluation of 

alternative measures and/or changes to the production cycle which result in either 

reduced overall global emissions or lower emissions per unit output.  

 

Casey and Holden (2006) use a life cycle assessment to estimate emissions from the 

Irish suckler-beef herd in order to evaluate a number of alternative management 

scenarios. The adoption of a LCA approach allows for the tracking of emissions 

changes as a result of a regime change. Using alternative approaches such as the 

IPCC methodology does not account for management practices which “export” 

emissions elsewhere. For example the importation of concentrate feed for animals 

may result in lower emissions for Ireland in terms of its NIR due to an offset in 

fertiliser emissions; however such a calculation does not consider the production and 

transport emission costs of the concentrate feed which may result in an overall 

increase in global emissions.  

 

The use of LCA for inventory analysis is however somewhat problematic and 

presents considerable challenges. The modelling of emissions from any sector, 
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activity or process involves the consideration of which activity/sinks are to be 

included and what emissions/sequestration factors are to be applied. The complexity 

involved in each LCA conducted means that each system needs to be individually 

assessed since no two situations are ever the same (Lee et al., 1995). While a 

standard for the principles and framework for LCA design has been created (ISO, 

2006), international agreement on a consistent LCA method of emissions 

inventorying would require agreement on a vast amount of verifiable methodologies, 

agreement on the start and end point of each processes life cycle; as well as 

agreement on transport emissions and emission exchanges as a result of international 

trade.  

 

O'Brien et al. (2011) examine the effect of methodology on GHG estimates from 

dairy systems and recommend the incorporation of LCA analysis into the IPCC 

methodology framework. As the current IPCC methodology does not include 

indirect GHG emissions from farm pre-chains such as concentrate production, future 

national decisions on production systems and mitigation strategies may be optimal in 

terms of the individual nation’s emissions inventory but sub-optimal in terms of 

achieving a net reduction in global emissions. However, Schulte and Lanigan (2011) 

note that full LCAs for individual farms can be laborious, time-consuming, subject 

to large uncertainties, and therefore difficult to verify. 

 

The IPCC methodology is still the preferred method used for national emissions 

inventories in the absence of further international agreement and while an LCA 

analysis can provide valuable information on mitigation options for a variety of 

processes, currently its use as a practical tool for comparative national inventorying 

is limited.   

5.3 Spatial Modelling of Emissions from Irish Agriculture 
 

Ireland is faced with a significant challenge in terms of meeting its 2020 emissions 

targets. On the one hand, the FH2020 programme aims to increase agricultural 

output significantly while on the other, Ireland must reduce its emissions output in 
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line with its EU commitments. Given that agriculture comprises almost 43% of 

Ireland’s emissions form the non-ETS sector, the identification of further mitigation 

options and the effective implementation of current mitigation policy will be 

required to meet both objectives.  

 

Spatial information on emissions at the local level has been identified as a key 

determinant in the effective implementation of climate change policy by Allman et 

al. (2004). The National Atmospheric Emission Inventory (NAEI) uses a 

combination of point source data and a distribution map of diffuse emissions to 

construct a GHG emissions maps across 11 source sectors for the UK. The maps are 

used by the AEA and other organisations for a variety of Government policy support 

work at the “national, regional and local scale” (AEA Energy and Environment 

2011:23). de Kluizenaar et al. (2001) model the spatial distribution of SO2 and NOx 

emissions for 1995 by assigning emission totals, from different emission-source 

categories, to a 1kmx1km resolution identifying detailed information on the spatial 

distribution of emission sources. 

 

Spatial information on emissions allows policy makers to identifying mitigation 

opportunities with a spatial dimension. It can help identify local initiatives which 

result in a more efficient use of resources; such as in the case of transport with 

Quinlan et al. (2006), who use a milk transportation model to calculate the optimal 

locations for milk processing, thereby reducing the costs of transport and associated 

emissions. The absence of spatial micro information restricts our ability to predict 

micro outcomes as a result of policy changes and analyse the spatial equity of 

redistributive effects such as in the case of a carbon tax.  

5.3.1 Stocking rate as a key determinant of Agricultural Emissions 

 

Neufeldt et al. (2006) used the EFEM–DNDC economic-ecosystem model to assess 

disaggregated regional GHG emissions from livestock and crop systems in Germany. 

Neufeldt et al. (2006) show that the distribution of GHGs strongly depends on the 

presence of livestock and state that stocking rates appear to be a useful indicator of 
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total GHG emission levels. Neufeldt and Schäfer (2008) then use the EFEM–DNDC 

model to evaluating the effects of different agricultural mitigation policies on GHG 

abatement potentials and their cost efficiencies in Germany. 

 

Foley et al. (2011) uses the BEEFGEM model as a means to compare the emissions 

efficiency of different management practices applied to beef production systems. 

Farm characteristics and output from the average beef farm identified from the NFS 

were used in conjunction with feed input factors to create a base farm scenario. 

Foley et al. (2011) found that the effect of increasing the stocking rate led to an 

increase in direct and total emissions in all scenarios modelled while higher stocking 

rates combined with higher levels of production efficiency led to lower emissions per 

unit output across alternative scenarios. 

 

Emissions from livestock in the form of enteric fermentation and manure 

management accounted for over 90% of methane emissions and almost 60% of 

CO2eq emissions attributed to the Irish agricultural sector in 2008 (EPA, 2010). 

Given its direct relationship to the primary sources of agricultural GHG emissions 

the farm level stocking rate is a key determinant of outcome in agri-emissions 

models. Consequently, in terms of the distribution of emissions in a spatial 

agricultural emissions model the preservation of the spatial unit’s stocking rate is a 

key consideration in attempting to reflect spatial heterogeneity 

5.3.2 Proposed New Framework for Modelling Agricultural 

Emissions 

 

In using a simulated annealing approach to create a spatial distribution of methane 

emissions from Irish dairy, cattle and sheep, Hynes et al. (2008) provided the first 

step towards providing a spatially disaggregated model of agriculture emissions for 

Ireland. However, the absence of a method of calibration for the stocking rate for 

each spatial unit is a notable omission. Expanding on this work, this chapter outlines 

a methodology for generating a baseline agricultural emissions model for Ireland and 

maps outcomes at the electoral district level. Using Quota Sampling, a new spatial 
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methodology developed by (Farrell et al., 2010), an updated SMILE-NFS farm level 

model is created by sampling farms from the NFS to spatial totals reported in the 

Census of Agriculture. In addition, the inclusion of a match ranking variable based 

on the mean stocking rate is tested with results for its effect on the matching process 

reported. In the absence of any further agreement at an international level on the 

inventorying of emissions and in the interest of offering a comparison with the 

current national emissions inventory, the IPCC methodology has been adopted for 

the purposes of calculating emissions at the farm level, from which an aggregate 

emissions total is calculated and compared with Ireland’s NIR.  

 

5.4 Methodology  
 

This section describes the construction of baseline spatial emissions model for Irish 

agriculture farms using an updated version of SMILE-NFS a spatial microsimulation 

model of the Irish Farm population. Farms from the 2008 NFS (Teagasc, 2009) are 

sampled to update the spatial totals reported in the CoA (CSO, 2000) using a novel 

adaptation of quota sampling, a spatial microsimulation technique developed by 

Farrell et al. (2010). Agricultural emissions for methane (CH4) and nitrous oxide 

(NO2) are calculated on the basis of emissions factors reported in the NIR. As the 

NIR’s total reported emissions are based on activity data from the national accounts 

(NATACCs), activity captured in the NFS is aggregated and compared to the 

NATACCs in order to estimate the proportion of agricultural activity that is captured 

in the NFS. Emissions totals for captured activity in the NFS are then compared with 

the totals reported in the NIR, which are adjusted for the proportion of agri-activity 

covered by the NFS. 
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5.4.1 Data 

Teagasc National Farm Survey 

 

The Teagasc NFS is a comprehensive and nationally representative weighted panel 

data set compiled by surveying circa 1,000 Irish farms on an annual basis. First 

conducted in 1972, it contains a wealth of micro-level data (over 2,000 variables) 

relating to each farm’s activity as well as providing details on each farm’s physical 

characteristics and a demographic profile of the holder and farm household. As part 

of the Farm Accountancy Data Network (FADN) of the EU, the survey provides data 

on farm output, costs and income to the European Commission. In conjunction with 

the Central Statistics Office (CSO), a nationally representative random sample of 

farms are selected annually, with each farm assigned a weighting factor so that the 

results of the survey are representative of the national population of farms (Teagasc, 

2009).  The NFS records information on opening and closing stocks, purchases, 

sales, subsidies and grants, loans and overheads as well as information on inputs 

such as feed and fertiliser. The high level of detail contained in the NFS allows for 

the estimation of farm-level GHG emissions from enteric fermentation and from 

manure management based on animal numbers. Input quantity data allows for the 

estimation of nitrous oxide emissions from fertiliser use. In addition, information on 

electricity and fuel usage allows for the estimation of emissions from energy use, 

although for the purposes of comparison with the NIR, these emissions are not 

included due to their inclusion in the sectoral report for energy. While the NFS is a 

comprehensive data set on activity at the farm-level, it is a sample data set and does 

not contain information on some specific agricultural enterprises, i.e. those typically 

which have a very small number of farms producing the majority of national 

commercial output for the sector, such as in the case of horticulture, vegetable crops, 

pigs, and other speciality livestock. 

 

Census of Agriculture 

 

The Irish CoA is conducted approximately every ten years and provides aggregated 

information on every registered farm in Ireland. First conducted in 1847, the 
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objective of the Census is to identify every operational farm in the country and 

collect data on agricultural activities undertaken on them (CSO, 2000). In addition to 

data on geographical location and aggregate input use, the census provides aggregate 

totals for the size, system and soil type of farms reported at the electoral district (ED) 

level. It reports aggregated demographics for all farm households within each ED 

and supplies information on livestock numbers enabling the calculation of an 

averaged stocking rate. The CoA classifies farms by size, economic type and 

geographical location reporting aggregate totals at the electoral district (ED) level, 

thus providing the spatially disaggregated allocation set for the SMILE-NFS spatial 

microsimulation model.   

 

The National Accounts for Agriculture  

 

The annual National Accounts for Agriculture (NATACCs) are published by the 

Central Statistics Office and provide an estimate of the annual value of income and 

expenditure activity in all primary sectors of agricultural activity. The NATACCs for 

output, input and income in agriculture provide figures for the total output value of 

all livestock and livestock produce sold as well as estimates for the total value of 

agricultural inputs giving an estimation of total agricultural income for a given year 

(CSO, 2009). The figures reported in the NATACCs are constructed from a large 

number of separate data sources and consist of a combination of observed volumes 

and prices and estimates based on survey data. For output, input and income in 

agriculture, data on slaughter numbers, prices, input volumes etc. are compiled from 

the Department of Agriculture, the CSO, Teagasc, the Office of the Revenue 

Commissioners and a number of other state and semi-state bodies. Since the NIR’s 

emissions estimates for agriculture are based on data from the NATACCs, it is 

necessary to first compare the NATACCs with activity captured in the NFS, as the 

NFS does not contain data on certain specific agricultural activities. A comparison 

with the NATACCs for agriculture informs an estimation of the share of total 

agricultural activity that is captured in the NFS. This is required in order to draw a 
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reasonable comparison between emissions estimated from the SMILE-NFS model 

and emissions reported in the NIR. 

 

The National Inventory Report  

 

Ireland’s NIR for greenhouse gas emissions is compiled by the EPA as Ireland’s 

nominated statutory reporting body (Statutory Instrument S.I.244, 2006). The 

reporting format follows the guidelines adopted by the United Nations Framework 

Convention on Climate Change (UNFCCC), which requires the application of 

prescribed methodologies and procedures in order to provide consistent and 

comparable data on an annual basis (EPA, 2012). Greenhouse gas emissions 

estimates for methane (CH4) and nitrous oxide (NO2) are reported for seven source 

sinks and categories including agriculture. Ireland reports emissions for three of 

seven sub-categories for agriculture, namely enteric fermentation, manure 

management and agricultural soils, with the other 4 source categories not applicable 

as a feature of Irish agricultural activity. The EPA relies heavily on activity data 

compiled from numerous different sources with key contributors supplying data 

under prescribed memorandum of understanding. The key data contributors for the 

agricultural sector are the Central Statistics Office (CSO) (which provides the EPA 

with data on annual farm populations, livestock populations, and crop statistics) and 

the Department of Agriculture Food and Marine (DAFM) which provides estimates 

on fertiliser use. The CSO and the DAFM provide the majority of activity data for 

the EPA’s estimation of emissions from Irish agriculture in the NIR. The same 

activity data from the CSO and the DAFM forms the basis for the output values 

recorded in the NATACCs for agriculture.  It is on this basis that a comparison of 

activity recorded in the weighted Teagasc NFS and the NATACCs for agriculture is 

necessary in order to inform a comparison of emissions output from a baseline 

spatial emissions model for Irish agriculture and the NIR.  
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5.4.2 Comparison of Agricultural Output with the National 

Accounts  

 

The NIR reports agricultural emissions on the basis of activity data obtained from 

the Central Statistics Office’s (CSO) NATACCs for agriculture. However, while the 

NFS is a well-established survey of Irish Agriculture, it does not capture output for 

all sectors reported in the NATACCs. Thus in order inform a comparison between 

GHGs reported in the NIR and the SMILE-NFS spatial agri-emissions model, the 

differences between the level of activity or output reported for the NATACCs versus 

the output reported in the weighted NFS must be understood. The following explains 

the differences in reported gross outputs and inputs reported in the NATACCs value 

output table (AEA01) and the equivalent outputs calculated on the basis of the 

weighted NFS. 

Comparable Sectors 

 

When comparing the gross outputs and intermediate inputs reported in the 

NATACCs and the NFS it is important to understand the source of the differences 

between them. Firstly there are some sectors for which comparisons cannot be made. 

For several categories in NATACCs value output table (AEA01), some sectors gross 

outputs and inputs cannot be calculated from the NFS because of the unavailability 

of comparable data. This is partly due to the comparatively smaller size of those 

sectors and the small number of major producers in the country such as in the case of 

pigs and poultry. Consequently while the weighted NFS is regarded as nationally 

representative for the main sectors such as cattle, dairy and sheep, it is unable to 

capture the national picture for smaller sectors with a small number of large 

producers. It is also the case that there are other sectors in the NATACCs for which 

no equivalent data is collected in the NFS such as non-cereal food horticulture and 

information on contract work (treated as a contribution to both gross output and 

intermediate input)  

 

Secondly, for comparisons of inputs and outputs that are contained in the NFS, at its 

most basic level, nominal differences occur due to the nature of the data source itself. 
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For the NATACCs the gross value output estimates are a combination of 

quantity/activity survey data and price data. These are compiled and sourced 

predominantly by the Central Statistics Office (CSO) and the Department of 

Agriculture, Food and the Marine (DAFM) with data from more sector specific 

organisations such as the Irish Horse Board (IHB) in the case of the horse industry. 

For the NFS, a national representative panel data set, the total aggregate weighted 

gross output estimates are based on output values reported directly at the farm level. 

At a more fundamental level, for some categories of inputs in particular, definitional 

differences in terms of what exact items are included, directly contribute to 

disparities in reported inputs and outputs between the weighted NFS and the 

NATACCs. Following a review of gross outputs and inputs for the NATACCs vs the 

NFS, comparable sectors were identified and are outlined below.   

Outputs 

 

(i) Livestock: The NATACCs report the gross output value of cattle, pigs, sheep, 

horses and poultry on the basis of DAFM data on export slaughterings, subsidies and 

levies, CSO trade statistics data on live imports and exports, and CSO data on local 

authority slaughtering and the change in livestock numbers. The weighted NFS 

reports the value for livestock on the basis of gross output at the farm gate, 

accounting for the value of sales, purchases and subsidies. While the NFS has 

sufficient coverage for the cattle and sheep sectors, no pig farms are included in the 

survey and poultry and horse reported outputs are minimal and are inadequate for 

national comparison.  

 

Table 5.1 reports the 2008 weighted NFS total livestock gross output figures for 

cattle and sheep with figures of €1650m and €235m euro respectively. This 

compares with figures of €1682m and €171m reported in the NATACC. Output from 

the cattle sectors was found to be sufficiently comparable with the weighted NFS 

producing a slightly lower estimate for cattle outputs at 98% of the value estimated 

in the NATACCs. The weighted NFS reports a significantly larger estimate for gross 

output value from the sheep sector; 37% higher when compared to the NATACCs. 
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Given the sheep sector’s contribution to trade livestock trade figures is less than 

10%, potential explanations for this disparity include the possibility of sampling bias 

in the NFS given the relatively smaller size of the sector. Differences in output value 

may be attributable to a higher likelihood of the more productive sheep enterprises 

being sampled in the NFS. It is also possible that this disparity reflects the NFS’s 

ability to more accurately capture inter-enterprise trade which is not sufficiently 

captured in the national accounts. Given that the purpose of the comparison is to 

ascertain which sectors are sufficiently captured within the NFS, the level of activity 

captured in the NFS is deemed to offer a reasonable basis for estimating national 

emissions from the sheep sector. The overall livestock gross output value for cattle 

and sheep sectors in the NFS is 2% over that reported in the NATACCs. 

 

Table 5.1 Comparison of total agri-output reported in the NATACCs vs. NFS 

(Euro Million) 

2008 NATACC 

Weighted 

NFS 

Weighted NFS/ 

NATACC Ratio 

    

All Livestock 1,853 1,885 1.02 

Cattle 1682 1650 0.98 

Sheep 171 235 1.37 

All Livestock 

Products 1,672 1,703 1.02 

Dairy(Milk) 1625 1698 1.05 

Other Products 

(excluding Milk) 48 5 0.12 

Crops 229 207 0.91 

 

(ii) Livestock Products: For the purposes of the NATACCs, livestock products are 

divided into milk and “other products”. The NATACCs report for milk consists of 

CSO surveying of processors for liquid and manufacturing milk with an own 

consumption estimate based on the number of farms, minus the superlevy.  The 

NATACCs output report for “other products” includes data on eggs, wool and 
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honey. The weighted NFS reports the total value of milk output of €1698m at the 

farm gate (minus the superlevy), but can only contribute a wool output value of €5m 

for the other products sector. While the NFS output value for milk is comparable 

within the NATACCs (within 5%), the absence of comparable output in the NFS 

results in a considerably lower figure reported for other livestock products and as 

such is omitted from the analysis. 

 

(iii) Crops: Due to the unavailability of data relating to non-crop horticulture and 

other crops in the NFS, reasonable comparisons with the NATACCs can only be 

drawn for the main cereal crops of wheat barley and oats. Overall weighted NFS 

cereal output is below that reported for the NATACCs from the Department of 

Agriculture Food and Marine (DAFM) by about 10%. Possible explanations for this 

include differences in assumptions relating to the quantity used for inter-farm feed 

from the DAFM and the representation of tillage in the NFS. 

Inputs 

 

Overall, aggregate agricultural input values reported in the NATACCs are higher 

than inputs reported in the NFS. This is anticipated due to the inclusion of inputs for 

agri-output not captured in the NFS. When adjusted to reflect this non-captured 

output, the inputs for which the NFS can provide comparable data are submitted to 

within an acceptable range when compared to the NATACCs. There are a number of 

comparable input categories reported in the NATACCs which are informed by the 

NFS. Specifically, NATACCs figures for energy and lubricants, maintenance and 

repairs, veterinary expenses and other goods and services inputs are calculated on the 

basis of price information from the NFS which are then combined with CSO data on 

the number of farms.  

 

Of particular interest in terms of GHG emissions are the NFS figures reported for 

Energy and lubricants of €248m in Table 5.2 which provides a lower estimate than 

the €345m reported in the NATACC. While overall the weighted NFS figures for 

intermediate consumption compares favourably with the adjusted NATACCs, 
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differences between the relative intensity of energy input required for different 

output sectors may be driving the differences reported. When adjusted for non-

captured output, other inputs based on quantity data from DAFM such as feedstuffs, 

seeds and fertilisers (€432m Table 5.2) were found to be comparable or within range 

of the values reported in the NATACC with disparities again possibly due to the 

inclusion of forage plant value in the feedstuffs category in the NATACC and 

differences between the CSO prices and those reported at the farm-level.  

 

Table 5.2 Comparable agricultural inputs captured in the NFS 

(Euro Million) 2008 

Adjusted 

NATACC* Weighted NFS 

Weighted NFS/ 

NATACC* Ratio 

    

Intermediate Consumption 2,277 2,318 1.02 

Feedstuffs Feed & Fertilisers 507 432 0.85 

Energy and Lubricants 353 249 0.71 

 

 

In attempting to model GHG emissions and compare them to those in the NIR, the 

main comparable sectors of interest in the NFS are emissions from cattle, sheep and 

dairy and emissions from fertilisers. In addition, emissions from the comparable 

energy and lubricants sector are also of interest in terms of estimating emissions 

relating to the use of fuel and electricity use at the farm level. Overall, when adjusted 

for non-captured output, intermediate input values reported in the NFS were within 

2.5% of the NATACC. 

5.4.3 SMILE-NFS: A Spatial Microsimulation Model of Irish 

Agriculture 

 

This section describes the matching process for the SMILE-NFS, a simulated model 

of the Irish local economy  based on the 2008 Teagasc NFS, the 2000 CoA and an 

adaptation of the Quota Sampling methodology developed by (Farrell et al., 2010). 

In addition, an adaptation of the SMILE-NFS quota sampling methodology is 

described whereby the stocking rate reported for each CoA electoral district is used 
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to rank and select farms from the NFS micro data which most closely resemble the 

stocking rate for that electoral district. This is done in order to preserve the spatial 

heterogeneity of the stocking rate which was previously found to be an influential 

variable in the determination of greenhouse gas emissions from agriculture when 

using the IPCC emissions inventorying methodology (Hynes et al., 2009). 

 

Data Preparation 

 

As outlined in Chapter 4, in designing a framework for spatial microsimulation 

models, the basic goal is to ensure that units from the micro data are simulated to the 

destination spatial unit by matching the characteristics of the micro units selected to 

the spatially heterogeneous characteristics of the spatial unit. In the SMILE-NFS 

model, farms from the weighted Teagasc NFS are simulated to an electoral district 

(ED) on the basis of aggregate farm totals reported for that ED in the CoA.  

 

In order to have a basis for the application of any microsimulation sampling 

methodology, match variables common to both the micro data and the spatial data 

must first be identified. For the SMILE-NFS model, farms are matched to 

destination EDs by the main basic farm characteristics i.e. farm size, speciality and 

soil type. The CoA provides the aggregate totals for these match variables for each 

ED. A part-time rate variable by region and speciality is also simulated and applied 

to the CoA totals on the basis of information from the NFS.  

 

A problem occurs however, where there is a time lag between the nationally 

representative micro data and the spatially representative aggregate data. While the 

NFS Survey is conducted annually, the Irish CoA is conducted approximately every 

ten years with the last two censuses conducted in 2000 and 2010 respectively. This 

means that while the annual weighted NFS micro-data changes over time to reflect 

national changes in agriculture, the spatially representative CoA aggregate data is 

only valid for the census year.  Thus in order to perform a legitimate 

microsimulation match of the NFS and the CoA in non-census years an adjustment 
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must be made to the aggregate ED totals in the CoA that reflect the changes over 

time captured in the NFS. To solve this problem, uprating factors are calculated from 

the NFS on the basis of comparisons with the NFS from the base census year. Due to 

the limited spatial information available in the NFS, regional uprate factors for the 

number of farms by size, specialty, soil code and part-time are created for each of the 

match variables. This is done by calculating the change in the weighted regional 

totals of the match variables from the base census year to the match year. These 

regional uprate factors are then applied to the CoA match variable ED totals within 

each region. It should be noted however that the accuracy of the uprate factors 

employed are dependent on the accuracy of the weightings applied to the NFS. The 

greater the time lag between the census year and the baseline simulation year, the 

greater the potential for considerable disparities between the weighted sample and 

the total population. 

 

Quota Sampling Matching Process 

 

The quota sampling matching process generally has been described in detail in the 

previous chapter in Section 4.4.3. The following describes the sampling process 

specifically as it has been applied to sampling unit farms from the NFS to aggregate 

spatial totals for each ED reported in the CoA 

 

-Step1. Prepare data 

The 16 year NFS panel data set is merged with the regional weighting factors 

provided by the CSO (informed by the farm structures survey) to provide a 16 year 

nationally representative weighted sample data set of Irish farms. Farms are 

identified, categorized and dummied by the farm speciality (7 categories), farm size 

(6 categories), soil code (6 categories) and whether the farm is part-time or full-time. 

These are the match variables which are used for the spatial microsimulation 

match/sampling procedure. In addition, each farm’s stocking rate per hectare is 

calculated based on the total number of livestock units per hectare. The regional 
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uprate factors for the match year from the base census year are then calculated using 

the NFS for the following categories displayed in Table 5.3 below. 

 

 

Table 5.3 Regional uprate categories 

2008/2000 Regional Uprate Factors No. of Categories 

Tot. No. of Farms by: Region 8 

Tot. No. of Farms by: Speciality & Region 56 

Tot. No. of Farms by: Farm Size Group & Region 48 

Tot. No. of Farms by: Soil Type Group & Region 48 

 

Following the creation of the regional uprate factors, the unweighted micro data file 

of simulated farms from the NFS match year (from which the SMILE-NFS model 

will sample simulated farms) is created. In addition, due to the presence of several 

large EDs containing a large number of farms and the presence of outliers (EDs 

which may contain an unusually high number of a certain farm size, system or soil 

type), the micro data set is multiplied nominally in order to ensure that a sufficient 

number of farms exist in the sample space are able to be selected to fill the remaining 

places. 

 

-Step2. Create target totals 

The regional uprate factors created for the match year are then applied to the match 

variables in the CoA. The summed totals for speciality, size and soil type in the CoA 

are then proportionally adjusted to match the total uprated number of farms for that 

ED. The regional part time rates for all specialities for each region calculated from 

the NFS are applied. To ensure the summed totals for each category of the match 

variables are consistent with the target total number of farms, minor reweighting 

adjustments are made based on the relative proportions. This gives an integer total 

for each category with the sum of all categories equalling the EDs target farm total. 

 

-Step 3. Preparation and Selection for each ED 
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Separately and sequentially, each individual ED containing the target totals for each 

match variable from the uprated CoA file is merged with the sample survey micro 

data file (i.e. the individual unit farm observations from the NFS) and the sampling 

process begins. To preserve the spatial heterogeneity of soil types the sample is 

limited to those farms matching the dominant soil type for the target ED. Target 

totals or “bins” for the match variables and the part-time rate are then created and 

updated each time a farm is selected. Farms are then sorted randomly and selected 

without replacement for inclusion until any one of the totals or “bins” for that ED is 

filled.  The model then skips all farms with the characteristic of the filled bin and 

fills the ED sequentially with the remaining farms until a second bin is filled. The 

process then repeats until all bins are filled or until the remaining farms which can be 

selected has shrunk to zero, i.e. there is no farm remaining in the micro data that can 

be added without overfilling one of the already filled bins. If the target total number 

of farms for the ED has not been reached within two iterations of searching the 

micro data file, the part-time constraint is relaxed and the model moves to the next 

iteration. This process repeats until either the total target number of farms for the ED 

has been reached or the number of iterations reaches a predetermined terminus. 

 

SMILE-NFS Validation Results Method 1 

 

The statistical accuracy of the sampling procedure is crucial as it provides the 

synthetic baseline population from which the model proceeds to perform the 

microsimulation i.e. (the simulation of each individual micro unit). For each spatial 

unit (in this case each ED), it is desirable that the summed totals for each match 

category in the simulated population is as close as possible to the aggregate totals 

reported for each ED in the census data.  

 

A simplified example of a statistically perfect sampling procedure is shown in Table 

5.4 whereby the summed characteristics of each individually sampled farm matches 

the summed aggregate totals in the census. In Table 5.4 the census reports there are 6 

farms in total in ED001, 2 of which are dairy, 3 of which are cattle and one of which 
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is a sheep farm. It also reports that 3 of the 6 farms are part time. In this example, the 

first four farms are selected as none of the aggregate totals or “bins” for the ED 

would be exceeded by their addition. With the addition of farm 4, the aggregate 

ED001 total for the number of cattle farms has been reached. The model then 

proceeds to remove all remaining cattle farms (i.e. farm 5) from the sample space 

and continues the sampling process. With the selection of farm 6, the aggregate 

ED001 totals for both Sheep and Part-time have been filled. The model then removes 

all remaining part-time and/or sheep farms from the sample space (i.e. farms 7 and 8) 

and then proceeds to add farm 9, which satisfies the final remaining constraints, i.e. 

is a dairy farm and does not operate part-time. With the addition of farm 9, the total 

number of farms selected (6) has reached the total aggregate number of farms for 

ED001 and a statistically perfect sampling outcome has been achieved for the 

constraints selected. 

 

Table 5.4 Simplified example of a statistically perfect sampling outcome  

Farms Sampled to ED001  Dairy  Cattle  Sheep  Part-Time Selected 

Farm 1 1 0 0 1 YES 

Farm 2 0 1 0 0 YES 

Farm 3 0 1 0 0 YES 

Farm 4 0 1 0 1 YES 

Farm 5 0 1 0 0 NO 

Farm 6 0 0 1 1 YES 

Farm 7 0 0 1 1 NO 

Farm 8 1 0 0 1 NO 

Farm 9 1 0 0 0 YES 

Farm 10 1 0 0 0 N/A 

Total  2 3 1 3 - 

Census Totals  

Reported for ED001  

2 3 1 3 - 

Match Accuracy  100% 100% 100% 100% - 
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With additional constraints however, the achievement of a statistically perfect 

sampling outcome for each spatial unit becomes more difficult as a greater number 

of conditions must be met in order to fill the last few remaining farms in each ED. 

 

The SMILE-NFS match for 2008 achieves the target total number of farms for all 

EDs and yields the simple correlation matrix of the targeted totals and simulated 

outcomes for the match variables across all simulated EDs is reported in Table 5.5. 

 

 

Table 5.5 Correlation matrix for target totals and simulated outcomes for 

SMILE-NFS  

Correlation Matrix 
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Target Totals 

 

Specialist Tillage 1.00            

Specialist Dairy  1.00           

Specialist Beef   1.00          

Specialist Sheep    1.00         

Mixed Grazing     1.00        

10-20 ha.      0.81       

20-30 ha.       0.54      

30-50 ha.        0.56     

50-100 ha.         0.41    

>100 ha.          0.16   

Part Time Farms           0.86  

Stock Rate no/ha. (non-

match variable) 

           0.12 

 

 

With regard to the speciality variables a correlation coefficient of 1.00 is reported 

across all specialities. This is anticipated as speciality is the first constraint examined 

in the sampling process. This does not mean that in any given ED a speciality bin 

will necessarily be filled first, rather, that as the number of simulated farms reaches 



 110 

the population target for the ED the remaining sample space from which selections 

can be made is determined by specialty first.  

 

In relation to size categories, Table 5.5 shows a correlation co-efficient of 0.81 for 

the smallest size category. While independently this could be considered a low yet 

reasonable result for a standard microsimulation model, the remaining co-efficients 

decline rapidly towards the larger farm size categories with a co-efficient of just 0.16 

reported for the largest farm size category.  The reason for this decline is that as the 

model fills the speciality bins, generally for each ED, the remaining micro data 

sample space is still populated with a sufficient number of farms in the lower size 

categories such that it is able to fill the first 4 farm size group bins with a higher 

degree of accuracy while satisfying all conditions. For the 500 or so EDs containing 

farms in the largest size category, the match is much less accurate. This is 

particularly pronounced for EDs containing a smaller number of total farms as the 

relative diversity of match characteristics for the smaller number of large farms in 

the sample is lower that than that for the smaller farm sizes. The part time co-

efficient is reported in Table 5.5 at 0.86 which again could be considered a low yet 

reasonable result. 

 

Of most concern however is the result for the ED stocking rate. A co-efficient of just 

0.12 is reported indicating an extremely poor correlation between the actual and 

simulated stocking rates outcomes across all EDs. This is a particularly challenging 

outcome for the development of a credible spatial model of emissions for agriculture. 

Preserving the spatial heterogeneity of each ED stocking rate is a key requirement as 

it is the most influential variable in the determination of greenhouse gas emissions 

from agriculture at the farm level.  
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SMILE-NFS Validation Results Method 2: The inclusion of Stocking 

Rate Ranking Variable 

 

In the previous method (Method 1), farms are sorted randomly before the sampling 

process, summarised in Table 5.4, begins. However this random sorting results in a 

significant decline in sampling accuracy across the match variables and crucially the 

resultant stocking rate for each ED (Table 5.4). In order to preserve the spatial 

heterogeneity of the stocking rate the SMILE-NFS quota sampling procedure has 

been adapted to include a ranking mechanism based on a predicted stocking rate 

residual for each electoral district recorded in the CoA. 

 

A linear regression model (Equation 5.1) for the ED stocking rate is first performed 

on the CoA for all EDs in order to estimate and predict a stocking rate and a residual 

for each ED based on the aggregate totals of the match variables of size, system, and 

soil type.  

 

                      (5.1) 

 

Where Y = stocking rate, X1, X2…etc = aggregate total of match variables for each 

ED, B1, B2… etc = the marginal contribution to the stocking farm of each additional 

farm in that match category. 

 

The model is used to predict a stocking rate (Red) and a residual (red) for each ED 

based on the aggregate totals of the match variables of size, system, and soil type. 

The regression coefficients are then applied to each individual farm in the sample 

data in order to return a predicted contribution to the stocking rate (Rf) and a residual 

(rf) for each individual farm. 

 

By applying the aggregate model coefficients to each sample farm in the NFS micro 

data, an estimation of each farms predicted contribution to that EDs stocking rate in 

the context of the total farm profile of that ED is made. These predictions are used to 
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generate a stocking rate contribution residual for each sample farm in the micro data 

which will be used to rank available selections. 

 

Before selection commences, farms are ranked by the smallest absolute difference 

between the stocking rate residual for the current ED (Red-red) and the stocking rate 

residual contribution reported for the sample farms (Rf-rf) (Equation 5.2).  

 

        |         )        )| (5.2) 

 

This step means that farms with residuals which most closely resemble the residual 

stocking rate of the target ED are more likely to be selected first. The SMILE-NFS 

model then considers each ranked farm in the micro data file for inclusion in the 

target ED. The application of this ranking is designed so that each target ED’s 

residual stocking rate, unexplained by the linear regression model, can be somewhat 

preserved.  

 

Table 5.6 shows the simple linear relationship between the original target ED totals 

and the summed total for each ED from the simulated match with the inclusion of the 

stocking rate residual ranking mechanism. As expected, the correlation co-efficient 

reported for all specialities is reported as 1.00 as the target bin totals for each 

speciality have been filled with a high degree of accuracy for all EDs. 
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Table 5.6 Correlation matrix for target totals and simulated outcomes for 

SMILE-NFS (with the use of a stocking rate ranking variable)  

Correlation Matrix 

target totals and 

simulated outcomes 
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Target Totals 

 

Specialist Tillage 1.00            

Specialist Dairy  1.00           

Specialist Beef   1.00          

Specialist Sheep    1.00         

Mixed Grazing     1.00        

10-20 ha.      0.98       

20-30 ha.       0.98      

30-50 ha.        0.98     

50-100 ha.         0.98    

>100 ha.          0.90   

Part Time Farms           0.97  

Stock Rate no/ha.            0.88 

 

 

With regard to the size categories, when compared to the results in Table 5.5, the 

adapted SMILE-NFS model delivers a high degree of accuracy for the farm size 

groups. Table 5.6 reports correlation coefficients for the first 4 farm size groups at 

0.98 while the coefficient for the largest farm size group is reported at 0.90. Again, 

as the model fills the speciality bins, the remaining micro data sample space is still 

populated with a sufficient number of farms in the lower size categories such that it 

is able to fill the smaller farm size groups bins more easily, explaining the decline in 

the strength of the linear correlations as we move up the size categories. 

 

The inclusion of the stocking rate residual ranking, results in a much higher degree 

of accuracy for the bigger size categories. This is because the stocking rate ranking 

increases the likelihood of filling the more dominant size categories in each ED first 

due to the direct relationship of size to the stocking rate. When compared to the 

results in Table 5.5, there is a significant deterioration in the correlation results for 
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size, as without a ranking mechanism, the size bins are filled randomly as the model 

fills the speciality bins. 

 

The correlation coefficient for the part-time rate is reported at 0.97 which indicates a 

high degree of correlation despite the part-time constraint condition being dropped 

after the first two iterations; however, it must be remembered that the part-time 

target total is calculated by applying the regional part-time speciality rates to the 

speciality totals for each target ED. This step is required as the CoA does not contain 

a measure of part-time for each speciality, comparable with the NFS. 

 

The correlation coefficient reported for the stocking rate is 0.88. While this 

represents a slightly lower level of accuracy when compared to size, system and the 

part-time rate, it must be noted that the stocking rate is not a match variable. The 

stocking rate reported for any ED in the CoA represents an averaged stocking rate 

across all farms. In reality each ED is made up of a collection of individual farms 

with varying stocking rates. As outlined above, prior to the selection process the 

SMILE-NFS model ranks the sample farms by the smallest difference between the 

stocking rate residual calculated for the ED and the stocking rate residual for the 

sample farm. This means that if a target ED’s residual stocking rate is considerably 

higher or lower than that predicted by the linear regression model, the selection of 

farms with correspondingly higher or lower residual stocking rates than those 

predicted by the linear regression model will ensure that spatial heterogeneity of 

stocking rate for the target ED is somewhat preserved. This is a key consideration in 

the development of a spatial baseline emissions model for agriculture as the stocking 

rate is the key variable in determining resultant emissions from animal rumination. 

Table 5.7 displays the match accuracy and chi-squared distribution test-statistics for 

the inclusion of a stocking rate ranking variable in the SMILE-NFS match for 2008  
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Table 5.7 Match accuracy and chi-squared distribution test-statistics for SMILE-

NFS match 2008 

 

The nature of the match-process is such that there is a trade-off between 

methodological complexity and computational efficiency. While it is possible a more 

accurate match for the match variables may have been obtained using the previous 

simulated annealing method developed by Hynes et al. (2008), the computational 

cost of simulated annealing approach is high (Chapter 4). The quota sampling 

method provides a high level of accuracy for the match variables and allows the 

simulation to be modelled in a number of hours. The inclusion of a ranking 

mechanism provides the added benefit of preserving much of the spatial 

heterogeneity of each EDs stocking rate; the most influential variable in the 

determination of greenhouse gas emissions from agriculture using the EPA 

methodology. 

 

 

 

Match Variables 0 1 Match % Pearson Chi
2
 = Pr = 

Specialist Tillage 5 2811 99.82 6.70E+04 0.000 

Specialist Dairy 3 2813 99.89 1.20E+05 0.000 

Specialist Beef 3 2813 99.89 1.30E+05 0.000 

Specialist Sheep 3 2813 99.89 1.70E+05 0.000 

Mixed Grazing 0 2816 100.00 1.10E+05 0.000 

10-20 ha. 362 2454 87.14 6.31E+04 0.000 

20-30 ha. 365 2451 87.04 6.10E+04 0.000 

30-50 ha. 245 2571 91.30 7.90E+04 0.000 

50-100 ha. 342 2474 87.86 7.80E+04 0.000 

>100 ha. 422 2394 85.01 2.50E+04 0.000 

Part Time Farms 871 1945 69.07 8.50E+04 0.000 
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5.4.4 Calculation of Agricultural Greenhouse Gas Emissions  

 

In this section emissions are calculated for the comparable output sectors identified 

above, namely; dairy, cattle and sheep for both enteric fermentation and manure 

management, while emissions are calculated for the relevant comparable input 

sectors for energy use (electricity & fuel) and synthetic fertilizers.   

 

Livestock Numbers 

 

The adapted SMILE-NFS spatial microsimulation model uses the 2008 NFS and 

uprated ED totals from the CoA to create a fully synthetic micro population of Irish 

farms based on the key match variables of farm size, system soil type and the part-

time rate, including an additional mechanism for minimizing differences in the 

stocking rate. For the purposes of calculating emissions, the use of additional non-

match variables from the simulated farms such as livestock numbers are required to 

estimate emissions for each ED. Livestock numbers are considered as they will be 

the eventual determinants of estimated emissions of methane (CH4) from enteric 

fermentation and both CH4 and nitrous oxide (N2O) from manure management. 

Simple regression analysis performed on the NFS data reveals that, with respect to 

the livestock numbers, the match variables of farm size, system and soil type are key 

determinants. However, additional variables such as the demographic profile of the 

holder and the availability of additional labour influence the total number of 

livestock at the farm level.  

 

In order to provide a reasonable estimation of spatial emissions using non-match 

variables, validation of the estimated non-matched output must be performed. One 

potential way of validating non-matched microsimulation model outputs is to re-

aggregate estimated data sets to levels at which observed data sets exist and compare 

the estimated distributions with the observed (Ballas & Clarke, 2001). In a census 

year, this could be done with a comparison with the CoA. However, in a non-census 

year the livestock numbers reported are subject to the regional uprating methodology 

as (i) The spatial heterogeneity of livestock numbers can vary greatly within regions 
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and (ii) the livestock numbers are not included as a match variable. A constant time-

invariant relationship is assumed between size, system and soil type for the estimate 

of the stocking rate at the ED level, with the time variant changes captured by the 

regional uprating process. As such, livestock numbers reported from the CoA 2000 

are thus unable to provide a suitable comparison for the 2008 SMILE-NFS model.  

 

In order to provide a reasonable comparison with estimated national totals the 

aggregated output from the SMILE-NFS model is compared with the livestock 

numbers reported for the NIR, which are based on the average estimated populations   

for June and December calculated by the CSO.  

 

Table 5.8 displays the total livestock numbers for the NIR and the SMILE-NFS 

model for dairy, non-dairy cattle and sheep respectively. Dairy cows numbers for the 

SMILE-NFS are reported at 90% of those used by the NIR. The numbers estimated 

for non-dairy cattle in the SMILE-NFS are 18% higher than those estimated in the 

weighted NFS with sheep numbers being estimated at 87% of the estimated total 

used by the NIR. 

 

Table 5.8 Total livestock numbers reported for NIR (EPA, 2010) vs. SMILE-NFS 

 

 

 

 

 

With respect to dairy cows the SMILE-NFS model reports livestock numbers at 90% 

of those reported in the NIR. Comparing the weighted dairy output from the NFS 

and dairy output reported in the NATACCs, the weighted NFS reports a dairy output 

figure of 5% in excess of the NATACCs. One possible explanation for higher gross 

output reported coupled with lower livestock numbers could be the presence of 

sampling bias in the NFS towards slightly more efficient dairy producers. If the NFS 

sample includes slightly more efficient dairy farms with an average gross output per 

livestock unit higher than the national average, the total weighted gross output would 

Total Livestock Numbers (1000s) NIR SMILE-NFS Ratio 

Dairy Cows 1,087 982 0.90 

Non-Dairy Cattle 4,814 5,696 1.18 

Sheep 5,105 4,416 0.87 
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be higher than anticipated, while the total livestock numbers would be kept 

artificially low. 

 

With regard to the disparity between the totals for non-dairy cattle and sheep there 

are two possible explanations. Firstly, with regard to the sheep numbers, there are 

very few sheep only enterprises in the NFS i.e. farms identified as specialist sheep 

that do not have any additional livestock on the farm. These farms tend to have the 

largest number of sheep. The majority of farms identified as specialist sheep have 

additional enterprises with cattle enterprises being the most common. This means 

that for farms identified as specialist sheep farms or specialist mixed farms, the 

additional cattle component is a considerable determinate of the stocking rate for that 

farm. The converse is not true for specialist beef farms as there are a much smaller 

proportion of those farms containing sheep numbers. Consequently, as sheep farms 

are selected by the model, is it likely that the sheep only enterprises are being under 

selected as the stocking rate is diluted by the cattle numbers resulting in smaller total 

numbers for sheep and higher numbers for cattle. Additionally, there are a very small 

number of large specialist tillage farms in the NFS which also include a large sheep 

enterprise. Again, while in the NFS these farms contribute significantly to the 

weighted total numbers, in the SMILE NFS it is again likely that these farms are 

being under-selected as the individual farms stocking rates are ‘contaminated’ by the 

tillage area.  

 

Secondly with regard to the non-dairy cattle numbers in terms of the SMILE-NFS 

spatial match, there are a number of non-dairy cattle (non-matched) sub-categories 

that are summed in order to produce the total livestock numbers (Table 5.9). These 

include cattle 0-6 months, 6-12 months, 1-2 years, 2 year + and breeding bulls. As 

stated previously, while it is assumed that the match variables are the key 

determinants of the stocking rate, the variables of interest in this case are the non-

dairy cattle sub-categories. 
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Table 5.9 Non-dairy cattle sub-categories 

Non-Dairy Cattle Sub-Categories 

Suckler cows Bulls for breeding 

Male cattle < 1 year  Female cattle < 1 year 

Male cattle 1 - 2 years  Male cattle > 2 years 

Female cattle 1 - 2 years  Female cattle > 2 years 

Dairy in-calf heifers Beef in-calf heifers 

 

While differences between the target ED stocking rate and the simulated stocking 

rate are minimized in the SMILE-NFS, the stocking rate is based on the number of 

livestock units (LUs) per hectare. Since a livestock unit equivalent of 1.0 is applied 

to dairy cows this problem does not affect the total dairy cow numbers. However for 

non-dairy cattle, livestock numbers in the younger age categories with lower LU 

equivalents such as calves under 6 months (0.2 LU) and cattle1-2 years (0.7 LU) 

mean that while the stocking rate may be being maintained higher total numbers are 

reported. In terms of stocking rate, the SMILE-NFS model does not distinguish 

between a 10 hectare non-dairy enterprise with e.g. 22 cattle (17 cattle over 2 years 

(1.0 LU) and 5 cattle 1-2 years), and similar sized enterprise with 25 cattle (10 cattle 

over 2 years, 15 cattle 1-2 years).  

 

Overall the total livestock numbers reported in the SMILE-NFS model are deemed to 

be within range (+/-20%) of the estimated numbers reported in the NIR to offer a 

credible alternative estimation of emissions from Irish agricultural. 

Livestock Emissions 

 

Methane Emissions for each livestock category for each simulated farm are 

calculated by applying the emissions factors and Global Warming Potential (GWP) 

supplied by the EPA’s NIR for 2008 (EPA, 2010). The tier 2 emissions factors used 

for calculating cattle methane emissions from ENF and MM developed by O’Mara 

(2006) are displayed in Table 5.10. 
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Table 5.10 Tier two emissions factors for Irish cattle (O'Mara, 2006) 

 Methane produced from 

Enteric Fermentation 

(kg/head) 

Methane produced from 

Manure Management 

(kg/head) 

Dairy cows  109.21 20.5 

Suckler cows 75.92 14.25 

In-calf heifers** 51.60 11.72 

Cattle <1 year**   28.73 8.46 

Male cattle 1 - 2 years  59.07 13.78 

Female cattle 1 - 2 years  47.00 9.95 

Male cattle > 2 years 36.98 1.82 

Female cattle > 2 years 22.55 0.34 

Bulls for breeding  81.55 18.95 

Lambs 3.38 0.11 

Sheep 8.00 0.19 

 

(Source: O’Mara, 2006) 

 

Nitrous Oxide emissions from manure management are calculated in a similar 

fashion. Nitrogen output emission factors are applied to each animal category and 

are converted to nitrous oxide emissions. However, the rate at which nitrogen 

volatises to N2O varies depending on the waste management system (WMS) used; 

i.e., liquid, solid or pasture. As detailed information on WMS is not available in the 

NFS, animal specific averages were taken from the NIR and applied to Nitrogen 

output for each animal category for each simulated farm.  An N-N2O conversion 

factor was then applied to calculate the total N2O emissions from livestock.  

 

Total N2O Livestk. Emissions (CO2eq) = ∑ac(i-j):[(ac(i)*efNmm_ac*liq_ac 

(ac(i)*efNmm_ac*sol_ac + (ac(i)*efNmm_ac*pas_ac)*N\N2O]*N2OGWP 
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Where: mm = Manure Management, liq_ac,sol_ac,pas_ac = Animal specific WMS 

ratios for Liquid, Soil Pasture; GWP = Global Warming Potential ( N2O = 310) and 

ac = Animal Category 

 

N2O Emissions from Agricultural Soils 

 

Nitrous Oxide emissions from agricultural soils are also calculated. The NIR reports 

N2O emissions from soils from the application of synthetic fertilizers, animal manure 

applied to soils, N-fixing crop, crop residue, indirect emissions and other (EPA 

2010). For the SMILE-NFS emissions model, N2O emissions are calculated for the 

application of synthetic fertilisers and indirect soil emissions only. There is 

insufficient information in the NFS, particularly with regard to non-cereal crops in 

order to provide reasonable estimates at appropriate spatial scales for, N-fixing crop 

and crop residue.  

 

Direct Soil emissions from the application of synthetic fertilisers = Nfert*(1-

FracGASF)*N_soil_EF  

 

Where Nfert = Nitrogen Applied (kg), FracGASF = fraction of synthetic fertilizer 

nitrogen that volatilizes as NH3 (0.016 in 2008), N_soil_EF =N2O-N/kg N emission 

factor (0.012)*44/28 

 

The IPCC methodology for indirect emissions allocates emissions of N2O due to 

nitrogen deposition resulting from NH3 and NOX emissions in agriculture and from 

nitrogen leaching.  

 

Indirect Soil emissions = N2Oindirect-deposition+N2Oindirect-leaching 

N2Oindirect-dep= [(Nfert*FracGASF) + ((Nex*(1- FracGRAZ)*FracGASM1)) + 

(Nex*FracGRAZ*FracGASM2)] * EF4] 

[N2Oindirect-leach = [ Nfert + FAW
**

 + Nex*FracGRAZ) ] * FracLEACH * EF5] 
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Where Nex = total amount of animal manure nitrogen excreted by livestock (kg N), 

FracGRAZ = fraction of Nex that is excreted by livestock during grazing (0.66 in 

2008), FracGASM1 = fraction of animal manure nitrogen that volatilizes as NH3 

during housing, manure storage and land spreading (0.485 in 2008), FracGASM2 = 

fraction of animal manure nitrogen that volatilizes as NH3 during grazing (0.036 in 

2008) and  FracLEACH  = fraction of synthetic fertilizer nitrogen and animal 

manure nitrogen that leaches from agricultural soils (0.1 in 2008).  FAW ** (the 

indirect amount of N2O from sludge spreading is not included in this analysis) 

 

Electricity 

 

Emissions attributable to electricity use are also calculated for each simulated farm. 

In the NFS each farm reports an annual amount spent on electricity. Apart from a 

small number of larger farms with a separate connection, in most cases, this figure is 

based on an estimation of the share of electricity used by the farm household which 

is related to farm activities. The model estimates total energy use, using the average 

price of €0.1597 per/kWh reported by the Commission for Energy Regulation (CER) 

for 2008. Total emissions are then calculated using the CER’s electricity emissions 

factor of 0.538 kgCO2/kWh (CER, 2009).   

 

Total Elec Emissions (CO2eq) = ElecExp/(price/kWh)*KgCO2/kWh 

Where ElecExp = Farm expenditure on Electricity 

 

However, one quarter of farms in the NFS report electricity costs below that reported 

for the standard general purpose annual standing charge. Due to an inability to elicit 

the ratio of farm electricity use to household electricity it is assumed that the 

proportion of electricity expense allocated to farms does not include the standing 

charge. A consequence of this is that the model will slightly over-estimate electricity 

emissions for all farms. This effect will be more pronounced for smaller farms where 

the ratio of the standing charge to overall electricity costs will be far higher. 

However, the impact on total emissions will be relatively small as the majority of 

over-estimation of shares will occur for farms with very low electricity use. 
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Fuel 

 

The NFS reports farm level expenditure on fuel but does not provide information on 

the quantity of fuel used or the fuel mix. In order to provide a basis for the 

calculation of fuel related emissions a number of assumptions are made. It is 

assumed for the purposes of calculating quantities and the application of emissions 

factors that diesel is the predominate fuel used on farms. Averaged diesel prices for 

2008 are taken from the Energy in Transport Report (SEAI, 2009a) and are used to 

calculate total fuel quantity consumed. Energy output is then calculated with 

emissions factors based on energy output from the SEAI report for diesel used to 

calculate the resultant emissions. 

 

Total Fuel Emissions (CO2eq) = [FuelExp/(dieselprice/l)]*diesel 

(kWh/l)*diesel(kgCO2kWh)  

 

 Where, FuelExp = Farm expenditure on Fuels,  kWh/l = 10.169, diesel(kgCO2kWh) 

= 0.2639, dieselprice/l = 1.4c/l 

5.5 Results  
Results for a spatially disaggregated baseline microsimulation model of Irish 

agricultural emissions are presented in this section. Total aggregated output from the 

model is compared with estimates reported in the National Inventory Report with 

resultant outcomes mapped spatially at the ED level.  

5.5.1 Emissions Output: SMILE-NFS vs. NIR 

 

Using the SMILE-NFS spatial microsimulation model, a synthetic population level 

data set of Irish farms has been created from which a spatial baseline emissions 

inventory for Irish Agriculture has been estimated. In order to evaluate the validity of 

the simulated population level emissions from enteric fermentation (ENF), manure 

management (MM) and fertiliser usage, a comparison is carried out between the 

aggregated results from the SMILE-NFS model and the NIR report. Maps from the 

SMILE-NFS model, detailing emissions output at the electoral district level are also 
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presented with the inclusion of results estimating emissions from electricity and fuel 

used in Irish agriculture.  

 

Table 5.11 reports emissions totals from the NIR for comparable agricultural activity 

captured in the NFS (based on a comparison of activity between the weighted NFS 

and the NATACCs as discussed in Section 5.4.2) 
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Table 5.11 Total livestock numbers (000s) and GHG emissions (Gg) reported for 

all farms: Comparison of SMILE-NFS with the NIR 2008  

 NIR* 
SMILE-

NFS 

SMILE 

NFS/NIR 

Ratio 

 Livestock Numbers ‘000s** 

Dairy Cows 1,087 982 0.90 

Non-Dairy Cattle 4,814 5,696 1.18 

Sheep 5,105 4,416 0.87 

 CH4 Enteric Fermentation (Gg) 

Total 416.70 404.80 0.97 

Dairy Cows 120.20 107.00 0.89 

Non-Dairy Cattle 266.35 271.00 1.02 

Sheep 30.15 26.80 0.89 

 CH4 Manure Management (Gg) 

Total 78.07 79.69 1.02 

Dairy Cows 22.59 20.10 0.89 

Non-Dairy Cattle 54.70 58.90 1.08 

Sheep 0.77 0.69 0.89 

 N20 Manure Management (Gg) 

Total 9.01 9.09 1.01 

Liquid Systems 0.17 0.16 0.94 

Solid and Dry Lot 1.00 0.99 0.99 

Pasture Range and Paddock 7.84 7.94 1.01 

 N20 Soil Emissions (Gg) 

Total 9.92 9.64 0.87 

Synthetic Fertilisers 5.96 5.08 0.85 

Indirect Soil Emissions 3.96 3.56 0.90 

**Livestock Numbers for the NIR are based on biannual population 

estimates 

*For comparable outputs/inputs (Section 5.4.2) 
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Methane emissions from Livestock 

 

Differences in the farm system totals between the NIR and the SMILE-NFS for CH4 

are predominantly driven by the differences in the reported livestock numbers. For 

dairy cows, total emissions of CH4 from both ENF and MM from the SMILE-NFS 

model are reported at 107Gg and 20.10Gg respectively. In both cases, this represents 

89% of the estimates reported in the NIR. This result is consistent with the result for 

the dairy livestock number with the 1% difference in output explained by the 

livestock population methodology adopted in the NIR. While the SMILE-NFS 

emissions model provides an emissions estimate on livestock numbers for the 

calendar year, the NIR provides emissions estimates based on two, bi-annual 

livestock population estimates from the CSO. While the NIR does provide an annual 

population total, the emissions are based on the bi-annual estimates. This results in 

the apparent disparity in the NIR with higher than expected figures of 120.20Gg and 

22.59Gg of CH4 reported for dairy cows from ENF and MM respectively. 

 

While the estimate for total livestock numbers for cattle in the SMILE-NFS is 18% 

higher than the figure reported in the NIR, the resulting emissions comparisons are 

not as pronounced. This is due to fact that the simulated farms from the SMILE-NFS 

contain a larger amount of animals in the younger cattle sub-categories. One possible 

explanation for this difference is that while farms are surveyed in the NFS all year 

round, the CSO population estimates are for two fixed points in the production cycle. 

For CH4 from ENF, the SMILE-NFS reports a total of 271Gg, representing a 

difference of just +2% from the estimate from the NIR. For CH4 from MM the 

SMILE-NFS reports a total of 58.9Gg, representing a difference of +8%. The reason 

for the increased difference is because of the difference in relative weightings 

between each cattle sub-category of the emissions factors for ENFT and MM 

respectively (Table 5.10).  

 

With regard to sheep, the SMILE-NFS model estimates 26.8 and 0.69Gg for CH4 

emissions from ENF and MM both representing around 89% of the emissions 

estimates from the NIR. Again, small differences between the NIR/SMILE-NFS 
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ratio of livestock numbers and the ratio of emissions output can be explained by the 

differences in the ratios of sheep >1 year and lambs with the SMILE-NFS reporting 

slightly larger adult sheep numbers. 

 

Figures 5.1 and 5.2 display methane emissions in kilograms per hectare for enteric 

fermentation and manure management from livestock in the dairy, cattle and sheep 

sectors respectively. Both maps illustrate an expected West-South-West, North-

North-East dividing line in terms of the more productive agriculture regions of the 

country. Electoral districts which report the highest levels of average emissions per 

hectare are predominantly located in the south where the majority of dairy 

production is concentrated. Better soil quality and more favourable environmental 

conditions facilitate higher stocking rates contributing to higher emissions on a per 

hectare basis. In the north, north-west and in more mountains areas, the presence of 

higher numbers of cattle and sheep farms with lower stocking rates results in lower 

emissions per hectare. Slight differences in the relative emissions intensity of some 

EDs can be seen in the two maps presented. This is due to differences in the relative 

intensity of the emissions factors for enteric fermentation vs. manure management 

between the different animal sub-categories in Table 5.10 resulting in some EDs 

moving one step to higher or lower emissions per hectare category. 
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Figure 5.1 Estimated Methane (CH4) emissions from enteric fermentation kg/ha 

by electoral district
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Figure 5.2 Estimated Methane (CH4) emissions from manure management 

kg/ha by electoral district
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Nitrous Oxide Emissions  

 

With regard to N2O emissions from manure management, a three stage approach is 

used. The first step involves the application of N excretion factors for all animal 

categories. The NIR report allocates the resultant N to the 3 different WMSs in 

accordance with national averages. Finally, for solid, dry lot, pasture and paddock it 

is assumed that N2O volatizes from N at a rate of 0.19 kg N2O-N/kg N, while for 

liquid WMSs it is assumed that N2O volatizes from N at a much lower rate of 0.009 

kg N2O-N/kg N (EPA, 2010). The NFS for 2008 however does not contain 

information on the WMS employed on each farm. As a result, the national average 

shares between the 3 WMSs are applied at the farm level. While at the individual 

farm level this is not a realistic representation of WMSs employed, it is assumed that 

emissions are sufficiently aggregated at the ED level in order to provide a reasonable 

estimate of emissions from N2O for that ED. The inability of the model to correctly 

identify the WMS employed on each farm does, however, result in a loss of spatial 

heterogeneity with respect to emissions from liquid vs solid systems creating a 

smoothing effect across EDs and those EDs with a higher prevalence of liquid 

storage systems will experience an overestimation of N2O, while EDs with very few 

liquid WMSs will benefit from some underestimation. 

 

The output results for N2O from soil emissions from the use of synthetic fertiliser is 

an interesting result as fertiliser usage is a non-matched variable which was not used 

either directly or indirectly in the SMILE-NFS microsimulation process. While the 

stocking rate ranking method preserves much of the spatial heterogeneity of 

livestock numbers and thus resultant emissions, the figures for synthetic fertiliser 

usage are the first non-match variable returned from the microsimulation process. 

Table 5.11 reports that the SMILE-NFS model estimates N2O emissions from 

synthetic fertilisers of 5.08Gg. This figure represents about 85% of N2O emissions 

estimated in the NIR of 5.96Gg. This is consistent with the figures reported in Table 

5.2 where fertiliser usage from the weighted NFS is compared with that recorded in 

the NATACCs. Similarly, Table 5.11 reports indirect emissions of N2O due to 
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atmospheric nitrogen deposition and nitrogen leaching are reported at 3.56Gg 

representing around 90% of 3.96Gg estimated in the National Inventory Report.  

 

Figure 5.3 displays estimated nitrous oxide emissions in kilograms per hectare from 

manure management and synthetic fertilisers. Again, as in Figure 5.1 an expected 

West-South-West, North-North-East divide is illustrated. The emissions of N2O from 

manure management are largely driven by the livestock numbers and experience a 

smoothing effect across all EDs with the application of waste management systems 

based on national average shares reported in the NIR. However there are some 

observable differences. The impact of the location of tillage farms, which report 

higher levels of synthetic fertiliser use, can be seen in counties such as Louth and 

Meath in the North-East and counties Carlow, Kilkenny and Laois in the South East. 

Counties with low levels of tillage farming in the West and North-West will such as 

Mayo, Sligo-Leitrim and Cavan report very low average N2O emissions per hectare. 

Generally, emissions of N2O are more concentrated geographically and are centred 

in the main tillage areas when compared with CH4 emissions reported in Figures 5.1 

and 5.2  
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Figure 5.3 Estimated N2O emissions from manure management and synthetic 

fertilisers kg/ha by electoral district 
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5.5.2 Agriculture Energy Emissions Output: Fuel and Electricity  

 

In addition to emissions from livestock and agricultural soils, estimates were also 

derived on the emissions attributable from fuel and electricity usage (Section 5.4.). 

While is it assumed that farm system size and soil type are key determinants of fuel 

and electricity use and thus will indirectly persevere the spatial heterogeneity of 

consumption, fuel and electricity usage are not match variables in the SMILE-NFS 

microsimulation process and thus a certain amount of error is anticipated.  

 

Figure 5.4 illustrates that agricultural emissions from fuel usage are substantially 

dispersed with higher concentrations witnessed in areas associated with tillage 

farming in the East, South East and South. In contrast, the national distribution of 

emissions from electricity consumption displayed in Figure 5.5 is much more 

pronounced with higher levels of consumption confined to areas which are 

dominated by highly productive dairy enterprises, e.g. in the South and South-East.
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Figure 5.4 Estimated CO2eq emissions from fuel kg/ha by electoral district 
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Figure 5.5 Estimated CO2eq emissions from electricity consumption kg/ha by 

electoral district
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A difficulty arises however when attempting to perform a reasonable validation of 

the estimated non-matched output as a suitable comparable aggregation of agri-

emissions from fuel and electricity consumption is absent. Emissions for fuel and 

electricity usage from agriculture are not reported independently in the NIR. The 

NIR reports energy emissions from agriculture, forestry and fishing based on data 

contained in the National Energy Balance Report (NEBR) (SEAI, 2009b). However, 

from informal discussions with staff members from the SEAI’s statistical unit, the 

assumptions surrounding agri-energy consumption make a fair comparison of 

emissions from the SMILE-NFS model with the NIR problematic. While the 

SMILE-NFS emissions are based on fuel expenditure at the farm level, with respect 

to fuel consumption, the SEAI estimates for fuel use are based on approximated 

GasOil/Diesel consumption shares supplied by the Department of Communications 

Energy and Natural Resources (DCNER). 

 

Table 5.12 displays the SMILE-NFS model reporting emissions at just 46% of 

emissions calculated from SEAI consumption figures. While it is submitted that the 

data sources for this calculation are not directly comparable, a possible explanation 

for such a result is proffered. The NEBR figures for fuel consumption in the 

agricultural sector include consumption from fuel intensive agri-sectors such as 

vegetable crops and horticulture. Since these sectors are not captured in the NFS and 

a share basis on which to adjust down the SEAI figure is not available the SMILE-

NFS model reports a lower level of agri-emissions from fuel use.  With respect to 

electricity the SMILE-NFS reports emissions estimates 38% higher than those 

calculated from electricity consumption in the NEBR. Again, while emissions from 

the SMILE-NFS are based on farm-level expenditure data, the SEAI electricity 

estimates are based on an historical Rural/Domestic tariff surveyed ratio previously 

reported from the state electricity supplier. 

 

In order to offer a reasonable comparison for the purposes of validation, emissions 

calculated from the SMILE-NFS are compared with results from the weighted NFS 

included in Table 5.12 below in order to inform a reasonable comparison of 

simulated output. 
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Table 5.12 Tons of CO2 (000s) emitted from fuel and electricity usage SMILE-

NFS vs. weighted NFS 2008 

 

 

The SMILE-NFS model reports emissions from electricity consumption of 217.0Gg 

of CO2eq, 7% higher than that compared with electricity emissions calculated from 

the weighted NFS of 203.4Gg. Two possible explanations for this higher estimation 

of agricultural electricity use are as follows. Firstly, the weighted distribution of 

electricity usage is skewed towards and bound at zero while a number of larger 

outliers exist for electricity use especially in the dairy sector.  Since the sampling 

process depends on a stocking rate residual ranking method and does not apply farm 

weightings the SMILE-NFS model will tend to select farms surrounding the mean 

first with the selection of outliers less likely. However, where outliers are selected, 

the tendency will be to artificially increase the mean since negative outliers are 

bounded at zero. Secondly, as illustrated Table 5.6 above, the correlation co-efficient 

for the match rate for the large farm size (>100ha) category is slightly less accurate 

than the lower farm size. The mean residual for the simulated against the actual 

largest farm size is positive meaning that across all EDs the total number of large 

farms sizes simulated is slightly above the total target bin totals. Since the largest 

electricity consumers are typically dairy farms in the largest size category this slight 

over selection of the largest size category will tend to increase the overall estimated 

electricity consumption.  

 

With regard to fuel consumption the SMILE-NFS model reports emissions from fuel 

consumption of 354.6 Gg of CO2eq representing an estimation of fuel use just 2% 

higher when compared with total fuel consumption emissions calculated from the  

Gg of CO2 
SEAI  Weighted 

NFS 

SMILE-

NFS 

SMILE/

SEAI % 

SMILE/

WNFS% 

Fuel Consumption  762.4 349.3 354.6 0.46 1.02 

Electricity Consumption 147.3 203.4 217.0 1.38 1.07 
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weighted NFS of 349.3 Gg. As for electricity consumption, possible explanations for 

this disparity include the slight oversampling of high consumption tillage farms in 

the largest farm size, resulting in a slight overestimation of emissions from fuel 

consumption. 

5.5.3 Spatial Mapping of Emissions from Irish Agriculture 

 

Figure 5.6 displays the results of the first baseline spatial emissions model for Irish 

agriculture.  Emissions are reported on a per hectare basis for each electoral district 

in tonnes of CO2eq. Overall, the simulated emissions for agriculture are concentrated 

in the more production agricultural regions of Ireland with the highest emissions per 

hectare reported in areas primarily associated with dairy and tillage farming. 
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Figure 5.6 Total CO2eq emissions tonnes/ha by electoral district: a baseline 

spatial emissions model for Irish agriculture 2008  
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Table 5.13 reports estimates for methane, nitrous oxide and total carbon dioxide 

equivalent emissions from agriculture from the NIR and the SMILE-NFS model (for 

the purposes of direct comparison with agri-emissions section of the NIR, emissions 

from energy use are excluded from this table).  

 

Table 5.13 CH4, N2O and CO2eq emissions from agriculture SMILE-NFS vs. 

NIR* and NIR (Gg) 

 

 

 

 

 

 

 

The SMILE-NFS model estimates total national emissions from enteric 

fermentation, manure management and agricultural soils at 14,628Gg. This figure 

equates to 90% of total agri-emissions reported in the adjusted NIR* of 17,657Gg 

and 83% of total emissions reported in the unadjusted NIR.  

 

5.6 Discussion  
 

The new quota sampling microsimulation methodology adopted offers a number of 

benefits over previous versions of the SMILE-NFS model.  In practical terms the 

computational efficiency of the spatial microsimulation process has improved. The 

simulated annealing methodology used by Hynes et al. (2008) took over two days to 

run on a DELL workstation with a single 3.2GHz processor, 1 MB on chip cache, 

4GB (4x1024) RAM and a Windows XP operating system. Using similar hardware 

specifications, the quota sampling methodology delivers a simulated farm population 

in 6-8 hours enabling the completion of overnight model runs. This has the effect of 

 NIR NIR* 
SMILE-

NFS 
NIR% NIR*% 

CH4 523.01 494.77 444.65 0.85 0.90 

N2O 21.53 18.93 17.07 0.79 0.90 

Total Gg 

CO2eq 
17657.35 16258.60 14628.04 0.83 0.90 
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not only reducing the computational time cost but also has practical benefits in terms 

of reducing the time cost associated with model attenuation and debugging.  In 

addition the ability to deliver model output on relatively modest hardware in a 

reasonable time frame increases the accessibility of this method to the wider research 

community.  

 

The preservation of the spatial heterogeneity of the stocking rate is a key 

improvement on the work of Hynes et al. (2009). The use of a residual ranking 

provides a means of tailoring the methodology to achieve an accurate simulation of 

the variability of the stocking rate for each electoral district, the key variable of 

interest in terms of agricultural emissions. The ranking methodology adopted means 

that the model is deterministic and delivers consistent results eliminating the 

requirement for repeated model runs.  

 

The model represents the first baseline spatial emissions model for Irish agriculture 

which simulates emissions from all agricultural categories identified in the IPCC 

methodology. The modelling of CH4, N2O, and CO2 emissions from enteric 

fermentation, manure management, synthetic fertilisers and carbon dioxide 

emissions from agricultural energy consumption at the farm level allows for 

possibility of studying the complex interactions and spatial diversity of outcomes 

associated with the implementation of national climate change policy and 

agricultural output targets for 2020 and beyond (Department of Agriculture Fisheries 

& Food, 2010). Singular or combinational policy changes can be simulated at the 

smallest scale with the magnitude and diversity of outcomes for individual farms 

available for examination; facilitating the selection of mitigation policies which will 

have the largest impact on emissions with the least impact on agricultural output. 

 

While the current framework bases its emissions estimates on the IPCC 

methodology, the model has the capacity to be used for whole farm systems/life-

cycle analysis should international agreement be reached on the interpretation of 

boundaries, assumptions, limitations and impacts for agricultural emissions in the 

future. 
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5.6.1 Model Limitations 

 

With respect to the allocation of N2O from manure management it is recognised that 

the application of national average shares for the waste management systems will 

result in a loss of spatial heterogeneity of emissions across EDs. With N2O from 

manure management comprising 17% of overall agri-emissions this loss has a 

significant diluting effect. As a result, caution must be exercised in terms of 

predicted model output in determining the outcome of a policy change with respect 

to N2O emissions from manure management. The inclusion of information on the 

farm waste management system employed in the NFS in the future would help 

eliminate this loss in spatial heterogeneity. 

 

The stocking rate regression equation is performed on basis of stocking rates from 

the 2000 Census of Agriculture. While the regression estimates are performed on the 

regional uprated target totals calculated on the basis of the 2008 NFS, the time 

variant factors including policy decisions effecting stocking rate decisions in 2008 

are not captured. Unless future agricultural policies are harmonised to achieve both 

environmental and productivity aims, this limitation will also apply to future 

predictions, as goals, changes relating to stocking rate requirements for the 

qualification for various agricultural schemes will affect future outcomes.  

 

Since the stocking rate residual ranking system is based on distance between the 

actual mean stocking rate of the ED and it’s predicted value, the SMILE-NFS model 

tends towards an over selection of mean farms at a national level, large outliers (in 

terms of the stocking rate) are much less likely to be added to any given ED. While 

this is a positive impact in terms of the preservation of spatial heterogeneity at the 

ED level, it does result in a substantial loss of intra-ED variability. This problem 

could be solved by limiting a farm’s overall number of selections to its weighted 

total or perhaps a maximum multiple. However, the application of this solution could 

be problematic and could potentially introduce even more onerous problems such as 
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ED ordering. This could potentially be solved by attempting to fill all EDs 

simultaneously, however, the complexity and computational powers required for 

such an undertaking would be substantial. 

 

A key assumption in the SMILE-NFS model is that that strength of the relationship 

of the match variables preserves the spatial heterogeneity of the non-matched 

variables of interest. The stocking rate ranking mechanism preserves the spatial 

heterogeneity of agricultural emissions relating to livestock. However, emissions 

relating to the application of synthetic fertilisers and energy consumption are based 

on non-matched variables from the simulated farm population. While regression 

models from the NFS show that farm size, soil and system are key determinants, the 

omission of additional factors affecting fertiliser and energy in the matching process 

affects the accuracy and variability of the spatial output. The selection of the match 

variables involves a decision process based on the availability of match data, the 

relationship of the match variables to the non-matched variables of interest and a 

pragmatic decision on the computational costs versus the associated returns from the 

inclusion of additional match variables. While spatial totals are not available for 

fertiliser and energy use at the ED level in the census of agriculture, totals for the 

livestock sub-categories described in Table 5.10 are available. The inclusion of an 

additional 13 match variables however, would have a potentially severe impact on 

computational cost with time frames increasing substantially with the addition of 

each additional constraint. It is unlikely that improvements if any on the correlations 

reported in Table 5.6 would be of a magnitude which would justify such cost. While 

the imposition of additional constraints may provide a framework to validate the 

spatial output of the livestock sub-categories the overall accuracy of the match across 

all variables is likely to decrease. As the computational costs of additional match 

variables decreases with the increased availability of more advanced computing 

power, the investigation of this option and its effect on the overall match accuracy 

should be investigated in the future. 
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5.7 Conclusions 
The provision of a spatial emissions inventory has long been identified as a key aid 

to the design and implementation of climate change mitigation measures (Kates et 

al., 1998). The provision of a spatially disaggregated baseline model of greenhouse 

gas emissions for Ireland could play an essential part in the design and 

implementation of effective mitigation strategies in the future. With regard to 

agriculture, the National Economic and Social Council (NESC) acknowledges the 

climate change policy challenges facing Ireland and notes that achieving a 5% 

reduction in emissions by 2020 will be difficult (National Economic and Social 

Council, 2012). It highlights the need for a national database of scientific options and 

a constant review of new and existing mitigation measures. The NESC report also 

notes that identifying measures that reduce global emissions (LCA), can be captured 

and measured for the purposes of inventory, and that have costs below the carbon 

price, is a key priority (National Economic and Social Council, 2012).  

 

A new methodology for the SMILE-NFS spatial microsimulation model is presented 

with the inclusion of a residual ranking variable designed to preserve the spatial 

heterogeneity of the electoral district stocking rate, a key determinant of farm-level 

agri-emissions. The model generates a simulated population of Irish farms from 

which farm-level emissions are calculated and aggregated at ED level providing an 

alternative methodology for the calculation of total national agricultural emissions. 

Results are compared with emissions calculated in the National Inventory Report and 

are found to be within a comparable range. Considering the two approaches rely on 

substantially different aggregation methods and data sources this is an important 

result and offers a credible basis for the spatial disaggregation and calculation of 

national emissions from agriculture. Results of SMILE-NFS model of farm-level 

emissions are presented as a standalone alternative methodology for the purposes of 

calculating Ireland’s total agricultural emissions output with the ability to analysis 

mitigation option at the local-level a significant value added component. 
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CHAPTER SIX: USING A DYNAMIC SPATIAL 

MICROSIMULATION TO ESTIMATE FUTURE 

EMISSIONS SCENARIOS FOR IRISH AGRICULTURE 

 

The following chapter describes the construction of the National Farm Survey 

Dynamic Simulation Model (NFS-DSM), a dynamic spatial microsimulation model 

for Irish Agriculture using a system of panel equations constructed from data from 

the Teagasc National Farm Survey which facilitate the simulation of changes in 

agricultural output over time.  Projected spatial emissions outcomes are 

disaggregated to electoral district level using the SMILE-NFS spatial 

microsimulation model and greenhouse gas emissions calculation methodology 

described in Chapters 4 and 5. Production, cost, and income models are estimated for 

the primary production sectors from panel data contained in the Teagasc National 

Farm Survey.  In the context of ambitious targets for the agri-food sector in the form 

of the Food Harvest 2020 (FH2020) policy goals, and Ireland’s 2020 emission 

obligations under the EU’s Climate Action and Renewable Energy (CARE) Package 

these models are used to simulate production forward to 2020, using price 

projections from the FAPRI-IRELAND model. A number of assumptions relating to 

rates of exit, productivity in the dairy herd and future price projections are used to 

estimate future output and present a scenario for 2020 emissions outcomes for 

agriculture. Changes to the land base over time are simulated with resultant 

emissions outcomes spatially mapped to the electoral district level. The model 

presents a potential plausible spatial emissions output for 2020 from Irish agriculture 

under a business as usual (BAU) scenario. The chapter concludes with suggested 

options for further scenario analysis in the agri-sector. 

 

6.1 Introduction 
Ireland is seeking to rapidly expand its agricultural output in line with the aims set 

out in the FH2020 vision for Irish agriculture (Department of Agriculture Fisheries 
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& Food, 2010). The programme contains a combination of volume and value targets 

for the dairy and beef sectors respectively as well as targets for crops and other 

enterprises. The FH2020 strategy is part of a suite of Government policy initiatives 

designed with a view to aid Ireland’s economy recovery in the wake of the 2007 

financial crisis (Irish Government, 2011). Presently, agriculture remains Ireland’s 

largest indigenous industry contributing over 7% of Ireland’s GDP with the agri-

food sector contributing over €24 billion to the Irish Economy (CSO, 2012) and 

accounting for 10% of Ireland’s exports (Department of Agriculture Fisheries and 

Food, 2012).  

 

However, under the terms of the EU’s 2008 Climate Action and Renewable Energy 

(CARE) Package (Council Decision, 2009), Ireland has also made significant 

commitments to reduce non-ETS sector emissions by 20% by 2020, relative to 2005 

levels (EPA, 2010). With Irish agriculture accounting for over 40% of Ireland’s non-

ETS reported emissions in 2011 there is a clear requirement for Irish agriculture to 

improve emissions efficiency if it is to both satisfy the aims and objectives of the 

FH2020 programme while supporting Ireland’s emissions reduction obligations.  

 

As outlined in Chapter 2 the presence of spatial information on greenhouse gas 

emissions has been identified as a key determinant in the effective implementation of 

climate change policy at the local level by Allman et al. (2004). The presence of 

micro-level information also allows for the study of the impacts of policy measures 

on the fundamental economic units of the state i.e. individuals, firms (farms) and 

households (Chapter 4). The creation of a baseline inventory of agricultural 

emissions as described in Chapter 5 allows for the estimation of future potential 

spatial emissions outcomes as a result of agricultural policies while the presence of 

micro-level information also allows for the estimation of the economic impacts of 

such measures on farm households. For example, Quinlan et al. (2006) show that 

spatial information on agricultural activity could be used to reduce transport 

emissions associated with the dairy sector with the optimal location of processing 

facilities. The mapping of an agri-emissions scenario for 2020 provides an 
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opportunity for decision makers to identify potential future mitigation opportunities 

and develop policies at appropriate spatial scales.   

 

Projecting a spatial 2020 emissions scenario for Ireland requires estimation of the 

most likely, or at minimum, plausible future development path for individual Irish 

farms both in terms of changes in output and the likelihood of entering or exiting the 

market. Previous studies on future output (Läpelle & Hennessy, 2012) and emissions 

(Donnellan & Hanrahan, 2011b) scenarios have been conducted at the national or 

macro level and while they are instructive in terms of assumptions surrounding 

future production paths they are inadequate in terms of providing an estimation of 

future output and resultant emissions at a spatially disaggregated level.  

 

An estimation of the future growth path for the spatially disaggregated SMILE-NFS 

model outlined in Chapter 5 would provide a micro or farm level estimation of 

Ireland’s likelihood to meet its future agricultural targets within existing farm 

structures as well provide a spatial map of emissions from the sector. The potential 

exists for such information to contribute to the adaptation of policy to encourage 

more emission efficient solutions at a local level as well as enabling integrated 

planning for future mitigation options.  Using the SMILE-NFS baseline spatial 

emissions model for agriculture outlined in Chapter 5, a BAU scenario for the 

expansion of Irish agriculture to 2020 and the resultant spatial emissions outcomes is 

investigated.   

 

6.2 FH2020 and wider policy implications 
 

The FH2020 programme, developed by the Department of Agriculture Food and 

Fisheries, is a policy strategy intended to substantially increase output from the agri-

food, fishery and forestry industries over the next 6 years (Department of Agriculture 

Fisheries & Food, 2010). Developed through a policy committee comprising of 

representatives from state agencies, industry representatives, academia and farm 

groups, the programme combines value and output targets for various sub-sectors 
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within each industry and states that these goals should be reached sustainably; 

achieving the targeted growth through “smart” and “green” practices (Department of 

Agriculture Fisheries & Food, 2010). While the relative contribution of agriculture to 

Ireland’s GDP has declined considerably from the height of the mid-twentieth 

century, it remains one of Ireland’s largest indigenous industries with half of all 

exports (€10 billion in 2013) from indigenous Irish companies coming from the agri-

food sector (Department of Agriculture Fisheries & Food, 2013) The development of 

a medium term expansion strategy for one of Ireland’s largest indigenous sectors was 

viewed by the Irish Government as a key component of Ireland’s strategy to recover 

from the economic recession attributed to the banking crisis of the late 2000’s (Irish 

Government, 2011). However, the achievement of future increases in agricultural 

output may have unintended adverse consequences in other areas of national and EU 

policy; namely in the form of Ireland’s international greenhouse gas emissions 

obligations; the potential impacts of which will depend on the nature and extent to 

which increases in output are offset by improvements in emissions efficiency. 

6.2.1 Complementarities with Ireland’s Emissions Obligations 

 

The FH2020 programme aims to achieve an increase in the value of primary output 

in the agriculture, fisheries and forestry sector by €1.5 billion (a 33% increase on the 

2007-2009 average). It also aims to increase the value-added in the agri-food, 

fisheries and wood products sector by €3 billion (40% increase on 2008) and achieve 

a total export target of €12 billion for the sector (Department of Agriculture Fisheries 

& Food, 2010). These increases are dependent on the achievement of specific targets 

in a number of different sectors. These targets are predominantly focused on primary 

production with the wider agri-food sector benefiting from downstream processing 

of the increased output.  

 

At the agricultural sub-level, the FH2020 programme outlines targets for beef, dairy, 

sheep, pig and poultry production as well as organics and aquaculture (Department 

of Agriculture Fisheries & Food, 2010). In particular, a 50% increase in the volume 

of milk output and a 20% increase in the value of beef output have been targeted. 
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These represent the key targets in terms of potential impact on future greenhouse gas 

emissions from Irish agriculture as these two sectors directly accounted for almost 

68% of emissions in 2011 (EPA, 2013a).  

 

Figure 6.1 shows the agricultural GHG emission shares by sector for 2011. The dairy 

and cattle production systems account for 22% and 46% of total emissions 

respectively. Sheep and other livestock including pigs and poultry account for 9% 

while 23% of agri-emissions are attributed to the nitrous oxide emissions from agri-

soils arising as a result of the application of fertilisers for crop production including 

grass fodder for livestock. The IPCC methodology for agriculture, outlined in 

Chapter 5, primarily consists of the application of methane emissions factors to 

animal numbers in various classifications and the calculation of emissions arising 

from the application of chemical and organic nitrogen to agricultural soils (EPA, 

2013a). 

 

22%

46%

5%

4%

23%

Dairy

Cattle

Sheep

Other Lvstck

Agri-Soil N2O

 

Figure 6.1 Agricultural GHG emissions shares by sector for 2011 

(Source: EPA, 2013) 
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With the cattle and dairy sectors directly contributing to almost 70% of Ireland’s 

agri-emissions, complementarities between the objectives of the FH2020 programme 

and Ireland’s environmental targets are a matter of considerable debate.  

 

Table 6.1 shows the total agricultural CO2eq emissions by sector with total emissions 

from agriculture reported at 17,691 Gg for 2011 (EPA, 2013a). This accounts for 

30.8% of total national emissions of 57,512 Gg.  

 

Table 6.1 Total agricultural GHG emissions by sector 2011 

Sector CO2eq (Gg) % Total Emissions 

Dairy* 3834 21.7% 

Cattle* 8179 46.2% 

Sheep* 885 5.0% 

Other Livestock* 724 4.1% 

Agri-Soil N2O** 4070 23.0% 

Total Emissions from 

Agriculture*** 17691 100% 

*CH4 & N2O from ENT and MM **Includes direct and indirect soil emissions *** Based on 

current IPCC Methodology adopted by the EPA 

(Source EPA, 2013) 

 

Figure 6.2 illustrates that this proportion has decreased in relative terms from 35.5% 

in 1990 as the emissions from energy use increased significantly while emissions 

from Agriculture decreased by 9.9% (Duffy, 2013 ). 
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Figure 6.2 Mt of CO2eq by sector for Ireland 1990-2012 

Source: Duffy (2013) 

 

 

However as shown in Table 6.2, when only the non-ETS sector is considered, 

agriculture accounts for over 40% of national emissions. 

 

Table 6.2 Share of total and non-ETS emissions for 2011 from agriculture  

 Total Emissions 

Mt CO2 

Agri-Emissions Mt CO2 % 

Total Emissions 57.3 17.7 30.9 

Non-ETS Emissions 41.6 17.7 42.3 

(Source: EPA, 2013) 

 

As part of its commitment under the terms of the EU’s 2008 Climate Action and 

Renewable Energy (CARE) Package (Council Decision, 2009), Ireland has agreed to 

reduce non-ETS sector emissions by 20% by 2020, relative to 2005 levels (EPA, 

2010). Thus the achievement of a 20% reduction in total non-ETS related emissions 
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while targeting a considerable expansion in a sector which contributes over 40% of 

those emissions would appear to be extremely challenging under the current 

accounting framework. To facilitate the investigation of the consequences of such a 

rapid expansion and its implications for future emissions scenarios, a methodology 

for the simulation of the changes in agricultural output over time must be developed. 

Furthermore, in order to provide a spatial disaggregation of future emissions, a 

methodology for the forward simulation of the farm population created using the 

SMILE-NFS microsimulation model is required.  The following section describes 

the construction of dynamic simulation model (DSM) for the primary determinants 

of inputs, outputs, and incomes in the Teagasc NFS and its simulation forward to 

2020. The model is then spatially disaggregated to a farm level population using the 

SMILE-NFS microsimulation model and the resultant emissions output under a 

business as usual scenario is reported with a comparison of simulated output and the 

primary FH2020 targets for the dairy and beef sectors are made.  

6.3 Methodology 
 

The Teagasc NFS-DSM model consists of a series of both fixed and random effects 

panel regression models designed to capture changes in inputs and resultant outputs 

and its effect on family farm incomes over time.  Production and costs functions for 

the primary sectors contained in the NFS for dairy, cattle, sheep and tillage are 

formulated and inform the dependent and independent variables choosen for the 

panel regression models (these models are discussed in detail in the following 

Section 6.3.1).  Output per livestock unit is modelled for the primary agri-livestock 

sectors captured in the NFS which is combined with modelled stocking rates to 

produce farm level output. Gross output per hectare is also modelled for the tillage 

sector. Expenditures on primary inputs such as bulk and concentrate feed, veterinary 

and artificial insemination (A.I) expenses, fertiliser and seeds are estimated on a per 

hectare basis while the model also contains an expansion model for the total adjusted 

farm size with land use shares recalculated annually. 
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Each panel regression is performed on the NFS over a ten year period 2001-2010 and 

validated over the same period. The model is then simulated forward from 2010 to 

2020 with the aid of price projections from the FAPRI-Ireland model (Donnellan & 

Hanrahan, 2011b). The FAPRI-IRELAND model is an aggregate sector modelling 

research programme developed by Teagasc in partnership with the Food and 

Agriculture Policy Research Institute of Missouri (FAPRI). It was developed in 

order to inform analysis of future prospects for the agricultural and food sectors in 

Ireland. The model simulates forward dynamically such that with each iteration, 

values modelled for each simulated year are used as input variables for simulation 

for the following year where applicable.  

 

Production changes are modelled initially with required input costs modelled for the 

level of simulated output. Finally, family farm incomes are calculated. The resultant 

output is disaggregated using an updated version of the SMILE-NFS spatial 

microsimulation model which statistically matches the 2010 NFS to spatial totals 

reported in the 2010 Census of Agriculture
32

 using the novel stocking rate ranking 

method outlined in Chapter 5. Projected stocking rates for 2020 for each modelled 

farm are then used to estimate the total number of animals and consequent methane 

emissions from enteric fermentation and both methane and nitrous oxide emissions 

from manure management. Projected fertiliser usage is used to measure nitrous oxide 

emissions while energy and fuel use is also used to estimate carbon dioxide 

emissions. These projected emissions outcomes for 2020 are then presented on a per 

hectare basis at the electoral district level. 

 

6.3.1 Panel Regression Models  

Panel data sets have a number of advantages over individual time series or time 

invariant cross sectional data. The availability of repeat observations provides the 

opportunity to study changes of variables of interest over time accounting for the 

                                                 
32

 Results from the 2010 census of agriculture were released on a staggered basis from 2012 onwards 

and became available post the establishment of the baseline methodology outlined in Chapter 5. It was 

decided to update the spatial match using 2010 Census for the dynamic analysis in Chapters 6 & 7 

while using Chapter 5 to illustrate a methodology for performing the sampling process in non-census 

years.  



 154 

unique characteristics of individual micro units, be they individuals, firms, 

households or regions. They provide the opportunity to study dynamic change as 

well as more complex behavioural phenomenon such as technological change or 

economies of scale (Gujarati, 2003).  

 

Equation 6.1 describes a Fixed Effects (FE) panel regression model for the ith 

individual in the tth time period where the dependent variable   for individual    in 

time period   is a function of; the unique intercept     for individual  , the common 

slope co-efficients   and   for the explanatory variables     and       and the error 

term    . 

                            (6.1) 

 

The fixed effects panel regression model assumes that the effect or slope of the 

explanatory variables    and     is common to all individuals and does not change 

over time.   A fixed panel regression model also assumes that for each individual unit 

i there is a unique intercept      and that while each unit’s intercept is unique it does 

not vary over time, i.e. its effect is in essence “fixed”. This may be due to certain 

characteristics which are unique to the individual. In the case of the farm, certain 

enterprises may have a more natural advantage than others which we cannot observe 

in the data such as the nature of the surrounding drainage, the farmland relief or the 

proximity to markets and local processing facilities. 

 

In addition to controlling for individual characteristics, there may also be the need to 

control for external effects individual to each time period. In the case of farming, the 

differences in seasonal weather patterns can cause shifts in yields with for example, 

an extremely good summer resulting in abnormally high production levels   (O'Neill 

& Matthews, 2001). This in turn can result in higher direct costs such as in the case 

of the purchase of bulk fodder in years of poor forage yields. Other changes such as 

shifts in government regulations and or agricultural policies may also suddenly 

impact changes in the dependent variable in different time periods. The inclusion of 
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individual time dummies (    for time period one,     for time period two etc…) for 

  time periods allows the model to control for such factors (Equation 6.2). 

 

                                         (6.2) 

 

Further, it may be assumed that there is a certain rate of technological progress 

which affects yields or efficiency over time which is not captured in the data. While 

the inclusion of variables such as a farm holder’s age could be assumed to be a proxy 

measure for experience or improvement in management skills, this does not capture 

increases in the general knowledge stock and can also be misleading where transfer 

of ownership occurs during the period of study.  Changes such as the spread of 

knowledge of better management practices and improvements in production methods 

are hard to quantify.  Other factors may be quantifiable but may also be expensive to 

measure or simply not included in the available data, for example, changes in the 

genetic merit of the individual farm herd (a key factor in terms of productivity) over 

time are not included in the NFS.  

 

In order to attempt to capture the effect of technological progress an incremental 

linear time variable   is included in the model. It should be noted that as before, it is 

assumed that the slope or effect of the explanatory variables    and     is common 

to all individuals and does not change over time (Equation 6.3). If this assumption is 

violated, the problem of multi-collinearity arises. 

 

                                       (6.3) 

 

There is however, a further complication. It may be unreasonable to assume that the 

slopes of all explanatory variables are the same for all units. For instance the effect 

of the application of a fixed unit of fertiliser may differ slightly from farm to farm 

due to relief effects. While these effects can be controlled for by the inclusion of 

interaction dummies for each unit, this can result in a large increase in the number of 

variables included in the model which reduces the model’s degrees of freedom and 
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has the potential to cause further problems of multi-collinearity. Additionally, when 

applying this methodology to farm level data, a fixed effects model is unable to 

capture the effect of important time invariant production factors such as region and 

soil type. The preservation of farm heterogeneity in terms of these key 

environmental variables is an essential requirement in the development of future 

spatial emissions scenarios for Irish agriculture.  

 

An alternative approach to the fixed effects approach is the Random Effects (RE) 

Model.  Here it is assumed that it is not possible to accurately measure the individual 

slope coefficient for all explanatory variables. It is assumed that the individual 

intercept term     is not fixed for each individual unit but is in fact composed of a 

random variable with a mean of    and an individual error term    (Equation 6.4). 

  

           (6.4) 

 

The Random Effects model assumes that the error term consists of two components, 

the individual specific error    and the combined cross sectional error component    .  

Substituting this into Equation 6.1 gives the following equation.  

 

                              (6.5) 

 

Maintaining the assumptions relating to the inclusion of time dummies and a linear 

time trend outlined in Equation 6.3 gives the following equation for an adapted 

Random Effects Model. 

 

                                         (6.6) 

 

The random effects approach offers a solution to the problem of time invariant 

explanatory variables but there is a trade-off. The random effects model assumes that 

the individual error component     is not correlated with any of the regressors. If the 

individual error component is in fact correlated with any of the regressors then the 
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random effects estimators will be biased. However, if the assumption holds then the 

random effects estimates may be more efficient (Gujarati, 2003).  

 

The Hausmann specification test was performed for all output (7) and cost (10) 

models used in the NFS-DSM model.  The null hypothesis was rejected for all 

models except for other overhead costs, suggesting the use of a fixed effects model 

for all other cases.  However, while the Hausman test (Hausman, 1978 ) offers a 

formal method to help choose between fixed effects or a random effects approach 

Johnson and DiNardo (1997) warn that there is no simple method to definitively 

navigate the choice between a fixed and random effects approach.  

 

Variants of both fixed effects and random effects models have been used extensively 

in the Irish agricultural literature. Using fixed effects models, Breen et al. (2012) 

examine the production response of nitrogen while Smyth et al. (2009) investigate 

the seasonality of costs of production on dairy farms. Läpelle et al. (2012) use a 

random effects approach to examine the effects of extending grazing on dairy 

production. Loughrey and Hennessy (2013) also use a random effects approach to 

investigate hidden under employment in Irish farming, concluding that hidden forms 

of underemployment are of greater relevance than the more established time-related 

underemployment. 

 

As discussed above a significant drawback of the fixed effects approach for use in 

this research is that it is unable to capture the effects of time-invariant variables such 

as soil and region, which are important variables in maintaining the spatial 

heterogeneity of simulated production outcomes and resultant emissions.  Thus 

where possible, a random effects approach was favoured.   

 

In order to validate the decision making process, the NFS-DSM validation process 

discussed in Section 6.4 was performed for both fixed and random effects for each 

production and cost model, with both simulation results compared to the 

observations over the ten year period of study (2001-2010). A multi-decision 

criterion was established for each model whereby the fixed effects model was used if 
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it considerably outperformed the random effects approach. Decisions for each model 

were made on the basis of both annual trend line performance and the mean absolute 

differences between the simulated and actual outcomes over the period of validation.  

As a result, following this comparison a fixed effects approach was selected for four 

cost functions. The costs functions which use a fixed approach method are identified 

in the following section.  

 

6.3.2 Key Modelling Components  

 

The NFS-DSM model consists of a series of fixed and random effects panel 

regression models which estimate the effect of a series of independent variables on 

the key determinants of agricultural outputs, inputs and overhead costs. The 

following section describes the key modelling components used in the NFS-DSM 

model. It outlines the modelling of seven determinants of outputs and ten inputs 

which use both fixed effects and random effects panel estimates. The main 

independent variables associated with each modelled dependent variable are 

highlighted with full estimates for each model reported in Appendix B.  

FAPRI-IRELAND Price Assumptions 

 

 The FAPRI-IRELAND model uses projections on prices, production and quantities 

traded in order to estimate future volume and value growth paths for agricultural 

inputs and outputs at a macro level (Binfield et al., 2008). It has been used 

extensively in the analysis of agricultural and trade policy changes in Ireland (Eg. 

Binfield, 2006; Donnellan & Hanrahan, 2006; 2011a).  

 

The NFS-DSM model uses price projections from the 2010 FAPRI-Ireland model in 

order to provide estimated output and input prices for each sector in 2020. As the 

model simulates forward to 2020 from the base year (2010), movements in price are 

scaled linearly year on year. Prices are used to re-calculate costs and output at the 

end of each simulation year and are also used as dependent variable inputs where 

applicable.  
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Modelling of Gross Output 

 

The NFS-DSM model calculates random-effects panel regression estimates for the 

primary determinants of output on a per hectare basis. For tillage systems, crop gross 

output is modelled. For the livestock sectors, value estimates for gross output per 

livestock unit and the number of livestock units per hectare are combined to predict 

gross output from the sector for each individual farm. Table 6.3 shows the seven 

modelled output variables for all farms by sector.  

 

Table 6.3 Components of modelled output by sector 

Dairy  Litres per livestock unit (Q)  

Dairy livestock units per hectare (Q)  

Cattle  Gross output per livestock unit (€)  

Cattle livestock units per hectare (Q)  

Sheep  Sheep gross output per livestock unit (€)  

Sheep livestock units per hectare (Q)  

Tillage  Crop gross output per hectare (€)  

 

Modelled gross output values are based upon, expenditure on feedstuffs (in the case 

of the livestock sectors) fertiliser usage, the area devoted to the enterprise, the 

presence of other enterprises as well as other farm and farm holder characteristics.  

Tillage output is based upon mean annual prices, fertiliser usage, the area devoted to 

tillage, the presence of other enterprises as well as other farm and farm holder 

characteristics.  

 

It should be noted that for the gross output (value) per livestock unit models for 

cattle and sheep respectively, the unit price is necessarily omitted as an explanatory 

variable. This is due to the fact that by construction, the dependent variable is highly 

and perfectly correlated with the unit price. While an alternative output model on the 

basis of volume was considered, it is submitted that the use of livestock sales and 
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slaughtering numbers for both cattle and sheep would be too crude a measure and 

therefore incapable of distinguishing between high-value and low value producers.  

 

In the case of dairy however, the gross output volume is estimated by the average 

number of litres per livestock units available for each dairy farm over the ten year 

period of study.  This approach is taken as the FH2020 target for dairy under 

consideration is a volume rather than a value target, thus the modelling of physical 

milk output and the required number of livestock units is required. The average 

productivity of the herd (i.e. number of litres per livestock unit) is modelled based on 

the stocking rate, the farm size (total area devoted to dairy is used in order to capture 

economies of scale), the presence of other enterprises on the farm and other 

characteristics of the farm and farm holder with respect to age and the presence of an 

off-farm income. This modelled productivity is then scaled by the number of 

livestock units per hectare to calculate total milk output. The total milk output is then 

scaled by the average annual unit price to calculate gross output for the dairy system 

on each farm.  

 

Estimates for all seven determinants of farm gross output are calculated and 

simulated year on year with the gross output of each sector calculated as follows: 

 

                                                

                                                                

                                                            

                                                 

 

Where ha = hectare, P = unit price, lu = livestock unit and l = litres. 

Direct Costs and Overheads 

 

All direct costs are modelled on a per hectare basis for each farm. These costs are 

summarised in Table 6.4. The costs of purchasing of feedstuffs, veterinary expenses 

and A.I fees are modelled for the dairy, cattle and sheep systems. The purchase of 
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seeds and expenditure on crop protection plans are modelled exclusively for tillage 

systems while expenditure on fertiliser, energy (fuel & electricity), repairs and other 

miscellaneous direct costs are modelled for all farms.  

 

Table 6.4 Modelled costs by sector (€) 

All Sectors Purchase of fertiliser per hectare 

Direct costs including. expenditure. on repairs, fuel & electricity 

Other direct and overhead costs 

Livestock Purchase of Bulk Fodder 

Purchase of Concentrates 

Veterinary Expenses and Medicines 

A.I Fees 

Tillage Purchase of Seeds 

Purchase of Crop Protection Plans 

 

For all sectors, fertiliser costs per hectare are modelled on unit prices, the share (if 

any) of the farm area devoted to tillage, the presence of livestock, environmental 

characteristics such as region and soil type and other farm characteristics effecting 

the quantity fertiliser applied per hectare such as the participation of the farm in the 

Rural Environmental Protection Scheme (REPS).  

 

Direct costs comprising expenditure on repairs, fuel & electricity (RFE) are 

modelled on prices, the presence of livestock, farm size and other farm 

characteristics such as the presence of an off-farm occupation and the age of the farm 

holder. Both age and the presence of an off-farm income are found to be positively 

associated with direct RFE costs with younger farmers without an off-farm 

occupation assumed to able to supply more repair and maintenance labour hours and 

reduce costs associated with external labour hours. The presence of dairy livestock is 

also identified as a significant factor in relation to electricity expenditure due to the 

energy requirements associated with milking parlours. Region is not identified as a 

significant factor in direct RFE costs.  
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Other direct and overhead costs are again modelled on input prices, the presence of 

livestock, share of farm devoted to tillage, participation in REPS and other farm 

characteristics. Both direct and overhead costs per hectare were negatively 

associated with increases in farm size indicating anticipated economies of scale. The 

independent region variable dummies were not found to be a significant factor 

however better soil types were positively associated with lower direct costs per 

hectare. 

 

Livestock related costs are modelled on unit prices, the area devoted to each 

livestock enterprise, the stocking rates associated with each enterprise as well as 

other farm characteristics. In the case of livestock feed inputs (bulk fodder and 

concentrates), farm environmental characteristics such as region and soil type are 

included in the model. These variables are included in order to control for effects of 

the localised environment on each farm’s capacity to produce the majority of their 

livestock feed requirement on farm. If a farm’s ability to provide the majority of its 

livestock primarily from fodder grown on farm is high (due to an extended growing 

season and favourable soil conditions) this will limit required expenditure on bought 

in feedstuffs. The inclusion of regional and soil type variables preserve the spatial 

heterogeneity of feed costs across the country controlling for other farm 

characteristics. Expenditure on veterinary expenses, medicines and A.I. are as 

expected to be strongly and positively associated with the stocking rates for each 

livestock sector. 

 

For the tillage sector, positive associations with tillage area, and the better soil types 

were apparent for both the purchase of seed and crop protection plans. As expected, 

negative associates were identified with the presence of other enterprises on the farm 

while a negative association for expenditure per hectare was identified with an 

increase in the age of the farm holder. 
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Changes to farm size 

 

In order to capture the gradual changes in the land area utilised by each farm over 

time the determinants of the total adjusted farm size are estimated using a random 

effects regression for the period 2001-2010 and modelled forward to 2020.  The 

adjusted farm size has gradually increased over the 10 year period 2001-2010.  An 

important distinction between the total physical agricultural area on the farm and the 

total adjusted farm size is made. The adjusted farm size comprises the total forage 

and tillage areas devoted to the four primary sectors captured in the NFS namely the 

dairy, beef, sheep and tillage sectors. This includes the equivalent forage area 

required to produce purchased fodder. For the livestock sectors this allows for a 

consistent modelling of the stocking rate across farms reflecting the intensity of 

production. The adjusted farm size is the total land equivalent that is farmed by the 

holder in each year and is estimated for all farms on the basis of region, soil type, the 

presence of livestock, tillage and/or other enterprises, the characteristics of the farm 

and farm holder. The adjusted farm size is modelled for all farms and is simulated 

year on year for each farm in the NFS. 

 

Table 6.5 summarises the 7 output variables and 11 input/cost variables included in 

the NFS-DSM model, their abbreviations used in the later analysis and whether a 

fixed effects or random effects model was employed. Changes to farm capital assets 

and long term liabilities are assumed to be fixed and are not considered in the 

simulated production model. 
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Table 6.5 Summary of all modelled output, inputs and change in land base 

Sector Input Variables Abbrev. Model (Fixed 

(FE) or random  

effects RE) 

Dairy  

 

Litres/Livestock Unit 

Livestock Units/Hectare 

l_lu 

lu_ha 

RE 

RE 

Cattle  Gross Output/Livestock Unit 

Livestock Units/Hectare 

cattlego_lu 

cattlelu_ha 

RE 

RE 

Sheep Gross Output/Livestock Unit 

Livestock Units/Hectare 

fsheepgo_lu 

fsheeplu_ha 

RE 

RE 

Crop Crop Gross Output/Hectare fcropgo_ha RE 

Sector Output Variables Abbrev. Model (Fixed 

(FE) or random  

effects RE) 

Livestock  

Sectors 

Purchase of Concentrates 

Purchase of Bulk Fodder 

A.I Costs 

Veterinary Costs 

fdpurcon_ha 

bulkfodder_ha 

fdaifees_ha 

fdvetmed_ha 

RE 

RE 

RE 

FE 

All Sectors Fertilizer Costs 

Other Direct Costs 

Car/Elec/Tel Costs 

Other Overhead Costs 

Total Adjusted Farm Size 

fertiliser_ha 

oth_dc_ha 

car/tel/elc_ha 

oth_oc_ha 

totadjfarmsize 

RE 

FE 

FE 

FE 

RE 

 

 

Exit from Dairy 

 

In the ten year period of study of the weighted Teagasc NFS, there were 95 exits 

from the dairy sector recorded in the national survey representing approximately 2% 
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of the total number of observations and a weighted annual exit of approximately 3% 

per annum. It should be noted that these were not exits from the survey but instances 

where milk was produced in one year and ceased in the following year with the 

remaining farm area devoted to the remaining enterprises. In order to ensure a 

plausible representation of future milk volume output, the NFS-DSM model 

incorporates a stochastic component for the probability of exit from the sector 

 

Logistic regression estimates for exiting dairy are calculated from the NFS panel and 

are then simulated on the base year, identifying those dairy farms most likely to exit. 

Bragg and Dalton (2004) identified that the age of the farmer, the presence of an off 

farm income, lower returns over variable cost and a greater diversification of farm 

income significantly influence the exit decision while Läpelle et al. (2012) model 

dairy exit on those farms with the lowest net margin return. The likelihood of exiting 

dairy for the FH2020 model is assumed to be a function of farm characteristics 

(region, soil type, farm size, land value, share of land devoted to dairy), profitability 

(gross margin quintile) and additional socio-economic characteristics such as the age 

of the holder and the presence of off-farm income. Given the relatively small sample 

size the following simple pooled logit regression for dairy exit is performed 

(Equation 6.7).  

 

  [
 

   
]             (6.7) 

 

Where ln[p/(1-p)]  = log odds ratio of exiting dairy. 

 

Used in conjunction with a stochastic component, farms are then simulated to exit 

the sector for the following year. The rate at which farms exit is determined by 

setting an alignment condition based on historical rates of exit. Farms are ranked in 

order of those most likely to exit and are then stochastically selected using a random 

number between 0-1 drawn from a uniform distribution. A farm is determined 

eligible for selection to exit if the randomly drawn number is less or equal than the 
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probability of exit (Equation 6.8, 6.9), otherwise the farm is deemed ineligible for 

selection. 

 

                                  (6.8) 

                                   (6.9) 

 

The model then selects the ranked order of farms eligible to exit until the alignment 

total is reached. While the average annual rate of exit over the ten year period was 

approximately 3%, the rate of exit is skewed towards the early part of the decade 

with the rate of exit decreasing as the rate of restructure within the dairy sector 

slows. Thus, an annual exit rate of 2% p.a was simulated for the dairy sector falling 

to 1% post the abolition of the milk quota in 2015. It is important to note that when a 

dairy farm is selected to exit, it is assumed that the total area vacated by the dairy 

enterprise will be consumed by the remaining enterprises on the farm. The former 

dairy area is transferred pro-rata to the remaining enterprises on the farm.  

 

In terms of considering the modelling of exit from other sectors, in the case of cattle, 

recorded historical exits from cattle enterprises are much lower than dairy with just 

29 exits observed in the weighted sample over the 10 year period. This presents a 

substantially static picture in terms of cattle enterprise and the number of 

observations was deemed insufficient in terms of sample size to simulate exit from 

the sector. Similarly while a relatively high number of exits from the sheep sector 

were recorded in the early 2000s, exits dropped considerably by end of the survey 

period leaving sheep farms numbers largely static.  In respect of the tillage sector, 

given the small number of tillage farms in the weighted sample, and the low levels of 

recorded exits, simulating exits would introduce an unjustifiably high margin of 

error in terms of simulated crop output and was therefore not undertaken.  

 

Considering the challenges relating to sample size and other methodological issues, 

it was considered that the simulation of exit from other farms sectors would 

substantially increase the modelling complexity and increase the variability of 
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outcomes due to the additional stochastic components involved, with no guarantee of 

the addition of accuracy and subsequent value to the model.  

 

6.3.3 The effect of quota on productivity in the dairy sector  

 

In constructing the panel model for productivity in the dairy sector, the random 

effects model for litres per livestock unit includes a linear time trend variable 

outlined in Equation 6.3 above. The linear time trend variable, year, was found to 

have a significant positive effect on litres per livestock unit. It is presumed that this 

effect represents the natural rate of efficiency improvement due to technological 

progress, be that as a result of an improvement in management practices or a gradual 

increase in the genetic merit of the herd. However, while the effect of year is both 

positive and significant its magnitude is extremely small. There are a couple of 

possible reasons for this. Firstly, while a farmer may control productivity per animal 

within certain ranges (i.e. through feed restriction or the use of concentrates) in 

response to changes in milk prices, productivity per animal on each farm is 

physically limited or upper-bounded to the generic merit of each individual herd 

(Mee et al., 1999) and it may well be that in certain years and at certain price levels 

some dairy farms are already producing at the upper limit bound for the genetic merit 

of their particular herd. More likely however, is that productivity per animal may 

also be effectively upper-bounded on many farms due to the existence of the milk 

quota
33

. The presence of a quota makes it very difficult to estimate from historical 

data which farmers are likely to make productivity gains and at what rate (Läpelle & 

Hennessy, 2012).  

 

While improvements in unit output per animal can be achieved gradually over time 

through both increases in the genetic merit of the herd and the refinement of 

management practices through greater experience, these effects are hard to elicit with 

quota in effect. The extent to which the farmer is able to balance efficiency gains 

                                                 
33

 The Milk Quota Regulations (SI 227/2008) provide for the payment of a levy, on milk deliveries in 

excess of Ireland's annual national quota. The liability of individual producers who have exceeded 

their quota is established after the reallocation of unused quota. (DAFM, 2014; Irish Government 

2008) 
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through adjustments in stocking rate or feed mix while maintaining levels of 

productivity in line with quota would also weaken the relationship of the time trend 

and productivity per animal. Ultimately, the complex range of management options 

open to the dairy farmer in response to changes in annual milk prices in a pre-

abolition quota era are likely to explain why a highly significant but weak 

relationship between the annual time trend and productivity per animal was found. 

 

6.3.4 Overall Structure 

 

It should be noted that the panel model estimates and subsequent simulations are 

independent of the microsimulation sampling process itself. The panel models are 

estimated on the weighted NFS, over the period 2001-2010. Each individual sample 

farm is then simulated forward to 2020. Independent of this process, the 2010 NFS is 

repeatedly sampled to aggregate spatial totals for each ED in the 2010 CoA using the 

novel stocking rate ranking methodology outlined in Chapter 5 (Section 5.4) 

providing a spatially disaggregated farm population for 2010. Each farm has a 

unique identification number which allows the model to record which farms have 

been sampled to each ED. For computational efficiency, this information on the 

original 2010 disaggregation is recorded in a separate data set which is then later 

used to spatially disaggregate the NFS after is has been simulated forward to 2020. 

This means that only circa 1,000 farms rather 100,000 farms are required to be 

simulated forward to 2020 with the 2020 farms disaggregated post simulation to the 

original 2010 spatial disaggregation.  This ensures that the sampled farm profile of 

each ED in 2020 is the same as in the base year of 2010, i.e. no switching has 

occurred. This provides the basis for a consistent simulation and a legitimate like for 

like comparison of outcomes between 2010 and 2010. Since each NFS sample farm 

is only sampled to EDs within their own region and with the same soil type, spatial 

heterogeneity in terms of simulated future outcomes is predominantly preserved. 

 

With regard to the simulation process itself, estimates on the 2001-2010 weighted 

panel of the NFS are used to simulate each farm in the 2010 NFS sample data set 
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forward year on year to 2020. This happens in the following order for each 

simulation year. Firstly, the year (a dummy variable used to reflect the marginal 

technical rate of progress in terms of increasing outputs or reducing costs) and the 

age of the farm holder are increased by one year. Additionally, prices for all farm 

outputs are changed to the projected price for that simulation year based on the 

scaled price projections from the FAPRI-IRELAND model. Secondly, any 

transitions modelled from the previous year are applied. Thus if, a farm in the 

previous year has simulated to exit in the following year, they are no longer 

identified as a dairy farm, the models for dairy production are no longer applied to 

the farm and the remaining land base is distributed to the remaining enterprises on 

the farm. Thirdly, saved estimates from the panel regressions are used to predict the 

new outputs and the amount of inputs required for the new output. The order of 

simulation for each of the 17 panel models follows the order of the model estimates 

reported in Appendix B. Estimates from a logit regression on the probability of 

exiting dairying are applied with a number of farms simulated to exit the following 

year (Section 6.3.2). Finally, incomes and costs are recalculated to provide an 

estimate of the change in family farm incomes while changes in stocking rates are 

used to recalculate resultant emissions outcomes. 

 

6.4 Validation 
 

 In assessing the validity of model specification and the assumptions relating to rates 

of exit, a validation procedure was carried out on the NFS-DSM model. All models 

were estimated over the ten year study period 2001-2010. The independent variable 

estimates are saved and then simulated over the same period using 2001 as the base 

year.  

 

The validation procedure is predominantly stable with a random element introduced 

through the stochastic selection of dairy exits limited by the prescribed exit rate of 

2% per annum. With the dairy, cattle and sheep livestock sectors accounting for 

almost three quarters of emissions from the agri-sector (EPA, 2013a) the accurate 
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estimation and plausible simulation of future stocking rates is a primary requirement 

in order to provide a plausible estimation of future spatial disaggregations of 

emissions from Irish agriculture. Results from the validation procedure for the 

simulation of stocking rates for the dairy cattle and sheep sectors are presented 

below with model validation outcomes for all models used in the NFS-DSM 

presented in Appendix C.  

 

In Figure 6.3 the red line displays the simulated mean annual values for dairy 

livestock units per hectare while the blue line represents the actual values reported in 

the NFS for the 10 year period 2001-2010. 

 

 

 
 

Figure 6.3 Dairy: Simulated vs. actual mean values for dairy livestock units per 

hectare 2001-2010 
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Table 6.6 shows that the NFS-DSM model returns a value of 1.957 livestock units 

per hectare in the final simulation year of 2010 with an actual value of 1.896 

reported in the NFS. This represents a 3.2% overestimation of the mean stocking rate 

for dairy with a mean absolute difference of 3.1% recorded over the 10 year period. 

 

Table 6.6 Simulated vs. actual mean values for dairy LUs per hectare 2010 

Year Simulated Actual Ratio sim/act 

2010 1.957 1.896 1.032 

 

In Figure 6.4 the red line displays the simulated mean annual values for cattle 

livestock units per hectare while the blue line represents the actual values recorded in 

the NFS for the simulation period. 

 

 
 

Figure 6.4 Cattle: Simulated vs. actual mean values for cattle livestock units per 

hectare 2001-2010 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Li
ve

st
o

ck
 u

n
it

s 
p

e
r 

h
e

ct
ar

e
 

Year 

Simulated

Actual



 172 

Table 6.7 shows a value of 1.359 livestock units per hectare in the final simulation 

year of 2010 with an actual value of 1.423 reported in the NFS. This represents a 

4.5% underestimation of the mean stocking rate for cattle with a mean absolute 

difference of just 2.5 % recorded over the 10 year period. 

 

Table 6.7 Simulated vs. actual mean values for cattle LUs per hectare 2010 

 

Year Simulated Actual Ratio sim/act 

2010 1.359 1.423 0.955 

 

 

In Figure 6.5 again the red line displays the simulated mean annual values for sheep 

livestock units per hectare while the blue line represents the actual values recorded in 

the NFS. 

 

 
Figure 6.5 Sheep: Simulated vs. actual mean values for sheep livestock units per 

hectare 2001-2010 
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Table 6.8 shows a value of 1.348 livestock units per hectare in the final simulation 

year of 2010 with an actual value of 1.603 reported in the NFS. This represents a 

16% underestimation of the mean stocking rate for sheep with a mean absolute 

difference of 7.1 % recorded over the 10 year period. While the annual simulated 

stocking rates for dairy and cattle are deemed to be reasonably accurate the 

simulated stocking rate for sheep indicates that the model is overestimating the 

negative annual trend.  

 

Table 6.8 Simulated vs. actual mean values for sheep LUs per hectare 2010 

Year Simulated Actual diff 

2010 1.348 1.603 0.84 

 

One possible explanation for this is that the gradual growth in the adjusted farm size 

(outlined in Section 6.3.1), is allocated pro rata to all farm enterprises. In instances 

where farms are operating a mixed enterprise system, the sheep enterprise may 

typically have the largest share of total farm size due to large areas under marginal 

grazing such as hillsides and commonage. Thus it may be unrealistic to increase the 

forage area devoted to sheep enterprises pro rata, with the implicit negative 

relationship between increases in sheep forage and the resulting simulated stocking 

rate. In order to preserve the stocking rate levels while also preserving the 

heterogeneity of outcomes an attenuation factor was introduced in the model where a 

change in stocking levels of no greater than 3% per annum would occur.  Figure 6.6 

illustrates the effect of this measure. 
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Figure 6.6 Sheep: Simulated vs. actual mean values for sheep livestock units per 

hectare 2001-2010 adjusted 

 

The attenuation measure to limit annual stocking rate changes to no greater than 3% 

per annum, results in improvement in the projected stocking levels. Table 6.9 shows 

the adjusted mean value of 1.518 livestock units per hectare in the final simulation 

year of 2010 with an actual mean value of 1.603 reported in the NFS resulting in a 

5% underestimation of the mean stocking rate for sheep over the ten year period.  

 

Table 6.9 Adjusted simulated vs. actual mean values-sheep LUs per hectare 

Year Simulated Actual diff 

2010 1.518 1.603 0.95 
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While the attenuation of the stocking rate model for sheep introduces an additional 

deterministic component into the model, it is submitted that its inclusion improves 

the likelihood of a more realistic outcome for mean stocking rate levels. While still 

allowing for some measure of heterogeneity among farm outcomes the inclusion of 

this attenuation measure will result in some smoothing of outcomes. The decision to 

include any attenuation measure involves balancing the preservation of heterogeneity 

with the preservation of reasonable national total outcomes for emissions.  

 

As outlined in Chapter 5, spatial information on emissions at the local level has been 

identified as a key requirement for the effective implementation of climate change 

policy, by increasing the ability of policy makers to create targeted mitigation 

strategies at sub-national/regional scales and track progress at the local level (Allman 

et al., 2004). Thus a key requirement in providing a spatial emissions model for 2020 

under a business as usual scenario is the preservation of regional and local level 

heterogeneity. However, this chapter also aims to assess total emissions projected 

under a business as usual scenario in the context of the aims of the FH2020 

programme.  With the sheep sector making up 5% of total national emissions, the 

marginal loss in heterogeneity in this sector can be justified in order to provide a 

more accurate estimate for future national sheep numbers providing the opportunity 

for a more accurate assessment of the change in total national agri-emissions under a 

business as usual scenario.  

 

6.5 Results 
 

Results are presented for the outcome of a business as usual (BAU) scenario for Irish 

agriculture for 2020. In terms of emissions, the overall trend is of a slow gradual 

decline in activity across all sectors with total livestock numbers falling for the dairy, 

cattle and sheep sectors. Coupled with declines in gross output per livestock unit this 

leads to a considerable reduction in gross value output for the cattle and sheep 

sectors despite marginal increases in the total adjusted farm size devoted to both 
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enterprises. The dairy sector however is projected to offset the reduction in stocking 

rate levels through increases in productivity and while it presents a largely static 

picture in terms of value output, total milk output is projected to increase by 

approximately 3%.  

6.5.1 Changes at Farm Level 

The following figures display the changes of mean output, stocking rates and 

changes in farm size at farm level. The black vertical line displayed on all trend 

graphics indicates the start of the simulated outcomes. All information to the left of 

the black line is actual data taken from the Teagasc National Farm Survey with all 

information displayed to the right is produced from the NFS-DSM. 

Stocking Rates and Productivity  

 

Figure 6.7 displays the mean stocking rates simulated for dairy, cattle and sheep 

respectively over the ten year period 2010-2010. For comparative purposes the graph 

also includes the actual change in the mean stocking rate recorded for the estimation 

years 2001-2010. The graph shows a gradual decline in stocking rates for both the 

dairy and cattle sectors with a more pronounced decline in stocking rate for the sheep 

sector.  For all graphs, data left of the vertical black line indicates observed data 

while date on the right represents the modelled outcomes from the NFS-DSM model 

  



 177 

 

 
 

Figure 6.7 Simulated mean stocking rates for dairy cattle and sheep 2010-2020 

under BAU scenario 

 

Table 6.10 summarizes the change in mean stocking rate values for all three sectors. 

The mean stocking rate for dairy falls from 1.896 LUs/hectare to 1.778 representing 

a decline of 6.2%. For cattle the mean stocking rate falls from 1.405 LUs/hectare to 

1.336 representing a decline of 4.9% while for sheep the mean stocking rate falls 

from 1.6 LUs/hectare to 1.348 representing a decline of 15.9%. 

 

Table 6.10 Simulated change in mean stocking rates for dairy cattle and sheep 

Year Dairy LU/Hectare Cattle LU/Hectare Sheep LU/Hectare 

2010 1.896 1.405 1.603 

2020 1.778 1.336 1.348 

% change -6.2 -4.9 -15.9 
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Gross Output 

 

In terms of mean gross output per livestock unit Figure 6.8 displays the mean gross 

output per livestock unit for the cattle and sheep sectors. The data shows a largely 

static picture for the cattle sector, with a consistent decline in the order of 1-2% per 

annum projected for the sheep sector.  

 

 
 

Figure 6.8 Simulated mean gross output for cattle and sheep 2010-2020 under 

BAU scenario 
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sheep falls from €333/LU to €301/LU at a rate of approximately 1-2% per annum 

representing an overall decline of 9.5%.  

 

Table 6.11 Simulated change in mean stocking rates for dairy cattle and sheep 

Year Cattle Gross Output/LU Sheep Gross Output/LU 

2010 €433.42 €332.95 

2020 €413.81 €301.02 

% change -4.523 -9.590 

 

 

With respect to dairy, given that the FH2020 target consists of a volume rather than a 

value target the annual mean change in litres per livestock unit is displayed in Figure 

6.9. The graph shows a gradual increase in productivity over the period with a per 

annum increase of approximately 0.5-1.0% over the period. 

 

 
Figure 6.9 Simulated mean litres per livestock unit for dairy 2010-2020 under 

BAU scenario 
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Table 6.12 displays the change in mean litres per livestock unit for the dairy sector 

from the base year 2010 to the end of the simulation period. Mean litres per livestock 

unit increases from 4874.7 litres/LU to 5279.6 litres/LU representing a overall 

increase of 8.3%.  

 

Table 6.12 Simulated change in mean litres per livestock unit for dairy  

Year Dairy Litres/LU 

2010 4874.678 

2020 5279.612 

% change 8.307 

 

For the crop sector, Figure 6.10 displays the change in crop gross output per hectare 

over the simulation period. The graph shows a steady decrease in crop gross output 

per hectare with a per annum decrease of approximately 3% over the period. 

 
 

Figure 6.10 Simulated mean gross crop output per hectare 2010-2020 under 

BAU scenario 
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Table 6.13 displays the change in mean crop gross output per hectare litres for the 

tillage sector from the base year 2010 to the end of the simulation period. Mean 

output per hectare decreases from €1,243/hectare to €1,016/hectare representing a 

overall decrease of 18.3%.  

 

Table 6.13 Simulated change in mean crop gross output per hectare  

Year Crop Gross Output/Hectare 

2010 €1,243 

2020 €1,016 

% change -18.293 
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Land Base 

Figure 6.11 displays the change in mean adjusted farm size from 2010-2020 

projected from the NFS-DSM model. The graph shows a slight gradual increase the 

mean adjusted farm size in line with the historical trend with a per annum increase of 

approximately 0.3% over the period. 

 

 
 

Figure 6.11 Simulated mean adjusted farm size (ha) 2010-2020 under BAU 

scenario 

 

Table 6.14 displays the change in mean adjusted farm size for the ten year simulation 

period. Mean adjusted farm size increases from an average of 35.9 hectares in 2010 

to 36.8 hectares in 2020 representing an overall increase of 2.3%.  
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Table 6.14 Simulated change in mean adjusted farm size per hectare  

 

Year Total Adjusted Farm Size (Ha) 

2010 35.952 

2020 36.800 

% change 2.361 

 

Family Farm Income 

 

Figure 6.12 displays the change in mean family farm income from 2010-2020 

projected from the NFS-DSM model. 

 

 

Figure 6.12 Simulated mean family farm income 2010-2020 under BAU 

scenario 
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While Table 6.15 below shows an overall increase in family farm income of 7.6% 

over the period, Figure 6.12 reveals that this increase is accounted for in the first 

year with the graph showing a subsequent annual decline in family farm income as 

gross output falls over time. It should be noted that family farm income is not 

directly modelled in the NFS-DSM but is re-constructed annually from simulated 

changes in outputs and costs across all sectors. As such, these results should be 

treated with a degree of caution. The explanation for the large increase and 

subsequent decrease of family farm income is directly related to the combined 

impact of the removal of the dummy effect in the first simulation year for all outputs 

and costs (Equation 6.2). 

 

 

Table 6.15 Simulated change in mean family farm income  

Year Mean Family Farm Income 

2010 €17,702 

2020 €19,050 

% change 7.618 

 

6.5.2 Total Agri-Output  

 

Figure 6.13 shows the change in total agri-output projected to 2020 by the NFS-

DSM model. In terms of dairy, the picture is largely static with decreases in stocking 

rate levels offset by productivity gains in terms of litres per livestock, marginal 

increases in total adjusted farm size and the unit price per litre projected by the 

FAPRI-Ireland model, resulting in an overall marginal increase in dairy output. This 

projection for the dairy sector is in contrast with significant declines in total gross 

output in the cattle sheep and tillage sectors.  
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Figure 6.13 Simulated total agri-output 2010-2020  
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Table 6.16 Simulated change in mean adjusted farm size per hectare 

Gross Output €M 

 Dairy Cattle Sheep Crops 

2010 2501.4 2036.1 251.6 308.6 

2020 2523.2 1744.5 162.4 161.7 

FAPRI  prices +3.6% +3.2% +3.3% -8.2% 

Change in 

output 

1% -14% -35% -48% 

 

 

In terms of total milk output Figure 6.14 shows an overall decrease in total milk 

output from 5.49 billion litres in 2010 to 5.173 billion litres in 2020. This represents 

a total decrease of 5.7% over the simulation period.  

 

 
Figure 6.14 Total milk litres (billions) 2010 and 2020 BAU 
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emissions from livestock account for approximately 75% of total agri-emissions in 

Ireland.  Emissions factors for methane (CH4) from enteric fermentation and manure 

management and for nitrous oxide (N2O) from manure management are applied to 

total herd numbers. 

 

Table 6.17 summaries the change in total livestock numbers for the dairy, cattle and 

sheep sectors over the simulation period. From a total of 1.553 million in 2010, the 

total number of dairy cows is projected to fall to 1.410 million in 2020 representing 

an overall decrease of 9.2% primarily due to a decline in stocking rates and a 

simulated rate of exit of 2% p.a. Cattle numbers are projected to fall slightly from 

6.913 million in 2010 to 6.516 million in 2020 representing an overall decrease of 

1.1% while total sheep numbers are anticipated to drop from 5.051 to 4.347 million 

representing a 13.9% decrease over the simulation period reflecting the fall in mean 

stocking rates outlined in Section 6.5.1. For both the cattle and sheep sectors the fall 

in livestock numbers is slightly less than anticipated from the results for changes in 

total agri-output outlined in Section 6.5.2.   

 

Table 6.17 Simulated change in total livestock numbers (millions) for dairy, 

cattle and sheep 2010-2020 

 

Year Tot. Dairy No. Tot Cattle No. Tot. Sheep No. 

2010 1.553 6.591 5.051 

2020 1.410 6.516 4.347 

% change -9.2 -1.1 -13.9 

 

 

As outlined in Section 6.3.1, this can be explained by the following. In the NFS-

DSM model, animal numbers are recalculated year on year reflecting changes in the 

stocking rate and pro-rata changes in the total area apportioned to each enterprise 

through increases in the total adjusted farm size. Additionally in the case of dairy, 

when a dairy farm exits, the total area vacated by the dairy enterprise is assumed to 

be consumed by the remaining enterprises on the farm. It is transferred pro-rata to 
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the remaining enterprises on the farm resulting in an increase in livestock numbers 

where cattle and sheep enterprises remain.  

 

Figure 6.15 summaries the change in total agri-emissions over the simulation period, 

showing an overall 6% decline from 19.881 Gg of CO2eq in 2010 to 18.650 Gg of 

CO2eq in 2020. 

 

 
Figure 6.15 Simulated total CO2eq agri-emissions (Gg) 2010-2020 

 

Table 6.18 outlines the change in total emissions by emissions category with total 
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23.051Mt to 20.978Mt, a decrease of 8.9%. Using the relevant global warming 

potential factors for methane (21) and nitrous oxide (310) respectively, the model 

estimates an overall decrease of 1.232 Gg of CO2eq, representing a 6.6% reduction.  
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Table 6.18 Summary of changes in total emissions by emissions category 

methane and nitrous oxide emissions (Gg) 2010-2020 

 

Category 2010 2020 %change 

Methane (CH4)(Mt) 606.443 578.398 -4.624 

Nitrous Oxide (N2O) (Mt) 23.051 20.978 -8.994 

Total CO2eq Emissions (Gg) 19.881 18.650 -6.60 

Carbon Dioxide (CO2) from Diesel. (Mt.) 447.13 421.827 -5.659 

Carbon Dioxide (CO2) from Elec. (Mt.) 285.488 300.306 5.191 

Tot. CO2eq Emissions (Gg) inc Elec & Diesel 20.613 19.371 -6.026 

 

 

As outlined previously in Chapter 5, the model includes the capacity to estimate 

emissions from electricity and diesel usage. Table 6.17 shows carbon dioxide 

emissions from diesel are projected to fall from 447.13mt in 2010 to 421.83Mt in 

2020, a decrease of 5.6% broadly reflecting decrease output among the cattle, sheep 

and tillage sectors across all enterprises. Conversely a 5.2% increase in carbon 

dioxide emissions due to electricity usage is projected with emissions rising from 

285.5 Mt in 2010 to 300.3 Mt in 2020 reflecting the increase of milk output of 3% in 

in the dairy sector. The results for both diesel and electricity usage should be 

interpreted with caution however as they are not modelled directly in the NFS-DSM 

model and are calculated based on historical shares observed in 2010 and the  

projected changes in overhead costs outlined above (Section 6.3.1) 

 

6.5.4 Spatially Disaggregated Emissions Outcomes for 2020 

 

Outputs from the NFS-DSM model are spatially disaggregated to the ED level using 

the stocking rate adapted SMILE-NFS spatial microsimulation methodology outlined 

in Chapter 5 and updated to 2010. Spatial emissions outcomes for Irish Agriculture 

for 2020 are presented below. Figures 6.16 and 6.17 present CO2eq emissions on a 

per hectare basis for over 3000 electoral districts for 2010 and 2020. As anticipated 

the spatial pattern of emissions for 2020 is consistent with pattern for 2010 with 
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broadly speaking a clear division between the traditionally more productive South 

and East regions and the traditionally subsistence based farming associated with the 

North and West.  

 

While the overall reduction of emissions is hard to discern from Figures 6.16 and 

6.17, Figure 6.18 displays the ratio of change of CO2eq emissions per hectare for 

each electoral district over the period of the simulation from 2010-2020.  

 

Figure 6.18 reports that all EDs experience a reduction in emissions per hectare with 

a large amount of (yellow) EDs in the midlands, west and northwest experiencing the 

lowest level of reduction of between 2-7%. This is most likely explained by cattle 

being the dominant systems in those areas. A gradual decrease in the mean stocking 

rate reported in Section 6.5.1 coupled with the absorption of land from dairy exits 

has resulted in overall cattle numbers declining by just 1.1% (Table 6.16). Thus in 

areas where cattle systems are more dominant the reduction in overall emission per 

hectare is likely to be similarly low.  

 

Figure 6.18 also indicates more pronounced changes in areas traditionally associated 

with dairying, tillage and in the more peripheral areas. The large 9.2% reduction in 

overall dairy livestock numbers reported in Table 6.16 occurs as a result of declining 

stock rates and an exit rate of 2% p.a. from the sector resulting in a larger reduction 

in emission. In areas associated with tillage such as Meath and Louth in the North 

East and Carlow Kilkenny and Laois the decline in tillage activity reported in the 

sector in Section 6.5.2 translates into lower levels of synthetic fertilisers associated 

with tillage production. The areas trade associated with dairy in the South and South-

East and tillage in the North East and South (Carlow, Kilkenny and Laois) contain a 

considerable number of (green) EDs reporting a reducing in emissions of between 8-

11%.   
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                    Figure 6.16 CO2eq Emissions per Hectare 2010      

              Figure 6.16 CO2eq emissions per hectare 2010      Figure 6.17 CO2eq emissions per hectare 2020 
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Figure 6.18 Ratio change of total CO2eq emissions per hectare at the electoral 

district level from 2010 to 2020. 
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There are a small number of (light blue) EDs displaying larger reductions of between 

12-29%, with a small number of very small (in terms of farm area) outlier EDs 

reporting more than a 30% drop in emissions. Reductions of between 12-29%, may 

occur in EDs where the effects of both a decrease in dairy cattle numbers and a 

decrease in tillage output combine to a substantial reduction in emissions, or in more 

peripheral and marginal upland areas where sheep is the dominant enterprise and a 

more pronounced reduction in emissions is witnessed due to falling sheep stocking 

rates. The 3 or 4 EDs reporting reductions of great than 30% are extremely small 

EDs with a small number of farms, and have experienced a one or more exits from 

the dairy sector in the simulation period.  

 

Figure 6.19 shows the distribution of ED ratio of emissions changes per hectare from 

2010 to 2020, with the blues lines representing the natural (jenks) breaks used to 

display the data spatially in Figure 6.16. The mean ED ratio of emissions change per 

hectare from 2010 to 2020 was 0.92 or a reduction in emissions of 8%. The standard 

deviation from the mean was 0.02 with the vast majority of EDs experiencing 

emissions per hectare reductions of between 4 and 12%. 

 

 

Figure 6.19 Distribution of ED ratio of emissions changes per hectare from 2010 

to 2020. 
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6.6 Conclusions  
 

This chapter outlines the construction of a dynamic spatial microsimulation model 

for the Teagasc National Farm Survey, its simulation under a business as usual 

scenario following historical trends and its use in presenting a spatially 

disaggregated emissions map for Irish agriculture in 2020. Overall, the model 

estimates a gradual decline in agricultural activity over the 10 year simulation period 

with a concomitant marginal reduction in associated emissions.  

 

In terms of implications for current agri-policy, the results indicate that the 

achievement of the headline FH2020 target of a 50% increase in milk volume is 

unlikely without a significant shift in historical trends witnessed in the sector. 

Similarly the target to increase the value of the cattle sector by 20% is unlikely to be 

met without some combination of a significant shift in future prices and/or 

productivity trends. 

 

In terms of the impacts on emissions associated with agriculture the NFS-DSM 

model projects an overall decrease in CO2eq of 6.6%. Agriculture currently accounts 

for almost 43% of non-ETS sector emissions. While a specific target for emissions 

for agriculture has not been declared, it is likely that this reduction does not represent 

the required contribution from agriculture if Ireland is to meet its commitment to 

reduce non-ETS sector emissions by 20% by 2020.  

 

These results should, however, be treated with caution as there are a number of 

limitations to the NFS-DSM model which may result in the under estimation of 

future agricultural output. In particular, the simulation of productivity increases in 

the dairy sector in line with historical trends may be naïve in the face of the abolition 

of the milk quota in 2015. As outlined in Section 6.3.3 it is extremely difficult to 

predict what is likely to happen in the post quota era.  

 

Additionally in terms of the other livestock sectors the simulation of value estimates 

(as opposed to a volume estimates) for cattle and sheep respectively is a significant 
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limitation in the model. While physical productivity can be modelled in the dairy 

sector and informed by the unit price, detailed physical productivity data in terms of 

kg/lu for the cattle and sheep sectors are not available in the NFS. Thus estimates 

carried out for gross value output present a difficulty in that they are generally highly 

and strongly correlated with the unit price which presents a methodological difficulty 

in that the true effect of unit price increases on  productivity response is hard to 

quantify.  

 

In summary, a question remains with regards to the uncertainty in the future growth 

paths for dairy as a result of the abolition of quota in 2015. It is possible that a large 

proportion of dairy farms are currently under producing due to quota constraints and 

that the abolition of quota in 2015 will result in a substantial increase in output. The 

nature of that increase will have knock-on effects for emissions outcomes with 

higher productivity rates having the potential to offset emissions increases due to an 

overall increase in activity. It is submitted that there is a requirement for a multi-

scenario analysis of potential growth paths for the dairy sector in a post quota era. 
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CHAPTER SEVEN: FOOD HARVEST 2020 TARGETS IN 

THE IRISH DAIRY SECTOR: ESTIMATING FUTURE 

DAIRY FARM LOCATIONS AND RESULTANT 

EMISSIONS OUTCOMES 

 

The following chapter describes the construction of a multi-scenario analysis for the 

expansion of the Irish dairy sector and its use in predicting the spatial pattern of new 

entrants required in order to meet the targets outlined in the Food Harvest 2020 

(FH2020) Programme. By adapting the National Farm Survey Dynamic Spatial 

Microsimulation Model (NFS-DSM) described in Chapter 6, three alternative 

productivity scenarios for the expansion of the dairy industry are simulated to 2020 

and compared against the business as usual case. For all four expansions scenarios, 

the total milk output is calculated and compared to the target outcome informing the 

number of additional new entrants required to meet target. The location of these 

selected new entrants is then projected spatially and disaggregated to electoral 

district level using the SMILE-NFS spatial microsimulation model. The resultant 

emissions outcomes are mapped using the methodology described in Chapters 4 and 

5 and compared at an aggregate level to assess the implications for Ireland’s 2020 

emission obligations under the EU’s Climate Action and Renewable Energy (CARE) 

Package. The chapter concludes with an assessment of the level of structural change 

required in the dairy sector in order to meet target.   

7.1 Introduction  
 

Attaining FH2020 targets has been identified as a key aspect of the Irish 

Government’s strategy towards economic recovery following one of the largest 

economic recessions in the state’s history (Irish Government, 2011). However, while 

the economic benefits of attaining Food Harvest 2020 are significant for both the 

agricultural sector and the wider economy, the possible consequences for Ireland’s 

international commitments to reducing greenhouse gas emissions must also be 
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considered. As outlined in Chapters 5 & 6, with the dairy sector contributing to 22% 

of agricultural emissions and circa 9% of total emissions from the non-ETS sector, 

key questions in terms of Ireland’s EU 2020
34

 commitments are; which development 

paths are considered the most likely and what are the resultant emissions outcomes 

associated with those paths? The conclusions arising from these questions have 

important implications in terms of resolving the apparent policy impasse between the 

expansionary policies outlined in the FH2020 programme and Ireland’s 

commitments to emissions reductions.  

 

In investigating potential development paths the FAPRI-Ireland model (Binfield et 

al., 2008) has been used to estimate future volumes and values for agricultural inputs 

and outputs under the FH2020 programme. By modelling the agricultural production 

volume required to reach FH2020, and determining the associated costs and volumes 

of input usage, the FAPRI-Ireland model identifies the critical market conditions 

required in order for targets to be achieved (Donnellan & Hanrahan, 2011a). 

Additionally, Miller et al. (2013) consider the knock-on benefits for the wider 

economy of achieving the FH2020 growth targets by studying the linkages between 

agriculture and other economic sectors using a social accounting matrix.  

 

A small number of studies have investigated the consequences for agri-emissions as 

a result of reaching the FH2020 targets (Donnellan & Hanrahan 2011; Curtis, 2012) 

but these studies have focused on potential emissions outcomes at the aggregate level 

and a spatial dimension to the future outcomes for agri-emissions is notably absent in 

the current literature.  

 

As outlined in Chapter 2 the availability of resolved spatial information on 

greenhouse gas emissions has been identified as a key determinant in the effective 

implementation of climate change policy at the local level (Allman et al., 2004). The 

potential also exists for such information to contribute to the development and 

                                                 
34

 Ireland has committed to reducing  non-ETS emission by 20% by 2020 under the terms of the  EU’s 

2008 Climate Action and Renewable Energy (CARE) Package (2009/29/EC) (EPA, 2009) 
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subsequent adaptation of policy which encourages more emission efficient solutions 

at a local level as well as enabling integrated planning for future mitigation options.   

 

There is, however, a significant gap in the literature with regards to the spatial 

disaggregation of the potential future outcomes for dairying in Ireland. The 

restructuring and possible expansion of the dairy sector to meet target may, over 

time, result in considerable shifts in the spatial concentrations of dairying activity. 

This, in turn, will have important consequences on the future location of emissions, 

not only those attributable to the dairy herd but also in terms of the emissions 

associated with transportation to processing facilities as identified by Quinlan et al. 

(2006). Previous studies on the expansion of the dairy sector also lack a spatial 

element in relation to the potential location of future dairy sector entrants. The 

number and location of potential new entrants will also have important consequences 

for emissions from dairying in the future and could inform future mitigation 

strategies (Quinlan, 2013). 

 

As part of the FH2020 programme, a 50% increase in milk output has been targeted 

specifically for the dairy sector (Department of Agriculture Fisheries & Food, 2010). 

If realised, this significant expansion of Irish dairy production will require some 

combination of increased productivity per cow and/or an increase in the active agri-

land base and is likely to require a significant number of new entrants to the sector 

(Läpelle & Hennessy, 2012). Considering the primary determinants of milk output in 

conjunction with different levels of efficiency improvements, a 50% increase in milk 

output could be achieved along a number of different potential development paths 

each with a different outcome for agri-emissions. 

 

The mapping of a multi-scenario analysis for 2020 for the dairy sector provides an 

opportunity for policy makers to identify future such mitigation opportunities at 

appropriate spatial scales. It also presents the opportunity to provide advanced 

insight into the potential future locations of new dairy entrants and could inform 

future planning decisions in relation to the optimal location of future processing 
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facilities, the provision of which has been identified as a key requirement (Irish 

Dairy Board, 2010). 

 

Using the NFS-DSM model outlined in Chapter 6, a multi scenario-analysis for the 

expansion of the dairy industry is investigated. Analysis of the spatial distribution of 

potential new entrants will be undertaken and the consequences for future emissions 

from agriculture as a result of meeting the FH2020 targets will be assessed.  

7.2 The Irish Dairy Sector 
To inform the design and selection of future expansions scenarios for the dairy sector 

a review of the recent trends in the dairy sector is required. This section describes the 

historical trends recorded in the Teagasc National Farm Survey for the Irish dairy 

sector over the ten year period 2001-2010. This section also outlines the challenge 

faced by the industry in meeting the targets outlined in the FH2020 programme and 

draws on the work of Läpelle and Hennessy (2012) to inform the development of 

future expansions scenarios. 

7.2.1 Recent Trends   

 

Irish dairy farms have been involved in considerable structural change in recent 

years. Figure 7.1 shows the total weighted number of farms recorded in the Teagasc 

National Farm survey as operating a dairy enterprise has fallen by over 40% between 

2001 and 2010.  
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Figure 7.1 Total number of farms with a dairy enterprise 2001-2010 

(Source: Teagasc NFS) 

 

Despite the decline in dairy farm numbers, the level of total milk output has been 

maintained, averaging 5.4bn litres over the 10 year period. This has primarily been 

due to increases in productivity and increased specialisation on those farms 

continuing to operate a dairy enterprise. Figures 7.2-7.6 profile the changes at farm 

level in terms of mean values for milk output and its constituent determinants (i.e. 

productivity, stocking rate and forage area) for the Irish dairy sector from 2001 to 

2010. 
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Figure 7.2 shows the mean values for annual milk output per farm from the dairy 

sector over the ten year period 2001-2010, increasing from 150,000 litres p.a in 2001 

to over 260,000 litres in 2010, representing an increase of 66.9%  mean output over 

the period with an average growth rate of approximately 6.1% per annum.  

 

 

Figure 7.2 Mean annual milk output (Litres ‘000s) per farm 2001-2010  

(Source: Teagasc NFS) 
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Figure 7.3 shows the trend in productivity per cow in terms of litres of milk per 

livestock unit over the 10 year period. Mean productivity per dairy cow has 

increased from an average of 4,067 litres per livestock unit in 2001 to 4,874 litres in 

2010, an increase of 19.8%, or approximately 2.3% per annum.  

 

 

Figure 7.3 Dairy litres per livestock unit 2001-2010 

(Source: Teagasc NFS) 
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The changes in mean stocking rate shown in Figure 7.4, present a largely static 

picture over the 10 year period with mean stocking rates virtually unchanged from 

1.890 livestock units per hectare in 2001 to 1.896 in 2010. The annual mean stocking 

rate does however fluctuate annually around a mean 1.87 for the period. This 

fluctuation is likely due to a management response when faced with year to year 

adverse environmental
35

 or market conditions such as the sharp fall in milk prices in 

2009. The use of stocking rate as a management tool for milk production, pasture 

production and profitability has been well documented by Macdonald et al. (2008). 

 

 

Figure 7.4 Dairy livestock units per hectare 2001-2010 

(Source: Teagasc NFS) 
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If we consider the mean share of total farm size under dairy, we can see that in 

addition to increased productivity, the increase in mean farm milk output over the 

period is also attributable to an increase in the mean area per farm devoted to dairy 

over the same period. Figure 7.5 shows an increase in the mean agricultural area 

devoted to dairy from 19.5 hectares in 2001, to 28.2 hectares in 2010, representing 

an increase of 44%.   

 

 

Figure 7.5 Mean farm area devoted to dairy (hectares) 2001-2010  

(Source: Teagasc NFS) 
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This represents a shift in the average share of the total adjusted farm size devoted to 

dairy from 50% in 2001 to 61% in 2010, which is displayed in Figure 7.6. 

 

 

Figure 7.6 Mean share of adjusted farm size (%) devoted to dairy enterprise  

(Source: Teagasc NFS) 
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In terms of total agricultural area, the area under dairy has fallen from 641,995 

hectares to 563,101 hectares representing a fall of 12% from 2001 to 2010. However 

the restructuring of the dairy sector has resulted in the level of milk production being 

maintained at around 5.5bn litres per hectare (Figure 7.7).  

 

 

Figure 7.7 Total national milk output (Billion Litres) 2001-2010  

(Source: Teagasc NFS) 
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7.2.2 Food Harvest Target for Dairy   

 

In the BAU scenario outlined in Chapter 6, despite a reduction in the rate of exit 

from the dairy sector as the rate of restructuring decreases (Section 6.3.2), total milk 

output decreases by 5.7% from 5.490bn litres in 2010 to 5.173bn litres in 2020. This 

projected decrease in output is based on previous historical trends with respect to 

productivity, stocking rates and the total adjusted farm size. Figure 7.8 outlines the 

scale of the challenge for the industry with a target of 7.254 bn. litres set for 2020 

based on milk output for the base year of 2008
36,37

.   

 

 

 

Figure 7.8 Distance to milk target under BAU scenario from NFS-DSM model 

 

                                                 
36

 The reference year for the purpose of the calculation of FH2020 targets is 2008. 
37

 The weighted NFS calculation of the target milk output for 2020 based on the base year of 2008 

was compared to the FAPRI-IRELAND model and found to be within 1% and thus deemed to be a 

reasonable estimation for the purposes of estimating the distance to target. 
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Under the business as usual scenario outlined in Chapter 6 overall milk output is 

projected to fall by approximately 6%. This represents a substantial shortfall in the 

production levels required to meet the 2020 target. However a significant question 

mark which remains over the future expansion of the Irish dairy sector is the impact 

of the abolition of the milk quota in 2015 and its impact on productivity (Section 

6.3.3). 

 

At an aggregate level, previous studies such as Binfield et al. (2007) and Donnellan 

et al. (2009) have attempted to assess the impact of a progressive increase and 

ultimate abolition of quota in 2015 on the volume and value of milk output using 

various estimates of quota rent
38

. At farm level, Hennessy (2007) investigates mean 

production outcomes and the potential resultant impacts on family farm incomes 

from the scenarios proffered by Binfield et al. (2007). Further, Läpelle and Hennessy 

(2012) conduct a scenario analysis of farm viability under different productivity 

growth outcomes in the post quota period. For all scenarios, Läpelle and Hennessy 

(2012) estimate that the dairy target is unlikely to be reached and that to do so would 

require the addition of a varying number of additional model
39

 farms in order to 

achieve the dairy target for FH2020. 

 

With the effect of the abolition of quota on future productivity in the dairy sector 

uncertain, the NFS-DSM (Dynamic Spatial Microsimulation) model outlined in 

Chapter 6 presents the opportunity to investigate the spatial impact of alternative 

productivity scenarios and resultant emissions arising from the abolition of quota in 

2015. Additionally, in contrast with the model farm approach taken by Läpelle and 

Hennessy (2012), the NFS-DSM model provides a basis for the selection of new 

entrants from within the existing population of non-dairy farms. A 50% increase in 

milk output could be achieved along a number of different possible development 

pathways, using different combinations of the primary determinants of output in 

conjunction with efficiency improvements and a number of new entrants.  

                                                 
38

. Quota rent refers to an estimation of the production levels that would occurred if the quota system 

was not in place. 
39

  The model farm was defined as a 100 livestock unit dairy enterprise on good soils with stocking 

densities of 2.6 LU/ha. 
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7.3 Methodology 
 

The study of four dairy productivity scenarios as a result of the abolition of quota in 

2015 is undertaken using the NFS-DSM model framework outlined in the previous 

chapter. This methodology introduces a new dimension, and expands on the previous 

work of Hennessy (2007) and Donnellan and Hanrahan (2011a) by providing a 

spatial disaggregation of potential future dairying activity and resultant emission 

outcomes following the abolition of quota. In addition, the identification of potential 

new entrants within the existing farm population and their spatial location progresses 

the literature from the standard model farm entrant approach taken by Läpelle and 

Hennessy (2012). 

 

The data, methodology and simulation process for the NFS-DSM model has been 

outlined previously in Section 5.4. What follows is a brief synopsis of a two stage 

modelling process, which involves the simulation of four alternative productivity 

growth scenarios using the NFS-DSM model and the use of a logistic regression 

model to rank and select the number of non-dairy farms required to meet the FH2020 

dairy targets.  

7.3.1 Productivity Scenarios 

 

The model employs four alternative productivity scenarios for the dairy sector which 

are summarised in Table 7.1 below. For each scenario, assumptions relating to the 

rate of productivity change are made for the pre-abolition period (2010-2014) the 

immediate post-abolition period (2015-2016) and the remaining post abolition period 

(2017-2020). The design of each productivity scenario was informed by the work of 

Läpelle and Hennessy (2012) and by conversations with dairy experts within 

Teagasc, the Irish agricultural advisory authority.   
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Table 7.1 Productivity scenarios for the abolition of milk quota 

Scenario 1 Productivity changes at the historical modelled rate (BAU) 

Scenario 2 Productivity increases at 1% per annum, rising to 3% immediately in 

the post quota years of 2015 & 2016, returning to 1% thereafter 

Scenario 3 Productivity increases at 2% per annum, rising to 3% immediately in 

the post quota years of 2015 & 2016, returning to 2% thereafter 

Scenario 4 Productivity increases at 2% per annum, rising to 4.5 % immediately 

in the post quota years of 2015 & 2016, returning to 2 % thereafter 

 

For all scenarios, it is assumed that annual productivity will increase by between 1-

2% given an annual 1% quota increase per annum (p.a) designated for Ireland 

through the EU Health Check Agreement (Council Regulation, 2009). This assumes 

the take up of additional quota and the continued restructuring of the dairy sector in 

the pre-quota period.  

 

Scenario 1 is a business as usual scenario, with productivity changes modelled at the 

historical rate. Scenario 2 assumes that productivity increases at 1% p.a. annum, 

rising to 3% p.a. in the two years post quota abolition before returning to 1% p.a. 

thereafter. Alternatively, Scenario 3 assumes productivity increases of 2% p.a., again 

rising to 3% p.a. in the two years post quota abolition before returning to 2% p.a. 

Scenario 4, assumes the highest level of productivity increase with a rise of 2% p.a. 

assumed for the pre-abolition period, rising to 4.5% p.a. in the two years post 

abolition before finally returning to 2% p.a.  For all scenarios, the baseline 

assumptions relating to the rate of exit from the dairy sector were maintained with an 

exit rate of 2% per annum for the pre-abolition period falling to 1% following the 

abolition of quota restrictions post 2015.  

 

It should be noted that while, Läpelle and Hennessy (2012) investigated economic 

outcomes for dairy farms from a number of milk price scenarios for 2020, the focus 

of this thesis is on the consequences for spatial agri-emissions resulting from the 

restructuring of dairying activity in Ireland and the potential emissions outcomes 
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arising from the meeting of targets. As such, price projections for 2020 from the 

FAPRI-IRELAND model outlined in Chapter 6 were maintained for all outputs 

across all four scenarios.  

 

7.3.2 Two-Stage Modelling Process 

 

In order to estimate future dairy farm locations and resultant emissions outcomes as 

a result of meeting targets in the Irish dairy sector a two stage modelling process is 

undertaken. 

Stage One: The Simulation Process 

 

The NFS-DSM model simulates agricultural outcomes for the national farm 

population for 2020. The weighted Teagasc National Farm Survey is dynamically 

simulated forward by using a system of equations designed to predict structural and 

productivity changes year on year, from which each farms gross output, net margin 

and family farm income can be recalculated. A mixture of random and fixed effects 

models are estimated on the primary determinants of output and on direct and 

overhead costs with the rate of time variant technological progress captured using the 

nominal year value as an explanatory variable. These models are then used to 

simulate outputs and costs forward in time. As the model simulates forward, the year 

and the age of the holder is increased year on year while input and output prices are 

recalculated on the basis of price projections from the FAPRI-Ireland model 

(Binfield et al., 2008). Exits from the dairy sector over the estimation period 2001-

2010 are modelled and simulated from the base year of 2010 to 2020.  The modelled 

rate of exit, together with projections for changes in yield, intensity of production 

and the land base, produces a baseline business as usual (BAU) scenario for all 

sectors. 

 

In addition to the baseline scenario, due to the uncertainty surrounding the effect of 

the abolition of quota in 2015, three alternative productivity growth scenarios are 

simulated for the dairy sector. The resultant total milk yield is then calculated for all 
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four scenarios and compared with the FH2020 dairy target outlined in Section 7.2.2. 

The model then calculates the distance or shortfall to achieving the FH2020 dairy 

target based on the total milk production simulated for each scenario.  

 

Stage Two: The Selection of New Entrants 

 

The number of new entrants required is dependent on the projected output from 

existing farms which are simulated to remain in dairy until 2020 under all four 

productivity growth scenarios. The distance or gap between the projected output and 

the target output determines the number of farms that are required to enter the sector 

by 2020 under each scenario modelled in stage one. The amount of farms simulated 

to enter is also dependent on assumptions related to the estimated output from new 

entrants. New entrants are assumed to devote at least 65% of the farm area to dairy 

and are assumed to be specialist dairy with the remaining farm area allocated pro rata 

to the existing enterprises. The total potential milk output is simulated by applying 

the output estimates for productivity and stocking rate from existing dairy farms to 

all non-dairy farms.   

 

Due to the extremely small number of farms entering the dairy sector in the period of 

the panel analysis, the model simulates entry by selecting farms who characteristics 

most closely match existing dairy farms. The probability of being a dairy farmer is 

estimated based on farm characteristics such as region, soil type, farm size, land 

value, the age of the farm holder and the existing stocking rate. The estimates are 

used to rank the non-dairy farms in terms of the probability of being a dairy farm (it 

is assumed that those farms with characteristics most similar to existing dairy farms 

are the most likely to enter). The model then adds farms sequentially in order of 

those most likely to enter and incrementally recalculates total output. The process is 

repeated until the target total milk output is reached with the required number of new 

entrants selected.   
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Each alternative expansion scenario is disaggregated using the SMILE-NFS spatial 

microsimulation model, with resultant emissions outcomes and the spatial 

disaggregation of predicted new entrants presented at the electoral district level. 

 

7.3.3 Probability of Entering Dairy 

 

Läpelle and Hennessy (2012) note that even in their most optimistic price and 

productivity scenarios, a substantial number of new entrants would be required to 

meet the milk volume target. However, the authors’ use of a homogenous model
40

 

farm to determine the number of additional entrants does not take into account the 

likely heterogeneous nature of those new entrants; given that they will almost 

certainly come from within the existing farm population. Additionally, the likely 

location of those new entrants will have important impacts in terms of the 

consequences for spatial emissions, not only in terms of the emissions associated 

with changes in dairying activity but also in terms of the emissions offset from other 

sectors as a result of a move into dairy.  

 

Studying extended grazing on Irish dairy farms, Läpelle et al. (2012) note the 

importance of environmental characteristics such as region and soil type on the 

economic characteristics related to dairy farming. An examination of the National 

Farm Survey over the estimation period reveals that dairy farms are typically located 

on larger farms, with better soils and typically the more productive south and south-

west regions of Ireland (Teagasc, 2011). Given the relative labour intensive nature of 

the dairy industry, the farm holder’s age and the availability, and use of unpaid 

labour hours on the farm is also assumed to be a key factor influencing the likelihood 

of operating a dairy enterprise (Egan, 2013). 

 

To provide a reasonable estimate of the number, nature and location of new entrants, 

the question of what farm characteristics are associated with existing dairy farms is a 

crucial concern. While there is a subtle distinction between the probability of being a 

dairy farmer and the probability of entering dairy, due to the extremely small number 

                                                 
40

 defined as a 100 livestock unit dairy enterprise on good soils with stocking densities of 2.6 LU/ha 
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of farms entering the sector in the period of analysis it is assumed that those non-

dairy farms/farmer holders, whose characteristics most closely match existing dairy 

farms, are the farms that are deemed the most likely to enter the dairy sector.  

 

In order to calculate predicted probabilities for non-dairy farms entering the dairy 

sector a pooled logistic regression on the probability of having a dairy enterprise is 

performed on the NFS for the period 2001-2020 taking the form of:  

 

  [
 

   
]             (7.1) 

 

Where ln[p/(1-p)]  = log odds ratio of having a dairy enterprise. 

 

Estimates are calculated for the probability of being a dairy farm based on farm 

characteristics such as region
41

, soil
42

 type, farm size and the existing stocking rate 

with farm holder characteristics relating to the availability to supply the necessary 

labour requirements and the membership of the age of the national agricultural 

advisory service also included. Table 7.2 summarises the results from a pooled 

logistic regression on the probability of having a dairy enterprise. 

 

 

 

 

 

 

 

 

 

    

                                                 
41

 Region 1: Louth, Leitrim, Sligo, Cavan, Donegal, Monaghan Region 2: Dublin Region 3: Kildare, 

Meath, Wicklow Region 4: Laois, Longford, Offaly, Westmeath Region 5: Clare, Limerick, Tipperary 

North Region 6: Carlow, Kilkenny, Wexford, Tipperary South, Waterford Region 7: Cork, Kerry 

Region 8: Galway, Mayo, Roscommon 
42

 Soil 1 = Good, Soil 2 = Fair, Soil 3 = Poor 
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Table 7.2 Coefficients for probability of having a dairy enterprise (hasdairy) 

Independent 

Variable 

Description hasdairy (stnd.error) 

landvalue_ha (Land Value Per Hectare) -.0098488 (.0462581) 

farmsize1_<10 (Farm Size Less than 10 ha.) -0.669
***

 (0.183) 

farmsize2_10-20 (Farm Size 10-20 ha.) -0.762
***

 (0.104) 

farmsize4_30-50 (Farm Size 30-50 ha.) 0.463
***

 (0.0682) 

farmsize5_50-100 (Farm Size 50-100 ha.) 0.660
***

 (0.0685) 

farmsize6_100+ (Farm Size over 100 ha.) 0.170
*
 (0.0867) 

ageofholder (Age of farm Holder) 0.0619
***

 (0.00941) 

ageofholder2 (Age of farm Holder Squared) -0.000940
***

 (0.0000883) 

teagasc_member (Member of Teagasc) 0.521
***

 (0.0420) 

labour_hrs (No. of non-Paid Labour Hrs)  1.243
***

 (0.0479) 

stock_rate (Stocking Rate) 1.991
***

 (0.0398) 

year (time trend) -0.0184
***

 (0.00387) 

region1  1.774
***

 (0.0939) 

region2  0.873
**

 (0.275) 

region3  1.099
***

 (0.0994) 

region4  1.002
***

 (0.101) 

region5  2.002
***

 (0.101) 

region6  1.753
***

 (0.0919) 

region7  2.744
***

 (0.0927) 

soil1  0.390
***

 (0.102) 

soil2  0.219
*
 (0.104) 

off_farm_inc (Presence of Off-Farm Inc.) -1.323
***

 (0.0589) 

_cons  28.80
***

 (7.760) 

N  22185  

pseudo R
2
  0.416  

Standard errors in parentheses 
*
 p < 0.05, 

**
 p < 0.01, 

***
 p < 0.001 

 

 

The model reports that farms in the larger size categories are more likely to operate a 

dairy enterprise relative to the reference category (farm size of between 20-30 

hectares) while smaller farms are estimated to be less likely. As expected, farms 

operating on the high (soil1) and medium (soil2) soil categories are predicted to be 

more likely to operate a dairy enterprise relative to those operating on the poorest 

(soil3) soil category. With regard to region, the coefficients are reported with respect 

to region 8,
43

 the poorest in terms of current milk production. As anticipated, 

positive and significant coefficients are reported for regions more typically 

associated with dairying. The amount of unpaid labour (labour_hrs) supplied to the 

                                                 
43

 Mayo, Roscommon, Galway    
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farm is also positively and significantly associated with the probability of having a 

dairy enterprise while the presence of an off-farm income (off_farm_inc) is 

significantly negatively associated. A significant negative association is also reported 

for the time trend (year), however this is likely to be simply reflecting the effect of a 

reducing number of dairy farms over the estimation period as a result of exits from 

the sector. The collective farm-level stocking rate was both found to significantly 

and positively associated with the presence of a dairy enterprise possibly reflecting 

the farms existing land carrying capacity for intensive production.  Membership of 

the Teagasc advisory service was also found to be positively and significantly 

associated with being a dairy farmer.  

 

The findings of McDonald et al., (2012; 2013) in examining the profile of new 

entrant applicant farmers appear to support the results relating to region, farm size 

and the availability of unpaid labour. McDonald et al. (2012) observe a concentration 

of new entrant applicants in regions traditionally associated with dairy and note that 

new entrant applications typically came from younger farmers on larger farms, with 

younger farmers able to supply higher amounts of unpaid on-farm labour. It should 

be noted however that these profiles were constructed from information on 

applicants to the new dairy entrant scheme (McDonald et al., 2012) and do not 

represent observed dairying activity.  

 

The estimates reported in Table 7.2 are used to rank non-dairy farms in terms of the 

probability of being a dairy farm. The model then adds farms sequentially in order of 

those most likely to enter and incrementally recalculates total output. The process is 

repeated until the target total milk output is reached with the required number of new 

entrants selected. In contrast to the simulation of exit from the sector discussed in 

Section 6.3.2 a stochastic selection component to the model is purposely omitted as 

those farms who are deemed most likely to enter dairy from the non-dairy cohort 

may not necessarily return high nominal probabilities. This also allows for the 

consistent examination of new entrants across all four productivity scenarios 

discussed in the previous section.  
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7.4 Results 
 

Results are presented for outcomes arising from the simulation of the four dairy 

productivity scenarios described in Section 7.3.2. Outcomes for the impacts on mean 

productivity rates for each scenario are reported with the resultant impacts on family 

farm incomes illustrated. For each scenario, the required number of new entrants to 

meet the dairy target from the existing non-dairy farm population is calculated and 

each selected is simulated to enter dairy. Using the SMILE-NFS methodology 

outlined in Section 5.4.3, these new entrants are mapped and identified at the ED 

level along with the subsequent change in emissions per hectare arising from a 

movement into the dairy sector from other non-dairy enterprises. 

7.4.1 Impacts at Farm Level 

Figure 7.9 shows the projected growth in mean litres per livestock unit from 2010-

2020 for all four productivity scenarios. By construction, the estimated mean litres 

per livestock unit increases ranges from the baseline (BAU) scenario (Scenario 1) to 

the most efficient productivity scenario (Scenario 4).  
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Figure 7.9 Outcomes for mean productivity (litres per livestock unit) 2010-2020  

 

Accompanying Figure 7.9, Table 7.3 below displays the changes in mean 

productivity for all four scenarios. For the base year of the simulation (2010) the 

mean productivity value for litres per livestock unit (Litres/LU) is reported at 4,874 

Litres/Lu. Mean productivity levels for 2020 range from 5,279 Litres/LU in the 

lowest productivity growth scenario (Scenario 1) to 6,660 Litres/LU in the highest 

productivity growth scenario (Scenario 4). These figures represent increases on the 

2010 base year of 8.31% and 36.62 % respectively.  

 

Table 7.3 Change in mean productivity (litres per livestock) 2010-2020 

 

  Scenario 1 Scenario 2 Scenario 3  Scenario 4 

2010 4874 4874 4874 4874 

2020 5279 5750 6222 6660 

% change 8.31 17.98 27.65 36.62 
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In the NFS-DSM model, increases in productivity improvements translate to higher 

milk volumes reported for 2020, leading to lower emissions and lower number of 

new entrants required to meet target. 

Effects on Family Farm Income 

The reaching of the dairy target will also have considerable benefits to family farm 

income. Figure 7.10 shows the outcomes for mean family farm income for all three 

productivity scenarios before the addition of new entrants required to meet target. 

Mean incomes range from €19,050 for Scenario 1 to 23,752 in Scenario 4, the 

highest productivity improvement scenario.  

 

 
 

Figure 7.10 Outcomes for mean family farm income (FFI) 2001-2020  

 

Table 7.4 reports the percentage change in mean Family Farm Incomes (FFI) for the 

period for all four productivity scenarios, again before the addition of new entrants 
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and without reaching the FH2020 dairy target. For the base year of the simulation 

(2010) the mean family farm income is reported at €17,102. Under Scenario 1 

(BAU) mean family farm incomes increase 7.62% to €19,050, while mean incomes 

increase by 17.98%, 26.38% and 34.18% for Scenarios 2,3 and 4 respectively over 

the 10 year simulation period. 

 

Table 7.4 Change in mean family farm income (FFI) 2010-2020 

€  FFI Scenario 1  FFI Scenario 2 FFI Scenario 3 FFI Scenario 4 

2010 17,702 17,702 17,702 17,702 

2020 19,051 20,885 22,372 23,752 

% change 7.62 17.98 26.38 34.18 

 

It should be noted that a significant portion of the increase in mean FFI for all 

scenarios is accounted for in the first year with Scenario 1 showing a subsequent 

annual decline in family farm income as gross output falls over time. The 

explanation for this is directly related to the combined impact of the removal of the 

dummy effect in the first simulation year for all outputs and costs (Section 6.4.1 and 

Equation 6.2).   

 

Figure 7.11 represents the uplift in mean family farm incomes simulated as a result 

of achieving the FH2020 dairy target through the addition of new entrants in the 

dairy sector. Across all scenarios the movement of existing non-dairy farms into 

dairy results in an uplift of incomes with the greatest relative uplift being 

experienced in Scenario 1 (BAU).  This result is anticipated as historically the dairy 

sector has consistently out-performed the other sectors in terms of mean FFI 

(Teagasc, 2010). Scenario 1 experiences the lowest level of productivity increases, 

thus a far greater number of farms are required to enter the dairy sector resulting in 

the most substantial movement in mean incomes. Despite this movement, the 

baseline scenario still retains the lowest level of mean family farm income from 

reaching the FH2020 dairy target as it experiences the lowest rate of productivity 

growth. The dashed lines represent mean FFIs for all four scenarios as displayed in 

the previous figure (Figure 7.10) before the addition of new entrants. 
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Figure 7.11 Uplift in mean FFI as a result of meeting FH2020 dairy target  

 

Table 7.5 reports the percentage change in mean family farm incomes as a result of 

meeting the FH2020 dairy target for all four productivity scenarios. Under Scenario 

1 (BAU) mean family farm incomes increase 29.69% to €22,958 while mean 

incomes increase by 34.03%, 39.79% and  43.32% for Scenarios 2, 3 and 4 

respectively over the 10 year simulation period.  

 

Table 7.5 Change in mean FFI as a result of meeting dairy target 2010-2020 

€ Scenario 1 Scenario 2 Scenario 3 Scenario 4 

2010 17,702 17,702 17,702 17,702 

2020 22,958 23,726 24,740 25,370 

% change 29.69 34.03 39.76 43.32 

 

As outlined in Chapter 6 it should be noted that family farm income is not directly 

modelled in the NFS-DSM but is constructed annually from simulated changes in 

€0 

€5,000 

€10,000 

€15,000 

€20,000 

€25,000 

€30,000 

2001 2003 2005 2007 2009 2011 2013 2015 2017 2019

M
e

an
 F

FI
 

Year 

Uplift in Mean FFI Scenario 1

Uplift in Mean FFI Scenario 2

Uplift in Mean FFI Scenario 3

Uplift in Mean FFI Scenario 4



 222 

outputs and costs across all sectors. As such, these results should be treated with a 

degree of caution. 

 

Effects on Dairy Numbers  

 

The amount of dairy cows required to meet the FH2020 targets will have a direct 

impact on the amount of emissions attributed to the agri-sector in 2020. In all four 

productivity growth scenarios, the FH2020 milk target of 7.254bn litres cannot be 

reached without the addition of new entrant farms (and their modelled number of 

dairy cows) to the dairy sector. Figure 7.12 below displays the total number of dairy 

cattle required to meet the FH2020 targets in all four productivity growth scenarios. 

In addition the first column displays a total of 1.41 million dairy cows projected for 

2020 in the BAU scenario
44

 outlined in Chapter 6, i.e. without the addition of new 

entrants.  

 

 

 

Figure 7.12 Total dairy cattle required to meet FH2020 dairy target 

                                                 
44

 resulting in a total milk output of 5.173bn litres, approx. 2.018bn litres short of the 7.254bn litre 
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For all four scenarios, Table 7.6 shows the percentage change in the number of dairy 

cows required to meet the FH2020 dairy target compared to the BAU scenario 

outlined in the previous Chapter 6. The number of additional dairy cows required to 

meet target for Scenario 1 is estimated at 1.793m cows signifying a 27.2% increase. 

The total number of dairy cows estimated to be required to meet target in Scenarios 2 

and 3 are 1.682m and 1.572m, representing a 19.3% and 11.5% increase 

respectively. In the highest productivity scenario (Scenario 4), the total number dairy 

cows required to meet the FH2020 dairy target is estimated at 1.515m representing 

just a 7.4% increase in total dairy cow numbers.  

 

Table 7.6 Total dairy cattle (millions) required to meet dairy target 2020 

compared to 2020 BAU scenario 

 Milk Target 

Scenario 1 

Milk Target 

Scenario 2 

Milk Target 

Scenario 3 

Milk Target 

Scenario 4 

2020 1.793 1.682 1.572 1.515 

2020 BAU 1.410 1.410 1.410 1.410 

%change 27.2 19.3 11.5 7.4 

 

 

7.4.2 Spatial Disaggregation of Required New Entrants  

Figure 7.13 displays the total number of new entrants required to meet dairy target 

under all four productivity scenarios. In Scenario 1, the lowest productivity scenario, 

a total of 4,465 new entrants are projected to enter the dairy sector in order to meet 

target.  As productivity rates increase the number of farms required to enter the 

sector declines considerably with just 1,031 new entrants required to enter in 

Scenario 4.  
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Figure 7.13 Total number of new entrants required to meet dairy target 2020 

 

Table 7.7 shows the change in the total number of dairy farms required from the 

BAU scenario outlined in Chapter 6 (where the dairy target is not met). For Scenario 

1, the lowest productivity scenario, the total number of dairy farms projected to be 

required to meet target is 32,369, an increase of 16% on the BAU scenario. For 

Scenario 4, the highest productivity scenario, the total number of farms required 

drops to 28,935 representing just a 3.7% increase on the BAU scenario.  

 

Table 7.7 Change in total number of farms required to meet dairy target 2020 

No. of Dairy Farms Scenario 1 Scenario 2 Scenario 3 Scenario 4 

New Entrants Required 4,465 3,295 1,736 1,031 

BAU 2020 27,904 27,904 27,904 27,904 

Tot. Required to Meet 

Target 

32,369 31,199 29,640 28,935 

% Increase Required 16.0 11.8 6.2 3.7 

 

Figures 7.14-7.17 display the spatial distribution of new entrants required to meet the 

dairy target under all four productivity scenarios. The maps are ordered from the 

highest productivity scenario (Scenario 4) to the lowest (Scenario 1) in order to 

reveal the increased geographical dispersion of new entrants required as productivity 
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decreases. For Figure 7.14 representing the highest productivity scenario, a small 

number of new entrants are concentrated predominantly in those areas traditionally 

associated with dairying, where farms not currently engaged in dairy farming are 

simulated to enter. As productivity declines through Scenarios 4 to 1, the required 

number of new entrants increases with the geographical spread of new entrants 

broadening substantially as the available farms deemed most likely to enter are 

exhausted in those areas.  
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Figure 7.14 Spatial distribution of 1,031 new entrants required to meet dairy 

target 2020 under Scenario 4 
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Figure 7.15 Spatial distribution of 1,736 new entrants required to meet dairy 

target 2020 under Scenario 3 
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Figure 7.16 Spatial distribution of 3,295 new entrants required to meet dairy 

target 2020 under Scenario 2 
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Figure 7.17 Spatial distribution of 4,465 new entrants required to meet dairy 

target 2020 under Scenario 1 
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7.4.3 Impacts on National Emissions  

 

As outlined in the previous chapter, the IPCC methodology is the method used for 

the calculation of national inventories and in the absence of further international 

agreement is applied for the purposes of calculating the change in national agri-

emissions projected by the NFS-DSM model. Tables 7.8-7.10 display the percentage 

change in total livestock numbers for dairy, cattle and sheep respectively from all 

four milk target scenarios compared to the BAU scenario outlined in Chapter 6.  

 

Scenario 1 projects that at the lowest rate of productivity growth for the dairy sector, 

1.793m dairy cows will be required to meet the target milk output volume in 2020 

representing an overall increase on 2010 levels of 27%. In contrast, Scenario 4 

projects that assuming the highest rate of productivity growth, the total projected 

dairy numbers required to meet the dairy target will be 1.515m, representing an 

increase of 7.4%. 

Table 7.8 Total dairy numbers 2020 

 

(000s) Scenario 1 Scenario 2 Scenario 3 Scenario 4 

2020 1793 1682 1572 1515 

2020 BAU 1410 1410 1410 1410 

%change (27.2) (19.3) (11.5) (7.4) 

 

For cattle, Scenario 1 projects that at the lowest rate of productivity growth for the 

dairy sector, around 415,000 cattle will be displaced by the dairy sector leaving a 

total of 6.102m cattle in 2020 representing an overall decrease of around 6.4%. 

Scenario 4 projects that assuming the highest rate of productivity growth, the total 

projected cattle displaced by new dairy entrants will be in the order of 126,000 

representing a decrease of just 1.9%  
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Table 7.9 Total cattle numbers 2020 

(000s) Milk Target 

Scenario 1 

Milk Target 

Scenario 2 

Milk Target 

Scenario 3 

Milk Target 

Scenario 4 

2020 6102 6222 6339 6391 

2020 BAU 6517 6517 6517 6517 

%change (-6.4) (-4.5) (-2.7) (-1.9) 

 

For sheep, Scenario 1 projects that at the lowest rate of productivity growth for the 

dairy sector; around 491,000 sheep will be displaced by the dairy sector leaving a 

total of 4.347m sheep in 2020 representing an overall decrease of around 11.4%. 

Scenario 4 projects that assuming the highest rate of productivity growth, the total 

projected sheep displaced by new dairy entrants will be in the order of 96,000 

representing a decrease of just 2.2%  

 

Table 7.10 Total sheep numbers 2020 

 

(000s) Milk Target 

Scenario 1 

Milk Target 

Scenario 2 

Milk Target 

Scenario 3 

Milk Target 

Scenario 4 

2020 3856 3968 4159 4251 

2020 BAU 4347 4347 4347 4347 

%change (-11.3) (-8.7) (-4.3) (-2.2) 

 

Figure 7.18 reports the total CO2eq emissions (Gg) for all 4 Scenarios for 2020, 

compared to the 2020 BAU scenario reported in Chapter 6 and total agri-emissions 

reported for 2010 with emissions ranging from 19.35Gg CO2eq under Scenario 1 to 

18.83 Gg CO2eq under Scenario 4. 
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Figure 7.18 Total CO2eq agri-emissions (Gg) for all scenarios compared to 2010 

 

Table 7.11 reports the total change in Methane, Nitrous Oxide and total CO2eq 

Emissions (Gg) for all 4 Scenarios and the 2020 BAU scenario, compared to 2010. 

Total emissions show a decrease in the baseline values across all scenarios and the 

BAU compared to 2010. In terms of meeting the dairy target, the highest rates of 

decrease are seen in Scenario 4 where the high annual increase in productivity per 

cow post quota translates into the fewest number of dairy cows required.  

 

Table 7.11 Change in total CO2eq emissions (Gg) 2010-2020 

 2010 2020 

(BAU) 

Scenario 

1 

Scenario 

2 

Scenario 

3 

Scenario 

4 

Tot. CO2eq 

(Gg) 

19.88 18.65 19.35 19.14 18.94 18.83 

%  (2010)  (-6.20) (-2.68) (-3.74) (-4.75) (-5.28) 

Tot. CH4 

(Mt) 

606.44 578.40 600.36 593.78 587.84 584.25 

% (2010)  (-4.62) (-1.00) (-2.09) (-3.07) (-3.66) 

Tot. N2O 

(Mt) 

23.05 20.98 21.75 21.51 21.27 21.17 

% (2010)  (-9.00) (-5.67) (-6.68) (-7.75) (-8.17) 
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While the range of values for the four milk target scenarios reported in 7.11 would 

appear comparatively small, it should be remembered that the table reflects total 

emissions across all sectors. For all four dairy target scenarios, as productivity 

increases, emissions savings from the reduction in the number of dairy cows required 

to meet target are offset by a reduction in the displacement experienced in other 

sectors. For the lowest productivity scenario (Scenario 1) the additional emissions 

associated with an additional 383,000 dairy cows (the highest per LU CO2eq 

emitters) (Table 7.8), are substantially offset through reductions in livestock numbers 

in the cattle (Table 7.9)  and sheep sectors (Table 7.10) of 415,000 and  491,000 

respectively. For the highest productivity scenario (Scenario 4) only 105,000 

additional dairy cows are required with those increased emissions partially offset 

through reductions of 126,000 and 96,000 in livestock numbers for cattle and sheep 

respectively. While a rise in overall emissions occurs despite seemingly larger 

numerical reductions in the livestock numbers of the other sectors, it should be 

remembered that emissions factors are understandably different for different 

livestock categories and are not weighted equally.  The highest emissions factors are 

attributed to dairy cattle under the current methodology. For further information see 

Section 5.4.4. 
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7.4.4 Spatial Impacts on Emissions per Hectare  

 

Figures 7.19 to Figure 7.22 report the ratio of change of total CO2eq emissions per 

hectare from 2010 to 2020 for Scenarios 1,2 3 & 4 respectively. Both figures show 

that while most of Ireland experiences a decline in emissions per hectare, those areas 

experiencing considerable entry into the dairy sector (Section 7.4.2) show an 

increase in overall emissions per hectare. 

 

For Scenario 4, the highest productivity scenario, increases are observed for a small 

number of EDs predominantly concentrated in areas traditionally associated with 

dairy, where farms not currently engaged in dairy farming convert to dairy. For 

Scenario 1, the required number of entrants is much greater with a considerably 

higher number of EDs experiencing a rise in emissions per hectare. While the 

geographical spread of new entrants is broadened substantially, simulated entrants 

are still primarily concentrated in areas traditionally associated with dairy.  

 

Spatial information on agricultural activity and associated emissions provides an 

opportunity to design and effectively implement mitigation strategies at various 

spatial scales. These results illustrate the potential for a dynamic spatial 

microsimulation model for agriculture to provide an essential input into the 

development of mitigation options for the future, particularly where certain 

mitigation options may only be feasible on a medium to long term planning horizon 

such as the optimal location of processing facilities and distribution centres.  

 

With agriculture’s contribution to total emissions from the non-ETS sector projected 

to rise to 48% by 2020 (EPA, 2013b), the ability to plan strategically for the future 

mitigation of greenhouse gases from the agricultural sector is of crucial importance, 

not just in terms of Ireland’s ability to meet its immediate EU commitment to reduce 

national emissions by 20% by 2020 (Council Decision, 2009) but also in terms of the 

likely requirement to meet more ambitious targets in the future (European 

Commission, 2014). 
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Figure 7.19 Ratio change of total CO2eq agri-emissions per hectare 2010 to 2020 

for Scenario 1 
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Figure 7.20 Ratio change of total CO2eq agri-emissions per hectare 2010 to 2020 

for Scenario 2 
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Figure 7.21 Ratio change of total CO2eq agri-emissions per hectare 2010 to 2020 

for Scenario 3 
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Figure 7.22 Ratio change of total CO2eq agri-emissions per hectare 2010 to 2020 

for Scenario 4
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7.5 Conclusions  
 

Given the regional heterogeneity of agricultural activity in Ireland, a key component 

of policy analysis for the impact of reaching the FH2020 dairy target is currently 

absent. Spatial information on farming activity can provide policymakers with a 

basis for predicting where the increased agricultural activity is likely to be centred. 

Future economic, environmental, and labour outcomes at the local level can be 

undertaken with the objective of identifying local constraints/barriers to growth. 

Spatial information on agricultural activity can help also help policymakers identify 

local efficiency opportunities and productivity gains which can reduce overall 

emissions levels.  

 

This NFS-DSM model has been used to display the potential future spatial locations 

of new dairy farms required to enter the sector in order to meet the FH2020 target of 

a 50% increase in milk output under a number of different productivity growth 

scenarios. The model simulates new entrants initially in the more traditional dairy 

areas with the geographical spread and number of new entrants required widening 

and increasing with lower productivity growth rates. Advanced knowledge of the 

potential spatial disaggregation of dairying activity could help inform future 

greenhouse gas mitigation strategies such as informing the optimal location of future 

processing facilities to reduce associated transport emissions as outlined by Quinlan 

et al. (2006). The NFS-DSM model also calculates the resultant spatial change in 

total agri-emissions as a result of meeting the dairy target and projects that while the 

majority of EDs will experience an overall decline in emissions over the simulation 

period 2010-2020, those EDs which experience a significant amount of non-dairy 

farms entering the dairy sector will experience higher emissions per hectare. 

 

A significant advantage of the use of the NFS-DSM model for this scenario analysis 

is that it is internally consistent and allows the user to observe the impacts on the 

cattle,  sheep and (to a lesser extent) the tillage sectors resulting from a move into 

dairy. Of notable significance in this scenario analysis is that the achievement of the 

dairy target may not just have implications for emissions from the dairy sector but 
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also for the other competing sectors. Lower rates of productivity growth result in 

higher overall emissions if the dairy target is to be achieved. However, the 

achievement of target under the lower productivity scenarios will require a higher 

level of displacement of livestock from other enterprises thus mitigating the overall 

increase in emissions. As a consequence, a large expansion in production in the dairy 

sector need not necessarily directly translate to a large increase in over-all emissions. 

The rate at which productivity gains are made will be a crucial determinant of future 

emissions profiles for the dairy sector.  

 

From these results, it is clear that while the future rate of productivity growth in the 

dairy sector will have a substantial impact on the future spatial disaggregation of 

agri-emissions, the overall effect of reaching the FH2020 targets on total emissions 

from the agri-sector may not be as pronounced as may have been previously 

anticipated. Rather, the potential growth paths for the expansion of the Irish dairy 

sector may tell us more about the change in the spatial concentration of emissions 

from the agri-sector in the future; an important consideration in the design and 

development of medium-long term mitigation options. 
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CHAPTER 8: DISCUSSION 

 

This chapter summarises the findings of this thesis in relation to the objectives 

outlined in the opening chapter and is structured as follows; Section 8.1 highlights 

the important findings of this thesis and their impact in expanding the base of 

knowledge in relation to the spatial modelling of Irish agricultural emissions. Section 

8.2 provides a brief description of the limitations of this research. Section 8.3 

describes the opportunities for further research in this area before section 8.4 arrives 

at some concluding comments.  

8.1 Important Findings of this Thesis 
 

The primary objective of this thesis involved the investigation of the conditions for 

the effective implementation of climate change policy and the construction of an 

analytical policy tool which will assist decision makers in making informed 

decisions in relation to the design and implementation of mitigation strategies at 

various spatial scales.  A new framework for the spatial modelling of GHG 

emissions from Irish agriculture has been proposed and its potential usefulness 

demonstrated.  

 

In Chapter 2, an investigation into the role of local governance in the implementation 

of climate change policy was conducted. In the context of continually evolving 

governance regimes, it was found that with regard to climate change policy, the 

presence of multi-level governance structures have the potential to foster the 

successful co-ordination and planning of mitigation strategies both within and across 

traditional spatial administrative boundaries and at multiple governance levels where 

appropriate. Evidence of such structures has been found in Ireland in relation to the 

establishment of cross county renewable energy agencies and in co-ordination of 

public waste management strategies. However, targeted legislative provisions and a 

framework for collaboration between local authorities, agencies and government 
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departments, are notably absent. Furthermore,  a substantial information deficit was 

raised by Allman et al. (2004) in relation to information on emissions at the local 

level. The absence of an analytical tool against which local authorities can set targets 

and assess progress was identified as a key barrier to the effective implementation of 

climate change policy at the local level.  

 

In Chapter 3, the current IPCC framework for the reporting of national GHG 

emissions inventories, and a number of alternative approaches to emissions 

modelling, were investigated. Two primary issues arose. Firstly, the current reporting 

structure attempts to confine emissions to national boundaries. This structure has the 

potential to encourage and result in suboptimal global emissions outcomes. Where a 

high level of emissions efficient production is curtailed in order to meet targets, a net 

increase in global emissions may occur as a result of less emissions efficient 

production elsewhere. However, the level of complexity involved in alternative LCA 

approaches to emissions inventorying is considerable and its implementation within 

an international reporting framework may be impractical within the globalised nature 

of international trade
45

. Secondly, having established the need for GHG modelling at 

various spatial resolutions (Chapter 2) in order to aid the implementation of climate 

change policy at sub-national level, the emphasis of the UNFCCC on an aspatial 

inventory structure was identified as a potential weakness. Following an analysis of 

the national and international literature, a review of modelling techniques and a 

review of previous examples of spatial emissions modelling in Ireland, the need for 

an alternative approach to modelling GHG emissions incorporating a spatial 

component for the purposes of climate change policy analysis was identified. 

  

Chapter 4 identified the potential use of microsimulation modelling in providing a 

framework for the spatial disaggregation of national GHG emissions. The 

availability of detailed micro-level information on individuals/firms and households 

is typically restricted due to data confidentiality issues. The use of this technique in 

                                                 
45

 For clarity and convenience , the analysis in relation to the use of an IPCC vs. LCA approach in the 

inventorying of emissions from agriculture is placed conducted in Section 5.2.2  
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the creation of synthetic disaggregated population data sets offers a solution to this 

problem enabling the modelling of dynamic, behavioural and political (policy) 

change across space at the micro-level. However, a trade-off between the level of 

complexity employed and the effective utilisation of the technique was identified. A 

balance must be struck between the level of complexity required in order to make a 

model useful against a level of simplicity which allows the model to be built and 

utilised efficiently. In relation to a previous application of the SMILE model, the use 

of simulated annealing by Hynes et al. (2009) to provide a spatially disaggregated 

profile of the income effect of a tax on methane emissions from Irish farms, SMILE 

was found to be subject to considerable computational constraints. In addition, a 

specific targeted measure to preserve the spatial heterogeneity of stocking rates (a 

key determinant in terms of emissions) was notably absent. This demonstrates the 

need for a novel solution, and the development of an improved sampling 

methodology in order to preserve the spatial heterogeneity of stocking rates while 

proving a computationally efficient solution. 

 

Chapter 5 presented the first methodological contribution of this thesis by proposing 

a solution to the methodological constraints outlined in Chapter 4 and the need for a 

spatial analytical policy tool for modelling GHG emissions (Chapter 2 & Chapter 3). 

A novel adaptation of the sampling methodology used in SMILE-NFS spatial 

microsimulation model was presented with the inclusion of a residual ranking 

variable designed to preserve the spatial heterogeneity of the electoral district 

stocking rate, a key determinant of farm-level agri-emissions. The adapted quota 

sampling method reported a high level of accuracy for all match variables and 

enabled the simulation to be modelled in a number of hours representing a 

substantial methodological advancement. Aggregate results from the model were 

compared with emissions from the National Inventory Report and were found to be 

within a comparable range. The SMILE-NFS baseline model of farm-level emissions 

presents a credible alternative methodology for the purposes of calculating Ireland’s 

total agricultural emissions output with the ability to analyse mitigation options at 

the local-level, a significant value added component. The inclusion of results for fuel 
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and electricity emissions also highlighted the potential future application of the 

model in an LCA context. 

 

In the context of potentially conflicting agricultural and environmental policies for 

Ireland, Chapter 6 presents a unique framework under which economic and 

environmental policies for the agricultural sector can be assessed in tandem, in terms 

of their future consequences for national GHG emissions. The creation of the NFS-

DSM model for Irish agriculture and its use in dynamically simulating the farm 

population forward in time enabled the presentation of a BAU scenario for Irish 

agricultural activity and related spatial emissions outcomes in 2020. Overall, the 

model estimated a gradual decline in agricultural activity over the 10 year simulation 

period with a concomitant marginal reduction in associated emissions. These results 

reveal that without a significant shift in historical trends, the achievement of the 

headline FH2020 target of a 50% increase in milk volume is unlikely. Similarly the 

20% increase in value targets outlined for the cattle and sheep sectors are unlikely to 

be met without a significant shift in prices and/or productivity trends. With regard to 

emissions the NFS-DSM model projects an overall decrease in CO2eq emissions 

from agriculture of 6.6%. With agriculture currently accounting for almost 40% of 

non-ETS emissions it is likely that this reduction does not represent the required 

contribution from agriculture if Ireland is to meet its commitment to reduce non- 

ETS sector emissions by 20% by 2020.  

 

Finally, in the context of uncertainty surrounding the effects of the abolition of quota 

(Section 6.3.3) Chapter 7 reports results for a multi-scenario analysis for the 

expansion of the Irish dairy sector and its use in simulating the spatial pattern (and 

related emissions) of potential new entrants required in order to meet the targets 

outlined in the FH2020 Programme. The NFS-DSM model was adapted to 

incorporate 3 improved dairy productivity expansion scenarios relating to the 

abolition of quota. Outcomes for all three scenarios were simulated to 2020 and 

compared to the BAU scenario outlined in Chapter 6. The total amount of additional 

milk and concomitant new entrants required to meet the FH2020 dairy target was 

also calculated. The scenario analysis projected that between 1,031 (highest 
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productivity scenario) and 4,465 (BAU scenario) new entrants would be required in 

order to meet the dairy target. It was also found that for the highest productivity 

scenario, new entrants were predominantly located in the traditional dairy regions. 

However, as the outlook for productivity declines, the number and geographical 

spread of new entrants’ increases as the available farms deemed most likely to enter 

are exhausted in traditional areas. 

 

This model demonstrates a significant departure from the model farm approach 

adopted by Läpple and Hennessey (2012) through the selection of sample farms from 

within the existing farm population with the added value of an additional spatial 

component. Additionally, in relation to emissions outcomes, the model projects that 

for all scenarios, the achievement of the dairy target will not necessarily result in an 

increase in overall emissions. In the highest productivity scenario, emissions are 

projected to decrease by 5.28% in comparison to 2010 while for the lowest 

productivity scenario emissions are projected to decrease by 2.68%. While this may 

initially seem counter-intuitive, for all four dairy target scenarios, as productivity 

increases, emissions savings from the reduction in the number of dairy cows required 

to meet target are offset by a reduction in the displacement experienced in other 

sectors. This demonstrates the capacity of the NFS-DSM to conduct scenario 

analyses for Irish agriculture in an internally consistent manner, accounting for 

transfers, exits and observing practical constraints within the confines of a simulated 

population.  

 

8.2 Implications for Policy Development 
There are a number of implications for policy development which arise from this 

research. It has been demonstrated that a dynamic spatial microsimulation model can 

be used to construct a disaggregated profile of agricultural emissions which has been 

validated against the National Inventory Report. This may be the first step towards 

the construction of a disaggregated profile of emissions from all sectors. With this 

information, mitigation policies can be designed and implemented at the most 

appropriate spatial scales. 
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Local authorities can be tasked with setting local emissions reductions targets for 

sectors and activities for which they have been given responsibility. The potential 

exists for the incentivisation of local authorities to both co-operate and compete for 

additional resources upon the achievement of environmental improvement targets. 

The devolution of responsibility for reductions in emissions to the lowest tier of 

governance would likely increase the importance and relevance of climate change 

policy to individuals/households and firms as they would be are in direct contact 

with those tasked with implementing policy. This would in turn increase the 

likelihood of achieving the required changes to conserve energy, reduce waste and 

engage in more emissions efficient behaviours. This would be most relevant for 

mitigation measures which require greater levels of awareness, education and co-

operation in contrast to nationally implemented command and control measures 

which may not be appropriate or indeed politically acceptable.  

 

The potential also exists for the use of a spatial emissions framework to facilitate the 

design of more sophisticated mitigation strategies at the most appropriate spatial 

scales. In the areas of industry, transport, energy and waste management, the 

opportunity exists for the identification and demarcation of appropriate zones or 

bespoke regions for policy implementation within a multi-level governance 

framework. A small number of these zones are already in evidence in Ireland in the 

areas of energy and waste management (Section 2.6.3) 

8.3 Limitations of this Research 
 

There are a number of limitations which must be recognised when interpreting the 

results outlined in this thesis. Firstly, as outlined in Chapter 5, the SMILE-NFS 

model tends towards an over selection of mean farms at a national level while 

substantial outliers (in terms of the stocking rate) are much less likely to be allocated 

to any given ED. While this has a positive impact in terms of the preservation of 

spatial heterogeneity of stocking rates at the ED level (and a significant reduction in 

the probability of simulating outliers EDs), it does result in a substantial loss of intra-

ED variability at the micro level. While this problem could potentially be solved by 
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limiting a farm’s overall number of selections to its weighted total or perhaps a 

maximum multiple, the application of these solutions could be problematic and 

could potentially introduce even more onerous problems such as ED ordering. This 

limitation highlights an important feature of the sampling methodology employed 

i.e. that the optimal design of the sampling process is informed by the requirement to 

maintain the spatial heterogeneity of the key variable(s) of interest; in this case the 

stocking rate.  

 

This compromise reflects a trade-off between the computational efficiency of the 

sampling process and the computational intensity necessarily involved in adoption of 

alternative multi-dimensional optimisation methodologies. It should also be noted 

that while total output and emissions from the model are compared to the National 

Accounts and the National Inventory Report and are deemed to be within an 

acceptable range, this application of the SMILE-NFS model does not include 

calibration of the non-matched variables. While by design, the model preserves the 

spatial heterogeneity of stocking rate and thus indirectly the consequent national 

totals for livestock output and emissions, the results for non-calibrated output such as 

family farm income should be treated with caution
46

. In addition, it should be 

remembered that while the model contains a structure for the spatial disaggregation 

of the NFS in non-census years, the longer the time lag between the subject year and 

the census, the greater the potential for significant error.  

 

Secondly, outputs from the NFS-DSM model for both the business as usual scenario 

in Chapter 6 and the scenarios analyses in Chapter 7 rely on several assumptions 

about the future development of Irish agriculture including the rate and form of 

restructuring in the dairy sector, the possible impacts of the abolition of quota and 

the future production profile of new dairy entrants. While these assumptions 

constitute the “best guess” given the currently available information on agricultural 

activity, the model does not account for several external factors which may impact 

on the validity of these assumptions. Such factors include; the impact of the credit 

                                                 
46

 For a full description of a calibration processes applied to the SMILE-SILC household model see 

O’Donoghue et al. (2013) 
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crisis on the availability of credits for both the expansion of current enterprises and 

the establishment of new entrants; the ease of transfer of knowledge to new dairy 

farmers; exits from farming and the effect of changes to the current subsidy 

structures
47

.  

 

Thirdly, while the cattle and sheep sectors are responsible for a large share of total 

agri-emissions, both of these sectors faces a value target for FH2020 as opposed to 

the volume target for dairy. Thus the achievement of these targets is largely 

dependent on future price scenarios. With static production levels an increase in 

prices of just 2% per annum would be sufficient to achieve a 20% overall increase in 

value by 2020. Ultimately, the execution of a plausible multi-scenario analysis for 

the future value of the cattle and sheep sectors in 2020 is heavily reliant on future 

price paths for the sector and its effect on gross livestock output. As outlined above 

and in Section 6.6, the reliable simulation of future value estimates (as opposed to a 

volume estimates) raises signification challenges for the NFS-DSM in that the true 

effect of unit price increases on productivity responses at the micro-level is 

extremely difficult to quantify. Given this limitation, it was felt that further 

investigation of outcomes for the cattle sector in relation to value targets would be 

unlikely to yield definitive results. The additional complexity this would have 

involved in attempting to balance competing volume and value target outcomes at 

the micro-level was deemed beyond the scope of this thesis and was not considered 

in this analysis.   

 

8.4 Potential Future Research Areas 
 

The development of a computationally efficient sampling methodology and a 

dynamic microsimulation framework for the spatial disaggregation of agricultural 

activity in Ireland represents a significant progression of the methodological 

literature and opens a number of possible avenues for future research which may 

include the following: 

                                                 
47

 The NFS-DSM model assumes subsidies are fixed and does not consider the impacts of the recently 

announced CAP reform European Commission (2013) 
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Firstly, as the NFS is conducted as part of the European Farm Accountancy Data 

Network (FADN) the potential exists to replicate the methodology outlined in 

Chapter 5 in other European countries and compare outcomes both in terms of the 

results for the sampling methodology and in terms of a comparison of modelled 

emissions with their respective national inventory reports. Additionally, the 

application of the dynamic simulation model outlined in Chapter 6 may help to 

improve our understanding of the differences in productions trends within the FADN 

membership.  

 

Secondly, with regard to the microsimulation of agricultural output, the current NFS-

DSM model uses a series of regional dummy variables in order to attempt to capture 

the spatially heterogeneous effects associated with each region. This places 

significant demand on the region dummy to explain unobserved regional differences 

which may include factors such as differences in local environmental characteristics, 

average distances to markets, the density of local co-operatives etc. The inclusion of 

local environmental variables in relation to rainfall, temperature and average hours 

of sunshine through the overlaying of weather station data could help improve the 

accuracy of production models and help improve our understanding of differential 

outcomes at smaller spatial scales. Care must be taken however to ensure that the 

correct balance is struck between complexity and practical applicability. 

 

Thirdly, while the emissions calculation methodology used in this thesis was based 

on the standard IPCC inventorying approach, the SMILE NFS-DSM model provides 

a framework for the performance of LCA based emissions estimates in the future. 

Currently available information on the fodder and concentrate feed ratios, energy use 

and stocking rates, may be complimented by future information on waste 

management systems and the genetic merit of the herd in order to provide farm 

specific emissions estimates.  

Finally, in terms of linking agricultural activity to observed environmental outcomes, 

a further potential area of research could involve the overlaying of information from 

the land parcel information system (LPIS) and the animal identification system 
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(AIM) on water catchments areas in order to study the impacts of animal 

concentrations on water quality.  

 

8.5 Concluding Comments 
 

Ireland, and the international community at large, faces an extremely difficult 

challenge in the effective design and implementation of climate change policy. 

International evidence suggesting that the level of public concern relating to climate 

change issues has seen a decline in the face of economic insecurity brought about by 

the recent global recession is a worrying development. While governments have the 

option to design market instruments to attempt to reflect the cost of carbon, these 

instruments have been typically targeted at goods for which consumption is inelastic 

in the short-medium. Market based mitigation measures often result in immediate 

and visible income effects for citizens which are subject to political support. 

Additionally, the level of uncertainty surrounding the economic costs of climate and 

the emissions footprint of individual consumer products makes it extremely difficult 

to relate the “true” carbon cost to the individual consumer. Therefore, the successful 

implementation of non-market policies designed to encourage individuals, 

households, firms and farms to engage in more emissions efficient behaviour 

comprises a central pillar of climate change policy.  

 

While Ireland’s ambition to considerably increase output from the agricultural sector 

in the aftermath of the economic recession would appear to have broad political 

support domestically, it also has the potential to frustrate the achievement of longer 

term environmental obligations at the national, EU and international level. The 

findings of this research indicate that even in the most optimistic emissions scenario 

for dairy expansion, the achievement of FH2020 targets will limit any significant 

decrease in overall agricultural emissions by 2020. This indicates a significant 

impasse between current agricultural policy and Ireland’s commitments to reduce 

emissions under the current accounting framework. The absence of a specific 

emissions target for agriculture is conspicuous, and with a continued emphasis on 



 251 

expansion in the sector, it is likely that considerable reductions will have to be found 

elsewhere if Ireland is to meet its emissions reductions targets in the future. 

 

There is, however, a question mark over the suitability of the current accounting 

framework in incentivising emissions efficiencies throughout the agricultural 

production system. While an LCA analysis was not employed in this study, 

substantial efforts towards the recognition of Ireland’s low emissions per unit 

production system are being undertaken. While in absolute terms Ireland’s 

agricultural emissions footprint may be comparatively high on a per capita basis, this 

is largely due to Ireland’s status as a major exporter of agricultural produce. In 

relative terms, Ireland’s emissions per unit of output for the beef and dairy sectors 

have been stated to be among the lowest in the world due to the low emission cost of 

a grass based system relative to primarily concentrate based systems. Thus 

displacement in output from Irish agriculture in order to meet national emissions 

targets may result in less efficient production occurring elsewhere, resulting in an 

overall increase in global emissions. However, while the adoption of an LCA 

approach to emissions inventorying and recognition of the value of emissions 

efficient production could highlight gains to be made in Irish agriculture, it may 

result in losses elsewhere. Ireland is a small open island economy heavily dependent 

on international trade. If emissions from the transport of inputs/exports are included 

in the LCA this may have considerable impacts for Ireland. Apart from the 

methodological issues concerning LCA it is unclear what the net effect of moving to 

an LCA system for Ireland might be.  

 

The provision of information on the spatial disaggregation of GHG emissions is the 

first step towards the potential development and implementation of climate change 

policy at the local level since it as the local level where GHG reductions will 

ultimately take place. Knowledge of the spatial distribution of agricultural activities 

could help local authorities to facilitate co-operation between farmers. The design of 

optimal routes for produce collection and co-operation in areas such as the 

establishment of shared machinery could yield a double dividend of both a reduction 

in associated emissions and cost savings due to increased efficiencies.  
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The presence of spatially disaggregated information on emission levels, as has been 

outlined for agriculture in this thesis, provides an opportunity to assist decision 

makers in the design and implementation of mitigation policies through co-ordinated 

multi-level governance action at the regional, local and community level. However, 

while evidence of such co-ordination can already be seen in Ireland, the institutional 

barriers to the devolution of responsibility for the implementation of climate change 

policy remain. It is likely that such barriers will need to be addressed if Ireland is to 

meet its national and international commitments on climate change. 
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Appendix A – Irish Statutory Instruments (S.I) on climate 

change  
 

S.I. 244/2006-Kyoto 

Protocol Flexible 

Mechanisms Regulations 

2006 

Establishment of the EPA as “The agency” for the 

purposes of Art 6 and 12 of the Kyoto Protocol  and 

the establishment  of a registry with the EPA as the 

national registry administrator for the purposes of 

Article 7. 

 
S.I.706/2005 - EC (GHG 

Trading) (Amendment) 

Regulations 2005 – 

Amending the EC GHG Trading Regulations 2004 in 

order to provide for the linking of the Kyoto Protocol 

‘s project mechanisms to the scheme for GHG 

emission allowance trading within the European 

Community 

 
S.I.437/2004 – EC (GHG 

Trading) Regulations 2004 

Providing for “the implementation in Ireland of a 

scheme for GHG emission allowance trading within 

the EC in order to promote reduction of GHG 

emissions in a cost effective and economically 

efficient manner.” 

S.I. 274/2009 EC (GHG 

Trading)(Aviation) 

Regulations 2009 

Amending 2005 Regulations to provide for 

provisions to promote reductions in the Aviation 

industry. 

S.I. No. 821/2007 — Waste 

Management (Facility Permit 

and Registration)  

Regulations 2007 

Requires Registration with local authority or the 

EPA for activities involved in the reception and 

temporary storage of fluorinated GHG’s 

S.I. 820/2007 Waste 

Management (Collection 

Permit) Regulations 2007 – 

Promoting Compliance with Regulation (EC) No. 

842/2006, - outlines conditions necessary for non-

application of Section 34(1)(a) of the waste 

management acts in relation to the collection and 

transportation of fluorinated GHGs 

 
S.I 803/2007 EC (passenger 

car entry into service) 

(amendment) Regulations 

2007 

Given updated effect to EC regulations on HFC-134a 

S.I. 281/2006 Control of 

Substances that Deplete the 

Ozone Layer Regulations 

 

Giving Full effect to Regulation (EC) No. 2037/2000 
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Appendix B – Panel Regression Estimates  

Adjusted Farmsize: Panel estimates for total adjusted farmsize 

Random-effects log panel estimates for the adjusted farmsize 

 

 lnadjfarmsize (stnd.error) 

year 0.00581
***

 (0.000743) 

region2 0.167 (0.127) 

region3 0.464
***

 (0.0505) 

region4 0.221
***

 (0.0487) 

region5 0.0121 (0.0507) 

region6 0.305
***

 (0.0436) 

region7 0.0811 (0.0422) 

region8 -0.169
***

 (0.0435) 

soil1 -0.00138 (0.0183) 

soil2 -0.00750 (0.0161) 

age 0.00755
***

 (0.00135) 

age2 -0.0000918
***

 (0.0000140) 

landval_ha -0.124
***

 (0.00508) 

hasmilk 0.0735
***

 (0.0124) 

hascattle 0.115
***

 (0.0215) 

hassheep 0.0514
***

 (0.0107) 

hashorses -0.0324
*
 (0.0151) 

hastillage_area 0.0972
***

 (0.0109) 

hasforestry -0.0537
**

 (0.0182) 

labour_hrs 0.128
***

 (0.00914) 

_cons -8.425
***

 (1.493) 

N 11453  

R
2
 0.070  

rho 0.925  
Standard errors in parentheses 
*
 p < 0.05, 

**
 p < 0.01, 

***
 p < 0.001 
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Dairy: Panel estimates for litres/LU and LUs/hectare   

Random-effects log panel estimates for dairy litres/LU and LUs/hectare 

 lnl_lu (stnd.error) lnlu_ha (stnd.error) 

lnPdairy 0.155
***

 (0.0387) -0.0153 (0.0387) 

lnlandval_ha 0.00556 (0.00861) 0.0393
***

 (0.00871) 

lndairy_ha 0.324
***

 (0.0116) 0.0522
***

 (0.00910) 

lnlabour_hrs -0.00447 (0.0120) 0.0578
***

 (0.0123) 

lnage -0.00326 (0.0156) -0.0265 (0.0161) 

off_farm_inc 0.00257 (0.0110) -0.0501
***

 (0.0112) 

lnadjfarmsize -0.160
***

 (0.0153) -0.250
***

 (0.0156) 

hasforestry -0.0627
***

 (0.0168) -0.0777
***

 (0.0187) 

teagasc 0.0113 (0.00667) -0.00683 (0.00670) 

hasreps 0.00926 (0.00755) -0.0269
***

 (0.00757) 

region2 0.0775 (0.120) 0.0897 (0.147) 

region3 0.0387 (0.0335) 0.226
***

 (0.0407) 

region4 0.0191 (0.0331) 0.232
***

 (0.0400) 

region5 -0.111
***

 (0.0293) -0.0201 (0.0356) 

region6 0.0222 (0.0265) 0.201
***

 (0.0320) 

region7 -0.00302 (0.0242) 0.110
***

 (0.0293) 

region8 -0.00548 (0.0363) 0.0303 (0.0439) 

year 0.00435
**

 (0.00157) -0.00857
***

 (0.00157) 

year2 0.116
***

 (0.0102) -0.0203
*
 (0.0101) 

year3 0.129
***

 (0.00949) 0.00526 (0.00941) 

year4 0.128
***

 (0.00865) 0.00707 (0.00855) 

year5 0.0937
***

 (0.00856) 0.00435 (0.00845) 

year6 0.111
***

 (0.00878) -0.000335 (0.00866) 

year7 0.0442
***

 (0.0103) 0.0142 (0.0103) 

year8 0.00263 (0.0118) 0.0113 (0.0118) 

year9 0 (.) 0 (.) 

year10 0 (.) 0 (.) 

soil1 0.0769
**

 (0.0241) 0.138
***

 (0.0263) 

soil2 0.0403 (0.0225) 0.0870
***

 (0.0242) 

_cons -0.636 (3.096) 18.43
***

 (3.105) 

N 4161  4161  

R
2
 0.233  0.173  

rho 0.687  0.779  
Standard errors in parentheses 
*
 p < 0.05, 

**
 p < 0.01, 

***
 p < 0.001 
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Cattle: Panel estimates for gross output/LU and LUs/hectare 

Random-effects log panel estimates for cattle gross output/LU and 

LUs/hectare 

 lncattlego_lu (stnd.error) lncattlelu_ha (stnd.error) 

lnPcattle 0.00694 (0.0931)   

lnlandval_ha 0.0280
*
 (0.0127) 0.0576

***
 (0.00730) 

lnfertiliser_ha 0.0669
***

 (0.00608)   

lncattle_area -0.125
***

 (0.00960) -0.158
***

 (0.00729) 

lncattlelu_ha -0.0658
***

 (0.0176)   

lnlabour_hrs 0.128
***

 (0.0156) 0.137
***

 (0.00953) 

lnage -0.0669
***

 (0.0185) -0.0500
***

 (0.0102) 

off_farm_inc -0.0383
*
 (0.0151) -0.0378

***
 (0.00915) 

lndairy_ha_sh -0.151
***

 (0.0167) -0.0931
***

 (0.00955) 

hasforestry 0.00460 (0.0228) -0.0518
**

 (0.0173) 

teagasc 0.0616
***

 (0.0113) 0.0197
**

 (0.00619) 

hasreps -0.00170 (0.0114) -0.00873 (0.00623) 

region2 0.0290 (0.103) 0.0600 (0.0972) 

region3 -0.0712
*
 (0.0354) 0.339

***
 (0.0334) 

region4 -0.0473 (0.0335) 0.217
***

 (0.0310) 

region5 -0.0648
*
 (0.0330) 0.0287 (0.0315) 

region6 0.0157 (0.0310) 0.300
***

 (0.0285) 

region7 0.00264 (0.0287) 0.147
***

 (0.0269) 

region8 -0.187
***

 (0.0294) 0.0304 (0.0276) 

year 0.00313
***

 (0.000216) -0.0204
***

 (0.00114) 

year2 -0.0180 (0.0158) -0.00628 (0.00789) 

year3 -0.0671
***

 (0.0162) 0.0234
**

 (0.00762) 

year4 -0.00880 (0.0148) 0.0204
**

 (0.00743) 

year5 -0.0227 (0.0153) 0.0413
***

 (0.00755) 

year6 -0.0456
*
 (0.0178) 0.0360

***
 (0.00780) 

year7 -0.000901 (0.0168) 0.0444
***

 (0.00812) 

year8 -0.0283 (0.0251) 0.0456
***

 (0.00860) 

year9 -0.0382
*
 (0.0182) 0.0439

***
 (0.00922) 

year10 0 (.) 0 (.) 

soil1 0.0496 (0.0292) 0.154
***

 (0.0208) 

soil2 0.0688
*
 (0.0267) 0.0906

***
 (0.0177) 

lnadjfarmsize   -0.0922
***

 (0.0115) 

_cons 0 (.) 42.04
***

 (2.277) 

N 10603  10603  

R
2
 0.012  0.262  

rho 0.402  0.763  
Standard errors in parentheses 
*
 p < 0.05, 

**
 p < 0.01, 

***
 p < 0.001 
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Sheep: Panel estimates for gross output/LU and LUs/hectare 

Random-effects log panel estimates for sheep gross output/LU and 

LUs/hectare 

 lnsheepgo_lu (stnd.error) lnsheeplu_ha (stnd.error) 

lnlandval_ha 0.0345 (0.0242) 0.109
***

 (0.0154) 

lnfertiliser_ha 0.0333
**

 (0.0116)   

lnsheep_area -0.0910
***

 (0.0129) -0.128
***

 (0.00719) 

lnsheeplu_ha -0.0972
***

 (0.0287)   

lnlabour_hrs 0.0869
**

 (0.0303) 0.139
***

 (0.0195) 

lnage -0.0100 (0.0421) 0.00989 (0.0275) 

off_farm_inc -0.0424 (0.0311) -0.0340 (0.0205) 

lnadjfarmsize 0.0782
**

 (0.0265)   

hasforestry -0.108
*
 (0.0468)   

teagasc 0.0342 (0.0223) 0.0238 (0.0141) 

hasreps 0.0521
*
 (0.0211) -0.0231 (0.0132) 

region2 0.122 (0.172) -0.237 (0.145) 

region3 0.0466 (0.0645) 0.253
***

 (0.0530) 

region4 0.104 (0.0696) 0.101 (0.0572) 

region5 0.0966 (0.0897) 0.0193 (0.0754) 

region6 -0.0839 (0.0623) 0.303
***

 (0.0507) 

region7 -0.259
***

 (0.0684) 0.0340 (0.0568) 

region8 -0.0396 (0.0544) 0.134
**

 (0.0451) 

year -0.00940
*
 (0.00426) -0.0383

***
 (0.00260) 

year2 -0.0486 (0.0292) -0.0178 (0.0266) 

year3 0.0101 (0.0285) 0.00839 (0.0267) 

year4 0.00663 (0.0278) 0.0195 (0.0269) 

year5 0.0570
*
 (0.0286) 0.0274 (0.0339) 

year6 0.0904
**

 (0.0296) 0.0331 (0.0299) 

year7 0.121
***

 (0.0309) 0.0162 (0.0263) 

year8 0.0892
**

 (0.0324) 0.0210 (0.0211) 

year9 0.0774
*
 (0.0350)   

year10 0 (.) 0 (.) 

soil1 0.438
***

 (0.0546) 0.289
***

 (0.0389) 

soil2 0.344
***

 (0.0476) 0.181
***

 (0.0322) 

lPsheep   -0.279
*
 (0.136) 

year9   0 (.) 

_cons 24.09
**

 (8.536) 78.55
***

 (5.561) 

N 3810  3810  

R
2
 0.019  0.139  

rho 0.513  0.701  
Standard errors in parentheses 
*
 p < 0.05, 

**
 p < 0.01, 

***
 p < 0.001 
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Crops: Panel estimates for gross output/hectare 

Random-effects log panel estimates for crop gross output/hectare 

 lncropgo_ha (stnd.error) 

lPcrop 2.689
***

 (0.285) 

lnlandval_ha -0.0610
*
 (0.0272) 

lnfertiliser_ha 0.148
***

 (0.0227) 

lntillage_area 0.222
*
 (0.0870) 

lnlabour_hrs 0.0141 (0.0264) 

lnage 0.0117 (0.0359) 

off_farm_inc 0.0206 (0.0393) 

lntillage_sh -0.333
***

 (0.0876) 

lnadjfarmsize -0.286
***

 (0.0796) 

hasforestry 0.0473 (0.0666) 

teagasc 0.00712 (0.0263) 

hasreps 0.0129 (0.0260) 

region2 0.410 (0.271) 

region3 -0.0483 (0.125) 

region4 -0.111 (0.129) 

region5 -0.275 (0.226) 

region6 -0.148 (0.107) 

region7 -0.350
**

 (0.127) 

region8 -0.156 (0.185) 

year -0.0786
***

 (0.00727) 

year2 -0.0913
**

 (0.0300) 

year3 0.0149 (0.0278) 

year4 0.432
***

 (0.0463) 

year5 0.195
***

 (0.0360) 

year6 -0.261
***

 (0.0347) 

year7 -0.516
***

 (0.0748) 

year8 -0.213
***

 (0.0332) 

year9 0 (.) 

year10 0 (.) 

soil1 -0.453
**

 (0.167) 

soil2 -0.477
**

 (0.165) 

_cons 151.3
***

 (13.40) 

N 2222  

R
2
 0.169  

rho 0.847  
Standard errors in parentheses 
*
 p < 0.05, 

**
 p < 0.01, 

***
 p < 0.001 
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Feed Costs: Panel estimates for feed costs/hectare 

Random-effects log panel estimates for fodder direct costs (bulk fodder and 

concentrates) 

 lnbulkfodder_ha (stnd.error) lnconcentrate_ha (stnd.error) 

lPbulkfodder -1.082 (0.677)   

lnlandval_ha -0.0465 (0.0429)   

off_farm_inc 0.122
*
 (0.0500)   

lntillage_sh 0.101
***

 (0.0275) 0.0203 (0.0108) 

lnadjfarmsize -0.938
***

 (0.0470) -0.644
***

 (0.0235) 

teagasc -0.121
**

 (0.0382) 0.0610
***

 (0.0149) 

hasreps -0.154
***

 (0.0393)   

lnsheeplu 0.0629
**

 (0.0195) 0.162
***

 (0.00956) 

lncattlelu 0.306
***

 (0.0277) 0.292
***

 (0.0134) 

lndairylu 0.141
***

 (0.0161) 0.458
***

 (0.00836) 

region2 0.385 (0.324) -0.455
*
 (0.222) 

region3 0.473
***

 (0.107) -0.0146 (0.0765) 

region4 0.195 (0.110) -0.146
*
 (0.0726) 

region5 0.0312 (0.107) -0.384
***

 (0.0751) 

region6 0.223
*
 (0.0966) -0.144

*
 (0.0657) 

region7 0.136 (0.0910) -0.165
**

 (0.0627) 

region8 0.0621 (0.0965) -0.299
***

 (0.0641) 

year 0.0639
***

 (0.0156) 0.00209
***

 (0.000256) 

year2 -0.102 (0.0556) 0.0402
*
 (0.0199) 

year3 -0.225
***

 (0.0568) 0.0633
**

 (0.0201) 

year4 -0.269
***

 (0.0531) -0.0203 (0.0181) 

year5 -0.297
***

 (0.0659) -0.0682
***

 (0.0184) 

year6 -0.0500 (0.0640) 0.00364 (0.0186) 

year7 -0.0577 (0.0567) -0.170
***

 (0.0257) 

year8 -0.0777 (0.128) -0.126
***

 (0.0360) 

year9 0 (.) -0.0639
*
 (0.0252) 

year10 0 (.) 0 (.) 

soil1 -0.202
*
 (0.0934) 0.120

*
 (0.0488) 

soil2 -0.153 (0.0854) 0.0981
*
 (0.0411) 

lPconcentrate   0.214
*
 (0.109) 

hasforestry   -0.132
**

 (0.0411) 

_cons -117.9
***

 (28.43) 0 (.) 

N 5077  10947  

R
2
 0.077  0.193  

rho 0.458  0.751  
Standard errors in parentheses 
*
 p < 0.05, 

**
 p < 0.01, 

***
 p < 0.001 
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Veterinary: Panel estimates for vet & med costs/hectare 

Log panel cost estimates for vet (fixed-effects) and A.I (random effects)  

 lnvetmed_ha (stnd.error) lnai_fees_ha (stnd.error) 

lPvetmed_ha 0 (.)   

lnlabour_hrs 0.0570
**

 (0.0205)   

off_farm_inc 0.0295 (0.0194)   

lnadjfarmsize -0.838
***

 (0.0244) -0.817
***

 (0.0478) 

teagasc 0.0430
***

 (0.0125)   

hasreps 0.0239 (0.0124)   

lnsheeplu 0.0994
***

 (0.00971) -0.0620
***

 (0.0176) 

lncattlelu 0.260
***

 (0.0136) 0.0489 (0.0299) 

lndairylu 0.226
***

 (0.00955) 0.380
***

 (0.0143) 

region2 0 (.) 0.518 (0.336) 

region3 0 (.) -0.0200 (0.111) 

region4 0 (.) 0.0323 (0.0984) 

region5 0 (.) -0.142 (0.101) 

region6 0 (.) 0.160 (0.0902) 

region7 0 (.) 0.00754 (0.0840) 

region8 0 (.) 0.0280 (0.0860) 

year 0.00847
***

 (0.00241) 0.0309 (0.0483) 

year2 0.00776 (0.0154) -0.0128 (0.0447) 

year3 -0.00736 (0.0149) -0.0235 (0.0756) 

year4 0.0240 (0.0146) -0.0851 (0.0491) 

year5 0.0476
**

 (0.0150) -0.139
***

 (0.0366) 

year6 -0.0178 (0.0157) -0.0627 (0.0541) 

year7 0.0229 (0.0165) -0.0215 (0.0605) 

year8 0.0218 (0.0176) -0.0273 (0.0537) 

year9 -0.0188 (0.0190)   

year10 0 (.) 0 (.) 

soil1 -0.126
*
 (0.0528) 0.0773 (0.0808) 

soil2 -0.0949
*
 (0.0409) 0.0760 (0.0727) 

lPai_fees_ha   -1.464 (1.822) 

year9   0 (.) 

_cons -11.43
*
 (4.820) -50.59 (88.22) 

N 11163  5810  

R
2
 0.164  0.077  

rho 0.756  0.644  
Standard errors in parentheses 
*
 p < 0.05, 

**
 p < 0.01, 

***
 p < 0.001 
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Fert & Other: Panel estimates for fert & other costs/hectare 

Log panel estimates for fertilizer (random effects) & other direct costs (fixed-

effects) 

 lnfertiliser_ha (stnd.error) lnoth_dc_ha (stnd.error) 

lPfertiliser_ha -0.405
***

 (0.0909)   

lnlandval_ha 0.0612
***

 (0.0120)   

off_farm_inc -0.0267 (0.0151) 0.00650 (0.0233) 

lntillage_area 0.236
***

 (0.00847)   

lnadjfarmsize -0.531
***

 (0.0166) -0.573
***

 (0.0292) 

teagasc 0.0422
***

 (0.0105) 0.0132 (0.0150) 

hasreps -0.0506
***

 (0.0105) 0.000497 (0.0149) 

lnsheeplu 0.00956 (0.00641) 0.0215 (0.0116) 

lncattlelu 0.171
***

 (0.00854) 0.120
***

 (0.0161) 

lndairylu 0.226
***

 (0.00584) 0.188
***

 (0.0115) 

region2 0.282
*
 (0.126)   

region3 0.274
***

 (0.0493)   

region4 0.114
*
 (0.0476)   

region5 0.00152 (0.0489)   

region6 0.241
***

 (0.0429)   

region7 0.252
***

 (0.0409)   

region8 -0.0590 (0.0424)   

year -0.0143
**

 (0.00486) 0.00315 (0.00288) 

year2 -0.0260 (0.0154) 0.136
***

 (0.0184) 

year3 0.0167 (0.0163) 0.0543
**

 (0.0179) 

year4 -0.0163 (0.0178) 0.0541
**

 (0.0175) 

year5 -0.000895 (0.0160) 0.0429
*
 (0.0180) 

year6 0.0315
*
 (0.0150) 0.0160 (0.0187) 

year7 -0.00742 (0.0166) -0.00502 (0.0197) 

year8 -0.0364 (0.0304) -0.0487
*
 (0.0210) 

year9 0 (.) 0.00674 (0.0226) 

year10 0 (.) 0 (.) 

soil1 0.292
***

 (0.0339) -0.143
*
 (0.0636) 

soil2 0.138
***

 (0.0290) -0.0774 (0.0495) 

lPoth_dc_ha   0 (.) 

lnlabour_hrs   0.00331 (0.0235) 

lntillage_sh   -0.0372
***

 (0.0111) 

hasforestry   -0.0252 (0.0561) 

_cons 35.48
***

 (9.310) -0.215 (5.759) 

N 10956  11378  

R
2
 0.272  0.078  

rho 0.721  0.785  
Standard errors in parentheses 
*
 p < 0.05, 

**
 p < 0.01, 

***
 p < 0.001 
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Car/Elec/Tel & Other: Panel estimates for car/elec/tel & other costs/hectare 

Fixed effects log panel estimates for car/elec/tel & other overhead costs  

 lncar/tel/elc_ha (stnd.error) lnoth_oc_ha (stnd.error) 

lPcar/tel/elc_ha 0 (.)   

lnlabour_hrs 0.105
***

 (0.0175) 0.0443
***

 (0.0129) 

lnage 0.0355
*
 (0.0171)   

off_farm_inc 0.0228 (0.0167)   

lnadjfarmsize -0.854
***

 (0.0207) -0.770
***

 (0.0165) 

teagasc 0.0162 (0.0107) 0.0394
***

 (0.00828) 

lnsheeplu 0.0266
**

 (0.00838) 0.00936 (0.00644) 

lncattlelu -0.00933 (0.0116) 0.0977
***

 (0.00891) 

lndairylu 0.146
***

 (0.00828) 0.0769
***

 (0.00638) 

year -0.0425
***

 (0.00206) -0.00511
**

 (0.00159) 

year2 -0.00573 (0.0133) -0.0421
***

 (0.0102) 

year3 -0.0518
***

 (0.0128) -0.0574
***

 (0.00987) 

year4 -0.0540
***

 (0.0126) -0.0243
*
 (0.00967) 

year5 -0.0467
***

 (0.0129) -0.0469
***

 (0.00992) 

year6 -0.0263
*
 (0.0134) 0.0120 (0.0103) 

year7 -0.0378
**

 (0.0141) 0.0444
***

 (0.0108) 

year8 -0.000489 (0.0150) 0.0707
***

 (0.0115) 

year9 -0.0698
***

 (0.0162) -0.0987
***

 (0.0125) 

year10 0 (.) 0 (.) 

soil1 0.0738 (0.0456) -0.0422 (0.0351) 

soil2 0.0497 (0.0355) -0.0382 (0.0273) 

lPoth_oc_ha   0 (.) 

lnlandval_ha   -0.0419
***

 (0.00984) 

lntillage_sh   0.0180
**

 (0.00616) 

hasreps   0.0770
***

 (0.00824) 

_cons 91.77
***

 (4.116) 18.45
***

 (3.173) 

N 11370  11447  

R
2
 0.284  0.233  

rho 0.867  0.936  
Standard errors in parentheses 
*
 p < 0.05, 

**
 p < 0.01, 

***
 p < 0.001 
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Crop Costs: Panel estimates for crop costs/hectare 

Random effects log panel estimates for purchase of seed & crop protection 

plans 

 lnseed_ha (stnd.error) lncroprotect_ha (stnd.error) 

lPseed_ha -0.478 (0.338)   

lnlandval_ha 0.0502 (0.0335) 0.0117 (0.0264) 

lnage -0.141
**

 (0.0460) -0.0824
*
 (0.0373) 

lntillage_area 0.509
***

 (0.0169) 0.893
***

 (0.0141) 

lnadjfarmsize -0.351
***

 (0.0422) -0.576
***

 (0.0323) 

lnsheeplu -0.0662
***

 (0.0144) -0.0339
**

 (0.0114) 

lncattlelu -0.0548
**

 (0.0184) -0.0180 (0.0144) 

lndairylu 0.0223 (0.0125) 0.0709
***

 (0.0101) 

region2 0.348 (0.217) 0.329 (0.170) 

region3 0.276
**

 (0.0867) 0.278
***

 (0.0646) 

region4 0.125 (0.0869) 0.151
*
 (0.0640) 

region5 -0.132 (0.0936) -0.0367 (0.0680) 

region6 0.263
***

 (0.0743) 0.200
***

 (0.0573) 

region7 0.216
**

 (0.0739) 0.128
*
 (0.0552) 

region8 -0.304
***

 (0.0900) -0.0923 (0.0598) 

year 0.00281
***

 (0.000792) -0.0279 (0.0511) 

year2 -0.112
**

 (0.0408) -0.0583 (0.0476) 

year3 0.0437 (0.0409) 0.112
**

 (0.0417) 

year4 -0.0424 (0.0417) -0.0294 (0.0940) 

year5 0.0480 (0.0409) 0.0869
*
 (0.0353) 

year6 -0.0267 (0.0459) 0.101 (0.169) 

year7 -0.214
***

 (0.0643) 0.219 (0.221) 

year8 -0.0727 (0.0874) 0.212 (0.122) 

year9 -0.0557 (0.0651)   

year10 0 (.) 0 (.) 

soil1 0.539
***

 (0.0811) 0.278
***

 (0.0611) 

soil2 0.411
***

 (0.0782) 0.178
**

 (0.0575) 

lPcroprotect_ha   7.633 (10.40) 

off_farm_inc   -0.0162 (0.0327) 

teagasc   0.0393 (0.0249) 

year9   0 (.) 

_cons 0 (.) 24.10 (54.66) 

N 5129  7220  

R
2
 0.050  0.119  

rho 0.471  0.365  
Standard errors in parentheses 
*
 p < 0.05, 

**
 p < 0.01, 

***
 p < 0.001 
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Dairy Logit Models: Determinants for probability of exiting dairy 

 

Determinants for Probability of Exiting from Dairy  

        exit_dry_1 (stnd.error) 

   

landval_ha 0.480
*
 (0.211) 

totadjfarmsize -0.0385
***

 (0.0100) 

totadjfarmsize2 0.0000971 (0.0000554) 

age -0.0832 (0.0637) 

age2 0.000908 (0.000587) 

teagasc 0.0901 (0.242) 

labour_hrs -0.201 (0.284) 

stock_rate_tot -2.439
***

 (0.298) 

gross_margin_quintile_1 0.618 (0.507) 

gross_margin_quintile_2 0.0843 (0.564) 

gross_margin_quintile_3 0.0988 (0.629) 

gross_margin_quintile_4 0.146 (0.685) 

gross_margin_quintile_5 -0.319 (0.875) 

year 0.0128 (0.0926) 

year2 0.311 (0.597) 

year3 -0.0711 (0.574) 

year4 0.482 (0.515) 

year5 0.953
*
 (0.445) 

year6 0.408 (0.472) 

year7 0.672 (0.471) 

year8 0.250 (0.530) 

year9 0 (.) 

year10 0 (.) 

region2 0 (.) 

region4 -0.256 (0.550) 

region5 -0.286 (0.351) 

region6 -0.794
*
 (0.404) 

region7 -0.739
*
 (0.313) 

region8 0.378 (0.472) 

soil1 0.386 (0.408) 

soil2 0.253 (0.375) 

_cons -23.08 (185.4) 

N 3824  

pseudo R
2
 0.226  

Standard errors in parentheses 
*
 p < 0.05, 

**
 p < 0.01, 

***
 p < 0.001 
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Dairy Logit Models: Determinants for probability of having dairy enterprise 

 hasdairy (stnd.error) 

   

landval_ha -.0098488 (.0462581) 

farmsize1 -0.669
***

 (0.183) 

farmsize2 -0.762
***

 (0.104) 

farmsize4 0.463
***

 (0.0682) 

farmsize5 0.660
***

 (0.0685) 

farmsize6 0.170
*
 (0.0867) 

age 0.0619
***

 (0.00941) 

age2 -0.000940
***

 (0.0000883) 

teagasc 0.521
***

 (0.0420) 

labour_hrs 1.243
***

 (0.0479) 

stock_rate_tot 1.991
***

 (0.0398) 

year -0.0184
***

 (0.00387) 

region1 1.774
***

 (0.0939) 

region2 0.873
**

 (0.275) 

region3 1.099
***

 (0.0994) 

region4 1.002
***

 (0.101) 

region5 2.002
***

 (0.101) 

region6 1.753
***

 (0.0919) 

region7 2.744
***

 (0.0927) 

soil1 0.390
***

 (0.102) 

soil2 0.219
*
 (0.104) 

off_farm_inc -1.323
***

 (0.0589) 

_cons 28.80
***

 (7.760) 

N 22185  

pseudo R
2
 0.416  

Standard errors in parentheses 
*
 p < 0.05, 

**
 p < 0.01, 

***
 p < 0.001 

 

 



 267 

Appendix C – NFS-DSM Model Validation 2001-2010 

Farm Size: Adjusted farm size 

 Simulated vs. actual mean values for adjusted farm size 2001-2010 

 

 
 

year Simulated Actual 

2001 33.574 33.574 

2002 33.698 35.059 

2003 33.815 34.068 

2004 33.924 34.413 

2005 34.030 34.674 

2006 34.133 32.686 

2007 34.233 32.269 

2008 34.330 33.990 

2009 34.419 34.732 

2010 34.500 35.952 
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Dairy: Litres per livestock unit 

Simulated vs. actual mean values for dairy litres per livestock unit 2001-2010 

 

 
 

year Simulated Actual 

2001 4067.336 4067.336 

2002 4550.500 4564.917 

2003 4639.356 4710.772 

2004 4683.619 4811.074 

2005 4547.742 4747.208 

2006 4643.174 4922.296 

2007 4530.544 4599.031 

2008 4377.575 4701.241 

2009 4153.555 4362.904 

2010 4420.023 4874.678 
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Dairy: Livestock units per hectare 

Simulated vs. actual mean values for dairy livestock units per hectare 2001-

2010 

 

 
 

 

year Simulated Actual 

2001 1.890 1.890 

2002 1.888 1.865 

2003 1.934 1.936 

2004 1.916 1.912 

2005 1.901 1.876 

2006 1.896 1.875 

2007 1.908 1.853 

2008 1.908 1.848 

2009 1.909 1.803 

2010 1.948 1.896 

0

0.5

1

1.5

2

2.5

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Li
ve

st
o

ck
 U

n
it

s 
p

e
r 

H
e

ct
ar

e
 

Year 

Simulated

Actual



 270 

Cattle: Gross output per livestock unit 

Simulated vs. actual mean values for cattle gross output per livestock unit 

2001-2010 

 

 
 

year Simulated Actual 

2001 €405.28 €405.28 

2002 €402.12 €397.37 

2003 €402.83 €386.12 

2004 €399.86 €400.29 

2005 €384.71 €400.41 

2006 €373.84 €377.81 

2007 €391.68 €400.35 

2008 €383.23 €388.92 

2009 €377.73 €401.65 

2010 €409.69 €433.41 
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Cattle: Livestock units per hectare 

Simulated vs. actual mean values for cattle livestock units per hectare 2001-

2010 

 

 
 

year Simulated Actual 

2001 1.563 1.563 

2002 1.537 1.498 

2003 1.535 1.552 

2004 1.484 1.528 

2005 1.475 1.534 

2006 1.435 1.470 

2007 1.404 1.481 

2008 1.384 1.458 

2009 1.354 1.423 

2010 1.322 1.405 
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Sheep: Gross output per livestock unit 

Simulated vs. actual mean values for sheep gross output per livestock unit 

2001-2010 
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year Simulated Actual 

2001 €354.95 €354.95 

2002 €339.75 €317.65 

2003 €339.27 €347.81 

2004 €341.10 €339.18 

2005 €351.83 €358.13 

2006 €355.36 €343.02 

2007 €359.20 €362.54 

2008 €345.70 €358.43 

2009 €344.02 €340.59 

2010 €351.22 €332.95 
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Sheep: Livestock units per hectare 

Simulated vs. actual mean values for sheep livestock units per hectare 2001-

2010 

 

 
 

 

year Simulated Actual 

2001 1.833 1.833 

2002 1.820 1.787 

2003 1.790 1.850 

2004 1.754 1.815 

2005 1.719 1.821 

2006 1.684 1.729 

2007 1.651 1.684 

2008 1.618 1.652 

2009 1.585 1.567 

2010 1.554 1.603 
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Crops: Gross output per hectare 

Simulated vs. actual mean values for crop gross output per hectare 2001-2010 

 

 

 

year Simulated Actual 

2001 €1342.71 €1342.71 

2002 €1315.86 €1119.98 

2003 €1289.54 €1218.43 

2004 €1336.31 €1169.66 

2005 €1309.59 €1121.22 

2006 €1283.40 €1295.46 

2007 €1277.70 €1757.46 

2008 €1252.14 €1441.47 

2009 €1227.10 €960.70 

2010 €1203.37 €1243.51 
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Fodder: Expenditure on bulk fodder per hectare 

Simulated vs. actual mean values for expenditure on bulk fodder per hectare 

2001-2010 

 

 

year Simulated Actual 

2001 €39.85 €39.85 

2002 €47.91 €42.19 

2003 €51.07 €43.84 

2004 €50.34 €44.59 

2005 €41.12 €44.92 

2006 €53.84 €56.57 

2007 €49.24 €46.82 

2008 €42.99 €40.79 

2009 €54.52 €47.23 

2010 €61.30 €51.46 
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Fodder: Expenditure on concentrates per hectare 

Simulated vs. actual mean values for expenditure on concentrates per hectare 

2001-2010 

 

 
 

year Simulated Actual 

2001 €153.54 €153.54 

2002 €158.20 €147.30 

2003 €159.49 €151.93 

2004 €145.17 €148.12 

2005 €136.02 €139.93 

2006 €144.11 €143.29 

2007 €121.44 €128.10 

2008 €127.62 €130.67 

2009 €128.80 €136.29 

2010 €134.53 €150.92 

 

€0 

€20 

€40 

€60 

€80 

€100 

€120 

€140 

€160 

€180 

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

€
 p

e
r 

h
e

ct
ar

e
 

Year 

Simulated

Actual



 277 

Veterinary*: Expenditure on veterinary per hectare 

 Simulated vs. actual mean values for expenditure on veterinary and medical 

per hectare 2001-2010 

 

 
 

year Simulated Actual 

2001 €47.58 €47.58 

2002 €47.21 €49.67 

2003 €46.60 €50.19 

2004 €48.46 €53.20 

2005 €49.62 €53.69 

2006 €46.20 €48.76 

2007 €47.74 €52.79 

2008 €47.54 €51.64 

2009 €45.35 €49.67 

2010 €45.85 €53.11 
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A.I.: Expenditure on A.I. per hectare 

 Simulated vs. actual mean values for expenditure on A.I. fees per hectare 

2001-2010 

 

 
 

year Simulated Actual 

2001 €21.06 €21.06 

2002 €25.24 €19.75 

2003 €23.88 €19.43 

2004 €23.71 €19.85 

2005 €20.49 €20.62 

2006 €21.21 €19.93 

2007 €21.48 €26.99 

2008 €20.96 €28.01 

2009 €21.37 €27.09 

2010 €21.52 €21.68 
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Fertiliser: Expenditure on fertiliser per hectare 

Simulated vs. actual mean values for expenditure on fertiliser per hectare 

2001-2010 

 

 
 

year Simulated Actual 

2001 €93.89 €93.89 

2002 €92.67 €85.91 

2003 €93.17 €86.39 

2004 €85.29 €85.80 

2005 €80.67 €81.97 

2006 €78.42 €80.01 

2007 €72.54 €75.38 

2008 €57.37 €61.06 

2009 €61.97 €65.34 

2010 €66.43 €71.87 
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Other Direct Costs*: Expenditure per hectare 

 Simulated vs. actual mean values for expenditure on other direct costs per 

hectare 2001-2010 

 

 
 

year Simulated Actual 

2001 €123.52 €123.52 

2002 €140.88 €138.57 

2003 €129.45 €126.49 

2004 €128.39 €131.11 

2005 €125.97 €131.02 

2006 €121.87 €120.80 

2007 €118.25 €121.58 

2008 €112.50 €118.24 

2009 €118.08 €123.64 

2010 €116.56 €119.91 
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Car/Elec/Tel*: Expenditure per hectare 

 Simulated vs. actual mean values for expenditure on car/elec/tel per hectare 

2001-2010 

 
 

year Simulated Actual 

2001 €79.87 €79.87 

2002 €75.57 €75.95 

2003 €68.75 €67.36 

2004 €65.71 €66.35 

2005 €62.95 €64.52 

2006 €61.15 €60.98 

2007 €57.41 €56.37 

2008 €56.74 €55.38 

2009 €50.32 €47.35 

2010 €51.37 €52.61 
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Other Overhead Costs*:  Expenditure per hectare 

Simulated vs. actual mean values for expenditure on overhead costs per 

hectare 2001-2010 

 

 
 

year Simulated Actual 

2001 €395.59 €395.59 

2002 €367.57 €365.65 

2003 €358.47 €354.75 

2004 €374.43 €380.72 

2005 €364.49 €374.88 

2006 €384.21 €380.34 

2007 €391.79 €392.28 

2008 €398.40 €392.85 

2009 €333.34 €344.38 

2010 €362.53 €391.16 
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Crop Costs: Expenditure on seed per hectare 

Simulated vs. actual mean values for expenditure on seed per hectare 2001-

2010 

 

 
 

year Simulated Actual 

2001 €24.21 €24.21 

2002 €21.97 €22.35 

2003 €24.10 €23.29 

2004 €22.43 €21.66 

2005 €24.12 €22.27 

2006 €21.76 €24.60 

2007 €17.02 €22.68 

2008 €19.84 €19.90 

2009 €21.12 €21.43 

2010 €23.25 €22.32 
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Crop Costs: Expenditure on CPPs per hectare 

 Simulated vs. actual mean values for expenditure on crop protection plans 

per hectare 2001-2010 

  

year Simulated Actual 

2001 €22.42 €22.42 

2002 €22.20 €24.21 

2003 €25.20 €23.56 

2004 €24.01 €22.01 

2005 €24.92 €21.39 

2006 €22.48 €20.65 

2007 €24.30 €22.54 

2008 €26.91 €24.17 

2009 €23.71 €23.83 

2010 €24.29 €22.00 

* Indicates Fixed Effects Model  
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