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Abstract

The current generation of Mobile Mapping Systems (MMSs) capture increas-

ingly larger amounts of data in a short time frame. Due to the relative novelty

of this technology there is no concrete understanding of the point density that

different scanner configurations and scanner hardware settings will exhibit

on objects at specific distances. Depending on the project requirements, ob-

taining the required point density impacts on survey time, processing time,

data storage and is the underlying limit of automated algorithms. Insuffi-

cient knowledge of the factors influencing MMS point density means that

defining point density in project specifications is a complicated process. The

objectives of this thesis are to calculate point density, to assess MMS laser

scanner configuration and hardware settings and to benchmark a selection

of MMSs in terms of their point density. The calculation methods involve

a combination of algorithms applying 3D surface normals and 2D geomet-

ric formulae and outputs profile angle, profile spacing, point spacing and

point density. Each of these elements are a major factor in calculating point

density on arbitrary objects, such as road signs, poles or buildings - all impor-

tant features in asset management surveys. These algorithms are combined

in a system called the Mobile Mapping Point Density Calculator (MIMIC).

MIMIC is then applied in a series of tests identifying the recommended MMS

laser scanner configuration and scanner hardware settings for near side in-

frastructure. The influence that the scanner orientation and location on the

MMS has on point density is quantified, resulting in a recommended MMS

laser scanner configuration. A series of benchmarking tests assess the perfor-

mance of one commercial and two theoretical MMSs in terms of their point

density. The recommended configuration identified in the previous tests al-
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lows a low specification MMS to increase its performance in relation to a

higher specification MMS. The benchmarking tests also highlight that a high

pulse repetition rate is preferable to a high mirror frequency for maximising

point density. The findings in this thesis enable a MMS to be configured to

maximise point density for specific targets. Researchers can utilise MIMIC

to tailor their automated algorithm’s point density requirements for specific

targets.
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Chapter 1

Introduction

A mobile mapping system (MMS) combines navigation sensors and spatial

measurement sensors on a moving platform and this sensor combination en-

ables rapid, high density spatial data collection. In this chapter the reader

is introduced to the fields of laser scanning, MMSs and MMS performance

assessment. The aim of this chapter is to provide a general overview of these

fields. This chapter identifies the contributions to knowledge which are made

in the field of MMS performance assesment in this thesis. An introduction

to the operational and technical details of a MMS is required to allow the

reader to appreciate the importance of MMSs as a survey technology. The

three core contributions of this thesis are then detailed. Firstly, a method of

calculating point density for MMSs operating a laser scanner(s) is designed.

Secondly, this method is used to assess MMS configurations. In the third

contribution, a benchmarking process is applied to a selection of MMSs. By

completing these three objectives it is now possible to calculate what perfor-

mance to expect from a MMS, to assess MMS configurations and to compare

the quality of a MMS in relation to alternative models. The list of publica-
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tions arising from work carried out in this thesis is also presented. The MMSs

that are used for validation of the methodology in this thesis are introduced.

This chapter closes by explaining the assumptions made in this research and

outlining the thesis structure.

1.1 Mobile Mapping Systems

MMSs equipped with laser scanners enable high density spatial data collec-

tion along road networks, in a rapid and efficient manner. Although early

MMSs were predominantly image based [Goad, 1991, Schwarz et al., 1993],

this thesis will deal with MMSs operating laser scanners only. Laser scanners

are an optical remote sensing technology capable of measuring the distance

to a target. Laser scanners operate on the principle of Light Detection and

Ranging, or LiDAR. Although Airborne Topographic LiDAR is a well estab-

lished survey technology [Lillesand et al., 2008, Tuck et al., 2012, Vosselman

and Maas, 2010], this thesis will deal with terrestrial MMSs only. On a

terrestrial MMS, navigation sensors are combined with spatial measurement

sensors to facilitate rapid, efficient and accurate spatial data collection.

In their recent study on ’LiDAR for data efficiency’, the Washington

State Department of Transport (WSDOT) [Yen and T.A., 2011] identified

that MMSs decrease staff exposure to traffic and other hazards and decrease

personnel, equipment and travel costs. MMSs also enable unnecessary traf-

fic delays for the travelling public to be avoided. This study shows that

over a total of six years, the WSDOT could save up to $6,140,100 by pur-

chasing a MMS, a saving of over $1,000,000 per annum. MMSs can acquire

data at typical driving speeds under normal traffic conditions and thereby
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avoiding expensive overhead costs arising from road closures. This MMS

capability is important for Departments of Transport and National Road

Authorities. For example, the Irish National Roads Authority (NRA) have

included a requirement for MMS surveys in their topographic survey specifi-

cations [O Cathain, 2011] because, MMSs ”minimise disruption and expense

associated with Traffic Management”. Work on MMS topographic survey

specifications is ongoing [California Department of Transport, 2012, Florida

Department of Transport, 2012].

Terrestrial MMSs complement aerial topographic surveys in a number

of ways. For example, large scale information such as road signs or de-

tailed infrastructure condition can be recorded [Huang et al., 2008, Shi et al.,

2008, Toth and Grejner-brzezinska, 2004]. Extensive ground control is not

essential, however limited ground control improves the accuracy of the sur-

veyed points in planimetry and elevation [Graefe, 2007b, Miller and Mills,

2008]. Additionally, MMSs can survey features that are occluded from aerial

platforms, i.e. roads that pass through tunnels or under bridges [Hunter

et al., 2006, Kremer and Hunter, 2007].

1.2 MMS Data Processing and Applications

A MMS requires a high accuracy navigation solution to accurately georefer-

ence individual laser returns. State of the art MMSs incorporate a Global

Navigation Satellite System (GNSS) receiver, an Inertial Navigation System

(INS) and a Distance Measurement Instrument (DMI) and when combined

enable accurate positioning. Post processing the outputs from these position-

ing and navigation sensors provides accurate latitude, longitude and elevation
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together with information on the vehicle orientation such as pitch, roll and

yaw. MMSs are a versatile surveying technology, and although originally

designed for route corridor surveys, the number of potential applications of

MMSs are increasing.

1.2.1 Data Processing

The orientation and positioning sensors on the MMS are used to convert the

laser scan data into the correct coordinate system. This involves three key

stages. Firstly, the GNSS measurements recorded by the MMS are corrected

for any external error sources that may have influenced them. For a MMS

survey in Ireland, this is achieved by comparing the GNSS data with local

base stations maintained by Ordnance Survey Ireland (OSi). The base sta-

tions have been surveyed to a high degree of accuracy (better than 1mm) and

any errors in the GNSS signal arising from atmospheric interference or satel-

lite problems are identified and quantified. These corrections are then made

freely available from the OSi’s website [Ordnance Survey Ireland, 2012] in a

Receiver Independent Exchange Format (RINEX) to download. The RINEX

files are combined with the GNSS data from the MMS resulting in a more

accurate GNSS navigation solution. Best practice guidelines for GNSS sur-

veying in Ireland are detailed in [Prendergast, 2004, Prendergast et al., 2008].

The post-processed GNSS solution is then combined with the INS data and

the DMI data for the survey. These data are then combined in an algorithm

designed to provide a statistically optimal estimate of the underlying naviga-

tion solution [Grewal et al., 2007], commonly referred to as a Kalman Filter.

Application of the Kalman Filter results in an optimised navigation solution.
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The final navigation solution is combined with the laser scan data to produce

a fully georeferenced point cloud in the desired mapping coordinate system.

Figure 1.1 illustrates this workflow.

Figure 1.1: MMS Positional and Spatial Data Processing

1.2.2 MMS Applications

MMS are not just designed to record information about the elevation, dimen-

sions and geometry of the road. Numerous other MMS applications exist.

MMS surveys can target road markings [Jaakkola et al., 2008, Kim et al.,

2006, Kumar et al., 2010, Kumar et al., 2011, Kumar, 2012], or be designed

to assess earthen bank slope assessment on route corridors [Miller and Mills,
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2008]. Alternatively, the target of the survey can be power lines or telegraph

poles [Kim et al., 2006]. MMSs can survey the dimensions of buildings and

record high density spatial measurements on the building facades, facilitating

creation of 3D city models [Becker and Haala, 2009, Graefe, 2007b]. MMSs

can be used for map updating and change detection [Hyyppä et al., 2009].

Coastal Surveys [Kremer and Hunter, 2007] can be carried out rapidly in

areas of high tidal change. MMSs can be used in research on forestry [Lin

et al., 2012]. MMSs are not limited to land based vehicles, but have been

installed on boats, trolleys and backpack mounted [Kukko et al., 2012]. The

summarised work is only a limited sample of the potential applications of

MMSs, numerous others exist.

1.3 Positioning and Navigation

To understand the complexities of a MMS as a survey technology and to

appreciate the importance of further research into MMS performance, MMS

calibration and hardware issues must first be investigated. An MMS com-

bines three navigation sensors: a GNSS, an INS and a DMI. These three

sensors require calibration. Successful calibration enables high accuracy po-

sitional measurements. The first step in the claibration process is the mea-

surement of the position of each of these sensors relative to a fixed point on

the MMS. This fixed point is generally the sensor datum point of the INS.

1.3.1 Lever Arm Offsets

An issue that influences the accuracy of the MMS positioning is the quality

of the MMS hardware calibration. This issue is not specific to the position-
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ing and orientation component but also influences the accuracy of the spatial

measurements. The GNSS receiver(s), INS, DMI and Laser Scanner(s) must

all be located in the same vehicle coordinate reference system. The distance

offset from each sensor datum point to a point of reference in the vehicle

coordinate system must be specified. This point of reference is usually the

sensor datum point of the INS. These offsets are termed the ’lever arm offsets’

and must be measured accurately to minimise errors when surveying. The

contribution of lever arm offsets to absolute accuracy has been the subject

of previous work by [Betaille et al., 2007, Hong et al., 2006, Seo et al., 2005].

Traditional surveying methods like a tripod mounted laser scanner can be

used to survey the entire MMS hardware configuration. This laser scan sur-

vey can then be used to identify the location of the centre of measurement of

each piece of hardware. Alternatively a CAD model can be used to measure

each lever arm offset if it is available. An example of a CAD model used to

measure lever arm offsets can be seen in Figure 1.2.

1.3.2 Global Navigation Satellite Systems

The GNSS is the term given to the rapidly expanding collection of satellites

available for navigation and surveying purposes [Bevley and Cobb, 2010, Gre-

wal et al., 2007]. The forerunner of the GNSS is the Global Positioning Sys-

tem (GPS), designed by the U.S. Department of Defense (DOD). The Russian

Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS) joined the

GPS as a functioning satellite constellation in 1995. The Chinese Beidou 2

(COMPASS) system and the European GALILEO system are both currently

at the development stage. The GNSS is a space based navigation system that
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Figure 1.2: 3D CAD Design Drawing Being Used to Measure Lever Arm
Offsets. Offsets are Defined in Terms of the Vehicle Axes, XV1 and XV2 and
XV3

uses satellites to provide receivers on earth with an accurate positional fix,

as illustrated in Figure 1.3. The basic operational procedure is as follows:

� The satellite emits a signal. Each signal is timestamped.

� Using accurate satellite orbital data the receiver on earth can then use

this information to determine the length of time that the satellite signal

took to reach it.

� Combining the signal travel time information with the satellites or-

bital position the receiver can therefore calculate its distance from the

satellite.

� By cross-checking with more satellites the receiver’s global reference
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coordinates can be found. These 3D coordinates provide the lati-

tude/longitude and elevation of the receiver.

A minimum of four satellites are required to provide a 3D positional fix.

The GNSS provides a MMS with the positional data required to register all

spatial measurements to a coordinate reference system.

Figure 1.3: A Minimum of Four Satellites are Required for Positioning in
Three Dimensions [GPS.gov, 2012]

Although a GNSS receiver provides accurate positional data to the MMS,

these receivers are incapable of operating at the required frequency to regis-

ter every spatial measurement. For instance, a vehicle travelling at 100km/h

travels 27m between each positional fix for a GNSS receiver operating at

1Hz. A modern MMS equipped with two laser scanners is capable of record-

ing one million points per second. If relying on a 1Hz positional update, the

first and last laser points only would be surveyed from an accurate X,Y,Z

coordinate. The point of origin for the remaining 999,998 points would have
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to be interpolated and this could introduce errors. Additionally, a single

GNSS receiver can not provide information on the orientation of the MMS.

[Alamús et al., 2004, Geng et al., 2006, Graefe et al., 2001, Talaya et al., 2000]

have attempted to incorporate multiple GNSS receivers to provide informa-

tion on the orientation of the MMS. However, the most common solution

is for a MMS to incorporate an INS. INSs provide position and orientation

information at a higher frequency than GNSS receivers. INSs can operate

in areas of limited satellite visibility. Figure 1.4 illustrates the principle of

an urban canyon. In this example a MMS is surveying an urban area. The

structures on either side of the MMS have obstructed the GNSS signal to

the receiver. GNSS signal can also be obstructed by foliage or when driving

through tunnels.

Figure 1.4: Loss of GNSS Lock in Urban Canyons ([IXSEA, 2009])
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1.3.3 Inertial Navigation Systems

An INS is a navigation sensor which can calculate the orientation and ac-

celeration of a moving platform. An INS uses an accelerometer to measure

the acceleration of the vehicle whereas the orientation of the vehicle is mea-

sured using a gyroscope [Bevley and Cobb, 2010, Grewal et al., 2007]. This

sensor combination enables an INS to calculate the direction, motion and

acceleration of the vehicle in any direction. When supplied with an initial

positional fix, an INS can continuously estimate the current position of the

vehicle. INSs and GNSS receivers have complementary error characteristics

[Chiang and Huang, 2008, Schwarz and El-Sheimy, 2004]. For example, INSs

are accurate over the short term but experience errors that accumulate over

time, even when the vehicle is stationary. Under the right conditions, a GNSS

receiver is consistently accurate and can be used to provide a positional fix to

the INS. However, an INS is capable of higher frequency positional updates

than a GNSS receiver and is therefore better suited to aid in the positioning

of a mobile platform moving at high velocities [Grewal et al., 2007, Titterton

and Weston, 2004].

An INS can help compensate for positional error in areas of limited satel-

lite visibility. While the MMS is experiencing zero satellite visibility, the

INS will provide positional updates [IXSEA, 2009]. Figure 1.5(a) illustrates

a plot of a survey route where the GNSS receiver experienced poor satellite

visibility. The gaps in the data represent areas of limited or zero GNSS sig-

nal. Figure 1.5(b) displays the completed navigation solution for the survey.

In this image, gaps in the GNSS navigation solution have been augmented

with INS positional data. However, errors increase over time and the INS
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requires GNSS positional updates to control these errors. For example, state

of the art INSs such as the IXSEA LandINS experience a decrease in X,Y

positional accuracy of 0.6m after 300 seconds [IXSEA, 2009] of zero satellite

visibility. The IXSEA LandINS is the GNSS/INS combination installed on

the XP1, one of the MMSs used for validation in this thesis.

(a) (b)

Figure 1.5: INS compensates for loss of GNSS lock (a) Track with GNSS
only (b) completed track with INS and GNSS)

1.3.4 Distance Measurement Instrument

A DMI is a survey grade odometer that is attached to the wheel of a MMS

and is illustrated in Figure 1.6. DMIs provide an additional check on the

navigation solution of the MMS during processing. Additionally, DMIs are

particularly useful for controlling errors in the INS at times of zero veloc-

ity. INS accelerometers experience an error known as ’drift’. Due to drift in

the INS accelerometer the INS registers vehicle motion although the vehicle

is actually stationary. The solution supplied by the DMI is a, ’zero veloc-

ity update’ or ZUPT. ZUPTs are an important addition to the quality of

the navigation solution [Aggarwal et al., 2009, Toth and Grejner-brzezinska,
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2004]. The DMI identifies when the vehicle velocity is zero, and then this

provides an additional calibration for the INS.

Figure 1.6: DMI Attached to Wheel of Survey Vehicle

1.4 Spatial Measurement

MMSs combine navigation sensors and spatial measurement sensors on a

moving platform. A state of the art MMS can incorporate multiple spatial

measurement sensors such as laser scanners. Similarly to the position and

navigation sensors, a calibration process is required to ensure no orientation

errors exist for the laser scanner(s). The calibration process is introduced in

this section. Descriptions of the three different laser scanning principles are

provided. The distinction between current tripod mounted laser scanners and

scanners specifically designed for MMSs is made. Three different elements of

laser scanning are introduced. These are the size of the laser footprint, the

intensity of the return, and the principle of multiple returns.
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1.4.1 Boresight Alignment

After the lever arm offset for the laser scanner is quantified, an additional

calibration process known as the boresight alignment is also required. This

minimises orientation errors between the laser scanner and the INS. Figure

1.7 illustrates a boresight misalignment on a dual scanner MMS. Although

the two scanners have surveyed the same area of road, the individual scan-

ners have recorded a road surface with different orientations. Calibration can

be carried out to eliminate boresight errors using dedicated software appli-

cations like TerraMatch [TerraSolid, 2012a]. Studies [Glennie, 2007, Glennie

and Lichti, 2010, Madeira et al., 2012, Pothoua et al., 2006, Schaer et al.,

2007] have investigated the influence of boresight misalignments on laser

data captured by aerial survey platforms. The impact of satellite visibility

on MMS survey accuracy has also been investigated in the work by [Barber

et al., 2008, Haala et al., 2008].

Figure 1.7: Cross section of a Road Surface Highlighting a Boresight Mis-
alignment from a Dual Scanner MMS
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1.4.2 Laser Scanning

Laser scanners measure the distance to a target from the sensor head. Each

point is recorded with an X,Y,Z coordinate. Figure 1.8 illustrates a typical

output from a laser scan survey of building facades in an urban environment.

There are three distinct categories of laser scanner: Time of Flight, Phase

Based and Triangulation Based. Each has a different principle of operation

and is suitable for specific projects. This thesis will focus on Time of Flight

scanners only, however a summary of the three types is provided here to

identify the different principles of operation. Scanner types are covered in

detail in [Petrie and Toth, 2009].

Figure 1.8: Laser Scanner Survey of Building Facades in an Urban Environ-
ment [Graefe, 2007b]

� Time of Flight (TOF): TOF laser scanners operate by measuring the

length of time it takes a laser pulse to reach a target and then return

to the scanner. TOF scanners are capable of very long range mea-

surements and a high measurement rate. For instance, the new Riegl
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VZ-6000 [RIEGL, 2012b] displayed in Figure 1.9(a) is capable of mea-

surement ranges up to 6,000m and measurement rates up to 220,000

points per second. The strength of TOF scanners is their long-range

measurement capabilities. TOF scanners have lower measurement rates

than phase based scanners and lower accuracy than triangulation based

scanners. TOF scanners are common on MMSs [Optech, 2012, RIEGL,

2011b, RIEGL, 2009b].

� Phase Based: Phase based scanners operate by concentrating a con-

tinuous laser beam on the target. The received signal is phase shifted

because it is a time delayed version of the original signal. The phase

distance between the transmitted laser beam and the reflected laser

beam represents the distance to the target. Phase based scanners are

capable of medium measurement ranges and very high measurement

rates. The Leica HDS7000 phase based scanner displayed in Figure

1.9(b) [Leica, 2012] is capable of over 1 million points per second and

a 200m measurement range. The strength of phase based scanners is

their high measurement rate. Phase based scanners have a lower mea-

surement range than TOF scanners and a lower accuracy than triangu-

lation based scanners. To the best of the authors knowledge, scanners

designed by FARO [Faro, 2012] are the only phase based scanner to

have been installed on a MMS.

� Triangulation: Triangulation based scanners operate by focussing a

laser pulse on the target. By offseting a camera at a known distance

from the scanners center of measurement, they measure the location

of the laser footprint. Triangulation scanners are used for short range,

high accuracy surveys. They are capable of very high accuracy [Boehler
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(a) (b) (c)

Figure 1.9: Scanner Types (a) Riegl VZ-6000 [RIEGL, 2012b] (b) Leica HDS
7000 [Leica, 2012] (c) Konica Minolta VI9i [Konica, 2012]

et al., 2003], medium measurement rate and low range. The Konica

Minolta VI9i displayed in Figure 1.9(c) [Konica, 2012] has a maximum

range of 2.5m but is capable of an extremely high accuracy 0.1mm.

The strength of triangulation scanners is their high accuracy. They

have a short measurement range and a low measurement rate. Due to

this short measurement range (approximately 3m), these scanners are

unsuitable for MMS surveys.

1.4.3 MMS Specific Laser Scanners

Terrestrial laser scanners (TLS) are predominantly tripod mounted. The

three scanners listed in the previous section are all tripod mounted scanners.

Tripod mounted scanners have servo-motors which are used to rotate the

scanner 360o. These motors enable a 360o survey to be carried out around

the scanner. Although certain research MMSs have been designed mounting

TLSs on moving platforms [Kukko et al., 2007, Talaya et al., 2000], the scan-

ners installed on commercial MMSs are specifically designed to be mounted
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on moving platforms. MMS specific scanners survey in a 2D plane. The for-

ward motion of the vehicle provides the third dimension for the data. MMS

specific scanners will be covered in greater detail in Section 1.6.4 and in

Chapter 2.

1.4.4 Intensity

As well as X,Y,Z coordinates for the location of the target, a TOF laser scan-

ner also returns a value measuring the intensity of the returned pulse from

the target surface. The intensity of a return is a measurement of the recorded

energy of that returned pulse. Brightly coloured or highly reflective surfaces

result in a high intensity return. The intensity of the return can assist in

object classification. For example, a high intensity return on the road surface

could be a road marking while a low intensity return could be tarmac. Figure

1.10 illustrates points coloured by intensity for a road surface. The brighter

points are the high intensity points. These higher intensity points have been

returned from the road marking. This is not always a reliable classification

method as the intensity can vary across a surface. The intensity varies across

a surface because the angle of incidence between the laser pulse and the sur-

face also influences the amount of energy recorded and therefore the intensity

value for that point. A laser return from a surface perpendicular to the pulse

will result in a higher return than for any other orientation of that target.

Recent studies by [Kaasalainen et al., 2011, Soudarissanane et al., 2011] have

investigated the influence of the angle of incidence on laser scan quality.
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Figure 1.10: High Intensity Returns Identify Road Markings

1.4.5 Multiple Returns

Certain laser scanners are capable of recording multiple returns from a single

laser pulse. This information can also be used to classify objects. A laser

pulse that results in a single return has passed unobstructed to a solid object.

Multiple returns are an indicator of obstructions between the scanner and the

target which are not larger than the laser pulse, i.e it’s footprint. The laser

footprint is the size of the laser pulse on the surface it is measuring. A laser

beam expands as it leaves the scanner and this value is known as the beam

divergence. The higher the beam divergence, the larger the footprint. The

longer the range to the target, the larger the footprint. The most common

example of the type of obstruction that results in multiple returns is vege-

tation. Figure 1.11 illustrates the principle of multiple returns. Figure 1.12

illustrates the measured signal. The first pulses corresponds to the reference

pulse. The echoes from the tree and the final return from the roof can be
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seen in this pulse. The time difference between the reference and each of the

returns allows calculation of the distance to the target.

Figure 1.11: Laser Pulse Passing Through Vegetation and Striking a Solid
Structure [RIEGL, 2009b]

Figure 1.12: Example of Laser Pulse Exhbiting Multiple Returns [RIEGL,
2009b]

1.4.6 Data Volumes and Automated Algorithms

MMS produce high density spatial data, however this also has its disad-

vantages. High density spatial data results in high data volumes and also

increased processing times. The Riegl VQ250 [RIEGL, 2009b] laser scanner

produces in excess of 20GB of point cloud data per hour. The Riegl VQ250 is

the laser scanner installed on the XP1, one of the MMSs used for validation

in this thesis. The current generation of commercial MMSs employ 2 x Riegl

VQ250 [RIEGL, 2009a]. This results in a possible 40GB of data per hour.
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For large surveys, processing this data and creating 3D CAD models is time

consuming. This is because every relevant piece of infrastructure and all

road surfaces along with their geometry must be manually identified, defined

and measured. Section 1.4.2 described the different scanner types and the

number of points that each scanner type is capable of recording each second.

Manually interrogating this data to identify every object is extremely time

consuming and therefore automated algorithms play an important role in the

processing workflow. These algorithms are being developed to automatically

recognise features in laser scan data, thus eliminating or reducing the amount

of manual interrogation of the data.

Figure 1.13 displays an example of the results from three automated al-

gorithms [McElhinney et al., 2010]. These algorithms have identified trees,

poles and the road edge. Automated algorithms assist in processing the large

point clouds captured by modern MMSs [Becker and Haala, 2009, Hammoudi

et al., 2009, Kumar, 2012, Pu and Vosselman, 2007]. For example, cylindri-

cal objects require a minimum number of points on each profile to recog-

nise a curved shape. Work documented by [Brenner, 2009, Kukko et al.,

2009, Lehtomäki et al., 2010] require a minimum number of points or profiles

on pole shaped objects to enable their algorithm to recognise those features.

Laser profiles and points will be explored in greater detail in Chapter 2. From

[Kaartinen et al., 2005] it can be seen that point density directly impacts on

the accuracy of the resulting extracted model. Although [Kaartinen et al.,

2005] investigated the link between point density, automated algorithms and

aerial LiDAR data, the principle is still valid when designing automated al-

gorithms for terrestrial MMSs.
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Figure 1.13: An Example of an the Results of an Automated Algoritm Ap-
plied to Laser Scan Data - Note Identification of Trees, Poles and the Road
Edge

Understanding point density is key to accurately and effectively calculat-

ing real-world objects using a MMS. This motivates an investigation into a

method capable of determining point density pre-survey. Identifying what

MMS configuration and hardware settings will result in the required point

density makes efficient use of data storage and increases the potential accu-

racy of the automated algorithms.

1.5 MMS Performance

Despite a MMSs ability to decrease survey times and also avoid road closures,

if a MMS cannot compete with traditional survey methods in three key areas

of performance they will not be adopted as a technology. Three areas of

22



MMS performance are discussed in this section. These areas are absolute and

relative accuracy - combined as one area, repeat survey accuracy and point

density. Absolute, relative and repeat survey accuracy are all investigated as

influencing the accuracy of the MMS data. Point density, which is the focus

of this thesis, is dealt with separately. This section provides background

information to each area of MMS performance.

1.5.1 Accuracy

Two areas of MMS performance can be categorised using the term, ’accu-

racy’. These are absolute and relative accuracy, combined into one category,

and repeat survey accuracy. Absolute and relative accuracy refer to data re-

sulting from a single survey, whereas in this context, repeat survey accuracy

can be defined as a measure of the correlation between two or more laser

scan surveys captured at different times over the same environment.

1.5.1.1 Absolute and Relative Accuracy

The absolute accuracy of a point refers to its accuracy when compared to

the true location of the point as referenced on a pre-defined geodetic frame-

work. There have been a number of papers published assessing the absolute

accuracy of a MMS survey when compared with a reliable source of survey

control. For instance, [Barber et al., 2008] surveyed road markings using tra-

ditional surveying techniques and used these as survey control for comparison

with MMS data. In another study, [Haala et al., 2008] assessed the absolute

accuracy of a MMS using an existing 3D city model and cadastral footprints.

These studies identified that MMSs are capable of accuracies in the region

of 0.03m in planimetry and 0.05m in elevation in good GNSS conditions.
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These studies identified that the GNSS is potentially the largest contributor

to accuracy errors. In their recent benchmarking tests, [Kaartinen et al.,

2012] identified that with properly calibrated high-end MMSs, planimetric

accuracies of approximately 0.02m were achievable.

Relative accuracy is the accuracy of a surveyed point relative to a sub-

sequent point under the same test conditions. Due to the high rate of mea-

surement of a laser scanner, the relative accuracy of a MMS is hardware

dependant and the quoted precision of an instrument typically defines this.

For example, the precision of the Riegl VQ-250 is quoted at 0.01m [RIEGL,

2009b]. Figure 1.14 illustrates the principles of absolute and relative accu-

racy. In Figure 1.14(a), the measurements in red do not match the true value

in green. Additionally, there is a significant deviation between the measure-

ments. The absolute accuracy and relative accuracy is poor in both cases in

this test. In Figure 1.14(b), the measurements do not match the true value,

however the measurements are consistent. In Figure 1.14(c), the measure-

ments do match the true value and the measurements are also consistent.

Both the absolute and relative accuracy in this test are high. Relative and

absolute accuracy are important performance issues, however they are not

the focus of this thesis.

1.5.1.2 Repeat Survey Accuracy

Repeat survey accuracy is a term applied in this thesis for defining the accu-

racy of two surveys in relation to each other when the test conditions have

changed. In Section 1.3 the process for calibrating the MMS and computing

the navigation solution is explained. A number of issues are highlighted that
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(a) (b) (c)

Figure 1.14: Distinction Between Relative and Absolute Accuracy for a Cir-
cular Target

could potentially influence the accuracy of the point cloud. These include

satellite configuration, system lever-arm offsets and boresight misalignments.

Each of these contribute to the repeat survey accuracy of a MMS.

A MMS may carry out a survey on the same stretch of road on two differ-

ent days. The GNSS constellation overhead and the atmospheric conditions

will be different for the second survey. A comparison of the known control

points in the resulting point clouds is a measure of the repeat survey ac-

curacy. Additionally, it is common practice for a MMS to drive a route in

both directions to ensure full coverage of the surrounding environment. Even

in this short time, the GNSS coverage will have changed. The atmospheric

conditions may also have changed.

1.5.2 Point Density

This thesis focuses on point density. The term ’point density’ is generally

applied for the number of pulses striking a target per unit2. In this thesis

the term point density refers to the total number of pulses striking the tar-
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get. Point density is important when trying to manually or automatically

recognise structures in laser scan data. Understanding the factors influencing

point density is also important for MMS design and also for system config-

uration prior to a survey. This area of MMS performance has largely been

unexplored to date. It will be investigated in greater detail in Chapter 2 but

is introduced in this section.

Point density is an important part of a laser scan survey yet there are

unanswered research questions in this area, particularly for MMSs. This is

in part due to the fact that there is no requirement for a high point density

with existing topographic survey methods such as total stations. A total

station is a surveying instrument that measures angles and the distance from

the instrument to a reflective prism. If a measurement of an object is re-

quired, a surveyor will manually identify the points on the target that define

it properly. Figure 1.15 illustrates a two man survey crew surveying a road

edge. This survey method is time consuming but has the advantage that the

position and dimensions of every feature are measured and identified at the

survey stage while the surveyor is still in the field. Survey codes [Trimble,

2012] are used for classification of every feature and are applied at the time of

measurement by the surveyor. Therefore, assuming the surveyor can visually

identify the object, an incorrect classification is unlikely.

This situation is more complicated when working with MMS data. With

certain exceptions where research groups have attempted real-time data pro-

cessing [Brun and Deschaud, 2007, Toth and Grejner-Brzezinska, 2001], this

stage is conducted post survey. Clarification or confirmation of an object
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Figure 1.15: Two Man Survey Crew Operating a Total Station [Ohio Land
Surveys, 2012]

type cannot be carried out until after processing. In the event of a mis-

classification of an object, clarification requires an additional site visit. Au-

tomated algorithms improve on manual classification by identifying and mea-

suring structures and infrastructure at higher speeds than a human operator

is capable of. Entrusting an automated algorithm with object classifica-

tion can result in errors if the point density of the target is insufficient, as

identified in Section 1.4.6. Prior knowledge of the MMS configuration and

operational settings that return a required point density for a specific target

on a survey could minimise the risk of mis-classifications. It could also in-

crease the accuracy of the automated algorithms [Kaartinen et al., 2005].

Traditional survey specifications define the required number of measure-

ments for any ground type. This requirement may be that a road cross sec-
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tion is to be surveyed at 10m intervals on roads. The specification could then

stipulate that a height measurement is recorded at any significant change of

elevation along that cross section [O Cathain, 2011]. Specifically defining the

location for each measurement facilitates an accurate definition of the surface.

Defining the location for measurements during a MMS survey is impossible

as the operator has no control over where each measurement is taken. Laser

scanners compensate for the lack of control by surveying a target with high

density measurements. Currently, MMS configuration, hardware and operat-

ing parameters have unpredictable results on point density. This thesis will

quantify these effects and therefore potentially improve survey, storage and

processing efficiency.

Point density is traditionally quoted in points per m2, yet objects are

3D. Defining the point density of a cylinder in 3D is difficult. In their work

on simulation based analysis of point density, [Yoo et al., 2009] projected

all 3D neighbour points per m3 onto a 2D surface circle. However, point

density is not uniform across a surface, and therefore quoting point density

is not that straight forward. Further research is required to calculate what

point density different MMSs are capable of. For example, one MMS survey

specification [Florida Department of Transport, 2012] states that, ’the point

density should be sufficient to identify and extract physical detail to the

accuracy specified for the project’ but does not specify what point density

will permit that accuracy, or what MMS configuration will facilitate that

point density. One set of LiDAR guidelines [Yen and T.A., 2011] informs

that clients requesting LiDAR surveys must carefully specify ’the point-cloud

point density’ but links this to the speed of vehicle only. Neither of these
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guidelines specify what a suitable point density is. At present there is no

method of quantifying or assessing the point density of a MMSs and it is

these questions that this thesis will address.

1.6 Research Objectives

The aim of this thesis is to investigate MMS point density. To achieve this

aim this thesis incorporates three objectives that further the body of knowl-

edge in the field of quantifying MMS point density. This section summarises

these three objectives. Each objective will be explored in greater detail in

Chapter 2.

1.6.1 Objective 1

No satisfactory method for calculating MMS point density exists. The first

objective of this thesis is to design a method that is capable of calculating

the point density recorded by MMSs from generic targets. This method

incorporates MMS configurations, different hardware settings and different

MMS operating parameters. This objective will be investigated in greater

detail in Chapters 2 and 3 and will be implemented and validated in Chapters

4 and 5.

1.6.2 Objective 2

The second objective of this thesis is to assess different MMS configurations

and to quantify what influence these configurations have on point density.

A recommended configuration for different survey targets is presented. This
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objective will be investigated in greater detail in Chapter 2 and will be im-

plemented in Chapter 6.

1.6.3 Objective 3

The final step of this thesis applies the method designed after completion of

Objective 1 to a selection of hypothetical and existing MMSs to benchmark

their point density performance. The recommended configuration identified

after successful completion of Objective 2 is employed in the benchmarking

tests. This objective will be investigated in greater detail in Chapter 2 and

the methods employed to achieve it will be discussed in Chapter 7.

1.6.4 Test Systems

The algorithms, methods and conclusions resulting from the completion of

Objectives 1, 2 and 3 will require verification. Laser scanner data from two

MMS will be used to test and validate each of the findings. The first MMS

that is used for validation is a research platform called the XP1. The second

MMS used for validation is a commercial MMS. The commercial system is

the Optech Lynx [Optech, 2012] and it provides the opportunity for further

validation with different hardware and a different system configuration.

The multi-disciplinary research group, StratAG [Stratag, 2012], estab-

lished to research advanced geotechnologies at the National Centre for Geo-

computation (NCG), NUI Maynooth have designed and developed a multi-

purpose, state of the art, land based experimental platform MMS, the XP1.

The component of this MMS most relevant to this thesis is the Riegl VQ-250

laser scanner. This scanner is specifically designed for MMS surveys. Table
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1.1 details the relevant information for the laser scanner that is required for

this research. The Optech Lynx MMS is a commercial MMS, designed by the

Canadian firm Optech. The Optech Lynx incorporates two laser scanners.

The scanners on the Lynx are the M1 scanner type. Data from this system

was provided as an extra validation source. Table 1.2 lists the relevant pa-

rameters of this scanner. The scanner attributes and their importance will

be discussed in greater detail in Chapters 2 and 3.

Table 1.1: Riegl VQ250 Laser Scanner [RIEGL, 2009b]
Category Value

Min Range 1.5m
Max Range @ 300kHz (m) 200m

Pulse Repetition Rate 300kHz
Mirror Frequency 100Hz

FOV 360o

Table 1.2: Optech M1 Laser Scanner [Optech, 2012]
Category Value

Max Range @ 200kHz (m) 200m
Pulse Repetition Rate 500kHz

Mirror Frequency 200Hz
FOV 360o

1.6.5 Publications

The following papers have been published arising from work on MMSs. The

first paper [McElhinney et al., 2010] focusses on the benefits of employing a

MMS for route safety inspections on rural roads. The remaining four papers

31



[Cahalane et al., 2010a, Cahalane et al., 2010b, Cahalane et al., 2011, Caha-

lane et al., 2012] are steps in the implementation of a method to calculate

point density and are therefore work carried out to complete Objective 1.

Conor P. Mc Elhinney, Pankaj Kumar, Conor Cahalane, Timothy Mc-

Carthy (2010) Initial results from European Road Safety Inspection (EURSI)

mobile mapping project, 440-445. In ISPRS Commission V Technical Sym-

posium.

C. Cahalane, T. McCarthy, and C. McElhinney. Mobile mapping system

performance : An initial investigation into the effect of vehicle speed on laser

scan lines. In Remote Sensing and Photogrammety Society Annual Confer-

ence From the sea-bed to the cloudtops, September 2010, Cork, Ireland,

2010.

C. Cahalane, C. McElhinney, and T. McCarthy. Mobile mapping system

performance : An analysis of the effect of laser scanner configuration and

vehicle velocity on scan profiles. In European Laser Mapping Forum ELMF

2010, November 2010, The Hague, Holland, 2010.

C. Cahalane, C. McElhinney, and T. McCarthy. Calculating the Effect

of Dual-Axis Scanner Rotations and Surface Orientation on Scan Profiles.

In 7th International Symposium on Mobile Mapping Technology, June 2011,

Krakaw, Poland, 2011.

C. Cahalane, T. McCarthy, and C. McElhinney. MIMIC: Mobile Mapping
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Point Density Calculator. In Proceedings of the 3rd International Conference

on Computing for Geospatial Research and Applications (COM.Geo), July

2012, Washington D.C, U.S.A, 2012.

1.7 Research Assumptions

A number of assumptions have been made in this thesis to facilitate work on

the Objectives listed in Section 1.6. These are;

� The aim of Objective 1 is to calculate point density - i.e. the number of

pulses returning from an object. An assumption is made that there is

a return from every pulse, one return only per pulse and also a smooth

surface. In practice this will not always be the case, but the majority

of man-made roadside infrastructure is solid and if unobstructed will

therefore provide a return for each pulse.

� Time of Flight scanners are the most common type of laser scanner

on commercial MSSs, and therefore these are the only type that are

investigated in this thesis. To the best of the authors knowledge, only

one phase based scanner [Faro, 2012] has been used on a MMS, a FARO

scanner.

� Point density is assessed for different MMS configurations, in a stan-

dardised testing process. Point density is not assessed for every eventu-

ality. Therefore it is assumed that there is a constant vehicle velocity,

no course deviation and no pitch or roll of the MMS when surveying a

target. Although this will not be the case in a real world setting these
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parameters are identified as a possible error source in the validation

tests.

� When calculating point density, it is assumed that high accuracy, prop-

erly calibrated positioning and spatial measurement sensors are em-

ployed on the MMS and that there will not be significant errors between

subsequent scan lines or scan points.

� Vehicles in Ireland drive on the left hand side of the road. The XP1

is a single scanner system. Therefore the VQ-250 on the XP1 is fixed

on the left hand side of the vehicle. The work in this thesis is targeted

at near-side infrastructure only. Objects on the right hand side of the

vehicle are a potential topic for future work.

� It is assumed that there are no obstructions present between the scan-

ner and the target. Again, the reason for this is that point density

is assessed for different MMS configurations in a standardised testing

process and not for every eventuality.

1.8 Thesis Structure

This thesis consists of a further seven chapters structured and detailed as

follows.

Chapter 2 introduces the field of point density in more detail and inves-

tigates the work to date in this area. The three research objectives listed in

Section 1.6 are investigated. The solutions proposed in each objective are

presented and justified in reference to existing work.
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Chapter 3 discusses the MMS configuration, MMS hardware and target

variables that must be incorporated in an algorithm for calculating point

density. The changes in MMS configuration, vehicle behaviour and target

parameters that impact on point density are identified and their impact on

point spacing illustrated.

Chapter 4 details the initial components of the point density calculation

algorithm. In this chapter the interaction of the individual scan pulses and

targets are calculated and validated using the two test systems introduced

in Section 1.6.4.

Chapter 5 completes the point density calculation algorithm. The find-

ings from the calculations in the previous chapters are combined to calculate

point density for an entire target. A series of targets are employed to validate

these calculations using data from both test MMSs.

Chapter 6 applies the point density calculation algorithm to assess the

impact of MMS configurations on point density. By changing the hardware

and configuration parameters and assessing these changes with the point den-

sity calculation algorithm, the recommended MMS configuration for specific

targets can be identified. The tests in this chapter are theoretical and no

validation is carried out.

Chapter 7 uses the point density calculation algorithm to benchmark a

selection of MMSs in terms of their point density performance. The param-

eters for a commercial MMS and two theoretical MMSs are entered into the
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algorithm to identify strengths and weaknesses of each for different target

and operating parameters. This chapter is also theoretical and therefore no

validation is carried out.

Chapter 8 discusses the main conclusions of this research by summarising

the work completed, introducing work in progress and identifies potential

future work. It concludes with some final remarks.
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Chapter 2

Point Density

The previous chapter identified the three fundamental elements in the field

of MMS performance: absolute and relative accuracy, repeat survey accuracy

and point density. Point density was identified as the subject matter of this

thesis and provides the underlying motivation for carrying out this research.

This chapter investigates point density in greater detail and identifies the

areas where research has been carried out. This chapter also outlines the

proposed solution to achieve each research objective and provides justifica-

tions for adopting these approaches.

2.1 Introduction

The first objective of this thesis is to design an algorithm to calculate the

point density of a target prior to performing a MMS survey. There are three

primary inputs to this algorithm and each input contains multiple parame-

ters. These inputs are the scanner, the target and the vehicle parameters.

Although previous studies have investigated point density, these studies were

limited to manual measurements, LiDAR simulations or limited geometric

37



formulae. The influence of a number of parameters on point density has

been ignored. Section 2.2 identifies these parameters and the related studies.

The second objective of this thesis is to apply the point density calcula-

tion algorithm, designed in the previous objective, to assess various system

configurations. There are multiple hardware and operational parameters to

consider when constructing a MMS. The effect of these parameters are as-

sessed for different types of target to identify the optimum configuration for

each survey scenario. Research in this area is limited. Objective 2 is explored

in Section 2.3.

The third and final objective of this thesis is to benchmark a selection

of MMSs in terms of their point density. The point density calculation al-

gorithm facilitates these tests. To date, benchmarking of MMSs has been

limited to accuracy tests or comparisons of manufacturers hardware specifi-

cations. This thesis proposes benchmarking one commercial and two hypo-

thetical MMSs for a selection of targets. Objective 3 is investigated in more

detail in Section 2.4.

2.2 Objective 1 - Point Density

MMSs equipped with a laser scanner are potentially capable of capturing

hundreds of thousands of points per second. For example, the MMS designed

at the NCG, the XP1 (Section 1.6.4), is equipped with a single Riegl VQ-

250 scanner [RIEGL, 2009b] that is capable of emitting up to 300,000 laser

pulses per second. The current generation of MMSs are often equipped with

multiple laser scanners. Commercial systems like Riegl’s VMX250 [RIEGL,
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Figure 2.1: An Example of a Point Cloud Collected by the Single VQ-250
Scanner on the XP1

2009a] operate dual scanners (2 x VQ-250), which are therefore capable of

capturing up to 600,000 points per second if they receive a return from each

pulse. Riegl’s latest dual scanner system, the VMX450 [RIEGL, 2011a] in-

corporates 2 x VQ-450 [RIEGL, 2011b] and is capable of emitting upwards

of one million pulses per second.

Each laser return is then georeferenced and when viewed as a whole,

comprise a ’cloud’. This collection of points is commonly referred to as a

’point cloud’. Figure 2.1 displays a sample point cloud captured by the XP1

MMS. The interaction between the vehicle, scanner and target dictate the

number of laser pulses that strike a target. These factors must therefore be

incorporated into any attempt to calculate the theoretical point density of a

target.
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2.2.1 Scanner Parameters

In general, terrestrial laser scanners (tripod or vehicle mounted) result in a

higher point density than aerial scanning systems due to the shorter measure-

ment range. A tripod mounted scanner benefits from its static set-up. Em-

ploying servo-motors to change the field of view enables 360o scanning around

the scanner from a single location. One consequence of tripod mounting is

that the base of the scanner obstructs the field of view. For example, the

Leica HDS7000 introduced in Section 1.4.2 has a 360o x 320o FOW, therefore

it has a 40o blind spot under the scanner.

It is possible to mount a TLS on a vehicle and use it in ’stop and go’ mode.

In ’stop and go’ a tripod mounted scanner is placed on a moving platform and

driven to a survey location. The vehicle stops at this location and the TLS

scans the entire scene while the vehicle remains stationary. The vehicle then

moves to the next survey point [Hesse and Kutterer, 2007] and this process

is repeated. It is the author’s opinion that this is technically not a MMS

as a MMS must, by definition, be capable of mapping while mobile. MMSs

like the XP1 operate a 2D, full-circle laser scanner specifically designed for

mobile mapping surveys. This class of scanner utilises the forward motion

of the vehicle to create the third dimension for the scanner and results in

a corkscrew scanning pattern as the MMS travels along its route, as Figure

2.2 illustrates. To operate a TLS on a moving platform, the TLS can have

one of its axes of rotation locked and can then operate in ’profile mode’.

TLSs configured to operate in profile mode can then be used on a moving

vehicle [Glennie, 2008, Kukko et al., 2007] rather than ’stop and go’. Any

point cloud collected by a scanner specifically designed for MMS surveys or a
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Figure 2.2: The Corkscrew Scanning Pattern Exhibited by a MMS Scanner

TLS operating in profile mode exhibits three very distinctive features. These

are the profile spacing, the profile angle and the point spacing and these

three scanning characteristics constitute the unknowns involved in the point

density calculation.

2.2.1.1 Scan Profiles

The corkscrew scanning pattern of a MMS operating a 2D full circle laser

scanner is illustrated in Figure 2.2. When this corkscrew scanning pattern

intersects with a planar surface, the resulting laser points describe a linear

pattern on that surface. These lines of points are termed ’scan profiles’. Gaps

are formed between scan profiles for each mirror rotation. The distance be-

tween each scan profile is the profile spacing and this is illustrated in Figures

2.2 and 2.3. Vehicle velocity influences the distance between each scan pro-

file. The angle of the scan profile in relation to the direction of travel of the

vehicle is influenced by the rotation of the scanner. Figure 2.4 displays the

horizontal and vertical rotation of the laser scanner on the XP1. Rotations of

the scanner are important for maximising coverage of the environment. Scan
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profiles that run perpendicular to the direction of travel will not intersect

with objects whose sides are also perpendicular to the direction of travel,

as illustrated in Figure 2.5(a). A horizontal rotation of the scanner solves

this problem (Figure 2.5(b)). Scan profiles that are vertically perpendicular

to the direction of travel are also problematic. These scan profiles will not

intersect with some vertical structures such as the faces of road signs above

motorways or bridge faces. This is demonstrated in Figure 2.6(a) and can

be solved with a vertical rotation of the scanner as illustrated in Figure 2.6(b).

Figure 2.3: Profile Spacing on a Vertical Surface.

Rotations of the scanner or target in the horizontal or vertical plane alter

the angle that scan profiles intersect with horizontal and vertical surfaces.

This angle is termed the ’profile angle’. The profile angle on a vertical surface

resulting from a scanner with a vertical rotation is illustrated in Figure 2.7.

Designing a method for calculating both profile spacing and profile angle are

essential for calculating point density. The vehicle speed, the rotation of the

scanner(s), the scanner mirror frequency (how many profiles per second) and
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Figure 2.4: A 45o Horizontal and 45o Vertical Rotation of the Scanner on the
XP1

(a) (b)

Figure 2.5: Importance of a Horizontal Rotation of the Scanner - Top Down
View (a) Without (b) With

the rotation of the object all influence scan profiles.
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(a) (b)

Figure 2.6: Importance of a Vertical Rotation of the Scanner - Side View of
a MMS Travelling Under a Bridge (a) Without (b) With

Figure 2.7: Profile Angle on a Vertical Surface.
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2.2.1.2 Point Spacing

The distance between subsequent points along a single scan profile for a 2D

scanner is known as the point spacing. Point spacing along a profile line is

illustrated in Figure 2.8. Calculating point spacing requires multiple param-

eters. Point spacing is influenced by a number of factors, including: the pulse

repetition rate (PRR), which is the number of pulses per second, the miror

frequency, which controls the number of mirror rotations per second, the

range to the target from the scanner, the field of view, the height difference

between target and scanner, the orientation of the target and the orientation

of the scanner. Each of these factors must be addressed when calculating

point density.

Figure 2.8: Point Spacing on a Vertical Surface.
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2.2.2 Survey Vehicle Parameters

The vehicle also influences the number of laser pulses that strike a target.

Vehicle parameters must be incorporated into the algorithm to accurately cal-

culate the point density of a target. One example is the effect of the vehicle

speed on profile spacing. Designing an algorithm to calculate point density is

further complicated when the algorithm must accommodate a moving body,

the vehicle, that is free to rotate in three dimensions. The three dimensions

of rotation are termed pitch, roll and yaw. These rotations correspond to

an inclined surface, a road cross-fall and a course change respectively and

are illustrated in Figure 2.9. These rotations change the orientation of the

scanner and therefore the geometry of how each profile intersects with the

target. This will alter the profile angle. When calculating point density on a

target surveyed by a moving vehicle, pitch, roll and yaw are potential error

sources. These error sources are investigated in greater detail in Chapter 4.

Figure 2.9: The Three Dimensions of Rotation of a MMS
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2.2.3 Targets

The third and final element involved in calculating point density is the target.

Both the size of the target and its range from the scanner impact on point

density. Other target characteristics include the shape of the object and

its orientation relative to the scanner. To illustrate the importance of the

target shape on point density, Figure 2.10 displays the scan profiles resulting

from a vertical scanner rotation which have altered the profile angle on a

vertical surface. By introducing subsequent 15o increments to the vertical

rotation of the scanner the number of points striking the target are increased.

Without a vertical rotation of the scanner, narrow vertical surfaces (e.g a

signpost) are not captured sufficiently to resolve their shape and dimensions

accurately from the point cloud. Good coverage of a target is a requirement

from automated algorithms that aim to automatically identify structures

from point clouds. To date, the recommended scanner orientation for targets

of different dimensions has not been identified. Determining this orientation

is one of the goals of this thesis.

Figure 2.10: The Importance of Introducing a Vertical Rotation of the Scan-
ner for Narrow Objects
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2.2.4 Calculating Point Density

Assessing MMS performance and calculating point density are processes in-

volving numerous factors and ones that warrant further study. Research and

associated publications in this area are limited. There is at least one com-

mercial software application that provides the ability to calculate basic point

density information. There have also been studies investigating the point

density displayed by a TLS.

2.2.4.1 Work to date

Research focussing on MMS point density is limited. By locking one rota-

tion axis of a FARO TLS, [Kukko et al., 2007] operated the scanner in profile

mode and then manually measured the profile and point spacing at different

ranges, speeds and scan frequencies post mission on the road surface. It was

then possible to plot these measurements and to approximate what point and

profile spacing a user could expect from that specific MMS. Figure 2.11(a) il-

lustrates the point spacing results at different ranges. This data could be used

to estimate point spacing for subsequent surveys. This data was manually

measured, and therefore it provides very accurate point and profile spacing

for that MMS and that survey site. Similar tests have also been performed

by [Hesse and Kutterer, 2007] with a Leica HDS 4500 locked in one axis and

operating in profile mode. These tests were less comprehensive than [Kukko

et al., 2007] and did not provide a plot of the measurements, but only a short

table listing profile spacing at three vehicle speeds and three scanner mirror

frequencies. Only [Kukko et al., 2007] incorporated scanner rotations. Unlike

TLSs such as the Leica HDS 4500, vertical rotations of the scanner can be

implemented with the FARO scanner. Neither study incorporated dual-axis
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scanner rotations. The benefits of a dual-axis scanner rotation were outlined

in Section 2.2.1.1. Neither study measured or provided a method to calculate

point density.

(a) (b)

Figure 2.11: Plotting Results (a) Point Spacing from FGI Roamer [Kukko
et al., 2007] and (b) Point Density for Riegl’s VMX450 [RIEGL, 2011a]

This thesis improves on these manual point and profile measurement

methods by providing a generic formula that will calculate point spacing,

profile angle, profile spacing and point density for any scanner settings and

vehicle velocity. Additionally, it incorporates dual-axis scanner and target

rotations into the algorithm. In their work on automated algorithms, [Hof-

mann and Brenner, 2009] have identified the effect that a change in vehicle

direction and velocity has on scan profiles. Their work has focused on auto-

matic detection of objects and the sole purpose of their basic point density

calculation is to eliminate areas of low point density in point clouds. Elimi-

nating these areas from the point cloud results in an improved performance

of their automated algorithm.

Certain laser scanner manufacturers provide basic information on the

point density that a user can expect from their scanner. For example, Riegl
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provide graphs plotting the point density a user can expect at different vehi-

cle velocities or from different scanner settings at different target ranges. An

example of a point density graph for Riegl’s VMX-450 is displayed in Figure

2.11(b). These graphs do not incorporate scanner rotations, target rotations

or any height difference between the scanner or the target. These graphs

are limited to specifying point density by calculating point spacing at a sin-

gle target location, whereas point spacing varies over a target. Variations

in point spacing across a target are particularly relevant for angled surfaces.

Riegl also licence a software package called RiACQUIRE [RIEGL, 2012a] and

one of its functions is to calculate point density pre-survey. Figure 2.12 dis-

plays RiACQUIRE’s interface. In this example, RiACQUIRE has calculated

profile spacing, point pacing and point density for a Riegl scanner on a spe-

cific target. RiACQUIRE does not recognise horizontal or vertical scanner

rotations, horizontal or vertical target rotations, height difference between

scanner and target or different types of target. Furthermore it specifies the

point density by calculating point spacing at a single central target location

and therefore the point density calculation does not represent the change in

point spacing over a target.

Another alternative method for investigating point density is a LiDAR

simulation. A LiDAR simulation models the real world interaction between a

LiDAR system and the terrain. Simulations have been used for investigating

aerial systems [Lohani and Mishra, 2007], but the viewing geometry is less

complicated and the field of view is more restricted. Other simulators have

been designed, such as that by [Kukko and Hyyppä, 2009] for assessing al-

gorithm development, system validation and error assessment for aerial and
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Figure 2.12: Mission Planning with Riegl’s RiAcquire Software Package
[RIEGL, 2012a]

terrestrial systems. Simulators are useful tools for assessing MMS coverage

over wide areas, or for algorithm development, but do not provide a method

for calculating point density. A MMS simulation was designed by [Yoo et al.,

2009] to provide a method for measuring the mean point density for large

areas of a scene. Figure 2.13 ilustrates the simulated point cloud. This study

recommended specific MMS configurations to minimise data shadows for ter-

restrial MMS surveys. This study also included some important elements:

dual-axis scanner rotations, variations in scanner location on the MMS, dif-

ferent PRRs and mirror frequencies, yet it did not provide a capability for

pre-mission calculation of point density, profile spacing, profile angle or point

spacing. After a simulation is complete, point and profile measurements are

manual and localised to a single point on a target. Additionally, the sim-

ulated scanner was not the 2D circular scanner that the state of the art
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Figure 2.13: MMS LiDAR Simulator [Yoo et al., 2009]

MMSs employ but rather a lower specification 2D laser range sensor. The

laser range scanner was a LD Automotive from IBEO and is capable of 1080

pulses per mirror rotation and ten mirror rotations per second [Yoo et al.,

2009]. [Yoo et al., 2009] employed this scanner for the simulation as this

scanner was incorporated in their LARA 3D MMS [Goulette et al., 2006].

This results in a low point density because the the LD IBEO is only capable

of 10,800 pulses per second.

Point density is not only of interest to a new technology like MMSs. A

recent study [Gonzlez-Jorge et al., 2011] testing the metrology specifications

of TLSs investigated the resolution of TLS point clouds. In their work on

TLS, [Lichti, 2004, Lichti and Jamtsho, 2006] have attempted to identify

what was the smallest feature that can be recognised in a point cloud for

different TLS hardware. This study was also concerned with identifying the

effect of laser footprint size on the accuracy of individual points. These
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studies are of benefit to TLS operators surveying fine detail like statues or

paintings, but MMSs are not designed for such high resolution studies.

2.2.4.2 Proposed Solution

Profile spacing, profile angle and point spacing constitute the primary vari-

ables involved in the point density calculation algorithm. Point density is

usually quoted in m2, but point density per m2 is an unsuitable metric for

a large amount of roadside features as they are complex, non-planar objects

whose dimensions are non regular - e.g a signpost and sign. Point density in

this thesis refers to the total number of points recorded on the target. The

method that is designed for calculating point density from this information

utilises 3D surface normals, rotation matrices and 2D geometrical formulae.

2.2.4.3 Justification

The existing research can be divided into three distinct categories. These

categories are: manual measurements, LiDAR simulations and geometric

formulae. The geometric solution that is proposed in this thesis is an im-

provement on the existing work. The following justifications are given:

Automatic versus manual - Applying an algorithm is preferable to

manual point cloud measurements for a number of reasons:

� Easier to implement - Running an algorithm is unquestionably easier to

implement than carrying out a MMS survey, downloading, processing

and manually interrogating the data.

� Accuracy - With the manual approach, there is no complete under-

standing of what factors contribute to point density. The results are
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only measured. Additionally, there is no understanding of how many

factors are involved. Conversely, for the area that particular survey

was carried out in, the manual results are more accurate than the au-

tomated method due to the use of surveyed values.

� More efficient - Manual measurements are required for every relevant

MMS configuration and for every target type. Every input parameter

would have to be tested. To standardise this process, the tests would

have to be performed on the same test-route. Point density measure-

ments would then have to be carried out for each survey and if an

automated method could not be designed, this would lead to a largely

manual, time consuming process.

� Measuring 2D point density - Systems like TerraScan from TerraSolid

[TerraSolid, 2012b] provide a simple point density measurement tool.

The size of the tool can be adjusted (1m2, 5m2, etc.) and this is useful

for point density measurements on a planar surface. Figure 2.14(a)

displays this tool being used on the road surface. For a vertical target

this tool is not applicable, as all of the points under the cursor are

included in the point density measurement, even though they belong

to different object planes. Figure 2.14(b) displays this tool being used

on a pillar.

Geometric formulae versus Simulation - Applying an automated

algorithm is also different to the simulation approach for a number of reasons:

� More rigorous - The proposed geometric solution explores each factor

in detail, designs a method for calculating their contribution to point
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(a) (b)

Figure 2.14: TerraScan Point Density Calculation Tool (a) Flat Object - the
Road (b) Vertical Object - a Pillar

density and then validates each in turn. Unlike a simulation, this en-

sures a thorough understanding of each factor rather than applying an

iterative process and then measuring the variation.

� Faster - Simulators can be slow, although work is ongoing to improve

the speed of these systems [Kim et al., 2011]. Once the simulation

is finished, point density measurements are a manual process and are

localised to one point on the target. Manual measurements have to be

repeated for every area of interest. The solution proposed in this thesis

provides measurements automatically across the entire target.

� Obstructions - By introducing objects that occlude other features into

the simulator obstructions can be modelled. The calculation algorithm

proposed in this thesis has not been designed to deal with obstructions.

� Algorithm testing - A simulator provides the user with a complete point
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cloud for an area. This point cloud can be used to test automated

extraction algorithms or object classification algorithms. This thesis is

not designed to test algorithms but to provide information that should

help tailor an algorithm in the early stages of development.

� Optimised coverage - Simulators model large areas whereas the focus

of this thesis is on smaller objects, such as roadside infrastructure.

2.3 Objective 2 - Assessing MMS Parameters

The second objective of this thesis is to apply the point density calculation

algorithm to assess the impact that the MMS parameters such as the scanner

hardware settings and system configuration have on point density. Scanner

hardware settings such as the PRR, mirror frequency and field of view (FOV)

influence point density. The MMS configuration details the type, number,

location and orientation of the scanner(s) on the vehicle. The tests developed

to achieve this objective for both single scanner and dual scanner systems

are explored in Chapter 6.

2.3.1 Type of scanner

MMS scanners have a variety of settings. Of these hardware settings, three

have been identified as having a significant impact on point density. These

are the scanners PRR, FOV and mirror frequency.

2.3.1.1 Pulse Repetition Rate

The first of the scanner parameters that must be incorporated is the PRR.

PRR is a measure of how many pulses per second the scanner is capable of

56



emitting. In most scanners, the PRR is user selectable. Section 2.2 detailed

the information for a Riegl scanner, but Riegl are only one scanner manu-

facturer and different scanners have different PRRs. This is an important

factor for consideration when choosing the scanner for an MMS.

2.3.1.2 Mirror Frequency

The second scanner parameter which influences point density is the mirror

frequency. Each mirror rotation creates a scan profile. The mirror frequency,

in conjunction with the scanner rotations and the vehicle speed determine

the profile spacing. Different scanners have different maximum mirror fre-

quencies. It is important to identify whether it is better to have a high PRR

or a high mirror speed. In other words - is it better to have a smaller spac-

ing between profiles or between points? For example, Riegl’s VQ250 has a

higher PRR than its closest competitor, Optech’s V200 (300kHz v 200kHz),

but it has a lower mirror speed (100Hz v 200Hz). The trade-off between

mirror frequency and PRR and the resulting impact on point density will be

investigated in Chapter 7.

2.3.1.3 FOV

The final scanner parameter influencing the point density is the FOV. FOV

impacts on the angular step width (ASW). The ASW of a scanner is the

angular change between subsequent laser pulses. ASW is a programmable

setting in laser scanners, but is dependant on the PRR, the mirror speed

and the FOV of the scanner. The smaller the ASW, the smaller the point

spacing and a smaller point spacing results in an increased point density.

With certain scanners, the lowest ASW possible cannot be implemented if
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the scanner is operating a full 360o FOV.

2.3.2 Number of scanners

Multiple scanners result in a higher point density but they are costly not

only in monetary terms but also in terms of data storage and processing

time. Figure 2.15 displays Riegl’s dual scanner VMX-450. An important

research question that is answered in this thesis is whether it is possible

to achieve a high level of detail with a single scanner, or one high quality

scanner and one low quality scanner, or whether it is essential to use a high

performance system similar to the one displayed in Figure 2.15.

Figure 2.15: Multiple Scanner - Riegl’s VMX450 [RIEGL, 2011a]

2.3.3 Location of scanners

Commercial MMSs like StreetMapper [Hunter and Cox, 2010] and the Optech

Lynx operate dual scanners. These scanners are genrally both located at the

rear of the vehicle. One reason for picking this location is to ensure the body

of the vehicle does not obstruct the scanners field of view. A series of tests
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are designed to investigate whether placing both scanners on one side of the

vehicle results in a higher point density than locating both at the rear of the

vehicle. This thesis defines the recommended position for each scanner to

maximise point density for near side infrastructure.

2.3.4 Orientation of scanners

Identifying the optimum scanner rotation is important, as systems like the

XP1 that have a rigid mounting are not capable of introducing any change

in scanner orientation. This also applies to systems like Riegl’s VMX250

and VMX450 which are both housed in a rigid casing. This arrangement is

not flexible and so companies like 3D Laser Mapping have designed a swivel

mount, shown in Figure 2.16(a), which allows the surveyor to change the hor-

izontal scanner rotation pre-survey. Alternatively a MMS using a TLS like

the FARO scanner [Kukko et al., 2007] in profile mode can take advantage of

the rotatable head to change the vertical angle of the scanner. Scanners on

the Optech Lynx are also capable of changing their vertical orientation. This

is due to another specially designed mount as displayed in Figure 2.16(b).

The feature that facilitates the change in orientation is circled in red.

The scanner orientation on the XP1 is a 45o horizontal and a 45o vertical

rotation. If the XP1 was a dual scanner system, one scanner would be rotated

+45o horizontally to cover the left hand side of the vehicle, and the other

rotated −45o horizontally to cover the right hand side of the vehicle. This

orientation also helps to capture the sides of objects that a single scanner

system is unable to without multiple passes. This capability is one of the

major benefits of a dual-scanner system. In Figure 2.10, the importance of a
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(a) (b)

Figure 2.16: Mounts Facilitating A Change in Scanner Orientation (a) 3D
Laser Mapping - Mount Allows Change in Horizontal Orientation(b) Optech
- Mount Allows Change in Vertical Orientation [Optech, 2012]

vertical rotation of the scanner for certain targets was illustrated. This thesis

identifies the recommended scanner orientations for both single scanner and

dual scanner systems when surveying roadside infrastructure.

2.3.5 Assessing MMS Parameters

The previous sections have identified the need for a series of tests to identify

the recommended scanner configuration and scanner hardware settings when

surveying specific targets. This section introduces the work to date, the

proposed solution and provides justification for taking this approach.

2.3.5.1 Work to date

To date there has only been one study assessing MMS configuration in terms

of its point density. [Yoo et al., 2009] applied their LiDAR simulation to iden-
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tify the best scanner configuration to minimise occlusions and data shadows.

In this simulation a multi-scanner MMS was modelled. [Yoo et al., 2009]

investigated multiple configurations to minimise data shadows. Three laser

scanners were modelled in this simulation. There does not appear to have

been tests carried out to find the optimal configuration for a single scanner

MMS. This simulation was limited to low-performance scanners. To date

there has been no research carried out to identify the recommended config-

uration for a single scanner MMS. The current method for ensuring that a

MMS produces a high point density is to overcompensate with scan hardware

or to drive the route multiple times. This practice can result in more data

being captured than necessary. This practice also results in increased sur-

vey and processing time and requires increased data storage space. Another

popular method to ensure a high point density is for surveys to be carried

out at a lower speed than is necessary [Goulette et al., 2006, Graefe, 2007a],

which can impact on the productivity of a MMS. A third method is mission

planning and Riegl’s RiACQUIRE is an example of a software package that

can be used for this.

2.3.5.2 Proposed Solution

This thesis applies a novel point density algorithm to a selection of scanner

settings, orientations and locations. This algorithm identifies the optimum

system configuration and hardware settings for specific targets. By focussing

the work in this thesis on infrastructure on one side of the MMS only, the

recommended configuration for a single scanner MMS is identified. Targets

are represented by angled surfaces and cylinders. These tests are carried out

for dual scanner and single scanner systems.
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2.3.5.3 Justification

The proposed method for calculating point density allows for the contribu-

tion of each factor to be identified, modelled and a method of automatically

calculating it to be designed. This facilitates a series of tests assessing system

configuration. The previous tests carried out by [Yoo et al., 2009] employed

a LiDAR simulation and were designed for large areas. The aim of these

tests was primarily to assess the best configuration for minimising occlusions

and data shadows. There was not a sufficient understanding of the effect of

system configuration on point density. The point density tests carried out by

[Yoo et al., 2009] were also limited to a general measure of point density for

large areas. The tests in this thesis concentrated on calculating point density

for features such as roadside infrastructure.

2.4 Objective 3 - Benchmarking MMS Point

Density

The third and final objective of this thesis is to apply the point density

calculation algorithm to benchmark a selection of MMSs. The systems chosen

are a representative sample of scanner hardware currently on the market and

this benchmarking process highlights each systems strengths and weaknesses

for specific features. A selection of survey targets representing different types

of infrastructure are selected and each MMS is tested against these targets.
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2.4.1 Test Vehicles

The commercial MMS that is used for the benchmarking tests is the Lynx,

designed by the Canadian firm Optech. This MMS was introduced in Section

1.6.4. Although there are numerous other commercial MMSs on the market

that could be included in the benchmarking process, there are three reasons

for limiting the benchmarking to this system:

� Limited market - Optech and Riegl are two of the most popular scanner

manufacturers at the high end of the MMS market and are used in

a wide range of MMSs. Trimble, a large survey manufacturer and

potential competitor in the MMS market uses Riegl scanners in its

MMS, the MX8 [Trimble, 2010].

� Research limitations - As explained in Section 1.7, this thesis does

not incorporate absolute accuracy of the laser points. The navigation

component of a MMS contributes greatly to the absolute accuracy of a

survey and differs widely per system. However, it is not a major factor

in calculating point density for MMSs. Therefore, there is no benefit

in testing multiple systems if they all operate the same scanner.

� Laser scanners only - This thesis is limited to MMSs operating 2D

circular TOF laser scanners and therefore image based MMSs are not

included in the benchmarking test, thus eliminating a number of MMSs.

The remaining systems in the benchmarking tests are hypothetical ver-

sions of the XP1. The first MMS is designed to operate a single VQ-250 and

a low performance scanner. It is referred to as the ’XP1+’. This facilitates

comparison of a system like this against the best dual-scanner commercial
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systems on the market. The other hypothetical MMS is the XP2. This MMS

is designed with two VQ-250 scanners.

2.4.1.1 Optech Lynx

The dual scanner Optech Lynx, as shown in Figure 2.17, is a popular com-

mercial MMS. There are a number of different versions of the Lynx. The

version closest in performance to the dual scanner XP2 is the Optech Lynx

operating two V200 scanners. This is the precursor of their latest system,

the M1 [Optech, 2012]. The M1 is used in the validation tests in Objective

1.

Figure 2.17: Optech Lynx [Optech, 2012]

2.4.1.2 XP1+

The XP1+ is a hypothetical version of the XP1. It incorporates a high speci-

fication scanner, a Riegl VQ-250 [RIEGL, 2009b] and also a low specification

scanner, a SICK LMS 221 [SICK, 2010]. The position and orientation of the

scanners are determined using the recommended configuration identified in

Objective 2. The extra SICK LMS 221 (Figure 2.18) is positioned in the rec-

ommended location and angled at the recommended horizontal and vertical
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Figure 2.18: SICK LMS 221 [SICK, 2010]

rotation when surveying near side infrastructure.

2.4.1.3 XP2

The XP2 is also a hypothetical iteration of the XP1 and incorporates two

Riegl VQ-250 scanners. Although similar to the Riegl VMX-250, there are

distinct differences between the scanners in the VMX-250 and the two on-

board the XP2. Firstly, the offset between the two scanners matches the

offset between the scanners on the Optech Lynx. This ensures a standard

location for each scanner in the benchmarking tests. Secondly, the orientation

of the scanners adhere to the current XP1 orientation, rather than that of

the VMX-250. Each configuration is explained in greater detail in Chapter

7.
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2.4.2 Benchmarking

To the best of the author’s knowledge, no study benchmarking the point

density of different MMSs exists. Comparisons of MMSs have been limited

to accuracy tests. This section details the relevant existing work and also

the solution proposed in this thesis.

2.4.2.1 Work to Date

To date, comparison of different MMSs has been limited to tables listing

MMS components [Barber et al., 2008, Ellum and El-Sheimy, 2002, Tao,

2000]. Alternatively, manufacturers specifications for a piece of hardware

can be examined. There is no way to translate this information into an eas-

ily understandable comparison of different systems in terms of point density.

Although manufacturers specifications give information on scanner hardware,

the parameters detailed in Section 2.2 that impact on point density are not

taken into account. The only concerted effort to benchmark MMSs has been

in the field of accuracy. [Kaartinen et al., 2012] have undertaken benchmark-

ing tests on four MMS to assess planimetric and elevation accuracy and have

identified that with a properly calibrated high-end MMS, planimetric accu-

racies of approximately 0.02m are achievable. These tests did not investigate

point density.

2.4.2.2 Proposed Solution

The proposed solution involves defining a number of targets representing

real-world objects and calculating the point density for each MMS on those

targets. The targets must correspond with valid input shapes to the point

density calculation algorithm. Therefore the benchmarking tests are limited
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to objects that can be constructed using multiple 2D planes.

2.4.2.3 Justification

Unlike Objectives 1 and 2, there has been no previous attempt at bench-

marking a selection of MMSs in terms of their point density. Therefore it is

not possible to demonstrate the advantages of the method proposed in this

thesis over other methods. These benchmarking tests will be of benefit to

the end user when purchasing a MMS and also to designers when assembling

a MMS.

2.5 Conclusions

This chapter discussed and detailed point density for MMS surveys and the

issues involved in calculating it. Point density was identified as an area of

MMS performance that required further study. The existing work in this

field was investigated and analysed and facilitated identification of the areas

that require further study. This investigation provided the context for the

three objectives described in this thesis.

The first objective is to design an efficient and accurate method to cal-

culate point density. Current methods of calculating point density through

surveys and manual measurements, limited geometric formulae or LiDAR

simulations are not suitable. Manual measurements are difficult to imple-

ment and do not provide an understanding of the factors influencing point

density. They are inefficient and also difficult to perform on 3D vertical

features. Manual measurements do not enable a point density calculation.

LiDAR simulations do not provide an understanding of the factors influenc-
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ing point density and can be slow. LiDAR simulators do not enable a point

density calculation. Existing geometric formulae for calculating point den-

sity are incomplete. Changes in scanner and target height or rotation are not

incorporated. Point density is calculated at a single location on the target

providing insufficient information on point spacing across a target. A novel

solution to these problems involving 3D surface normals and 2D geometric

formulae has been proposed and justified. The implementation and valida-

tion of this solution will be discussed in the following chapters.

The second objective of this thesis is to design a series of tests to as-

sess MMS laser scanner configuration. There are many potential hardware

configurations for MMSs. Further research is required to identify the recom-

mended scanner position and orientation for single and dual scanner MMSs.

These experiments require a method of calculating point density.

The final objective of this thesis is to benchmark a selection of MMSs in

terms of their point density. No method exists for benchmarking the cur-

rent generation of MMSs in terms of their point density. The development

of a point density calculator enables the comparative assessment of MMSs

in terms of their hardware settings and laser scanner configuration. These

experiments also rely on the accurate calculation of point density.

In the next chapter the factors influencing point density will be investi-

gated in greater detail. A methodology for calculating point density for a

laser scanner on a MMS will be detailed.
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Chapter 3

Mobile Mapping Point Density

Calculator (MIMIC)

Calculating the point density of a target surveyed by a MMS equipped with

a laser scanner is the first objective of this thesis. Section 2.2 investigated

the fundamental elements influencing point density. This step is required

before attempting to devise a comprehensive point density calculator. Con-

temporary research in the field of MMS point density was also explored in

that section. Section 2.2.4.2 briefly introduced the solution proposed in this

thesis. In this Chapter the challenges involved in calculating point density

and the solutions will be explored in greater detail.

3.1 Introduction

This thesis proposes a new modelling approach to point density calcula-

tion. A prototpye system, the ’MobIle Mapping point densIty Calculator’

or ’MIMIC’ is developed in the course of this thesis. Multiple variables
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need to be considered when designing a system to calculate point density.

MIMIC must be compatible with different scanner, vehicle and target vari-

ables. MIMIC comprises two main stages: variable input and point density

calculation. Although the current version of MIMIC is limited to the input

and point density calculation stages, data visualisation is a work in progress

and is introduced in Section 8.3 as current work. The user input module and

the calculation module are investigated in Section 3.3.

3.2 Point Density

The first objective of this thesis is to develop a methodology for determining

the point density of point clouds collected by a MMS with respect to known

objects at specified distances. In Section 2.2 the difficulty in calculating

point density and the factors influencing it were introduced. In this section

the three elements of the point density calculation are investigated. These

three elements are the profile angle, the profile spacing and the point spacing.

The vehicle, the scanner and the target all contribute to the resulting point

density.

3.2.1 Overview

Calculating point density would be a trivial process if no external forces

impacted on it. Figure 3.1(a) illustrates an example of a road sign and

Figure 3.1(b) illustrates the resulting laser returns as the MMS passes it. In

the hypothetical example illustrated in Figure 3.1(b), there is no change in

profile angle (i.e. all profiles are vertical) and the point spacing and profile

spacing are also constant. In this situation, calculating point density could
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(a) (b)

(c)

Figure 3.1: Point Density (a) Sample Road Sign (b)Point Density Simplified
and (c) Profile Spacing Increases with Vehicle Velocity

be found by simply dividing the target width by the profile spacing, and the

target height by the point spacing. Then by multiplying these two values,

the number of points on the target could be calculated. This situation is

unlikely if not impossible in a real world scenario, as the properties of the

vehicle, the scanner and the target all impact on the distribution of laser

points.

3.2.2 Contributions of the Vehicle to Point Density

Two vehicle properties influence the point density of a target: the velocity of

the vehicle and the rotational dynamics of the vehicle. Vehicle dynamics is

the term applied in this thesis to refer to the roll, pitch and yaw of the vehicle
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at one position. These three axes of rotation were illustrated in Figure 2.9.

Vehicle velocity and dynamics contribute to the point density calculation in

different ways. The elements of point density that are influenced by vehicle

velocity and vehicle dynamics are shown in Table 3.1.

Table 3.1: Contribution of Vehicle Velocity and Dynamics
Attribute Impacts on Units

Vehicle velocity Profile Spacing m/s
Yaw Profile Spacing degrees
Roll Profile Angle degrees
Pitch Profile Angle degrees

3.2.2.1 Variations Arising from Vehicle Velocity

The velocity of the vehicle influences the distance between scan profiles, the

profile spacing. An example of this effect can be seen in Figure 3.1(c) when

it is compared to Figure 3.1(b). In this example the vehicle velocity has

been increased. The resulting laser returns from the road sign are displayed

in Figure 3.1(c). These examples demonstrate that a vehicle travelling at a

higher velocity increases the spacing between scan profiles. Under normal

survey conditions which exclude extreme vehicle vibrations, vehicle acceler-

ation, deceleration or high vehicle velocity through road curves, the velocity

of the vehicle does not have an impact on vehicle dynamics.

3.2.2.2 Variations Arising from Vehicle Dynamics

Roll, pitch and yaw are the three axes of movement of the vehicle. Figures

3.2 and 3.3 illustrate the effect of yaw on profile spacing. When the MMS

turns towards a target, as illustrated in Figure 3.2(a), the profile spacing is

decreased, as illustrated in Figure 3.2(b). When the MMS turns away from
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(a) (b)

Figure 3.2: Influence of Yaw on Profile Spacing (a) MMS Turning Towards
the Target and (b) Profile Spacing Decreases

(a) (b)

Figure 3.3: Influence of Yaw on Profile Spacing (a) MMS Turning Away
From the Target and (b) Profile Spacing Increases

a target, as illustrated in Figure 3.3(a), the profile spacing is increased, as

illustrated in Figure 3.3(b). In this thesis one of the research assumptions

is that there is zero course deviation while surveying a target. However, a

vehicle will always display a slight heading deviation and therefore this is

a potential error source when validating the calculated profile spacing with

measurements from point clouds.

Roll is an action that occurs around the longitudinal axis of the vehi-

cle and is the second axis of rotation of the vehicle. Roll is potentially the
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most common error source that the vehicle dynamics contribute to the point

density calculation. This is because roads are constructed with a cross-fall

or gradient to allow for rain water to drain off their surface. This cross-fall

means that in the majority of cases the MMS is not on a perfectly horizontal

surface. Figure 3.4(a) illustrates the effect that any roll of the vehicle has on

the the angle the scan plane intersects with the building. Roll is a potential

error source in the profile angle calculations. Figure 3.4(c) illustrates the

effect that roll has on subsequent scan profiles.

Pitch is an action that occurs around the lateral axis of the vehicle and

is the final axis of rotation of the vehicle. The effect of pitch on point den-

sity is less common as the road surface is generally flat and the majority of

roadside infrastructure are on the same plane as the vehicle. Therefore the

pitch will not change in the short space of time it takes for the vehicle to

pass the target. However, if pitch is present it will alter the profile angle as

depicted in Figure 3.4(b) and would have the same effect as roll as illustrated

in Figure 3.4(c). Pitch is a possible error source as any pitch of the vehicle

will impact on profile angle and therefore point density.

One of the assumptions of this thesis is that there is no course deviation

(i.e. yaw), or any variation in the roll and pitch of the vehicle while surveying

a target. This is a limitation of MIMIC, as the algorithm is unable to predict

the point density of objects in areas of road curvature, on road cross-falls or

on road gradients accurately. This could potentially be applied in future

work. Therefore in this thesis yaw, roll and pitch are not included in the

calculations, but are noted and examined as possible error sources.
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(a) (b)

(c)

Figure 3.4: Change in Profile Angle (a) Roll (b) Pitch and (c) Example of
Profile Angle Change Arising from Roll or Pitch
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Table 3.2: Contribution of Scanner Properties
Attribute Impacts on Units

Field Of View Profile/Point Spacing degrees
Horizontal Rotation Profile Angle/Point Spacing degrees

Vertical Rotation Profile Angle/Point Spacing degrees
Pulse Repetition Rate Point Spacing kHz

Mirror Rotation velocity Profile Spacing Hz
Number Of Scanners Point Density n/a

Scanner Elevation Point Spacing m
Second Scanner Offset Point Spacing m

3.2.3 Contribution of Scanner Properties to Point Den-

sity

Of the three inputs into the MIMIC system, the laser scanner has the largest

number of contributory elements that must be incorporated. These are: the

FOV, the PRR, the mirror frequency, the scanners horizontal and vertical

rotations, the number of scanners, the offset to any additional scanners and

the scanner elevation. Table 3.2 lists each of these elements and defines which

properties of point density they impact. As one of the objectives of this thesis

is to calculate point density from 2D scanners (both full circle and limited

FOV) the impact of the FOV is first explored.

3.2.3.1 Field of View

Incorporating a scanner with a wide FOV on a MMS is important in en-

abling the MMS to capture as much of the environment as possible. The

scanner on the XP1 is a full-circle scanner (a 360 o FOV). However, this is

user selectable and the FOV can be restricted for specialised surveys. For

example, if the MMS was surveying a specific feature like road markings, the

operators could restrict the FOV to a setting that captured the road surface
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only. This would eliminate the points above and around the vehicle, reduce

data volume and speed up the subsequent processing. It would also minimise

file sizes, while maximising point density in the area of interest. A similar

process could be applied for a survey concentrating on overhead power lines

but with the FOV restricted to an arc over the vehicle.

Operating a scanner with a 360o FOV has a number of drawbacks. It

results in increased storage requirements and processing time. Allowing a

scanner to operate in full circle mode also increases the ASW. ASW is the

angular change between subsequent laser pulses and is one of the most sig-

nificant factors in calculating point spacing. For example, if the VQ250 were

to carry out a localised scan and operate with a restricted 30o FOV, as illus-

trated in Figure 3.5(a), it could operate using the smallest ASW that this

scanner is capable of, 0.018o [RIEGL, 2009b]. This is not possible with the

360o FOV, as illustrated in Figure 3.5(b) because the scanner is constrained

by the PRR. The highest number of pulses possible from the VQ-250 is

300,000 points per second (300kHz). At 100 mirror rotations per second this

is 3,000 pulses per mirror rotation. An ASW of 0.018o for a 360o scan would

require a PRR of 2,000,000 points per second (2MHz). This highlights the

trade off between FOV and ASW. The smallest ASW that the VQ-250 is

capable of for a full 360o scan at the highest mirror frequency and PRR is

0.12o. The maximum FOV that can be employed using the smallest ASW of

0.018o is 54o. The minimum ASW is hardware specific.
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(a) (b)

Figure 3.5: Laser Scanner FOV (a) Limited to 30o FOV and (b) Unlimited
360o FOV

3.2.3.2 Pulse Repetition Rate

Another important factor in calculating point density is the PRR. There is a

strong correlation between point density and PRR. The current generation of

scanners are capable of PRRs in excess of 500kHz [RIEGL, 2011b]. MIMIC is

designed to work with different scanner hardware and therefore incorporating

PRR into the point density calculation is essential.

3.2.3.3 Mirror Frequency

Mirror frequency controls the number of profiles per second. This has a

major impact on profile spacing as displayed for vehicle velocity in Figure

3.1(c). Section 3.2.3.1 demonstrated how mirror frequency also affects the

ASW and therefore the point spacing. The mirror frequency and the number

of pulses per mirror rotation are linked.
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(a) (b)

Figure 3.6: Scanner Orientation (a) a Vertical Rotation of the Scanner
Changes the Profile Angle and (b) a Horizontal Rotation Increases Mea-
surement Range

3.2.3.4 Scanner Orientation

Scanner orientation affects point spacing, profile angle and profile spacing. It

is therefore vital to include this in any point density calculation. Figure 3.6(a)

is an example of a profile on a vertical surface after a vertical scanner rotation

has been introduced. Introducing a horizontal rotation of the scanner into

the system impacts on measurement range as displayed in Figure 3.6(b). In

this scenario, an introduction of a horizontal rotation of the scanner results

in an increased range to target (d1 before rotation, d2 after).

3.2.3.5 Number and Position of Scanners

Increasing the number of scanners increases the point density. It is not

practical or desirable to have two scanners occupying the same position on a

MMS or scanning the exact same area around the MMS. In practice a second

scanner is employed to survey objects that are not visible to the first scanner.

Figure 3.7(a) is an example of the scanning pattern that is popular amongst

the majority of dual scanner MMSs on the market. The point spacing on
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(a) (b)

(c)

Figure 3.7: Multiple Scanners (a) Dual Scanner System (b) Vertical Surface
(Blue) (c) Vertical Surface (Red)

near side objects from the second scanner is significantly greater (blue points)

than the first scanner (red points), leading to a reduced point density. Figure

3.7(b) illustrates this for near side objects and far side objects are displayed

in Figure 3.7(c). The elevation of the scanner also effects point density. If

an elevation difference exists between scanner and target this will result in

an increased range from the scanner to the target. Point spacing increases

as the range to the target increases.
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3.2.4 Contribution of Target Parameters to Point Den-

sity

The target’s range, dimensions, elevation and orientation all contribute to

point density and must be included in the point density calculation. The

calculations in this thesis utilise 2D geometric formulae, and therefore all

targets in this thesis are represented by planar surfaces. Targets can be ver-

tical surfaces such as walls or buildings and horizontal surfaces such as the

road underneath the vehicle. Inclined structures represent road side embank-

ments or rooftops. Targets can be rotated horizontally, inclined vertically or

a combination of both. Curved or multi-faced targets that can be approx-

imated using planes are also a valid type. Target types are discussed in

greater detail in Section 3.3.2. Table 3.3 lists each of the target parameters

involved in the point density calculation and what element of point density

each impacts on.

Table 3.3: Contribution of Target Parameters
Attribute Impacts on Units

Horizontal Rotation Profile/Point Spacing degrees
Vertical Rotation Point Spacing degrees

Range Point Spacing m
Base Elevation Point Spacing m

Height Point Spacing m

3.2.4.1 Range to Target

The range to the target is an important factor in the point density calcula-

tions. Point spacing increases with range and therefore a target at 5m range

exhibits a higher point density than one at 10m. Figure 3.8 illustrates the

effect of range on point spacing for two laser pulses, p1 and p2. At range
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r1, the point spacing (d1) on Target 1 is smaller than the point spacing (d2)

on Target 2 at range r2. Scanner rotations and target rotations also alter

the measurement range and therefore further influence variations in point

spacing across the target.

Figure 3.8: Effect of Range on Point Spacing for Two Subsequent Laser
Pulses

3.2.4.2 Target Dimensions

The dimensions of the target influence the number of laser pulses striking it.

The larger the target, the higher the point density, assuming the target is

within the FOV of the scanner as the MMS passes by. However, the higher

the target, the further the measurement range when it is first within the

FOV of the scanner as Figure 3.9 illustrates. The range when the target is

first surveyed by any of the laser pulses is shown as d1 in Figure 3.9. As the

MMS approaches the target the range decreases (d2 - d4) and therefore the

point spacing also decreases. This highlights one of the major shortcomings

of existing methods that provide point density calculated from the centre of

a target only as the point spacing varies over a target.
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Figure 3.9: The Correlation Between Target Height and Range to the Target
for a MMS Operating a 2D Laser Scanner

3.2.4.3 Target Orientation

The orientation of the target influences profile angle, profile spacing and point

spacing. Real world features are rarely parallel with the direction of travel.

A horizontal target rotation and a vertical target rotation are illustrated in

Figures 3.10(a) and 3.11(a) respectively. The range is increased to one side

of the target following a horizontal rotation of the target but decreased to

the other. This results in an uneven point spacing on the target as shown

in Figure 3.10(b). Similarly with a vertical rotation of the target there is

a difference in point spacing between the bottom and the top of the target

depending on which way it is rotated as illustrated in Figure 3.11(b).

3.2.4.4 Target Elevation

The base elevation of the target and the height of the target affect point

spacing in a similar manner to the height of the scanner. A height difference
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(a) (b)

Figure 3.10: Target Rotations (a) a Horizontal Target Rotation (b) Point
Spacing Increases at Far End of the Target

(a) (b)

Figure 3.11: Target Rotations (a) a Vertical Target Rotation (b) Point Spac-
ing Increases at Top of the Target
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between target and scanner increases or decreases point spacing depending

on whether the range to the target increases or decreases and is included in

the point density calculations.

3.3 Calculation Procedure

Section 3.2 explains the necessity for MIMIC to incorporate scanner, target

and vehicle input parameters and to combine these to calculate point density.

MIMIC requires the user to input these parameters. This section details the

procedures that have been implemented in MIMIC in order to perform the

point density calculations.

3.3.1 Input Module

MIMIC requires a user to provide details regarding the scanner hardware, the

survey vehicle and the target parameters as illustrated in Figure 3.12. This

section details the required information. This information is not required to

be input in a particular order, however, adhering to the order that the topics

were introduced in the previous sections the first set of input variables are

the vehicle parameters.

3.3.1.1 Vehicle Parameters

To properly define the behaviour of a MMS, a number of attributes must

be specified. These attributes are listed in Table 3.1. The first attribute

is vehicle velocity and is entered as km/h. However, it is required in m/s

in the calculation stage and therefore must be converted. As explained in

Section 3.2.2.1 vehicle velocity is one of the major factors impacting on profile
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Figure 3.12: System Inputs

spacing.

3.3.1.2 Scanner Parameters

MIMIC is designed to function with any of the current generation of 2D TOF

scanners. To calculate point density for this type of scanner a number of at-

tributes must be specified by the user. MIMIC is also designed to incorporate

horizontal and vertical rotations of the scanner. Calculating the ASW was

explained in Section 3.2.3.3. To accommodate dual scanner systems such as

Riegl’s VMX-250, the number of scanners must also be specified. The offset

to the second scanner from the first scanner and the scanner elevation must

also be specified by the user. This offset is used is to quantify the range

difference between the first and second scanner. These variables are required

for each additional scanner on the MMS.
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3.3.1.3 Target Parameters

A target has five definable attributes, as listed in Table 3.3, that influence

point density. Horizontal and vertical target rotations allow for represen-

tation of angled surfaces. Combinations of horizontal and vertical target

rotations can also be applied. In this thesis, the term ’angled surface’ is used

to refer to any surface that is not parallel with a face of the MMS. Horizontal

range to the target from the scanner must be specified. This is then con-

verted into the true range to the target and is dependant on the scanner’s

horizontal and vertical rotations. Using the offset to the second scanner, the

range from the target to the second scanner is calculated. Section 5.2.2.1 will

explain this in more detail. The height of the target and its base elevation

are specified. Finally, the dimensions of the target are defined.

3.3.2 Calculation Module

The calculation module of MIMIC provides the user with three outputs for

a 2D plane. These are: the point spacing, the profile angle and the profile

spacing. However, as has already been stated in this thesis, calculating the

point spacing at a single central target location does not provide an accurate

representation of the point density, particularly on large, angled surfaces. To

improve on existing methods MIMIC calculates point spacing at a number of

locations across the target. These are then combined with the profile spacing

and profile angle information that MIMIC calculates to provide a measure

of the overall point density. The following sections detail these steps and

Figure 3.13 illustrates this workflow.

87



Figure 3.13: MIMIC Calculation Module Workflow

88



3.3.2.1 Planar Interaction

For MIMIC to calculate point density on a target it must be possible to

approximate the target as a plane or as a series of planes. MIMIC only

accepts 2D TOF scanners as a valid scanner input, due to their prevalence

in commercial MMSs. MIMIC then treats each mirror rotation as a plane.

This plane is referred to as the ’scan plane’ in this thesis. Figure 3.14(a)

illlustrates this in its most basic form. In this image the wall represents one

plane and the 360o scanner rotation represents another plane. One factor that

influences planar interaction is the orientation of the target, as illustrated in

Figure 3.14(b), which is free to rotate around three axes. This complicates

the calculation procedure and additional information is therefore required for

each plane to facilitate the point density calculation. MIMIC employs the

principle of 3D surface normals to model these rotations. Surface normals

are discussed in greater detail in Section 3.3.2.3.

(a) (b)

Figure 3.14: Planar Interaction (a) Scan Plane Intersecting with Wall and
Plane (b) All Planes are Free to Rotate Around their Axes

89



3.3.2.2 2D and 3D Objects

To simplify the point density calculations, MIMIC applies 3D surface normals

and 2D geometrical formulae to 2D targets. MIMIC accepts 2D primitives as

illustrated in Figure 3.15(a) as valid target types. Complicated objects like

cylindrical targets are deconstructed into a series of 2D planes, as illustrated

in Figure 3.15(b). In this image, a cross-section of a cylinder is shown.

This cylinder is deconstructed into a series of 2D surfaces similar to the

object shown on the right hand side of Figure 3.15(a). How point density is

calculated for different target types is explained in greater detail in Section

5.3. It is important to note that the number of planes that are used in

the calculation is dependant on the number of scanners and the scanner

configuration. Depending on the scanner orientation, a single scanner system

like the XP1 may only obtain laser returns from Faces (i) and (ii) of the

cylinder illustrated in Figure 3.15(b). A dual-scanner system may obtain

returns from Faces (i) to (iii) . It is impossible for any scanner configuration

to capture Faces (i) - (vi) of a multi-faced object without driving 360o around

it.

(a) (b)

Figure 3.15: Valid Targets (a) Planes ( a single surface) and (b) A Cylinder
Cross-Section (the Cylinder is Deconstructed into Multiple Planar Surfaces)
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3.3.2.3 Surface Normals

Each target plane is free to rotate around three axes, although Chapter 4 will

illustrate that defining only two rotations are required for 3D targets. The

scanner is also free to rotate in three axes, but the full circle 2D plane is the

third axis of rotation and therefore defining the rotation around this third

axis is not required. To calculate the orientation of each plane the geometric

principle of surface normals from computer graphics [Foley et al., 1995] is

applied, whereby a surface normal is calculated for each plane. A plane’s

surface normal is the vector perpendicular to it. Figure 3.16 illustrates a

surface normal for a vertical and horizontal surface respectively. Calculat-

ing point density on surfaces is further complicated as the surface is free

to rotate around any axis (Figure 3.17(a)). This requires the inclusion of

three-dimensional surface normals to take account of all potential plane ori-

entations. Through application of 3D rotation matrices the surface normal

for the rotated scan and target plane can be calculated.

(a) (b)

Figure 3.16: Surface Normals ’n’ on (a) a Vertical Surface and (b) a Hori-
zontal Surface
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Figure 3.17(b) illustrates the 3D normals involved in the point density

calculation. MIMIC represents each plane with a 1× 3 matrix. For example,

in the coordinate system displayed in Figure 3.17(b) the surface normal of

the vertical wall (Nv) parallel to the direction of travel is directly to the

right along the x axis, [1, 0, 0] and the road surface normal (Nh) is vertically

upwards, along the z axis, [0, 0, 1]. The surface normal of a rotated scan

plane or target plane is found by applying the user specified vertical and

horizontal rotations of the scanner to the following rotation matrices

(a) (b)

Figure 3.17: Surface Normals (a) Surfaces are Free to Rotate (b) Normals
Involved in Calculation

Rx(θ) =


1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 (3.1)

Ry(θ) =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 (3.2)
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Rz(θ) =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (3.3)

Multiplying the three rotation matrices creates a 3D rotation matrix.

By applying this rotation matrix to the scan plane, the surface normal of

the rotated scan plane, NSrotated
can be calculated. This procedure will be

discussed in greater detail in Chapter 4.

3.3.2.4 Grids

MIMICs calculation module returns a point spacing output for each input

plane. As already identified in Section 2.2.4.1, one of the shortcomings of ex-

isting calculation methods is that point spacing is only calculated at a single

target point. This is not an accurate approach to calculating point density,

particularly when a rotation of the target can result in a wide variation in

point spacing across the target. The solution proposed in this thesis is to

apply a grid structure to the target. Point spacing is then calculated at each

grid cell centre. The number of cells in the grid structure are user-specified

at the input stage when defining the target. MIMIC currently operates a 4

cell grid (2x2), a 16 cell grid (4x4) and a 64 cell grid (8x8), as illustrated

in Figure 3.18. The size of each grid cell varies by target size and also the

number of grid cells. Increasing the number of grid cells increases the number

of measurements and also increases the accuracy of the final result.

For small targets, there is no significant change in point spacing over the

target and therefore increasing the number of grid cells offers little advan-
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Figure 3.18: MIMIC’s Grid Structure

tage. The correct selection of the number of grid cells is dependant on several

factors, such as target size, range and rotation. The more grid cells, the more

accurate the final result. After applying target rotations the range to each

grid cell centre is found and the point spacing is then calculated for each grid

cell centre.

MIMIC does not require square grid cells. Depending on the target di-

mensions the cells can be rectangular or stretched vertically or horizontally.

Narrow vertical structures require a different grid structure than the structure

displayed in Figure 3.18. This structure will be investigated in Chapter 5.

The current version of MIMIC does not allow for user specified grid cell sizes

however this could be explored for future work. Applying a grid structure

to a target has the advantage of speeding up and simplifying the calculation

process. This method is an improvement when compared to calculating the

point spacing for every laser pulse individually or running a simulation (as

mentioned in Section 2.2.4), but it is potentially not as accurate. The opti-

mum number of grid cells necessary to provide an accurate representation of
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the target will be dealt with in Section 5.4.1.

3.3.2.5 Application of Geometric Formulae

After the target is converted into a series of planes and surface normals,

geometric formulae are used to calculate the angle of intersection between

these planes. This angle of intersection is used to calculate the profile angle

and profile spacing. Due to the research assumptions relating to vehicle

velocity and vehicle dynamics listed in Chapter 1, profile angle and profile

spacing do not vary over the target and are therefore only calculated once per

plane. Combining these values with the point spacing for each grid cell on

the target allows the point density to be calculated. The formulae employed

in these calculations will be explained and verified in Chapter 4.

3.3.2.6 Calculating Point Density

To calculate point density for a gridded target, MIMIC takes the information

on profile angle and profile spacing and traces scan profiles through each 2D

grid cell in the form of 2D lines. It records every grid square that the scan

profile passes through and calculates the length of the scan profile that has

passed through that cell. Figure 3.19 illustrates this for a scan profile drawn

in red on a rectangular target. Each blue rectangle represents a grid cell that

the scan profile has passed through, even if only partially. The number of

points can then be calculated for that scan profile using the grid cell’s point

spacing and the length of the scan profile inside that grid cell. The process is

repeated for each scan profile, offset by the profile spacing, until the model is

computed across the entire target surface. Point density is calculated using

the point spacing for each grid square, the number of profiles passing through
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that grid square and the length of each scan profile in that grid cell. Point

density is then returned for each grid cell and summed to obtain the point

density for the entire target.

Figure 3.19: Calculating Point Density for Each Grid Cell

3.4 Conclusions

In this chapter each of the factors that influence point density have been iden-

tified and examined. Point density is influenced by the scanner, its hardware

and configuration. The point density is also influenced by the target’s posi-

tion, orientation and dimensions. The final factor influencing point density is

vehicle velocity and vehicle dynamics. The system for calculating point den-

sity, MIMIC, was introduced in this chapter. The current version of MIMIC

comprises a data input stage and a calculation stage.

In the input stage, the user defines the scanner, target and vehicle pa-

rameters. This is followed by the calculation stage. MIMIC calculates three

outputs using 3D surface normals and 2D geometric formulae. These out-

puts are defined as the profile angle, the profile spacing and the point spacing.
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These three outputs describe and define the distribution of laser points on

the target. Profile angle is the angle of the scan profile on the target in

relation to the base of the target. Profile spacing relates to the distance

between sequential scan profiles on the target. Point spacing refers to the

distance between subsequent points on that scan profile. These outputs are

then combined into a value for the total number of points on a target by

gridding the target into cells and counting the number of scan profiles and

points in each grid cell. The method for calculating point density will be

detailed in Chapter 5.

In the next chapter the formula for calculating profile angle, profile spac-

ing and point spacing for different target types will be detaild and validated

using 3D models and point cloud data.
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Chapter 4

Calculating Profile Information

and Point Spacing

The first objective of this thesis is to design an algorithm for calculating the

point density of a target surveyed using a MMS. This calculation requires

multiple variables from the three components influencing point density; the

vehicle, the target and the scanner. The method for calculating point den-

sity, MIMIC, was introduced in the previous chapter. This chapter explains

the 3D surface normals and 2D geometric formulae that MIMIC employs to

calculate profile information and point spacing. The tests applied to validate

these formulae are described.

4.1 Introduction

MIMIC applies a combination of 3D surface normals and 2D geometric formu-

lae to calculate the point density of an object. This process was introduced in

Section 3.3.2. The outputs from these formulae were profile spacing, profile
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angle and point spacing. The method for calculating these values for horizon-

tal, vertical and angled surfaces is detailed in this chapter. The formulae for

calculating profile angle are discussed in Section 4.2.1, for calculating profile

spacing in Section 4.2.2 and for point spacing in Section 4.3. Testing and

validation are detailed in Section 4.4 and the results are discussed. Potential

error sources are identified in Section 4.4.

4.2 Calculating Profile Information

The profile angle and profile spacing are required to calculated point density.

The profile angle and profile spacing are influenced by the scanner orienta-

tion, the target orientation, the mirror frequency and the vehicle velocity. In

the following sections the methods for calculating profile angle and profile

spacing are explained.

4.2.1 Profile Angle

When a laser scanner operating a rotating mirror is mounted on a moving

platform, the forward motion of that platform creates individual scan profiles

for each mirror rotation. Rotations of the scanner in the horizontal or vertical

axis change the angle of the scan profiles on horizontal and vertical surfaces.

These rotations alter the profile spacing and ultimately point density. In this

section the method for calculating the angular effect that dual axis scanner

rotations and angled surfaces have on sequential profiles is detailed. This

angle is termed the profile angle, and is referred to in this chapter as θPrA.

θPrA is an important factor in calculating the profile spacing and hence the

point density for all objects.
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4.2.1.1 Horizontal Surface

Assuming the ground is a planar horizontal surface relative to the vehicle,

the calculation of θPrA is trivial, as explained in Chapter 3. In this scenario,

θPrA is equal to the horizontal rotation of the laser scanner on the MMS.

However, both vehicle dynamics and the cross-fall of the road influence θPrA,

but as explained in Section 3.2.2.2, these two factors have not been included

in this thesis. The correlation between the horizontal scanner rotation and

θPrA is investigated in Section 4.4.1.2.

4.2.1.2 Vertical Plane

θPrA on vertical structures is important for two reasons. The first reason is

ensuring optimal scan profile coverage on narrow vertical structures, as illus-

trated in Figure 2.10. The second reason is its significance in the calculation

of point density on real world objects. To calculate θPrA for vertical surfaces

MIMIC employs 3D rotation matrices and 2D geometric formulae. Section

3.3.2.3 introduced the three rotation matrices, Rx, Ry and Rz which are ap-

plied to rotate objects around the x, y and z axes. Figure 4.1 displays the

three planes and the two vectors involved in calculating θPrA. H represents a

horizontal plane (the ground), V a vertical plane (a wall/building face) and

Srotated represents the rotated scan plane.

θPrA is the angle between the vectors t and u on plane V. The calculation

of θPrA requires first calculating the two vectors t and u. Vector u is the

vector created by the intersection of the planes V and Srotated. Vector t is the

vector created by the intersection of the planes V and H. To calculate these

vectors, the first step is to calculate the surface normals of the three planes,
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Figure 4.1: Planes and Vectors Involved in the Calculation of θPrA

H, V and Srotated. Each plane has a surface normal vector, which as explained

in Section 3.3.2.3, is a vector perpendicular to the plane. For example, the

procedure for calculating the surface normal for Srotated, NSrotated
, involves

defining the rotation matrix for the laser scanner using

Rotation Matrix(Srotated) = Rx(γscan)Ry(βscan)Rz(αscan), (4.1)

where γ, β and α are the vertical, axial and horizontal rotation angles

of the scanner. Figure 4.2 illustrates the surface normals for a selection of

vertical surfaces. A scanner at the rear of the vehicle facing backwards has

an initial scan plane surface normal of [0, -1, 0]. To find the rotation matrix

for the scanner on the XP1, γ = 45o (a vertical rotation around the x axis)

, β = 0o and α = 45o (a horizontal rotation around the z axis) are input

into Equation 4.1. This returns the rotation matrix for Srotated. The surface
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normal for Srotated is calculated by multiplying the initial scan plane surface

normal by the rotation matrix. This returns a rotated surface normal of [-0.5,

-0.5, 0.7071] for the XP1 scan plane.

Figure 4.2: Top-Down View Illustrating Surface Normals for Vertical Planes

For ease of reference in the following formulae, the surface normal of

vertical plane V becomes lower-case v and the ground surface normal becomes

lower-case h, differing from the upper-case letters assigned to the planes in

Figure 4.1. The surface normal for the scan plane can be defined for the scan

plane where x is a vector parallel to the surface of the plane by

x.NSrotated
= 0 S = {x|x ⊥ scan normal}, (4.2)

where ’.’ is the dot product and NSrotated
is the surface normal of the plane

Srotated. The surface normal of H can be defined for the horizontal plane by
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x.Nh = 0 H = {x|x ⊥ horizontal normal}, (4.3)

where Nh is the horizontal surface normal. Finally the surface normal for

the vertical plane can be defined with

x.Nv = 0 V = {x|x ⊥ vertical normal}. (4.4)

As shown in Figure 4.1, the scan plane intersects the building plane and

creates a vector u defined as

{λu|λεR} = S ∩ V = {x|x ⊥ NSrotated
, x ⊥ Nv}, (4.5)

where λ is a vector of real numbers and ∩ defines the intersection of two

planes. The horizontal and building planes intersect and form vector t

{λt|λεR} = H ∩ V = {x|x ⊥ Nh, x ⊥ Nv}. (4.6)

The angle formed between vectors t and u is the profile angle, θPrA, one

of the outputs required for the point density calculation. Vector u is a unit

vector perpendicular to the scan plane surface normal, NSrotated
and also to

the building surface normal, Nv

u ⊥ NSrotated
, u ⊥ Nv, ‖u‖ = 1. (4.7)

It can be calculated where × is the cross product with

u =
NSrotated

×Nv

|NSrotated
×Nv|

. (4.8)

Vector t is a unit vector perpendicular to the horizontal surface normal,
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Nh, and also to the building surface normal Nv

t ⊥ Nh, t ⊥ Nv, ‖t‖ = 1. (4.9)

It can be calculated with

t =
Nh ×Nv

|Nh ×Nv|
. (4.10)

To calculate θPrA, the angle (^) between two vectors is required. This

angle can be found using

cos^(u, t) = u.t, (4.11)

and as vectors u and t are also a product of two vectors, this is then

expanded, where ’·’ is the dot product to

cos^(u, v) =
(NSrotated

×Nv)· (Nh ×Nv)

|NSrotated
×Nv||Nh ×Nv|

= θPrA. (4.12)

This process can be repeated to calculate θPrA for any combination of

scanner rotations by varying NSrotated
. The limitation in this process is the re-

liance on vertical structures parallel to the vehicle and parallel to the ground.

Therefore this process must be expanded to include angled planes.

4.2.1.3 Angled Planes

Real world objects are rarely perfectly parallel or perfectly horizontal to one

face of the MMS. For this reason it is necessary to develop a method for

calculating θPrA for angled surfaces. Although any surface can be rotated

around three axes (Rx, Ry or Rz ) only two of the axes will impact on the

profile angle. The two axes that influence profile angle vary depending on
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what type of surface is being rotated, i.e a horizontal or a vertical. For a

vertical surface, rotations around Rx are not implemented in MIMIC. For in-

stance, if a vertical surface is rotated around Rx it will not change the profile

angle. Figure 4.3(a) illustrates a vertical target before it is rotated around

Rx. A rotation of the target around Rx is illustrated in Figure 4.3(b). This

rotation does not alter the profile angle.

MIMIC treats complex objects as a series of individual planes and does

not deal with irregular shapes such as circles, triangles or diamonds. There-

fore an angled surface can be represented by a horizontal and vertical rota-

tion around Rz and Ry. As described in Section 4.2.1.2, the rotation matri-

ces are applied to the standard surface normals for vertical and horizontal

surfaces [1, 0, 0] and [0, 0, 1] respectively. The vertical surface is rotated

horizontally by using the rotation matrix Rz (to represent surfaces converg-

ing with/diverging from the direction of travel), and vertically (to represent

sloped surfaces such as embankments and roof tops) by using the rotation

matrix Ry. These amended surface normals are then substituted into Equa-

tion 4.12, and θPrA for an arbitrary scanner rotation and surface rotation is

calculated in this way.

4.2.2 Profile Spacing

A separate set of formulae are required for calculating the profile spacing,

dPrS. The larger the dPrS, the less profiles that intersect with an object. Less

profiles intersecting with a target results in a lower point density. The effect

of vehicle speed on point density was illustrated in Figure 3.1. The factors

involved in calculating dPrS are detailed in this chapter. Profile spacing is

105



(a) (b)

Figure 4.3: Rotations Around Rx do not Effect Profile Angle in MIMIC(a)
Profile Angle on a Rectangle and (b) a Rotated Rectangle - Identical Profile
Angle

defined in terms of the horizontal and vertical spacing between scan profiles.

The methods for calculating dPrS will be defined for a horizontal, vertical and

an angled plane.

4.2.2.1 Horizontal Plane

Three factors influence dPrS on a horizontal plane: the vehicle velocity, the

scanner mirror frequency and the horizontal scanner rotation. These factors

are listed in Table 4.1. The mirror frequency and the vehicle velocity have

the biggest impact on dPrS. An illustration of sequential scan profiles on a

horizontal surface is shown in Figure 4.4(a). The process for calculating the

horizontal profile spacing, dPrSH is described in this section. The first step

is to calculate the distance travelled in one mirror rotation by dividing the

distance travelled in one second, v by the mirror frequency, Mf
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d = v/Mf . (4.13)

Once d has been calculated, dPrSH can be calculated using

dPrSH =
d

sinαscan

, (4.14)

where αscan is the horizontal scanner rotation.

Table 4.1: Factors Influencing Profile Spacing on a Planar Horizontal Surface
Vehicle Velocity v

Scan Mirror Frequency Mf

Horizontal Scanner Rotation αscan

4.2.2.2 Vertical Plane

Calculating profile spacing on a parallel, vertical planar surface requires an

additional variable, the vertical scanner rotation. This facilitates the profile

angle calculation (θPrA) detailed in Section 4.2.1. The profile angle is required

to calculate the vertical profile spacing, dPrSV. Figure 4.4(b) illustrates dPrSV

and Table 4.2 lists the each of the factors that influence dPrSV. For a vertical

surface, the horizontal profile spacing is the distance travelled in one mirror

rotation, d, as illustrated in Figure 4.4(b). dPrSV can be calculated using

dPrSV =
d ∗ sin θPrA

Sin(90− θPrA)
. (4.15)
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(a) (b)

Figure 4.4: Horizontal and Vertical Profile Spacing on (a) the Ground (top
down view) and (b) a Vertical Surface (side view)

Table 4.2: Factors Influencing Profile Spacing on a Planar Vertical Surface
Vehicle Velocity (m/s) v
Scan Mirror Frequency Mf

Horizontal Scanner Rotation αscan

Vertical Scanner Rotation γscan

4.2.2.3 Angled Plane

A horizontal rotation of the target alters the profile angle and profile spacing.

Target rotations can be positive or negative. A positive rotation decreases

the profile spacing on a target and a negative rotation increases it. A positive

rotation of target, t, to the new orientation, t+, is illustrated in Figure 4.5(a).

The distance travelled in one mirror rotation, d, is the vertical profile spac-

ing on the horizontal plane. However, the horizontal rotation of the target,

αtarg, results in a smaller horizontal profile spacing on the vertical surface,

d−. A negative rotation of the target is illustrated in Figure 4.5(b). The

negative horizontal rotation of target, t, to the new orientation, t−, results
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in an increased profile spacing, d+, on the vertical target.

(a) (b)

Figure 4.5: Profile Spacing on an Angled Plane Top Down View (a) Positive
Rotation (b) Negative Rotation

The variables required to calculate d− are illustrated in Figure 4.5(a).

The angles θ2 and θ5 must first be found

θ2 = 90o − αscan, (4.16)

θ5 = 180o − (θ2 + αtarg). (4.17)

d− can then be calculated using

d− =
d ∗ sin θ2

sin θ5

. (4.18)

To calculate d+, angles θ3 and θ4 must first be computed, these can be

calculated with

109



θ3 = 180o − θ2, (4.19)

and

θ4 = 180o − (θ3 + αtarg). (4.20)

d+ can then be found using

d+ =
d ∗ sin θ3

sin θ4

. (4.21)

4.3 Calculating Point Spacing

This section details the methods employed by MIMIC to calculate point

spacing. These methods are illustrated for horizontal and angled planes and

the formulae used to calculate point spacing on each are explained.

4.3.1 Horizontal Plane

The point density on a surface is a product of the number of profiles and the

number of points along each scan profile. Calculating the number of points

along a scan profile requires knowledge of the point spacing and the target.

The point spacing, dPS, is the relative distance between successive points on

a profile. dPS is influenced by a number of factors. These factors are listed in

Table 4.3. dPS increases as the range from the scanner increases. The ASW,

referred to as θA in these equations, is the angle between successive laser

pulses, and an increase in θA results in an increase in dPS. The PRR impacts

θA which in turn impacts dPS. A vertical rotation of the scanner increases
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the range to the target surface, also increasing dPS. The FOV determines θA,

and therefore also influences dPS.

Table 4.3: Factors Influencing Point Spacing on a Planar Horizontal Surface
Pulse Repetition Rate PRR
Scan Mirror Frequency Mf

Angular Step Width θA
Points per Mirror Rotation PpM

Field of View FOV
Horizontal Range Hr

Vertical Scanner Rotation γscan

Height of Scanner hscan

(a) (b)

Figure 4.6: Point spacing (a) Incorporating Vertical Scanner Rotation (b)
Method for Calculating Point Spacing.

hγ and θA are required for calculating dPS. Figure 4.6(b) illustrates this

process. A combination of trigonometric formulae and user input are re-

quired. The first step in computing dPS is calculating the ASW, θA. To find
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θA, the number of points per mirror rotation must first be calculated. This

value can be calculated with

PpM =
PRR

Mf

. (4.22)

Following this, θA can be found using

θA =
FOV

PpM
. (4.23)

The next step is to identify hscan, which is the distance from the centre

of measurement of the scanner to the ground. If a vertical rotation of the

scanner is introduced in the system configuration, the distance from the

scanner to the road surface is altered, as Figure 4.6(a) demonstrates. The

amended vertical height can be calculated using

hγ =
hscan

sin 90 ◦ − γscan

. (4.24)

The range from the scanner to the point of interest, r1, is calculated next.

This is achieved by applying the user specified horizontal distance, Hr

r1 =
√
h2
γ +H2

r . (4.25)

To find θh, r1 and hγ are used in the following equation

θh = sin−1

(
hγ
r1

)
. (4.26)

θr2 can now be found by subtracting θh from 180o

θr2 = 180 ◦ − θh. (4.27)

112



The final unknown required to calculate dPS is θr1, which can be calculated

using

θr1 = (180 ◦ − θr2)− θA. (4.28)

Each of the required angles have now been identified, and therefore dPS

can be calculated with

dPS =
(sin θA)(r1)

sin θr1
. (4.29)

4.3.2 Angled Plane

The method for calculating point spacing on angled planes differs from the

method for calculating point spacing on the road surface. A methodology is

required which accepts variations in target height, orientation and range. Fig-

ure 4.7 is a graphical aid illustrating each of the angles and variables required

for calculating the point spacing, dPS, for angled planes. Four variables are

required for this calculation: the ASW, the height difference between target

and scanner, the horizontal range to target and the scan angle. To calculate

these four variables, twelve additional variables are required. Table 4.4 lists

these twelve variables.

The ASW (θA) is required. By substituting the PRR, Mf and the FOV

into Equations 4.22 and 4.23, θA can be calculated. The horizontal range to

the target, Hr, must be specified by the user. For this part of the calculation,

the target is simulated at the same height as the scanner. Therefore the

range from the scanner to the target is r1. r1 is dependant on the scanner

horizontal rotation, αscan. r1 can be calculated with
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Figure 4.7: Values Required for Calculating dPS on an Angled Plane

Table 4.4: Factors Influencing Point Spacing on an Angled Plane
Pulse Repetition Rate PRR
Scan Mirror Frequency Mf

Angular Step Width θA
Points per Mirror Rotation PpM

Field of View FOV
Horizontal Range Hr

Vertical Scanner Rotation γscan

Horizontal Scanner Rotation αscan

Vertical Target Rotation βtarg

Horizontal Target Rotation αtarg

Height of Scanner hscan

Height of Target htarg
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r1 =
Hr

sin(90o − αscan)
. (4.30)

MIMIC calculates dPS through the application of 2D geometric formulae

to identify the location of individual laser pulses on the angled surface. A

horizontal and vertical rotation of the scanner alters the orientation of the

scan plane in relation to the target and the scanner. This alters the viewing

geometry for the 2D plane and therefore the height of the scanner and the

target must be adjusted accordingly. This principle is illustrated in Figure

4.8. Zscan and Ztarg represent these adjusted heights in Figure 4.7. The

amended heights can be calculated using the original target and scanner

heights (htarg, hscan)and the vertical scanner rotation, βtarg, with

Ztarg =
htarg

sin(90− γscan)
, (4.31)

and

Zscan =
hscan

sin(90− γscan)
. (4.32)

The height difference between the scanner and the target, (Zdiff), is re-

quired for these calculations on the 2D plane. MIMIC can calculate point

spacing for targets above or below the scanner. Zdiff can be calculated using

Zdiff = Zscan − Ztarg. (4.33)

Additional variables are required for calculating dPS. The next value that

is required is the scan angle, θscan. This is the angle formed between r1 and

scan profile on the angled surface, d2. This is calculated in a similar manner

to the profile angle calculation, although for this calculation the vector u

115



(a) (b)

Figure 4.8: Viewing Geometry (a) Orthogonal View does not Facilitate Cal-
culation (b) Isometric View Required

represents the laser pulse, r1, and the vector t represents the vector formed

by the intersection of the rotated scan plane and the vertical plane. This is

illustrated in Figure 4.9 and the process and formulae involved in the calcu-

lation were detailed in Section 4.2.1.2.

Figure 4.9: Scan Planes and Vectors Involved in Calculating Scan Angle
Calculation
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The method of calculating point spacing on angled surfaces incorporates

different horizontal ranges to the target. This method also incorporates dif-

ferent target heights, the lack of which was identified in Section 2.2.4.1 as a

shortcoming of existing point density calculators. Once MIMIC has calcu-

lated θA, r1, scanθ and Zdiff, it can calculate r2. Unlike the horizontal range,

Hr, or the simulated range at r1, r2 is the actual range to the target along

the scan plane. d2 is required to calculate r2. d2 is the portion of the scan

plane that has intersected with the angled plane between r1 and htarg. Cal-

culating d2 does not require the same rotated perspective that the previous

calculation did, but rather one with that is adjusted for the vertical rotation

of the target. Therefore htscan and httarg are used. Figure 4.10 illustrates this

principle. d2 can be calculated using

Figure 4.10: Values Required for Calculating d2
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d2 =
htscan − httarg

sin θPrA

, (4.34)

Once d2 has been calculated the actual range to the target (r2) can be

calculated with the cosine rule

r2 =
√
d22 + r12 − 2((d2 ∗ r1)(cos(θscan)). (4.35)

Once r2 has been calculated, the next step is to calculate θ1, and this can

be done using

θ1 = sin−1(
Zdiff

r2
). (4.36)

θ2 must then be found and this can be calculated using

θ2 = 180o − (θ1 + θscan). (4.37)

Using θ2, θ3 can be calculated with

θ3 = 180o − θ2. (4.38)

The point spacing, dPS, cannot be found using the sine rule with θ3 as it

is not the angle opposite the side r1, and therefore θ4 must also be calculated.

This can be calculated using

θ4 = 180o − (θ3 + θA). (4.39)

The point spacing, dPS, at that target height can then be found using

dPS =
(r1)(sin θA)

sin θ4

. (4.40)
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4.4 Results and Analysis

Two scenarios involving three datasets are analysed to verify the calcula-

tions of profile spacing, profile angle and point spacing in MIMIC. These

three datasets are a constructed 3D CAD dataset, a point cloud from the

XP1 and additional point cloud from the Optech Lynx. The constructed

3D CAD data is used as the control dataset. The XP1 and Optech Lynx

point cloud data are used to experimentally validate MIMIC’s calculations.

Real world features such as walls, buildings and planar targets are used for

experimental validation.

The Optech Lynx data facilitates system verification in a number of ways.

Firstly, the Optech Lynx is a dual scanner system and this is used to verify

that MIMIC can cater for dual scanner MMSs. The second scanner is as-

sessed in Chapter 5 as it impacts on point density. The variations in scanner

orientation between the Optech Lynx and the XP1 further verify MIMIC’s

profile angle calculations for different system configurations. Finally, the

Optech M1 scanner is capable of operating at a higher mirror speed than the

Riegl VQ-250 onboard the XP1, providing further test data for the profile

spacing experiments. For each dataset a number of suitable areas for tests

are identified and a series of sample measurements are recorded at each loca-

tion. In each test area the profile spacing, profile angle and point spacing are

manually measured and then compared to the predicted values from MIMIC.

As it is difficult to find real world surfaces that are perfectly parallel and ver-

tical to the vehicle, the point cloud tests are not applied to vertical surfaces

but to angled surfaces.
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4.4.1 Profile Angle

This section validates the methods for calculating profile angle on a horizontal

plane, on a vertical plane and on an angled plane. CAD models are employed

as a scientific control to validate MIMIC. MIMIC is then experimentally

validated using data from the XP1 and Optech Lynx. The variations in

scanner rotation between the Optech Lynx and the XP1 enable robust testing

of MIMIC’s profile angle calculations.

4.4.1.1 Measuring Profile Angles

There is the potential for error in the manual measurement of profile angles

from the point cloud data. To demonstrate this, two sections of point cloud

are chosen from two areas of point cloud. The first section has an irreg-

ular point distribution and therefore manual interpretation of scan profiles

is difficult and may result in errors. The second section has a regular point

distribution and therefore manual interpretation of scan profiles is simplified.

The profile angle in relation to the direction of travel for the two scanners

is measured at both locations. To provide an estimate of the quality of the

manual process, five measurements are recorded for each scan profile and the

average is then calculated. Figure 4.11 illustrates some of the issues involved

when manually interpreting scan profiles for both profile spacing and profile

angle measurements. In Figure 4.11(a) the point distribution exhibits irreg-

ularities. These irregularities are potentially due to vibrations of the vehicle

or imperfections on the target surface. The scan profiles in Figure 4.11(a)

exhibit visible differences in angle and spacing. In Figure 4.11(b) the point

distribution is far more regular and the manual interpretation of the lines

are a better approximation of the profile.
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(a) (b)

Figure 4.11: Effect of Manual Interpretation of Scan Profiles on Profile Angle
Measurements (a) Bad (b) Good

To quantify this effect, Table 4.5 lists a set of 5 measurements for the two

cases displayed in Figure 4.11. A single scan profile is measured five times in

each case. The standard deviation is calculated to quantify the variation in

profile angle between measurements. ’Profile Angle 1’ is measured from scan

profiles in Figure 4.11(a) and ’Profile Angle 2’ is measured from scan profiles

in Figure 4.11(b). The standard deviation, σ is over an order of magnitude

higher in the first case than in the second. This implies more variation in

the measurements. To see how this can potentially effect the accuracy of the

measurement, Table 4.6 lists the error for each of the measurements when

compared to the value from MIMIC. The error is higher in the case with the

higher σ. This may not always be the case, but is an important factor to

consider when measuring the profile angle. Therefore the quality of the data

used for validating MIMIC’s calculations is dependant on the quality of the

data in that location. In the validation tests in this thesis, where possible

test data is selected from areas with a regular point distribution. These sites
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are manually identified.

Table 4.5: Profile Angle - Manual Measurement
No. Profile Angle 1 Profile Angle 2

1 59.412o 35.355o

2 59.571o 35.323o

3 59.51o 35.343o

4 59.257o 35.325o

5 59.25o 35.333o

σ 0.145o 0.0133o

Table 4.6: Profile Angle - Manual Measurement and Error
Result Profile Angle 1 Profile Angle 2

Measured (Average) 59.40o 35.323o

MIMIC 59.175o 35.264o

Error 0.225o 0.059o

4.4.1.2 Horizontal Plane

As explained in Section 4.2.1.1, because the road underneath the vehicle is

generally parallel to the direction of travel, the profile angle resulting from

the intersection of the scan plane and the horizontal plane is entirely depen-

dant on the horizontal scanner rotation. It is not affected by the vertical

scanner rotation. Although the cross-fall of the road will effect this for point

cloud tests, it is initially validated using a CAD model. Figure 4.12 illus-

trates these CAD tests. A plane representing the ground and a separate

plane representing the scan plane are created. A selection of different scan

rotations are applied, altering the horizontal and vertical scanner rotation
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in turn by 15o for each test. The profile angle on the horizontal plane is

measured manually in CAD. Table 4.7 displays these results. For each scan-

ner configuration it is possible to see that the measured profile angle on the

ground plane corresponds exactly with the horizontal rotation of the scanner,

regardless of what vertical rotation has been applied.

Figure 4.12: Profile Angle Verification in a CAD Environment.

Table 4.7: CAD Tests Ground Profile Angle
No. αscan γscan CAD

1 45o 45o 45o

2 45o 30o 45o

3 30o 30o 30o

4 30o 15o 30o

5 15o 15o 15o

As road surfaces are generally non-planar and road cross-fall and vehi-
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cle dynamics may impact on the profile angle, experimental verification is

required. The profile angle is measured at three surface locations for each

MMS dataset. Each profile is measured five times and the standard de-

viation, σ, is calculated to provide an indication of the reliability of the

measurement. Table 4.8 illustrates the results for these profile angle tests on

the road surface. The curvature of the road and the manual nature of the

measurements results in a maximum standard deviation of approximately

0.5o. The five measurements are then averaged and the difference between

the measured value and MIMIC’s value is calculated. The maximum error

is approximately 0.1o. The full results are available in Tables 1 and 2 in

Appendix .1. The highest σ value, 0.537o corresponds with the highest error,

0.102o. The lowest σ value, 0.169o corresponds with the lowest error, 0.002o.

These errors are due to the difficulty involved in measuring the profile angle

on a road surface with a cross-fall. Profile angle errors will be discussed in

greater detail in Section 4.4.1.5.

Table 4.8: Road Surface Profile Angle Tests - XP1 and Optech Lynx Data
No. αscan γscan σ Error MMS

1 37.48o 29.6o 0.352o 0.079o Lynx
2 37.48o 29.6o 0.197o 0.028o Lynx
3 37.48o 29.6o 0.203o 0.062o Lynx
4 45o 45o 0.537o 0.102o XP1
5 45o 45o 0.273o 0.007o XP1
6 45o 45o 0.169o 0.002o XP1
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4.4.1.3 Vertical Plane

Unlike the profile angle on the road surface, the profile angle recorded on

a perfectly parallel, vertical surface varies depending on both the horizontal

and vertical rotation of the scanner. As explained in Section 4.4, the pro-

file angle tests for a vertical plane have been restricted to CAD tests only.

Different scanner rotations are selected and each profile angle is measured

on the vertical surface. The scanner rotations are decreased in turn by 15o

for each test. The results for the profile angle calculated by MIMIC and the

measured profile angle are displayed in Table 4.9. The errors are once again

low, with the largest error being 0.067o.

There are differences between the measured vales and the predicted values

from MIMIC. These arise from the manual measurement process of profile

angles in CAD packages. The profile angle is measured at the intersection

between two planes. This requires manually drawing 3D lines and this man-

ual component introduces errors to the CAD measurement. This manual

error will not occur in the CAD tests for profile spacing and point spacing

as the CAD package provides a ’snap’ facility, whereby the end of a line or a

point can be selected precisely. These tests demonstrate MIMIC’s ability to

calculate the profile angle for a vertical plane.

4.4.1.4 Angled Planes

A series of tests were designed to verify the profile angle calculations for an

angled plane. The CAD tests consist of forty measurements, comprising four

horizontal surface rotations and four vertical surface rotations for five differ-
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Table 4.9: Profile Angle on a Vertical Plane - CAD Measurements Compared
to MIMIC

No. αscan γscan MIMIC CAD Error

1 45o 45o 35.264o 35.271o 0.0075o

2 45o 30o 56.768o 50.784o 0.0155o

3 30o 30o 56.309o 56.243o 0.0669o

4 30o 15o 72.807o 72.810o 0.0028o

5 15o 15o 74.495o 74.461o 0.0349o

ent dual axis scanner rotations. The profile angle is manually measured on

each surface for each dual axis scanner rotation in the CAD environment.

A representative subset of these results is displayed in Tables 4.10 and 4.11.

The complete set of results can be seen in Tables 3 and 4 in Appendix .1.

Table 4.10 illustrates the predicted and measured values for a horizontal ro-

tation of a vertical surface and Table 4.11 illustrates the results for a vertical

rotation of a vertical surface. The errors are small in the CAD tests, validat-

ing MIMIC’s profile angle calculations. The errors that are present arise from

the difficulties involved with the manual measurement process explained in

Section 4.4.1.3.

Table 4.10: Profile Angle CAD Tests on an Angled Plane - Horizontal Target
Rotation

No. αscan γscan αtarg MIMIC CAD Error

1 45o 45o 15o 40.893o 40.840o 0.0533o

2 45o 30o 30o 59.132o 59.108o 0.0245o

3 30o 30o 45o 59.132o 59.097o 0.0355o

4 30o 15o 60o 72.807o 72.720o 0.0878o

5 15o 15o 60o 69.246o 69.290o 0.0435o
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Table 4.11: Profile Angle CAD Tests on an Angled Plane - Vertical Target
Rotation

No. αscan γscan βtarg MIMIC CAD Error

1 45o 45o 75o 31.27o 31.209o 0.0600o

2 45o 30o 60o 39.65o 39.639o 0.0107o

3 30o 30o 45o 49.02o 48.963o 0.0565o

4 30o 15o 30o 56.91o 56.887o 0.0227o

5 15o 15o 30o 69.67o 69.657o 0.0123o

To experimentally validate MIMIC’s profile angle calculations, seventeen

surfaces with varying horizontal and vertical rotations are selected from a

survey carried out by the XP1 system. The horizontal and vertical rotations

of the target are measured. The accuracy of these measurements depend

on the quality of the navigation solution, the manual interpretation of the

orientation of the target and the calibration of the scanner. As explained

in Section 1.7, assessing the absolute and relative accuracy of the MMS is

not the focus of this thesis, and therefore the measured target orientation is

assumed to be a reasonable representation of the real world feature. This

is a potential error source. Ten manual measurements of the profile angle

are recorded for each surface. Table 4.12 details the results of these tests.

The complete set of results including individual measurements and vehicle

dynamics can be seen in Tables 5 and 6 in Appendix .1.

The measured profile angle for the seventeen surfaces are plotted against

the horizontal wall angle in Figure 4.13. In this figure, the manually measured

profile angle is plotted against MIMIC’s predicted values. The errors detailed

in Table 4.12 can be identified in this figure. Figure 4.13 exhibits significant
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Table 4.12: Profile Angle - MIMIC’s Calculations Compared to Point Cloud
Measurements for Angled Surfaces - XP1

No. αtarg βtarg σ Error

1 32.67o 4.54o 0.1983o 5.925o

2 54.61o 3.51o 0.4323o 5.443o

3 2.63o -0.29o 0.1454o 5.027o

4 62.64o -4.9o 0.1956o 5.101o

5 22.31o 6.75o 0.3335o 0.704o

6 -10.47o -1.3o 0.3158o 1.156o

7 -7.12o -0.5o 0.2095o 0.646o

8 8.16o -0.6o 0.4089o 0.592o

9 65.87o -0.9o 0.2257o 2.215o

10 -5.76o -4.1o 0.3507o 2.155o

11 15.8o 1.2o 0.3063o 4.258o

12 -11.5o 2.86o 0.2667o 3.395o

13 8.15o 2.54o 0.1350o 5.692o

14 22.1o 3.78o 0.3859o 2.932o

15 84.16o -2.88o 0.2319o 0.271o

16 87.73o 0.22o 0.2067o 3.000o

17 63.28o -0.1o 0.1407o 2.508o
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deviation in certain parts of the manually measured values from the predicted

values. In each case the predicted value is greater than the measured values.

This error is not constant, as the test areas were chosen at random intervals

along the route. This resulted in a different road geometry and therefore

different vehicle dynamics at each point. To assess the effect of the vehicle

dynamics on the profile angle, the measured profile data was compared to

navigation data for each point. Interestingly, the vehicle pitch displayed the

most correlation with the profile angle errors which disagrees with the earlier

assumption that roll would be the most common error source. Figure 4.14

illustrates the influence of vehicle pitch on the profile angle. This figure shows

that when the pitch of the vehicle was highest, the error was lowest. This

correlation is further demonstrated in Figure 4.15. This is unexpected and

could be due to a number of factors:

� The XP1 mount is uneven, and a pitch of 2o to 3o counteracts this.

� As the vehicle was in motion the scanner mount may have dipped

slightly due to the force of acceleration of the vehicle.

� The shock mountings of the laser scanner and INS may cause the mount

to dip slightly under their own weight, and the forward motion of the

vehicle or the gradient of the road surface may have counteracted this.

� The XP1 is not properly calibrated and a boresight alignment error

exists between the scanner and the INS.

To investigate the effect of vehicle dynamics further, the Optech Lynx

data is examined. Table 4.13 illustrates the sample data taken from a number

of surfaces that are present in the Optech point cloud data. The full set of

129



Figure 4.13: Plotting Manually Measured Versus Predicted Profile Angle for
a Set of Point Cloud Angled Surfaces

Figure 4.14: MIMIC’s Predicted Profile Angle Plotted with Vehicle Pitch
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Figure 4.15: MIMIC’s Profile Angle Error Plotted with Vehicle Pitch

results are available in Tables 7 and 8 in Appendix .1. The errors are lower

for the Optech Lynx than the XP1, the largest error is approximately 1.5o.

This is a difference of approximately 4.4o when compared to the maximum

error in the XP1 data. There are four important differences between the

Optech Lynx and the XP1 data that must be taken into consideration.

� Firstly, the Optech Lynx data is of a small test section around their

office in Ontario. The size of the dataset limits the number of surfaces

that are eligible as potential test areas. It is possible that a larger

dataset may result in higher errors.

� Secondly, the Optech Lynx never left the carpark. There is a limit to

the number of velocities available for testing. Therefore if acceleration

is an issue, it is unlikely to be identified in the Optech Lynx data.

� Thirdly, because the data does not include any major roadways, the
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vehicle dynamics experienced by the Optech Lynx during the survey

are minimal when compared to the XP1 dataset. The largest value for

vehicle dynamics in the profile angle tests from the Optech data is less

than 1o. The XP1 encountered roll and pitch of up to 4o in the course

of the survey.

� The final and possibly most important difference is that the Optech

Lynx is a commercial system designed for high accuracy surveys. It

has been rigorously calibrated whereas the XP1 is a research platform

and has not been calibrated to the same standards. It is possible that

some misalignment exists in the XP1’s mounting.

Table 4.13: Profile Angle - MIMIC’s Calculations Compared to Point Cloud
Measurements for Angled Surfaces - Optech Lynx

No. αtarg βtarg σ Error

1 19.660o 0o 0.1452o 0.2250o

2 17.835o 0o 0.1953o 0.3912o

3 -0.750o 0o 0.4646o 0.4600o

4 -3.800o 0o 0.1083o 1.5028o

5 -11.050o 0o 0.1261o 0.1546o

4.4.1.5 Discussion and Error Sources

Assessing the error bounds must necessarily be carried out in Chapter 5

when applying each of the profile and point values in the final point density

calculation. In Section 5.4.5 it will be possible to vary each of the inputs

and then estimate what error significantly impacts on point density, allowing

the errors to be assessed. This section summarises the errors for each of
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the profile angle tests. In Table 4.14, the minimum, mean and maximum of

MIMIC’s errors are listed for each test conducted in this section. The errors

from the CAD tests are consistently low, validating MIMICs profile angle

calculations. The point cloud tests on angled surfaces result in larger errors

than those recorded for the ground profile angle tests (a mean error of 0.091o

when compared to 3.007o). It is unclear whether this is caused by vehicle dy-

namics or through manual interpretation of the profiles. Four potential error

sources have been highlighted. The first is the manual process of measuring

the profile angle of targets in real world point clouds. The second is the ef-

fect of vehicle dynamics. Vehicle dynamics have not been included as inputs

into MIMIC. The third potential error source is encountered when dealing

with real world point clouds. Accurate measurements of the orientation of

the surface in the horizontal and vertical axes are required. This too is a

manual process which potentially contributes to the profile angle errors. The

final potential error source is system calibration. This was highlighted by the

differences between the Optech Lynx and the XP1 for the profile angle results.

Although error bounds will be defined in Chapter 5, the largest errors

for the ground and angled surfaces are highlighted to provide a preliminary

estimate of these errors. The user inputs are varied until the predicted and

measured values match. This is repeated for each input variable. Table 4.15

details the extent an input value has to individually change to eliminate the

error. The largest profile angle error of the point cloud tests on the ground

could potentially be caused by a mistake in the horizontal rotation of the

scanner of 0.1o. This is a plausible scenario if the XP1 system is incorrectly

configured. For the point cloud tests on angled surfaces, the errors are higher.

133



The highest error would require a change in the scanner or target horizontal

rotation of 11.3o, or an error of 7.1o or 20.1o in vertical rotations of the

scanner or target to compensate for it. To have an error of that size in any

one value is unlikely, but if a small error is introduced into each of the inputs

it could conceivably account for the 5.925o and becomes even more likely

when vehicle dynamics are considered.

Table 4.14: Profile Angle - Summary of MIMIC Errors
Test Surface Type Min Mean Max

CAD Horizontal 0o 0o 0o

Point Cloud Ground 0.0790o 0.0910o 0.1020o

CAD Vertical 0.0075o 0.0425o 0.0755o

CAD Angled 0.0245o 0.0489o 0.0878o

Point Cloud (XP1) Angled 0.2710o 3.0007o 5.9250o

Point Cloud (Optech) Angled 0.2250o 0.5467o 1.5028o

Table 4.15: Profile Angle - Variation in MIMIC Input that Corresponds to
Errors on Point Cloud Surfaces

Surface Max Error αscan γscan αtarg βtarg

Ground 0.102o 0.1o n/a n/a n/a
Wall 5.925o 11.3o 7.1o -11.3o 20.1o

4.4.2 Profile Spacing

In this section MIMIC’s profile spacing calculations are validated. Similarly

to Section 4.2.2 the methods for calculating profile spacing on a horizontal

plane, on a vertical plane and on an angled plane are verified. Due to the

difficulty in finding suitable surfaces, the point cloud tests are not applied
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for parallel, vertical structures. Additionally, by employing the rotation of

the surface to provide variations in the interaction between the scan plane

and target, these tests are more rigorous than if they are limited to purely

vertical structures. As explained in the previous section, MIMIC is validated

through a series of CAD tests and point cloud tests using XP1 and Optech

Lynx data.

4.4.2.1 Measuring Profile Spacing

By applying data from the XP1 and Optech Lynx, it is possible to choose

scan profiles from different vehicle speeds and then measure the horizontal

and vertical profile distance. The INS onboard each of the MMS provides

high accuracy velocity information. Vehicle velocity is one of the inputs

into MIMIC. As with the profile angle tests, the verification process involves

manual interpretation of profiles. Figure 4.16 illustrates the difficulty in mea-

suring profile spacing in point cloud data. Test data is selected in areas of

even and uneven point distribution to assess the impact of manual interpre-

tation of scan profiles when taking measurements to validate profile spacing.

Five measurements are recorded for each profile spacing measurement. The

standard deviation of these measurements (σ) is then calculated. Table 4.16

details the results of the profile spacing measurements. These results are

then averaged and the measured profile spacing compared against the value

from MIMIC. Table 4.17 displays these results and the corresponding error.

Similarly to the profile angle measurements in Section 4.4.1.2 the measure-

ments exhibiting the higher σ also exhibit the higher errors, 0.00316m as

opposed to 0.00008m. These errors arise when manually approximating the

scan profile is inhibited by non uniform point spacing along the scan profile
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and it is a potential error source.

Figure 4.16: Manual Selection of Scan Profiles and the Impact on Profile
Spacing

Table 4.16: Manually Measuring Profile Spacing in Point Clouds
No. Profile Spacing 1 (m) Profile Spacing 2 (m)

1 0.1185 0.0950
2 0.1139 0.0975
3 0.1089 0.0957
4 0.1043 0.0959
5 0.0991 0.0960

σ (m) 0.00765 0.00091

4.4.2.2 Horizontal Plane

In this section, MIMIC’s profile spacing calculations for a horizontal plane are

validated using CAD data. The CAD profile spacing tests involve intersect-

ing a plane representing the scan plane with a horizontal plane representing

the ground. Figure 4.12 illustrates the interaction for the three planes. The
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Table 4.17: Profile Spacing - Manual Measurement and Error
Result Profile Spacing 1 (m) Profile Spacing 2 (m)

Measured (Average) 0.10894 0.09602
MIMIC 0.11210 0.09610
Error 0.00316 0.00008

scan plane is orientated in a series of configurations. The horizontal and ver-

tical scanner rotations are decreased in turn by 15o from 45o to 15o for each

test. The distance between subsequent scan planes is measured. Changes

in mirror speed and vehicle speed are modelled by increasing the offset dis-

tance between subsequent scan planes. These tests illustrate the performance

of MIMIC at measuring profile spacing when compared to a series of CAD

measurements. CAD measurements represent a hypothetical, ideal scenario

where no errors or external forces impact on the data. Tables 4.18 and 4.19

detail the profile spacing measurements for vertical and horizontal profile

spacing respectively on a horizontal plane. The values from MIMIC corre-

spond exactly with those measured in the CAD environment.

Table 4.18: Vertical Profile Spacing on a Horizontal Plane in CAD tests for
a Mirror Frequency of 100Hz

No. αscan γscan Velocity MIMIC(m) CAD(m) Err.(m)

1 45o 45o 5m/s 0.050 0.050 0
2 45o 30o 10m/s 0.100 0.100 0
3 30o 30o 15m/s 0.150 0.150 0
4 30o 15o 20m/s 0.200 0.200 0
5 15o 15o 25m/s 0.250 0.250 0
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Table 4.19: Horizontal Profile Spacing on a Horizontal Plane in CAD tests
for a Mirror Frequency of 100Hz

No. αscan γscan Velocity MIMIC(m) CAD(m) Err.(m)

1 45o 45o 5m/s 0.0500 0.0500 0
2 45o 30o 10m/s 0.1000 0.1000 0
3 30o 30o 15m/s 0.0866 0.0866 0
4 30o 15o 20m/s 0.1154 0.1154 0
5 15o 15o 25m/s 0.6690 0.6690 0

These CAD tests demonstrate MIMICs ability to predict profile spacing

on a horizontal plane, but as MIMIC is designed to have real-world appli-

cations it must be assessed with real world data. Figure 4.17 illustrates

a profile spacing measurement on point cloud data. Each scan profile is

manually interpreted and then a measurement between the two is recorded.

The Optech Lynx data provides the opportunity to test profile spacing for

different mirror speeds. The results of these point cloud tests can be seen

in Tables 4.20 and 4.21 for vertical and horizontal profile spacing respectively.

Figure 4.17: Profile Spacing Measurements on the Road Surface
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Table 4.20: Vertical Profile Spacing - MIMIC Predictions Versus Manual
Measurements of Optech Lynx Data for the Road Surface

No. Vel (m/s) Mf dPrSV (m) σ (m) Err (m)

1 7.088 150 Hz 0.04680 0.000050 0.00040
2 7.53 150 Hz 0.04954 0.000171 0.00066
3 3.42 150 Hz 0.02352 0.000058 0.00072
4 5.802 150 Hz 0.03918 0.000000 0.00050
5 5.58 150 Hz 0.03696 0.000311 0.00024
6 6.86 200 Hz 0.03480 0.000299 0.00050
7 7.324 200 Hz 0.02846 0.000050 0.00039
8 3.35 200 Hz 0.01590 0.000129 0.00085
9 6.799 200 Hz 0.03578 0.000506 0.00178
10 5.6 200 Hz 0.02730 0.000294 0.00070

Table 4.21: Horizontal Profile Spacing - MIMIC Predictions Versus Manual
Measurements of Optech Lynx Data for the Road Surface

No. Vel (m/s) Mf dPrSH(m) σ (m) Err (m)

1 7.088 150 Hz 0.0362 0.000045 0.00070
2 7.53 150 Hz 0.0385 0.000110 0.00022
3 3.42 150 Hz 0.0174 0.000023 0.00040
4 5.802 150 Hz 0.0296 0.000040 0.00040
5 5.58 150 Hz 0.0285 0.000191 0.00023
6 6.86 200 Hz 0.0263 0.000170 0.00015
7 7.324 200 Hz 0.0281 0.000324 0.00099
8 3.35 200 Hz 0.0128 0.000449 0.00075
9 6.799 200 Hz 0.0260 0.000216 0.00050
10 5.6 200 Hz 0.0214 0.000040 0.00070

The point cloud profile spacing tests for the ground highlight a number

of issues. Firstly, σ is extremely low, less than 1mm in each case. A low

σ indicates a reliable measurement. The profile spacing errors are also low,

the highest error is 0.00178m. The correlation between less reliable measure-

ments, identified by relatively high σ values, and high errors was reinforced
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in these tests. The measurement with an associated error of 0.00178m also

has the highest standard deviation, thus reinforcing the point that this scan

profile was the most difficult to measure accurately. The full set of profile

results, including vehicle dynamics are included in Tables 9 and 10 in Ap-

pendix .1. Upon closer examination, the vehicle dynamics recorded by the

INS do not suggest that the MMS was experiencing significant roll, pitch or

yaw at the time of that measurement (-0.1036o, 1.5399o and 0.004o respec-

tively). Therefore vehicle dynamics can be disregarded as an error source in

this case. The reason for assuming that these values are not significant is

that a number of other measurements were recorded with comparable values

of roll, pitch and yaw and they did not exhibit similar errors. This suggests

the error in this test is primarily due to the manual interpretation of the pro-

file. Excluding this one error, MIMIC has in each case correctly predicted

the profile spacing for different vehicle velocities and mirror speeds on the

ground to less than 1mm.

4.4.2.3 Vertical Plane

Section 4.4.2 explained that due to the difficulty in finding parallel, vertical

surfaces the tests for measuring profile spacing on parallel, vertical surfaces

were limited to measurements in CAD models. These tests are carried out

by intersecting a disc representing the scan plane with another plane repre-

senting the parallel, vertical surface as illustrated in Figure 4.12. For vertical

surfaces the horizontal and vertical profile spacing are required for the point

density calculation. Table 4.22 illustrates the predicted and measured ver-

tical profile spacing and Table 4.23 illustrates the predicted and measured
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horizontal profile spacing for a vertical surface. As with the previous CAD

model tests, there is zero error. This result validates MIMIC calculations of

horizontal and vertical profile spacing on vertical surfaces. The profile angle

is required to calculate the vertical profile spacing and therefore any error

in calculating profile angle is an intrinsic component of the vertical profile

spacing calculation for a vertical surface.

Table 4.22: Horizontal Profile Spacing - MIMIC Predictions Versus CAD
Tests for a Vertical Plane

No. αscan γscan Velocity MIMIC (m) CAD (m) Error (m)

1 45o 45o 5m/s 0.05 0.05 0
2 45o 30o 10m/s 0.10 0.10 0
3 30o 30o 15m/s 0.15 0.15 0
4 30o 15o 20m/s 0.20 0.20 0
5 15o 15o 25m/s 0.25 0.25 0

Table 4.23: Vertical Profile Spacing - MIMIC Predictions Versus CAD Tests
for a Vertical Plane

No. αscan γscan Velocity MIMIC (m) CAD (m) Error (m)

1 45o 45o 5m/s 0.0500 0.0050 0
2 45o 30o 10m/s 0.1224 0.1224 0
3 30o 30o 15m/s 0.2250 0.2250 0
4 30o 15o 20m/s 0.6464 0.6464 0
5 15o 15o 25m/s 0.9012 0.9012 0

4.4.2.4 Angled Plane

Vertical surfaces rotated horizontally and vertically around the Y and Z axes

respectively are used to validate MIMIC’s calculations for angled planes.
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In the initial CAD tests, in order to accommodate every type of rotation,

the surface is rotated clockwise and anti-clockwise around the Z axis. This

represents a horizontal rotation of the target. The same process is applied

for rotations around the Y axis which represent vertical inclinations of the

target. The axes for target rotation were illustrated in Figure 3.14(b). Rota-

tions around two axes are applied and these represent horizontal and vertical

rotations of the target. Table 4.24 illustrates the performance of MIMIC

against these measured values for horizontal profile spacing on a vertical sur-

face and Table 4.25 for vertical profile spacing. A constant vehicle velocity

of 10m/s is applied and a horizontal/vertical scanner rotation of 45o/45o is

applied respectively. The CAD profile spacing measurements return a zero

error, validating MIMIC’s calculations of profile spacing on angled surfaces.

Table 4.24: Horizontal Profile Spacing - MIMIC Calculations Compared to
CAD Measurements for an Angled Plane

No. αtarg βtarg MIMIC (m) CAD (m) Error (m)

1 15o 0o 0.0816 0.0816 0
2 0o 15o 0.1000 0.1000 0
3 15o 15o 0.0816 0.0816 0
4 -15o 0o 0.1414 0.1414 0
5 0o -15o 0.1000 0.1000 0

The next test involves angled structures selected from the XP1 and Optech

Lynx data to validate MIMIC using point cloud data. The Optech Lynx data

is again used to provide a method for verifying different scanner rotations

and mirror speeds. Using data from both MMSs allows more rigorous testing.

Objects such as walls and building faces are chosen and the horizontal and

142



Table 4.25: Vertical Profile Spacing - MIMIC Calculations Compared to CAD
Measurements for an Angled Plane

No. αtarg βtarg MIMIC (m) CAD (m) Error (m)

1 15o 0o 0.0707 0.0707 0
2 0o 15o 0.0615 0.0615 0
3 15o 15o 0.0645 0.0645 0
4 -15o 0o 0.0707 0.0707 0
5 0o -15o 0.0615 0.0615 0

vertical angles of these features are measured. Using software designed by

researchers at the NCG [Lewis et al., 2010, Lewis et al., 2012, McElhinney

et al., 2011], areas of interest are quickly identified and extracted from large

survey files. As in previous tests, five measurements are recorded for each set

of scan profiles and σ is calculated to provide an indication of the quality of

each measurement. The results for horizontal and vertical profile spacing at

two different mirror speeds and a selection of vehicle velocities are displayed

in Tables 4.26 and 4.27.

The errors from the point cloud tests are higher than in the CAD tests but

are still low, less than 1mm in all but four of the cases. Figure 4.18 illustrates

the errors and plots them against standard deviation. This helps visualise the

quality of each manual measurement used to validate the predicted values.

In Figure 4.18 it can be seen that the majority of MIMIC’s calculations

have an error of less than 1mm and a σ of less than 2mm. The results for

horizontal and vertical profile spacing are included in Tables 11, 12, 13 and

14 in Appendix .1. Interestingly, none of the measurements containing the

larger errors were recorded when vehicle dynamics were high. This would
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Table 4.26: Horizontal Profile Spacing - MIMIC Calculations Compared to
Point Cloud Measurements for an Angled Vertical Surface at Different Mf

and Vehicle Velocities
No. αtarg βtarg Vel.(m/s) σ(m) Err. (m) Mf (Hz)

1 1.930o 0o 4.80 0.0045 0.0016 100
2 0.156o 15o 5.00 0.0002 0.0004 100
3 2.810o 30o 4.97 0.0047 0.0005 100
4 -1.000o 45o 4.90 0.0004 0.0004 100
5 48.590o 6.21o 4.83 0.0005 0.0006 100
6 72.546o 20o 4.90 0.0005 0.0005 100
7 0.000o 0o 10.97 0.0005 0.0005 100
8 46.320o 0o 12.96 0.0017 0.0005 100
9 39.977o 0o 12.49 0.0012 0.0008 100
10 70.900o 0o 12.68 0.0015 0.0003 100
11 19.700o 0o 4.07 0.0002 0.0004 150
12 17.835o 0o 5.72 0.0009 0.0010 150
13 - 0.750o 0o 3.71 0.0001 0.0005 150
14 - 3.800o 0o 4.15 0.0005 0.0013 150
15 - 11.050o 0o 4.52 0.0002 0.0005 150
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Table 4.27: Vertical Profile Spacing - MIMIC Predictions Compared to Point
Cloud Measurements for an Angled Vertical Surface at Different Mf

No. αtarg βtarg Vel.(m/s) σ(m) Err. (m) Mf (Hz)

1 1.930o 0o 4.80 0.0013 0.0002 100
2 0.156o 15o 5.00 0.0005 0.0011 100
3 2.810o 30o 4.97 0.0006 0.0006 100
4 -1.000o 45o 4.90 0.0004 0.0007 100
5 48.590o 6.21o 4.83 0.0009 0.0010 100
6 72.546o 20o 4.90 0.0008 0.0002 100
7 0.000o 0o 10.97 0.0020 0.0015 100
8 46.320o 0o 12.96 0.0018 0.0005 100
9 39.977o 0o 12.49 0.0021 0.0004 100
10 70.900o 0o 12.68 0.0007 0.0008 100
11 19.700o 0o 4.07 0.0010 0.0007 150
12 17.835o 0o 5.72 0.0001 0.0005 150
13 - 0.750o 0o 3.71 0.0005 0.0002 150
14 - 3.800o 0o 4.15 0.0002 0.0007 150
15 - 11.050o 0o 4.52 0.0003 0.0005 150

imply that, unlike profile angle, vehicle dynamics have no significant effect

on profile spacing.

4.4.2.5 Discussion and Error Sources

Tests have been designed in Chapter 5 to assess the effect of errors in calcu-

lating profile spacing on the point density calculation. This section identifies

and quantifies each of these errors. Table 4.28 summarises the errors for

each of the tests. The largest errors are less than 2mm, whereas the mean

errors are, in all cases, less then 1mm. This appears to be satisfactory, but

for large targets with a low profile spacing an error of 1mm may impact

on the point density due to the number of profiles. This will be discussed

in Section 5.4.5. Table 4.29 has been collated to assist in visualising what
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Figure 4.18: Horizontal and Vertical Profile Spacing on an Angled Surface
for Different Mirror Frequencies - Error v Std Dev
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may have contributed to MIMIC’s calculation errors. As in Section 4.4.1.5,

each of the input values is incremented individually until the predicted and

measured values match. By examining Table 4.29, it is clear that even small

discrepancies in the profile measurements or system settings could account

for those errors. This demonstrates the accuracy of MIMIC for calculating

profile spacing on an angled surface.

Table 4.28: Error Table - Profile Spacing
Test dPrS Min (m) Mean (m) Max (m)
CAD Horizontal (dPrSH) 0.00000 0.00000 0.00000
CAD Horizontal (dPrSV) 0.00000 0.00000 0.00000

Point Cloud Ground (dPrSV) 0.00024 0.00067 0.00178
Point Cloud Ground (dPrSH) 0.00015 0.00050 0.00099

CAD Angled (dPrSH) 0.00000 0.00000 0.00000
CAD Angled (dPrSV) 0.00000 0.00000 0.00000

Point Cloud Angled (dPrSH) 0.00040 0.00070 0.00170
Point Cloud Angled (dPrSV) 0.00020 0.00070 0.00150

Table 4.29: Error Quantification: Profile Spacing
Surface Err(m) αscan γscan αtarg βtarg Mf Vel(m/s)

Grnd (H) 0.0009 0.10o n/a n/a n/a 0.01Hz 0.002
Grnd (V) 0.0018 1.65o n/a n/a n/a 1.63Hz 0.200
Wall (H) 0.0017 1.50o n/a 1.93o n/a 4.00Hz 0.200
Wall (V) 0.0015 1.00o 0.5o n/a 1o 1.50Hz 0.130

4.4.3 Point Spacing

In this section, MIMIC’s point spacing calculations are verified. These tests

validate the geometric formulae used to calculate point spacing on the scan
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plane. The formulae are verified using CAD models, an XP1 point cloud

and an Optech Lynx point cloud. The Optech Lynx point cloud facilitates

testing of the effect of different scanner rotations on point spacing on angled

surfaces. The Optech Lynx data further enables robust testing because it

has been supplied at different PRRs and mirror frequencies.

4.4.3.1 Horizontal Plane

For the CAD tests, a set of 3D lines are created in a CAD environment.

These 3D lines represent laser pulses. The lines incorporate scanner rota-

tions, scanner height, the ASW and a selection of specified horizontal target

distances. These 3D lines are then extended to intersect with a planar sur-

face as illustrated in Figure 4.19. The angle between each of the 3D lines

is the ASW. The distance between the points of intersection on the plane is

then measured and this value is the point spacing. The horizontal range to

the intersection point is varied for each test. Table 4.30 details these mea-

surements for a scanner height of 3.1m (the XP1’s scanner height) and an

ASW of 0.12o (the XP1’s ASW) for varying vertical scanner rotations and

varying target ranges. The measurements recorded in the CAD environment

are in agreement with the output from MIMIC. The predicted values corre-

spond exactly with the measured values and therefore the CAD tests validate

MIMIC’s calculations for point spacing on a horizontal plane.

The point spacing calculation requires a planar surface. Therefore these

point cloud tests require a surface with a constant elevation for testing. Pla-

nar road surfaces are not common. Due to the danger posed by water pooling

on the road surface (skidding, ice) roads must be able to drain this water.
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Figure 4.19: Point Spacing - CAD Measurements on a Planar Horizontal
Surface

Table 4.30: Point Spacing - MIMIC Predictions Compared to CAD Measure-
ments at a Scanner Height of 3.1m and an ASW of 0.12o

No. γscan Hr (m) MIMIC (m) CAD (m) Error (m)

1 45o 2 0.0110 0.0110 0
2 45o 4 0.0169 0.0169 0
3 45o 6 0.0265 0.0265 0
4 30o 1 0.0081 0.0081 0
5 30o 3 0.0128 0.0128 0
6 30o 5 0.0222 0.0222 0
7 15o 7 0.0389 0.0389 0
8 15o 8 0.0487 0.0487 0
9 15o 9 0.0599 0.0599 0
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Engineers design roads to facilitate good drainage [Schofield, 2007]. A result

of these designs is that roads of constant elevation in cross section are al-

most non-existent in a real world setting. One potential surface of constant

elevation for these tests is the road crest. On well constructed roads, the

elevation of the road does not change over short distances in the direction

of travel, except for traffic control measures such as speedbumps. For exam-

ple, if the vehicle is turning at a junction a scan profile could be obtained

which extends along the road crest. Figure 4.20(a) demonstrates this princi-

ple. Two scan profiles are manually selected to demonstrate this difference

in elevation change. Figure 4.20(b) displays the variation in elevation of a

scan profile crossing the road and of a scan profile running along the road

crest. A significant deviation in the height of the points across the road

(the red line) is apparent when compared to the points along the road crest

(the blue line). The elevation remains relatively constant for a distance of

approximately 10m on the road crest. A scan profile of constant elevation is

manually selected from the data for the point cloud tests.

The 10m scan profile along the road crest consists of 366 points. The 2D

Cartesian distance between subsequent points is calculated, using

Cartesian Distance =
√

(x2− x1)2 + (y2− y1)2. (4.41)

This introduces two potential error sources. The first is the approxima-

tion of the scan profile. Figure 4.21 illustrates this issue. The Cartesian

distance that is calculated for validation is the dashed red line. MIMIC as-

sumes a constant scan profile, and the point spacing that it calculates is

represented by the green and blue lines. An extreme case is highlighted in
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(a) (b)

Figure 4.20: Point Spacing (a) Standard Profile Crossing the Road / Profile
on the Road crest (b) Elevation Change

Figure 4.21. The second potential error source relates to system calibration.

The 2D Cartesian calculation assumes that the road surface is planar, but if

orientation errors exist in the scanner calibration then this may not be the

case. The measured distance between subsequent points is then compared

against the point spacing MIMIC calculates for a point at that distance from

the scanner.

To assess the importance of a minimum height deviation to the calcula-

tion, a non-planar surface is also included in these point spacing tests. Points

from a profile along the road crest and a scan profile crossing the road are

measured and both are plotted as a function of range. A curve is fitted to the

data for comparison with the theoretical model as shown in Figure 4.22(a) for

profiles crossing the road and 4.22(b) for the road crest. The variation in the

point spacing measurements arising from the 2D Cartesian calculation can
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Figure 4.21: Ground Point Spacing - Measurement Innaccuracies Through
Utilisiation of Cartesian Coordinate Formula

be seen in these images for both surfaces. The final plot of each quadratic

fit is shown in Figure 4.23. The predicted and the measured point spacing

for the planar road crest correspond, thus experimentally validating MIMIC

for a planar surface with point cloud data. The point spacing for the scan

profile that runs across the road gradient deviates from the predicted value.

This is due to the change in elevation of the scan profile crossing the road. It

is important to note that the deviation begins to become more pronounced

at a range of approximately 5m. Figure 4.20(b) shows that the change in

elevation of the scan profile crossing the road increases significantly at the

5m mark. The 5m mark is where the crest in the road lies and therefore

the elevation changes. As the elevation changes, the road deviates from the

plane used in MIMICs calculations and therefore errors accumulate accord-

ingly. The ground point spacing tests could not be repeated for the Optech

Lynx data as there are no right or left turns at a junction to provide an

area of minimum height deviation as illustrated in Figure 4.20(a). If precise

information on the road gradient is provided, MIMIC could be adapted to
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calculate point spacing on scan profiles crossing the road. This will not be

attempted in this thesis but will be discussed in greater detail in Chapter 8

as a potential topic for future work.

(a) (b)

Figure 4.22: Quadratic Fit (a) Across Road (b) Along Road Crest

4.4.3.2 Vertical Plane

Horizontal and vertical rotations of the scanner are incorporated to verify

the point spacing calculations on a vertical surface. A set of 3D lines are

created representing individual laser pulses. These lines are separated by the

ASW. For the CAD tests both the horizontal and vertical rotations of the

scanner are altered. These 3D lines are then extended to intersect with the

vertical surface. The distance between the two points of intersection is the

point spacing. Similarly to the previous CAD tests, a scanner height of 3.1m

is applied and an ASW of 0.12o. Table 4.31 illustrates the predicted point

spacing against the measured point spacing for a vertical surface. A different
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Figure 4.23: Comparing Measured and Calculated Point Spacing Along and
Across the Road Crest as a Function of Range
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target range is applied for each test. MIMIC has predicted the point spacing

accurately and with zero error. Due to the difficulty in locating vertical,

parallel surfaces, the point cloud tests are applied to angled surfaces only.

Table 4.31: Point Spacing - MIMIC Predictions Compared to CAD Mea-
surements for a Vertical Plane at a Scanner Height of 3.1m and an ASW of
0.12o

No. αscan γscan Range MIMIC (m) CAD (m) Error (m)

1 45o 45o 2m 0.0072 0.0072 0
2 45o 45o 3m 0.0109 0.0109 0
3 45o 30o 3m 0.0099 0.0099 0
4 45o 30o 4m 0.0132 0.0132 0
5 30o 30o 5m 0.0126 0.0126 0
6 30o 30o 4m 0.0101 0.0101 0
7 30o 15o 6m 0.0147 0.0147 0
8 30o 15o 7m 0.0171 0.0171 0
9 15o 15o 8m 0.0174 0.0174 0
10 15o 15o 9m 0.0196 0.0196 0

4.4.3.3 Angled Planes

Horizontal and vertical scanner rotations are investigated for verification of

MIMIC’s point spacing calculations for an angled surface. The range from

the scanner to the target is constant and only the target orientation is varied

in these tests to assess the effect of target orientation on point spacing. For

the initial CAD tests a vertical surface is placed in various orientations and

a series of 3D lines representing laser pulses are created. The scanner is at

an elevation of 3.1m, orientated at 45o/45o and placed at a range of 4m from

the target, although the range changes depending on the rotation of the tar-

get. An ASW of 0.12o is once again applied. The test set-up is illustrated
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in Figure 4.24. The target is rotated in 15o steps in horizontal and vertical

and then a dual axis rotation. Anti-clockwise and clockwise rotations are

included. The 3D lines are intersected with the rotated surface and distance

between two points of intersection is measured. The results are displayed in

Table 4.32. Once again, the CAD tests validate MIMICs method for calcu-

lating point spacing on angled surfaces, returning a zero error.

Figure 4.24: Point Spacing - CAD Measurements on an Angled Plane

To validate the point spacing calculation with point cloud data, a set of

16 surfaces from the XP1 and Optech Lynx datasets are selected. The se-

lected surfaces have varying target heights, ranges to the scanner and surface

orientations. The distance between subsequent points on the angled surface

is measured manually. The results of these tests have been detailed in Tables

4.33, 4.34 and 4.35. The complete set of results are included in Tables 15

and 16 in Appendix .1. Tests 1 - 6 are from the XP1’s Riegl VQ-250 oper-

ating at 300kHz with a mirror speed of 100Hz and the scanner rotated at

45o/45o, tests 7-11 are taken by the Optech scanner rotated at 37.48o/29.6o
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Table 4.32: Point Spacing - MIMIC Predictions Compared to CAD Mea-
surements for an Angled Plane at a Scanner Height of 3.1m and an ASW of
0.12o

No. αtarg βtarg MIMIC(m) CAD(m) Error(m)

1 15o 0o 0.0129 0.0129 0
2 0o 15o 0.0201 0.0201 0
3 15o 15o 0.0157 0.0157 0
4 30o 0o 0.0100 0.0100 0
5 0o 30o 0.0280 0.0280 0
6 30o 30o 0.0210 0.0210 0
7 -30o 0o 0.0339 0.0339 0
8 0o -30o 0.0063 0.0063 0
9 -30o -30o 0.0061 0.0061 0

operating at 125kHz and with a mirror speed of 100Hz, and tests 12 - 16

are recorded at the same scanner rotation but operating at 500kHz and a

mirror speed of 200Hz. In each case the errors are low, with the largest error

just under 2mm at a range of approximately 8m. By altering the target ro-

tation for each point, the range to the target, the height difference between

the scanner and target, the PRR and the mirror speed, MIMICs capabili-

ties of predicting point spacing are tested robustly. Figure 4.25 graphically

illustrates the error of the points plotted against the standard deviation. As

with previous examples, the lower the standard deviation the more reliable

the measurement and the lower the error the better the match between the

predicted and measured values.
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Table 4.33: Point Spacing - MIMIC Predictions Compared to Point Cloud
Measurements for an Angled Surface. Surveyed with a Scanner Rotation of
45o/45o, a PRR of 300kHz and a Mf of 100Hz on the XP1

No. αtarg βtarg Zdiff (m) Range(m) σ(m) Error(m)

1 1.93o 0.00o 1.492 5.367 0.0003 0.0009
2 0.15o 15.00o 1.476 5.947 0.0004 0.0017
3 2.81o 30.00o 1.479 7.796 0.0004 0.0009
4 -1.00o 45.00o 1.351 6.409 0.0013 0.0015
5 48.59o 6.21o 1.426 5.291 0.0008 0.0001
6 72.54o 20.00o 1.443 6.181 0.0005 0.0012

Table 4.34: Point Spacing - MIMIC Predictions Compared to Point Cloud
Measurements for an Angled Surface. Surveyed with a Scanner Rotation of
37.48o/29.6o, a PRR of 125kHz and a Mf of 100Hz on the Optech Lynx

No. αtarg βtarg Zdiff (m) Range(m) σ(m) Error(m)

7 19.67o 0o 2.647 16.840 0.0021 0.0008
8 16.74o 0o 2.531 7.580 0.0007 0.0018
9 -1.28o 0o 2.480 11.190 0.0009 0.0004
10 -10.80o 0o 2.795 10.010 0.0007 0.0016
11 30.81o 0o 2.392 12.940 0.0011 0.0011

Table 4.35: Point Spacing - MIMIC Predictions Compared to Point Cloud
Measurements for an Angled Surface. Surveyed with a Scanner Rotation of
37.48o/29.6o, a PRR of 500kHz and a Mf of 200Hz on the Optech Lynx

No. αtarg βtarg Zdiff (m) Range(m) σ(m) Error(m)

12 18.95o 0o 2.337 7.550 0.0005 0.0002
13 16.24o 0o 2.280 6.230 0.0007 0.0001
14 -2.18o 0o 2.348 7.760 0.0001 0.0012
15 -12.80o 0o 2.582 8.950 0.0011 0.0012
16 33.05o 0o 2.110 10.110 0.0002 0.0008
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Figure 4.25: Point Spacing - Point Cloud Tests on an Angled Surface for
Different Scanner and Mirror Frequencies - Error v Std Dev
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4.4.3.4 Discussion and Error Sources

This section provides a summary of the errors and identifies the minimum,

mean and maximum errors for each test, as displayed in Table 4.36. An

examination of each error is included in Chapter 5 in the point density cal-

culations. As the error in point spacing is a function of range and the target’s

attributes, it is not possible to quantify these errors in the same manner as

the profile spacing and profile angle tests. For instance, a 2mm error at a

range of 1m could be due to the same angular error as a 20mm error at a

range of 20m. When analysing the errors, one trend that becomes apparent

is that although the errors are low, the predictions for the 500kHz system

exhibit the highest errors of the three tests. The reason for this is uncertain

and it may be simply down to the choice of test sites. Overall the errors

are low, but an examination of the effect of these errors in the point density

calculation in Chapter 5 will provide a definitive answer on the accuracy of

MIMIC’s predictions.

Table 4.36: Point Spacing - Summary of MIMIC’s Calculation Errors in Point
Cloud Tests

Test Min (m) Mean (m) Max (m)

Ground Point Spacing 0.00001 0.00200 0.037
Angled Point Spacing 0.00008 0.00097 0.018

4.5 Conclusions

This chapter presented the geometric formulae for calculating the profile an-

gle, profile spacing and the point spacing on different target types. These
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target types included horizontal planes and angled surfaces. The profile an-

gle, profile spacing and point spacing calculations were then validated in a

series of tests using constructed CAD models and point cloud data from the

two test MMS introduced in earlier chapters. MIMIC requires three param-

eters to calculate point density on a target.

The first value calculated was the profile angle. A series of CAD tests

were designed to verify the calculations. MIMIC’s values were compared to

the CAD measurements and the errors were quantified. The errors were low,

and largely due to the manual element of the validation process. The point

cloud tests exhibited higher errors, demonstrating the impact of vehicle dy-

namics and also highlighting a potential calibration issue with the XP1 data.

The highest mean error for the profile angle tests was 3.0007o. This error was

encountered in the point cloud tests on an angled surface with the XP1. The

Optech Lynx data exhibited lower errors, and would seem to reinforce the

calibration issue with the XP1, however differences between the two datasets

preclude a definitive answer on this. Dedicated calibration tests would be

required to answer this question and this is outside the scope of this thesis.

The second output value from MIMIC was the profile spacing. A com-

bination of CAD and point cloud tests were once again applied to validate

MIMIC’s calculations. There was no error in each of the CAD tests which

validated the profile spacing calculations. The results from the point cloud

tests were also promising, with all errors below 2mm. The highest mean error

for the profile spacing tests was 0.0007m, this was encountered in the point

cloud tests on an angled surface.
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The final output from MIMIC was the point spacing. The CAD tests

once again returned no error, validating MIMIC’s point spacing calculations.

The highest mean error for the point spacing tests was 0.002m, which was

encountered in the point cloud tests on a horizontal surface. The reason for

this error has been shown to be the measurement method for validating point

spacing. By calculating a Cartesian distance between the points, the uneven

point distribution introduced errors in the measured values.

Assessment of errors in the profile angle, profile spacing and point spacing

claculations will be carried out in detail in the following chapter. Chapter

5 will introduce the methodology for calculating point density using these

three outputs.
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Chapter 5

Calculating Point Density

Three elements are required to calculate point density: profile angle, profile

spacing and point spacing. Chapter 4 detailed and validated the process of

calculating these three elements for a single location on an object. MIMIC

accepts targets of varying dimensions and is designed to provide point spac-

ing information at multiple locations on the target. These additional point

spacing values are combined with the profile information in the point den-

sity calculation. The 2D planar procedure in MIMIC’s calculation module

(described in Chapter 4) is adapted for 3D real world objects. This chapter

details the methods employed to calculate point density and validates these

methods.

5.1 Introduction

The method for calculating point spacing and profile information was pre-

sented and validated in the previous chapter. It was demonstrated that point

density could be accurately calculated on targets with varying rotations and

elevations for scanners at different orientations and elevations. Existing point
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density calculators [RIEGL, 2012a] do not take these factors into account.

These calculators do not accept targets of varying elevation and rotation

and ignore the variations in point spacing that are present on these targets.

This leads to inaccuracies in their point density calculations. This chapter

demonstrates the process that has been developed to calculate point density

on targets of different dimensions and rotations. A grid structure is applied

to the target and this allows for the calculation of point spacing at multiple

locations on the target. Section 5.2 discusses the gridding process in more

detail for different target types and also demonstrates how this is beneficial

for targets of different dimensions and orientations. Section 5.2.3 explains

how each output from the profile spacing, profile angle and point spacing cal-

culations are combined in the point density calculation for different targets.

Section 5.3 demonstrates how different 2D targets are combined to represent

real world 3D features. The point density calculations are verified in Section

5.4.

5.2 Targets

Assuming constant vehicle velocity, zero course deviation and zero vehicle

dynamics, the profile angle and the profile spacing do not vary across a

planar target. Chapter 3 explained that profile angle and profile spacing are

not affected by range. Therefore the point spacing is the only output from

Chapter 4 that varies across the target. The orientation, dimensions of, and

range to the target all influence point spacing. To calculate the point density

of a target the point spacing is calculated at different locations on the target.

MIMIC creates a grid structure over the target and calculates point spacing

for each grid cell. The grid structure is user specified. This section details the
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process involved in gridding a target. It also defines the valid target types.

5.2.1 Gridding Targets

The gridding process applies a MxM grid over a target, as shown in Figure

5.1(a). The MxM gridding approach is successful for large targets whose

width and height are similar, as illustrated in Figure 5.1(a), however this

grid structure is not optimised for narrow targets, as illustrated in Figure

5.1(b). Large areas of redundant measurements are visible in this figure,

particularly on the horizontal axis of the target. If this grid structure is

applied to a narrow, vertical target, eight measurements are recorded across

the horizontal axis of the target. For a narrow vertical target, it is unlikely

that any variation in point spacing would be evident between these eight

measurements. Eight measurements would also be recorded for the vertical

axis of the target where there is more potential for variation in point spacing

and this may be insufficient for a tall target, particularly if the target is ver-

tically rotated. On an vertically rotated target the variation in point density

increases. Therefore a different grid structure is designed for narrow objects

that are predominantly vertical. This structure is a single column of vertical

grids. An example of the gridding structure for narrow targets is illustrated

in Figure 5.2(a). This grid structure can be amended to include a second

column if additional measurements are required across the horizontal axis of

the target. The requirement for a second column depends on the width of

the target.

The size of each grid cell is dependant on the size of the target and the

grid structure selected by the user. For instance, if the target is 2m wide and

165



1m metre tall and the user selects 64 grids (8x8), the dimensions of each grid

cell are 0.5m x 0.25m. If the user believes there is a significant point spacing

variation across the target the number of grid cells can be increased. MIMIC

is designed to apply a 4 (2x2), a 16 (4x4) and a 64 (8x8) grid structure.

Section 5.4.1 demonstrates the effect of the different grid structures on the

point density calculation.

(a) (b)

Figure 5.1: Standard M x M Grid Structure Applied to (a) a Wide Target
and (b) a Narrow Vertical Target
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(a) (b)

Figure 5.2: Amended Grid Structure Designed for a Narrow Target (a) Single
Column (b) Additional Horizontal Column

5.2.2 Position of Grid Cell Centre

The centre point of each grid cell requires the user specified target dimensions,

range to the target and the grid structure for calculation. All grid cell centres

are offsets to a pivot point, as illustrated in Figure 5.3. The pivot point is

the fixed point on the target that MIMIC applies horizontal and vertical

target rotations around. The center of the cell is assigned a (H Offset,V

Offset) coordinate comprising the horizontal and vertical offset from this

pivot point. Figure 5.3 illustrates this principle for one of the grid cell centres

on the target. The horizontal offset can be positive or negative to identify

whether it is on the left hand side or right hand side of the target relative to

the pivot point.
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Figure 5.3: Horizontal and Vertical Offsets from the Pivot Point to the Grid
Cell Centres

5.2.2.1 Range to Grid Cell Centre

The horizontal range (Hr) to the target is user specified in the input stage of

MIMIC. The horizontal range to each grid cell does not change if no target

rotations are applied. The true range to the grid cell centres from the scanner

are calculated using the offsets to the grid cell centre and the information

on the dimensions of the target. By applying the formulae and principles

from Section 4.3.2, the grid cell centres are calculated. If target rotations are

applied, then the range measurements vary per grid cell centre. An additional

step is required for rotated targets.

5.2.2.2 Orientation of Target

A target is rotated around the pivot point. Rotations of the target alter the

height of, and the range to, the grid cell centres. The effect of target rota-

tions on these values varies depending on what target rotations are applied.

Figure 5.4 displays the two axes of rotation for the target. In Figure 5.4(a)

a horizontal rotation of the target is illustrated. Rotating around the pivot
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point, a horizontal rotation results in a decrease and increase in range to

alternate sides of the target. The elevation of the grid cell centres are not

effected by a horizontal rotation of the target. Figure 5.4(b) illustrates a

vertical rotation of the target. A target can incline away from or towards the

MMS. If the target is inclined away from the MMS the elevation of the target

decreases but the range to the target is increased. If the target is inclined

towards the MMS the elevation decreases and the range to the target also

decreases.

(a) (b)

Figure 5.4: Changes in Range to and Elevation of Grid Cell Centres for (a)
a Horizontal Target Rotation (b) a Vertical Target Rotation

The following principles are applied to calculate the change in range to,

and elevation of, each grid cell centre resulting from a horizontal and vertical

target rotation. MIMIC initially calculates the change in range resulting from

a horizontal rotation of the target. A horizontal rotation (αtarg) is applied to

the target at the pivot point, p, as illustrated in Figure 5.5. For each grid cell

centre, the change in the horizontal range to the point, r1, can be calculated

with
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r1 = H Offset ∗ sinαtarg. (5.1)

Figure 5.5: Calculating the Change in Horizontal Range, r1, from the Scanner
to the Target as a Result of a Horizontal Target Rotation

r1 is added or subtracted automatically by MIMIC from the initial hori-

zontal range (Hr) depending on whether it is a positive or negative horizontal

offset and on the direction of the target rotation.

A vertical rotation of the target (βtarg) impacts on both the range to,

and elevation of, the grid cell centres. Figure 5.6 illustrates the change in

range, r3, resulting from a vertical target rotation. To calculate r3, r2 in

Figure 5.7 is required. Figure 5.8 illustrates the rotated target in profile. r2

is calculated with

r2 = V Offset ∗ sin βtarg. (5.2)
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Once r2 is calculated, the change to Hr for each grid cell centre is calcu-

lated with

r3 = r2 ∗ sin(90− αtarg). (5.3)

r3 is also automatically added to or subtracted from Hr depending on

the direction of the rotation of the target. After this step, the range to each

grid cell centre reflects the affects of horizontal and vertical target rotations.

Figure 5.8 also illustrates the variables required for calculating the ele-

vation of each grid cell center after a vertical rotation of the target. The

amended elevation for each grid cell centre, v1, is calculated using

v1 = V Offset ∗ sin(90− βtarg). (5.4)

The amended elevations of, and horizontal ranges to each grid cell centre

are entered into the formulae in Section 4.3. The point spacing is then

calculated for each grid cell centre.

5.2.3 Point Density

To compute the point density of each grid cell, the profile angle and profile

spacing are combined with the point spacing that has been calculated for

each grid cell centre. This is carried out by tracing each scan profile through

the grid structure. Starting at the bottom left hand corner of the target (0,0),

MIMIC records which grid cells each scan profile (starting at 0,0) intersects.

The length of the scan profile within that cell is also recorded. Figure 5.9

illustrates this process along with the intersection points of the scan profile
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Figure 5.6: Calculating the Change in Horizontal Range, r3, from the Scanner
to the Target as a Result of a Vertical Target Rotation for Each Grid Cell
Centre - Top Down View

Figure 5.7: Calculating r3 for Each grid Cell Centre - Top Down View
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Figure 5.8: Calculating r2 and v1 for Each Grid Cell Centre- Profile View

and each grid cell. To calculate the number of points in that grid cell, the

segment length is multiplied by the point spacing calculated for that grid cell.

Figure 5.9: Calculating the Intersection Points of the Scan Profile and Indi-
vidual Grid Cells

Using the computed horizontal and vertical profile spacing, each of the

scan profiles that intersect the target can be calculated. The starting point

(0,0) is incremented by the horizontal and vertical profile spacing. The X

coordinate is incremented by the horizontal profile spacing until the X coor-

dinate matches the width of the target. Starting again at (0,0) the Y value

is incremented by the vertical profile spacing until the Y value matches the

173



height of the target. This method accounts for every profile that intersects

the target. The number of points in each cell are calculated by multiplying

the point spacing for that grid cell by the length of scan profile in that grid

cell. These point density values are then summed for each grid cell and this

calculation returns the point density of the target. When calculating point

density in this way, one potential issue must be considered. MIMIC assumes

that the first point on the target is exactly at the target edge, (0,0). In

practice that is not the case as the first point could be any distance up to the

point spacing inside the target as the previous pulse may have just missed

the target. This error source is illustrated in Figure 5.10.

Figure 5.10: Potential Error Source: MIMIC Assumes the First Point is at
the Target Boundary whereas the First Point may be Inside the Target.

5.3 Combining Surfaces

MIMIC operates by treating the component parts of 3D targets as a series of

2D planar surfaces. MIMIC then calculates the point spacing, profile angle

and profile spacing for each plane, as Section 3.3.2.2 explained. This section

describes the methodology developed to calculate point density for targets
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consisting of multiple planes and also cylindrical targets.

5.3.1 Multi-Faced Targets

MIMIC only accepts individual 2D planes as valid target types. Multi-faced

3D targets are not a valid input. Therefore MIMIC requires user input

to identify the 2D planes that comprise a 3D object. For example, a 3D

building requires user input to identify each plane. The range to each plane,

the target dimensions and its horizontal and vertical rotations are defined

by the user. MIMIC then automatically calculates point density for each

plane using the procedure presented in the previous sections. Automatically

deconstructing 3D structures into a series of 2D planes is something that

could be investigated in any future work.

5.3.2 Cylinders

Cylindrical targets are more complicated. MIMIC does not accept curved

surfaces as a valid input. For MIMIC to calculate point density on a cylinder

it is first converted into a series of planes. In Chapter 3 a hexagonal forma-

tion was introduced as a planar approximation of a cylinder that retains the

basic cylindrical shape. Each plane is manually defined by the user. One po-

tential error source that arises by approximating a cylinder with a hexagon

is depicted in Figure 5.11. Depending on whether the planar surfaces are

drawn inside (Figure 5.11(a)) or outside the cylinder (Figure 5.11(b)), the

range to the plane changes accordingly. In Figure 5.11(a), the yellow area is

incorrectly added to the true range to the target. In Figure 5.11(b), the area

marked in yellow is incorrectly subtracted from the true range to the target.

For large cylinders this may be an issue as it results in a change of point
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spacing, however small objects like signposts will not exhibit any change in

point spacing arising from this error source. For instance, a cylinder of diam-

eter 0.2m (each face of the hexagon would be approximately 0.05m - 0.08m)

would result in a change in the range to target of 0.015m. This small ad-

justment in range would not result in any noticeable impact on point spacing.

(a) (b)

Figure 5.11: Potential Error Source: A Hexagonal Approximation of a Cylin-
drical Target (a) Range to Target is Increased and (b) Range to Target is
Decreased

MIMIC applies a hexagon to the cylinder using the method displayed in

Figure 5.11(b). It applies this method because the tangent point between the

cylinder and the face of each hexagon is the mid point of the horizontal axis

of the plane. For a single column grid structure, the centre of the grid cell

is also the mid point of the horizontal dimension of the plane. Therefore the

point of intersection between the hexagon and the cylinder and the center of

the grid cell are the same point. Section 5.4.3 assesses MIMICs point density

calculations on cylindrical targets.
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5.3.3 Line-of-Sight

As explained in Section 3.2.3.5, the line of sight to a target can vary de-

pending on the position and orientation of the scanner. This is particularly

relevant for dual scanner systems where one face of an object is only visible to

one scanner. This is one of the main benefits of employing a second scanner

as exhibited by the work of [Yoo et al., 2009] reviewed in Chapter 2. Dual

scanners increase the coverage of a multi-faced target. Figure 5.12 illustrates

the principle of line of sight for a dual scanner configuration similar to that

on the Optech Lynx. This scanner configuration is common to most com-

mercial systems. Only two faces of the object can be surveyed by a single

scanner system. The addition of a second scanner enables a third face of the

target to be surveyed and also provides an overlap on the face of the target

closest to the MMS.

Figure 5.12: Scanner 1 and Scanner 2 Survey Different Faces of the Target.
The Offset and Orientation of Scanner 2 Results in an Increased Range to
Target
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5.4 Results and Analysis

This section verifies that the methodology and formulae presented in the pre-

vious sections are capable of combining the point spacing, profile spacing and

profile angle outputs from Chapter 4 into an overall accurate representation

of the point density of a target. Verifying the point density calculations in a

CAD environment would require each laser pulse to be drawn and would be

extremely time consuming. Therefore for these tests MIMIC’s capabilities

are verified using the XP1 and Optech Lynx point cloud data only. The

recommended grid structure is first identified in Section 5.4.1. Different mir-

ror frequencies and PRRs are used to robustly test MIMIC’s point density

calculations for different scanners on angled and cylindrical targets. Section

5.4.4 details the tests facilitated by the Optech Lynx data for verifying the

effect of incorporating a second scanner on point density. Finally, the impact

that errors in the profile information and point spacing calculations have on

the final point density calculation are assessed in Section 5.4.5.

5.4.1 Grid Structure

One factor that must be considered when assessing the quality of the point

density calculation is the number of grids employed in the calculation. A 4x4

grid structure is applied for all of the standard target point density tests in

this chapter. This is because a 4x4 grid structure provides a higher level of

detail than a 1x1 or a 2x2 grid structure, but due to the manual nature of the

measurements is less time consuming than an 8x8 grid structure. Increasing

the number of grids increases the number of point spacing measurements

on the surface. For example, a larger error in point density would arise

if a 2x2 grid structure is applied to a large wide target than if a 4x4 grid
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structure is applied. A 6x1 grid structure is applied for the narrow vertical

targets. This grid structure is chosen for narrow vertical targets because the

cylinders used in the testing are not large targets. Additionally none of the

cylindrical targets were rotated vertically minimising point spacing variation.

To demonstrate the effect of different grid structures on the point den-

sity calculation, a large 5m x 2m target is selected. The target is rotated

horizontally by 30o. The range to the target is 6m and the scanner eleva-

tion is 3.1m. The scanner is orientated at 45ox45o, operating at a 300KHz

PRR and a 100Hz mirror frequency. The vehicle is simulated at 50km/h.

This target is chosen to illustrate the variation in point spacing on a large,

rotated target and the resulting effect that different grid structures have on

the point density calculations. Table 5.1 demonstrates the effect of sampling

with five different grids structures. The first grid structure, a 1x1, represents

existing point density calculators that calculate point spacing at a single

central target location. The 2x2 is the smallest grid structure that MIMIC

utilises. Both the 1x1 and 2x2 grid structures do not calculate the increased

and decreased point spacing at the extents of the target and have therefore

insufficiently described the target. By incrementally increasing the number

of grids the change in point density for different grid structures is identified.

For a large rotated target, a difference of almost 634 points exists between

the 1x1 and 16x16 grid structures.

These tests are repeated for a smaller target using the same parameters,

but varying the target dimensions. The target dimensions are 1m x 0.5m.

The results are displayed for each grid structure in Table 5.2. The variation
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Table 5.1: Calculating the Influence of Different Grid Structures on MIMIC’s
Point Density Calculations for a Rotated 5m x 2m Target

No. Grids Point Density

1 (1x1) 8527pts
4 (2x2) 8901pts
16 (4x4) 9040pts
64 (8x8) 9104pts

256 (16x16) 9161pts

in point density is low, a variation of only 1 point for each grid structure,

including the 1x1. However, it should be noted that in these tests on the 1x1

grid structure, MIMIC is used to calculate point spacing at the centre of the

target. Unlike existing point density calculators, target orientation, target

elevation, scanner orientation and scanner elevation have all been included

in the calculation, therefore the point spacing calculation for the 1x1 grid

structure gives a misleading indication of its accuracy. These results and

the previous 5m x 2m target tests demonstrate that the 1x1 grid structure

is only suitable for small targets. The 4x4 grid structure is chosen for the

validation tests in this thesis because it provides additional point spacing

measurements for large, rotated targets but because of the manual nature of

the measurements in the validation tests it is less time consuming than the

8x8 or 16x16 grid structures.

5.4.2 Angled Surfaces

The quality of the point density calculations for angled surfaces are assessed

in this section. The point density calculations are validated by gridding a tar-

get and comparing the number of points in each cell with MIMIC’s calculated
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Table 5.2: Calculating the Influence of Different Grid Structures on MIMIC’s
Point Density Calculations for a Rotated 1m x 0.5m Target

No. Grids Point Density

1 (1x1) 442pts
4 (2x2) 441pts
16 (4x4) 441pts
64 (8x8) 441pts

256 (16x16) 441pts

value for that cell. Angled targets of different dimensions are first identified

in the point cloud. The two target types are illustrated in Figure 5.13. The

dimensions of the target outlined in red are 1m x 0.5m. The dimensions of

the target outlined in blue are 0.5m x 0.5m. Targets of these dimensions are

identified on four different angled surfaces and a 4x4 grid structure is applied

to each. The dimensions, orientation and range to each target are defined

in MIMIC. MIMIC calculates a total point density for the target and also

calculates the point density for each grid cell. The point density is measured

for the entire target and also for each individual grid cell. This is illustrated

for a 0.5m x 0.5m target in Figure 5.14.

Table 5.3 displays the details of the point density tests for the 1m x 0.5m

target at different PRRs and mirror frequencies. Table 5.4 displays the re-

sults of these tests. Table 5.5 displays the details of the point density tests

for the 0.5m x 0.5m target at different PRRs and mirror frequencies. Table

5.6 displays the results of the tests for the 0.5m x 0.5m target. The complete

set of results detailing all survey variables and vehicle dynamics can be seen

in Tables 17 and 18 in Appendix .2.

181



Figure 5.13: Validating MIMIC’s Point Density Calculations on Two Angled
Targets of Dimensions 1m x 0.5m (Red) and 0.5m x 0.5m (Blue)

Figure 5.14: Validating MIMIC’s Point Density Calculations by Measuring
Point Density for Each Grid Cell on a 0.5m x 0.5m Target
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Table 5.3: Test Parameters for Validating MIMIC’s Point Density Calcula-
tions on an Angled Target of Dimensions 1m x 0.5m for the Optech Lynx

No. Hr(m) Vel(m/s) Zdiff(m) αtarg PRR Mf

1 7.665 5.813 1.218 17.33o 125KHz 100Hz
2 11.796 7.224 1.953 -1.12o 125KHz 100Hz
3 11.432 7.21 2.089 0.1o 250KHz 150Hz
4 6.422 5.318 1.345 22.79o 250KHz 150Hz

Table 5.4: Calculated and Measured Point Density for an Angled Target of
Dimensions 1m x 0.5m

No. MIMIC Measured %Error Profiles Error Per Profile

1 253pts 269pts 5.90% 27 0.59pts
2 117pts 122pts 4.09% 18 0.27pts
3 247pts 284pts 13.02% 28 1.32pts
4 675pts 741pts 8.90% 45 1.46pts

Table 5.5: Test Parameters for Validating MIMIC’s Point Density Calcula-
tions on an Angled Target of Dimensions 0.5m x 0.5m

No. Hr(m) Vel(m/s) Zdiff(m) αtarg PRR Mf

5 7.665 5.813 1.218 17.33o 125KHz 100Hz
6 11.796 7.224 1.953 -1.12o 125KHz 100Hz
7 11.432 7.21 2.089 0.1o 250KHz 150Hz
8 6.422 5.318 1.345 22.79o 250KHz 150Hz

The results in Tables 5.4 and 5.6 demonstrate that MIMIC is capable of

calculating the number of points for a specific target on an angled surface for

different scanner settings and vehicle velocities. Although there are errors in

each case and MIMIC consistently underestimates the number of points that

are in the target area, the errors are justifiable for two reasons.
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Table 5.6: Calculated and Measured Point Density for an Angled Target of
Dimensions 0.5m x 0.5m

No. MIMIC Measured %Error Profiles Error Per profile

5 127pts 137pts 7.29% 14 0.7pts
6 58pts 62pts 6.45% 9 0.4pts
7 124pts 147pts 15.64% 14 1.64pts
8 337pts 352pts 4.26% 22 0.68pts

� The point density of Target 4 in Table 5.4 is underestimated by 66

points. This is the largest error in the point density tests. However,

the error is large because the total number of points is high. An error of

66 points for Target 4 corresponds to a percentage error of only 8.90%

which is not the largest percentage error.

� The errors must be compared to the number of profiles. The 4th Target

in Table 5.4 is underestimated by 66 points, but comprises 45 profiles.

This equates to an error of approximately 1.46 points per profile.

To further investigate MIMIC’s point density calculations, the individual

grid cells are examined. The results for each individual grid cell for Targets

1 - 4 are visualised in Figures 5.15 and 5.16. In each image, the manually

measured value is displayed in blue, MIMIC’s predicted value is displayed in

green and the discrepancy is displayed in red. A value of 0 indicates an accu-

rate calculation of point density, a positive value indicates MIMIC predicted

more than was measured in the real world data and a negative value means

an underestimation for those grid cells. An underestimation of 4 points in

one cell in Target 4 (Figure 5.16(b)) is the highest error. The total point

density for this target is underestimated by 66 points, however target 4 also

has the highest point density, with over five times as many points as Target
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2. Although the errors were lower in Target 2, due to the low point density

of Target 2, Target 4 is a higher quality calculation.

Targets 5 - 8 are the smaller, 0.5m x 0.5m target type and are illustrated

in Figures 5.17(a) - 5.17(d). The greatest error on the 0.5m x 0.5 targets

is -3 points on Target 8. This target exhibits the highest errors but it has

approximately six times as many points per grid cell as Target 6 which is

the most accurate prediction. The point density for Target 6 is correctly

predicted for eight (50%) of the grid cells. The remaining grid cells are

low overestimates or underestimates of 1 point. Overall, the errors are low,

particularly when compared with the number of points per profile. The

average error for all of the targets is 0.88 points per profile. An error of less

than one point per profile is acceptable.
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(a)

(b)

Figure 5.15: Predicted and Measured Point Density for an Angled Target of
Dimensions 1m x 0.5m. (a) Target Number 1 and (b) Target Number 2
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(a)

(b)

Figure 5.16: Predicted and Measured Point Density for an Angled Target of
Dimensions 1m x 0.5m. (a) Target Number 3 and (b) Target Number 4
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(a) (b)

(c) (d)

Figure 5.17: Predicted and Measured Point Density for an Angled Target
of Dimensions 0.5m x 0.5m. (a) Target Number 5 (b) Target Number 6 (c)
Target Number 7 (d) Target Number 8
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5.4.3 Cylinders

In MIMIC, 3D cylinders are converted into a series of narrow vertical 2D

planes. This section assesses the process of representing a curved 3D object

with 2D planes. Figure 5.18(a) displays a cylinder extracted from a point

cloud when viewed from above and Figure 5.18(b) illustrates this cylinder

in profile view. This cylinder was surveyed using a single scanner MMS.

Therefore only 2 of the cylinder’s ’faces’ were surveyed. In these tests, each

of the four cylindrical targets have been manually assigned two faces of the

hexagonal approximation. These faces are denoted (i) and (ii) and corre-

spond to a manual interpretation of the ’faces’ of the cylinder. A 6x1 grid

structure is applied to each face of the target. The points in each grid cell are

manually counted. This point density value is then compared with the value

from MIMIC. The target parameters are listed in Table 5.7. Each cylinder

therefore consists of two planes, with different orientations. These orienta-

tions are listed in Table 5.8.

Table 5.7: Test and Target Parameters for Validating MIMIC’s Point Density
Calculations on a Cylindrical Target

Target Width Height Zdiff(m) Vel(m/s) PRR Mf

1(i + ii) 0.19m 0.74m 2.13 3.95 250KHz 150Hz
2(i + ii) 0.08m 1.59m 1.83 5.77 250KHz 150Hz
3(i + ii) 0.08m 1.10m 1.91 4.81 300KHz 100Hz
4(i + ii) 0.05m 1.10m 1.77 4.30 300KHz 100Hz

Figure 5.18 illustrates the process of applying the hexagonal planar shape

to identify each face of the target from above and in side view. Figure 5.19(a)

depicts a side view of the cylinder and displays the two sets of points from

189



(a) (b)

Figure 5.18: Converting a Cylindrical Target into a Hexagonal Planar Target
(a) Top Down View and (b) Side View

Faces (i) and (ii) after manual classification. The manual classification pro-

cess can potentially introduce errors. Figure 5.19(b) illustrates the process of

gridding a vertical target and measuring the points in that grid cell. Table 5.8

displays the point density for both manual measurements and MIMIC’s cal-

culations for each cylinder face. The complete results are available in Tables

19 and 20 in Appendix .2. The errors have increased for cylindrical targets.

The manual interpretation of the cylinder could potentially result in points

being incorrectly assigned to a face and the results in Table 5.8 reinforce

this hypothesis. For each target, an underestimation of point density on one

cylinder face is matched with an overestimation of point density on the other.

The point density for the combined cylinder is calculated and the results are

displayed in Table 5.9. For each cylinder as a whole, the point density errors

are less than 10%. The error source identified in Section 5.3.2 is not an issue

in these tests because the largest cylinder used in these tests has a diameter
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of 0.19m. The cylinder used in the example in Section 5.3.2 has a diameter

of 0.2m and the influence on range to that target was negligible.

(a) (b)

Figure 5.19: Calculating Point Density on Cylindrical Targets - (a) Manual
Identification and Classification of Cylinder Faces and (b) Applying a 6x1
Grid Structure to the Cylindrical Target

The predicted and measured values for each grid cell are displayed for

both faces of all 4 cylinders in Figure 5.20. Cylinder 1, Face(ii) displays

the highest errors. The percentage error for Cylinder 1, Face(ii) is 27.23%.

The error for this entire cylinder is 8.0% as displayed in Table 5.9, and this

reduction in error of 19% suggests an incorrect manual classification of the

cylinder face. The base of Cylinder 3, Face(i) was covered by vegetation, and

the magnitude of the error reflects this with MIMIC overestimating by 12

points in this grid cell alone. This cylinder is illustrated in Figure 5.19 and

it can be seen that the bottom left hand side of the cylinder is incomplete.

One of the research assumptions listed in Chapter 1 is that there are no

obstructions between the scanner and the target and therefore MIMIC does
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Table 5.8: Calculated and Measured Point Density for Each Face of a Cylin-
drical Target

Target (Face) Hr(m) αtarg MIMIC Measured %Error

1(i) 5.118 0.814o 301pts 322pts -6.52%
1(ii) 5.118 49.35o 313pts 246pts +27.23%
2(i) 6.692 29.12o 150pts 150pts 0%
2(ii) 6.692 77.228o 108pts 112pts -3.57%
3(i) 7.950 71.36o 87pts 80pts +8.75%
3(ii) 7.950 19.711o 101pts 104pts -2.8%
4(i) 7.438 66.8166o 111pts 101pts +9.90%
4(ii) 7.438 19.085o 121pts 137pts -11.67%

Table 5.9: Percentage Error for Both Faces on a Cylinder Combined
Target MIMIC Measured %Error

1 614 568 +8.0%
2 258 262 -1.5%
3 188 205 -8.2%
4 232 238 -2.5%
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not model this. Overall, the results are encouraging. Excluding Cylinder 1,

Face (ii), the percentage errors in Table 5.8 for each target are comparable

with the percentage error for the planar targets in Tables 5.4 and 5.6. Table

5.10 lists the error per profile for each target face. The highest error is 2.2

Ppp on Cylinder 1, Face(ii), however this has already been shown to contain

large errors in point density. The average error per profile is 0.51 points Ppp.

An error of less than one Ppp is acceptable. These tests validate MIMIC’s

method of approximating curved cylindrical targets with a combination of

planar targets.

Table 5.10: Calculated and Measured Point Density. Error per Profile for
each Cylinder Face

Target Face Profiles Error Error per profile

1 (i) 28 21pts 0.75pts
1 (ii) 30 67pts 2.2pts
2 (i) 32 0pts 0.00pts
2 (ii) 32 4pts 0.12pts
3 (i) 34 7pts 0.20pts
3 (ii) 34 3pts 0.08pts
4 (i) 38 10pts 0.26pts
4 (ii) 38 16pts 0.42pts

5.4.4 Calculating Point Density for Dual Scanner MMSs

This section validates the point density calculations for a Dual Scanner MMS.

The dual scanner Optech Lynx enables MIMIC’s calculations to be exper-

imentally validated. There are a number of potential error sources when

incorporating a second scanner in MIMIC’s calculations. As explained in

Section 1.7, MIMIC assumes zero course deviation between measurements
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Figure 5.20: Calculated and Measured Point Density for Both Faces of Cylin-
drical Targets, Numbers 1 - 4
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and therefore MIMIC does not calculate a separate target orientation in re-

lation to Scanner 2. Figure 5.21 illustrates this potential error source. In this

example, laser pulses from Scanner 1 first strike the target at 0:00 seconds.

Due to its orientation, Scanner 2 can not survey the target at this time.

Scanner 2 first encounters the object at 0:002 seconds, but by this time the

heading of the vehicle has changed. This heading change has altered the ori-

entation of the target in relation to Scanner 2, whereas MIMIC applies the

original target orientation specified by the user. Figure 5.21 demonstrates

an extreme case, however to minimise this potential error the test data is

manually selected from areas of minimum course deviation. Any deviation

in heading, orientation, scanner height or vehicle velocity between the two

times of measurement will result in errors. For example, in the angled surface

tests on Target 1 a difference of approximately 2 seconds exists between the

measurements recorded on the target by Scanner 1 and those recorded by

Scanner 2. The time is 139340.636 seconds for the first pulse striking the

target from Scanner 1 and 139342.604 for the first pulse striking the target

from Scanner 2. The point density calculation is influenced in a number of

ways:

� There is a course deviation of 2.9956o between the two measurements.

This introduces errors into the profile angle, profile spacing and point

spacing calculations for Scanner 2.

� The course deviation of 2.9956o results in a change in horizontal range

to the target of 0.4m. This introduces errors into the point spacing

calculations.

� There is also a 0.18m height change in this time that is not factored
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into the calculation. This introduces errors into the point spacing cal-

culations.

Figure 5.21: Potential Error Source : A Heading Change Between Measure-
ments from Scanner 1 and Scanner 2 Alters the Orientation of the Target in
Relation to the MMS

5.4.4.1 Dual Scanner MMSs on Angled Surfaces

The process of calculating point spacing, profile spacing and profile angle for

the second scanner is identical to the methods illustrated in Chapter 4. The

point density on each target is manually measured. The measured values

and MIMIC’s calculations are compared. The Optech Lynx data is used to

verify these calculations. Scanner 2 is offset 1.389m from Scanner 1 on the

Optech Lynx and this offset along with the horizontal and vertical rotations

of each scanner are input in MIMIC. Table 5.11 provides details on the four

targets. A comparison of the manually measured points and MIMIC’s calcu-

lated values are detailed in Table 5.12. The complete set of results including
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vehicle dynamics are provided in Table 21 in Appendix .2. In each case the

percentage error for Scanner 1 is within 6% of Scanner 2. In each case except

the last MIMIC underestimated the point density of the target. The largest

errors exist for Target 2, however both scanners are displaying large errors

which implies there is a problem with the cylinder in the point cloud. These

results validate MIMIC’s point density calculations for a second scanner on

an angled surface.

Table 5.11: Test and Target Parameters for Validating MIMIC’s Point Den-
sity Calculations for a Dual Scanner System on an Angled Target

Target Width (m) Height (m) αtarg Hr (m) Zdiff (m)

1 1.0 0.5 16.532o 8.736 0.859
2 0.5 0.5 16.532o 8.736 0.859
3 1.0 0.5 -25.14o 5.756 2.018
4 0.5 0.5 -25.14o 5.756 2.018

Table 5.12: Calculated and Measured Point Density for an Angled Target for
both Scanners on the Dual Scanner Optech Lynx

Target Scanner MIMIC Measured %Error

1 1 385pts 415pts 7.22%
1 2 190pts 219pts 13.24%
2 1 193pts 226pts 14.60%
2 2 96pts 116pts 17.24%
3 1 388pts 417pts 6.95%
3 2 432pts 444pts 2.70%
4 1 193pts 194pts 0.51%
4 2 216pts 207pts 4.34%

The scanner offset increases the horizontal range to the target from Scan-
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ner 2. This results in a lower point density than for Scanner 1. For example,

the predicted point density on Target 1 is over 100% higher for Scanner 1

than for Scanner 2. Additionally, the orientation of Scanner 2 also influences

the point density on targets rotated towards the MMS. This is not a constant

effect, as the opposite is the case for Targets 3 and 4 where the negative rota-

tion of the target results in an increased point spacing and profile spacing for

Scanner 1 but a decreased point spacing and profile spacing for Scanner 2.

This results in an increase in point density for Scanner 2 relative to Scanner

1. Scanner 2 captures 6% more points than Scanner 1 for Target 4. Chapter 6

will investigate scanner orientation and location for a single scanner and dual

scanner MMS. Potential course changes can be implemented as future work

but for the current objectives of MIMIC the results have shown that MIMIC

can perform satisfactorily without them. There is no significant difference in

the percentage error when comparing the point density measurements from

Scanner 1 with those from Scanner 2. This implies that MIMIC can robustly

calculate point density when in situations where small course deviations are

present

5.4.4.2 Dual Scanner MMSs on Cylindrical Targets

After successfully demonstrating MIMIC’s ability to calculate point density

for scanners at different locations and orientation for angled surfaces, these

tests are repeated for cylindrical targets. Figure 5.22(a) illustrates the point

distribution for Scanner 1 on a cylindrical target while Figure 5.22(b) illus-

trates the point distribution for Scanner 2. It is possible to see from this

image that each scanner has captured a different face of the cylinder and

that there is a degree of overlap in the centre of the cylinder (Face (ii)). Two
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cylindrical targets are chosen and each cylinder consists of three faces. Each

cylinder face is listed in Table 5.13 and are denoted (i), (ii) and (iii) for both

cylindrical targets. Faces (i) and (ii) are captured by Scanner 1 while Faces

(ii) and (iii) are captured by Scanner 2. Face (ii) is the area of overlap and is

captured by both scanners. The rotations of each face and the dimensions,

height difference and horizontal range to the target are also displayed in this

table for both scanners. Table 5.14 displays a comparison between the mea-

sured point density and the value calculated by MIMIC. The complete set of

results including vehicle dynamics are provided in Table 22 in Appendix .2.

The greatest errors occurred for Scanner 1 on Face (ii) for both cylinders.

This is potentially due to the difficulty in manually classifying the faces of

that cylinder in the point cloud. Larger errors in the cylinder tests do not

necessarily imply an error in the calculations but rather a problem with the

manual classification of cylinder faces. By analysing the cylinder as a whole

this can be verified. Table 5.15 lists the total point density for both targets

from both scanners. The errors are lower than 5% for both cylinders and

implies that overall MIMIC can calculate point density for a cylinder and

that the manual verification process is the cause of the errors in the previ-

ous tests. The low errors further validate MIMIC’s ability to calculate point

density without incorporating course deviation.

5.4.5 Contribution of Errors

A series of tests are designed to demonstrate the effect that errors in the cal-

culation of the output values: profile angle, profile spacing and point spacing
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(a) (b)

Figure 5.22: Returns from Two Scanners on a Cylindrical Target - (a) Scan-
ner 1 and (b) Scanner 2

Table 5.13: Test and Target Parameters MIMIC’s Point Density Calculations
on Each Face of a Cylindrical Target for the Dual Scanner Optech Lynx

Target Face Width (m) Height (m) αtarg Hr Zdiff

1 (i) 0.035 1.3 47.76o 3.42m 1.76m
1 (ii) 0.035 1.3 -8o 3.42 1.76m
1 (iii) 0.035 1.3 -83.26o 3.42m 1.76m
2 (i) 0.035 1.3 61.73o 4.85m 1.85m
2 (ii) 0.035 1.3 -22.32o 4.85m 1.85m
2 (iii) 0.035 1.3 -81.65o 4.85m 1.85m
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Table 5.14: Calculated and Measured Point Density for Each Face of a Cylin-
drical Target for the Dual Scanner Optech Lynx

Target Face Scanner MIMIC Measured %Error

1 (i) 1 113pts 103pts 9.70%
1 (ii) 1 98pts 111pts 11.71%
1 (ii) 2 60pts 60pts 0.00%
1 (iii) 2 57pts 64pts 10.94%
2 (i) 1 46pts 42pts 9.52%
2 (ii) 1 63pts 56pts 12.50%
2 (ii) 2 48pts 49pts 2.04%
2 (iii) 2 41pts 43pts 4.65%

Table 5.15: Percentage Error for Three Faces on a Cylinder Combined from
the Dual Scanner Optech Lynx

Target MIMIC Measured %Error

1 328 338 -2.9%
2 198 190 +4.0%

have on the point density calculation. The greatest error in the output values

detailed in Section 4.4 was approximately 5% of the true value. Each output

value is therefore modified by +/- 5% and the point density now calculated

for a target. The effect of the +/- 5% error on the final point density calcu-

lation is then identified. A parallel, vertical target (1m x 0.5m) is specified,

at a range of 6m from the scanner. The scanner defined in MIMIC is the

XP1’s VQ250, orientated at 45o/45o and operating at a 300KHz PRR and a

100Hz mirror frequency. The vehicle velocity is simulated at 50km/h.

Table 5.16 details the outputs of these tests. Errors in the profile angle

calculation have the biggest impact on the point density calculation. A -5%

error in the profile angle calculation results in a 12.23% error in the point
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density calculation whereas a +5% results in a 8.9% error. The reason for

this discrepancy will be discussed in greater detail in the next chapter when

investigating the influence of vertical scanner rotation on profile angle and

point density. Interestingly, a +/-5% error in the profile spacing calculation

has very little effect on the point density calculation, less than 1%. Compar-

ing these values with the previous results for point density angled vertical

surfaces, cylinders and irregular surfaces it is possible to see how a small er-

ror in calculating profile angle, profile spacing or point spacing could explain

the errors that are present.

Table 5.16: Influence of Errors in Calculating Profile Information and Point
Spacing on the Point Density Calculation, +/-5% Variation

Input %Variation Amended MIMIC %Error

Profile Angle +5% 691pts 759pts 8.95%
Profile Angle -5% 852pts 759pts 12.23%

Profile Spacing +5% 756pts 759pts 0.39%
Profile Spacing -5% 763pts 759pts 0.52%
Point Spacing +5% 723pts 759pts 4.74%
Point Spacing -5% 799pts 759pts 5.27%

5.5 Conclusions

This chapter presented the methods for calculating point density using the

outputs of profile angle, profile spacing and point spacing. A gridding ap-

proach was developed to accurately calculate point density on large or angled

targets. A grid structure was applied to targets to increase the number of

point spacing measurements per target. A 4x4 grid structure was chosen as

the most suitable for these tests because it was capable of accurately calcu-
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lating point density but minimised the manual component of the validation

tests. These methods were validated using a combination of targets. Point

density was calculated for vertical, angled and cylindrical targets. A hexago-

nal planar approximation of a cylinder was applied to facilitate point density

calculations on a curved surface. Variations in the target dimensions, orienta-

tion, elevation and range robustly tested MIMIC’s point density calculations

for different scanner parameters. MIMIC’s point density calculations were

also validated for dual scanner MMSs.

The first target types investigated were angled and parallel vertical sur-

faces. Point density was calculated for large and small targets. The XP1 and

Optech Lynx provided point clouds that were used for validation. An aver-

age error of less than one point per profile validated MIMIC’s point density

calculations for parallel and angled targets.

The second target type was a multi-faced cylindrical target. MIMIC ap-

proximates cylindrical targets with a hexagonal shape. The highest point

density errors were returned when calculating point density for this target

type. It was explained that this was potentially due the manual interpreta-

tion of each face on the cylinder or obstructions between the scanner and the

target. An average error of less than one point per profile validated MIMIC’s

point density calculations for cylindrical targets.

Once the point density calculation for a single scanner system was vali-

dated, the ability of MIMIC to calculate point density resulting from a change

in the scanner position and orientation was tested. MIMIC’s point density
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calculations were then validated using dual scanner systems on angled and

cylindrical targets. Scanner 2 results in approximately 50% lower point den-

sity than Scanner 1 on a parallel vertical target. This value is dependant on

target orientation, the offset to the target and the orientation of the target.

MIMIC calculated point density on a cylindrical target, and although errors

were represent when individual faces were examined, the total point density

of the cylinder results in errors ≤ 4%, validating MIMICs methodology of

calculating point density for dual scanner system on cylindrical targets. For

both angled and cylindrical targets, similar point density percentage errors

for Scanner 1 and Scanner 2 imply that MIMIC can calculate point density

accurately without incorporating course deviation, justifying the research as-

sumption in Chapter 1.

In the next chapter, MIMIC is applied in a series of tests assessing scanner

configuration. After testing the effect of scanner orientation and position on

point density, scanner hardware parameters will also be investigated.
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Chapter 6

Assessing MMS Parameters

The second objective of this thesis is to identify the recommended MMS

configuration and scanner hardware settings for surveying specific targets.

The number, orientation and location of the laser scanners on a MMS impact

point density. Hardware settings like the PRR, mirror frequency and FOV

also influence point density. In this chapter MIMIC is applied in a series of

tests to assess the influence of these MMS parameters on point density.

6.1 Introduction

This chapter investigates the impact of scanner configuration and scanner

settings on point density. Section 6.2 assesses the effect of horizontal and

vertical rotations of the scanner on point density. The importance of a verti-

cal scanner rotation when surveying narrow targets is assessed. These tests

are then repeated for dual scanner MMSs in Section 6.2.3. Section 6.3 identi-

fies the impact of scanner position on point density. Scanner settings like the

PRR, the mirror speed and the FOV are not included in the configuration

tests as the configuration tests are designed to be hardware independant.
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These scanner settings are investigated in Section 6.4 when assessing their

importance for surveying small targets. Section 6.5 summarises the findings

in this chapter.

6.2 Scanner Orientation

Horizontal rotations of the scanner increase the range to the target. Ver-

tical rotations of the scanner increase the profile angle. Dual axis scanner

rotations do both. This section quantifies the effect that horizontal, vertical

and dual axis scanner rotations have on point density. Horizontal scanner

rotations are explored in Section 6.2.1. In Section 6.2.2, the effect of verti-

cal rotations on profile spacing are explored. A vertical scanner rotation is

important when surveying narrow vertical targets and has been a recurring

theme in this thesis. A combination of horizontal and vertical scanner rota-

tions are explored in Section 6.2.3. The dimensions and orientation of the

target influences point density, however as the tests in this section are de-

signed to assess MMS parameters only the target orientation and dimensions

remain constant for each test.

6.2.1 Horizontal Scanner Rotations

A horizontal rotation of the scanner ensures laser returns from surfaces per-

pendicular to the direction of travel. One result of this is that a horizontal

rotation of the scanner increases the range to the target, as Figure 6.1 illus-

trates for subsequent 15o increments. This section quantifies the impact of

different horizontal rotations of the scanner on point density and also inves-

tigates this effect at different vehicle velocities.
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Figure 6.1: Variations in Range to Target Arising from a Horizontal Scanner
Rotation

The scanner hardware defined in MIMIC operates at a 300kHz PRR and

a 100Hz mirror frequency. The initial tests employ a constant vehicle veloc-

ity of 50km/h. The simulated target is 2m wide and 1m high and defined at

a constant 5m range. Table 6.1 details the test and target parameters. The

horizontal scanner rotation is increased in 15o increments. The point density

is calculated for the entire target after each scanner rotation change and the

results of these tests are displayed in Table 6.2. Tests 1-4 demonstrate the

effect that an increased measurement range arising from a horizontal rota-

tion of the scanner has on the point density on a parallel vertical target. The

higher the horizontal rotation of the scanner, the higher the point spacing

and therefore the lower the point density. For example, the 60o horizontal

scanner rotation in Test 4 results in only 60% of the point density when

compared with the 0o horizontal scanner rotation in Test 1.
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Table 6.1: Target and Test Parameters for Assessing the Impact of a Hori-
zontal Scanner Rotation on Point Density

Target Width Target Height PRR Mf Velocity Hr(m)

2m 1m 300kHz 100Hz 50km/h 5m

Table 6.2: Assessing the Impact of Horizontal Scanner Rotations on Point
Density for a Parallel 2m x 1m target at a Horizontal Range of 5m

Test αscan γscan αtarg βtarg MIMIC

1 15o 0o 0o 0o 1103pts
2 30o 0o 0o 0o 1029pts
3 45o 0o 0o 0o 890pts
4 60o 0o 0o 0o 670pts

Investigating the effect of vehicle velocity and horizontal scanner rotation

on point density requires the vehicle velocity to be varied. Five vehicle veloc-

ities are input ranging from 10km/h to 50km/h. The target parameters do

not vary from the previous test. Point density is calculated for the four hori-

zontal scanner rotations listed in Table 6.2 at five different vehicle velocities.

Figure 6.2 illustrates the results of these tests, while Table 23 in Appendix

.3 details the results. This figure illustrates the relationship between velocity

and point density for a parallel target. The relationship between the velocity

and the point density is not linear. As the vehicle velocity doubles, the point

density halves. The 25% difference in point density between a 45o horizontal

scanner rotation and a 60o horizontal scanner rotation at 10km/h is greater

than the 20% difference between a 15o horizontal scanner rotation and a 45o

horizontal scanner rotation. This implies that moving from a 45o-60o rota-

tion results in a larger decrease in point density than moving from a 15o-45o
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Figure 6.2: Calculating the Effect of Vehicle Velocity and a Horizontal Scan-
ner Rotation on the Point Density on a Parallel Vertical Target. Target
Range is 5m and Target Dimensions are 2m x 1m

rotation, despite this being twice the angular change. This effect is due to

the orientation of the surface, which in these tests is parallel. The higher

scanner rotations have increased the range to the target, as Figure 6.1 illus-

trated, and therefore increased point spacing . For rotated targets the lower

scanner rotations are effected similarly, as Figure 6.3 illustrates. The aim of

this section is to assess the effect of the system parameters on point density,

not the target parameters. Therefore the target rotation is not altered.
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Figure 6.3: Point Density and Horizontal Scanner Rotations are Influenced
by Horizontal Target Rotations

6.2.2 Vertical Scanner Rotation

Point density is also influenced by vertical scanner rotations. A vertical

scanner rotation alters the profile angle on vertical surfaces and is important

for increasing the number of profiles striking a narrow target. Automated

algorithms described in Section 1.4.6 required a minimum profile spacing to

recognise cylindrical objects. MMSs rely on vertical rotations of the scanner

to achieve this. This section quantifies the effect of vertical scanner rotations

on point density and on profile spacing.

6.2.2.1 Parallel Vertical Targets

Four vertical scanner rotations are implemented to assess their effect on point

density. A parallel vertical target with dimensions of 2m x 1m and at 5m

range from the scanner is defined. The scanner is rotated vertically in 15o in-

crements and the point density is measured on the target after each rotation.
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The results of calculating point density for different vertical scanner rotations

on this target are detailed in Table 6.3. Each of the vertical rotations result

in an equal or higher point density for the target than the corresponding

horizontal scanner rotation in the previous tests on the same target.

Table 6.3: Assessing the Impact of Vertical Scanner Rotations on Point Den-
sity for a Parallel 2m x 1m target at a Horizontal Range of 5m at 50km/h

Test αscan γscan αtarg βtarg MIMIC

1 0o 15o 0o 0o 1103pts
2 0o 30o 0o 0o 1168pts
3 0o 45o 0o 0o 1264pts
4 0o 60o 0o 0o 1328pts

The next test examines the impact of vertical scanner rotations and ve-

hicle velocity on point density. Vehicle velocities from 10km/h to 50km/h

are specified. The standard parallel vertical target with dimensions of 2m x

1m at 5m range from the scanner is defined. Employing this target in each

experiment ensures consistency between the tests and facilitates comparison

of the results. Point density is calculated for the four vertical scanner rota-

tions listed in Table 6.3. Figure 6.4 illustrates the effect of vehicle velocity

and vertical scanner rotations on point density, while Table 23 in Appendix

.3 details the results. These tests demonstrate that increasing the vertical

rotation of the scanner increases the point density, although the difference

becomes less pronounced at higher velocities. For example, there is approxi-

mately 250 points in the difference between the 15o and 60o vertical rotations

at 50km/h but a difference of over 1000 points at 10km/h.

211



Figure 6.4: Calculating the Effect of Vehicle Velocity and a Vertical Scanner
Rotation on the Point Density on a Parallel Vertical Target. Target Range
is 5m and Target Dimensions are 2m x 1m
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6.2.2.2 Narrow Objects

Narrow vertical targets are a common type of roadside infrastructure. MIMIC

uses this target type to represent each face in the hexagonal approximation

of a cylinder. It is important to minimise vertical profile spacing on these

narrow, vertical features because profile spacing is a potential limiting factor

to certain automated algorithms. The target parameters are altered for these

tests and a target 0.1m x 2m is defined. A scanner operating at a 300kHz

PRR and a 100Hz mirror frequency is simulated in MIMIC. The tests are

designed with a constant vehicle velocity of 50km/h. Table 6.4 details the

target and test parameters. The point density on the target is measured af-

ter each 15o increase in the vertical scanner rotation. Table 6.5 displays the

results for the point density tests. These tests demonstrate how the point

density on a narrow vertical object increases as the vertical profile spacing

decreases. The point density has increased by a factor of 33% between Test

1 and Test 4 after an additional 45o vertical scanner rotation.

Table 6.4: Target and Test Parameters for Assessing the Impact of a Hori-
zontal Scanner Rotation on Point Density

Target Width Target Height PRR Mf Velocity Hr(m)

0.1m 2m 300kHz 100Hz 50km/h 5m

The number of profiles that strike a target are relevant for automated

algorithms. The lowest vertical scanner rotation (15o) results in just over

12% the number of scan profiles that the 60o rotation does. Despite this

under-performance, it is important to note that a high number of scan profiles

does not guarantee a high number of points striking the target. For example,

Test 1 results in only 8.33% the number of profiles that Test 4 does, yet
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Table 6.5: Assessing the Impact of Vertical Scanner Rotations on Point Den-
sity and Profile Spacing for a Narrow Vertical Target 0.1m x 2m at a Hori-
zontal Range of 5m

Test αscan γscan αtarg βtarg Profiles MIMIC Ppp

1 0o 15o 0o 0o 3 122pts 40.66
2 0o 30o 0o 0o 8 129pts 16.12
3 0o 45o 0o 0o 14 144pts 10.28
4 0o 60o 0o 0o 25 163pts 6.52

Test 1 is 74% of the point density of Test 4. Assuming an equal distribution

of points per profile line, there is approximately 41 points per profile (Ppp)

in Test 1. There is approximately 7 Ppp in Test 4. This demonstrates the

trade-off between the number of scan profiles intersecting with a target and

the number of Ppp. Short scan profiles crossing the target can lead to a point

cloud that inadequately represents the target. This is particularly important

if the target is at a range that results in a large point spacing. The significance

of this will be demonstrated in Section 7.4.2.

6.2.3 Dual Axis Scanner Rotations

Dual axis scanner rotations are an important development for the current

generation of MMSs. This scanner orientation provides the benefits of both

a horizontal and a vertical scanner rotation. Features perpendicular to the

direction of travel can be surveyed. Additionally, profile spacing is decreased

on narrow targets. The tests in this section apply a series of horizontal

and vertical rotations to a target. The point density is calculated at different

vehicle velocities to assess the impact of vehicle velocity and dual axis scanner

rotations on point density. These tests identify the recommended dual axis

scanner orientation for different targets.
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6.2.3.1 Parallel Vertical Targets

The first target type is a parallel target 2m wide x 1m high. The vehicle

velocity is constant at 50km/h for these initial tests. A scanner operating at

a 300kHz PRR and a 100Hz mirror frequency is defined. The test and target

parameters are detailed in Table 6.6. The scanner rotation is simultaneously

increased by 15o for both horizontal and vertical scanner rotations after each

test. Four dual axis scanner configurations are defined and the point density

is calculated for the target. Table 6.7 details the results of these tests for the

different scanner orientations. For every increase in horizontal and vertical

rotation there is a corresponding increase in point density. The 60o/60o hori-

zontal/vertical dual axis scanner rotation is capable of a higher point density

than the other three scanner configurations. This would seem to conflict with

the results in Section 6.2.1 where a 60o horizontal scanner rotation results

in a higher measurement range and therefore a larger point spacing and a

reduced point density.

Table 6.6: Target and Test Parameters for Assessing the Impact of a Dual
Axis Scanner Rotation on Point Density

Target Width Target Height PRR Mf Velocity Hr(m)

2m 1m 300kHz 100Hz 50km/h 5m

To investigate this further, a test where the horizontal scanner rotation

remains fixed but the vertical scanner rotation is varied is designed. In this

test, the horizontal scanner rotation is set at 60o but the vertical scanner

rotation is increased by 15o after each test. Table 6.8 details the results

of these tests. As the vertical scanner rotation is increased the point den-

sity increases. This is because the vertical scanner rotation decreases profile
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Table 6.7: Assessing the Impact of Dual Axis Scanner Rotations on Point
Density for a Parallel 2m x 1m target at a Horizontal Range of 5m

Test αscan γscan αtarg βtarg MIMIC

1 15o 15o 0o 0o 1142pts
2 30o 30o 0o 0o 1380pts
3 45o 45o 0o 0o 2039pts
4 60o 60o 0o 0o 4196pts

spacing and therefore increases point density. These tests demonstrate that

a high vertical scanner rotation is best for increasing point density on this

target type.

Table 6.8: Assessing the Importance of Vertical Scanner Rotations in a Dual
Axis Scanner Orientation for a Parallel 2m x 1m target at a Horizontal Range
of 5m

Test αscan γscan αtarg βtarg MIMIC

1 60o 15o 0o 0o 842pts
2 60o 30o 0o 0o 1245pts
3 60o 45o 0o 0o 2214pts
4 60o 60o 0o 0o 4196pts

The next test examines the impact of dual axis scanner rotations and ve-

hicle velocity on point density for a parallel vertical target. Vehicle velocities

from 10km/h to 50km/h are specified in MIMIC. The point density is then

measured for the target at each vehicle velocity and dual-axis scanner rota-

tion. These measurements are illustrated in Figure 6.5, while the complete

series of tests are available in Table 24 in Appendix .3. The results illustrate

the importance of a vertical scanner rotation for increasing point density

from parallel vertical targets. For example, at 10km/h the 60o/60o scanner

orientation results in 10,793 returns more than the 45o/45o orientation. This
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represents a 205% increase. At 40km/h, the 60o/60o scanner orientation is

comparable with the 15o/15o at the lowest velocity of 10km/h. The 60o/60o

orientation returns 5245 points while the 15o/15o orientation returns 5713.

These results reinforces the importance of vertical scanner rotations for this

target type.

Figure 6.5: Calculating the Effect of Vehicle Velocity and a Dual Axis Scanner
Rotation on the Point Density of a Parallel Vertical Target. Target Range is
5m and Target Dimensions are 2m x 1m

Despite the high point density arising from this configuration, a 60o/60o

orientation is not suitable for all targets. For instance, a target rotated -30o

or higher relative to the parallel target would not intersect with the 60o/60o

scan plane. This scenario would result in no laser returns from the target
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and is an unacceptable risk for a single scanner MMS operating commercially

as it could result in having to re-survey an area. One reason for avoiding a

large horizontal rotation of the scanner is the increased measurement range

to targets on the far side of the MMS. This influences point density on the

road surface and on distant objects, as illustrated in Figure 6.6(a). Although

the tests in this chapter focus on near side infrastructure, most MMS surveys

drive the route multiple times in both directions. Capturing data from MMSs

that drive the route in both directions results in an overlap between each

survey, usually in the middle of the road. To avoid having to resurvey an area

it is important to have this overlap between scans at the limit of the scanner

range because the increased range leads to a reduced point density and the

overlap introduces redundant measurements. A large horizontal rotation of

the scanner would decrease point density in this area of overlap. Another

issue is that a large vertical rotation of the scanner increases the range from

the scanner to the ground and the range increase increases the point spacing

on the ground. If applied in conjunction with a horizontal rotation of the

scanner, the closest point on the ground to the scanner is offset from the

road centre (marked with an ’x’ in Figure 6.6(b)). On a planar surface the

point spacing will increase from this point outwards along the scan profile

and results in a lower point spacing on the road surface.

6.2.3.2 Narrow Targets

A vertical scanner rotation is important when surveying narrow objects, how-

ever the tests in Section 6.2.2.2 identified an issue with this. A compromise

between the number of scan profiles intersecting a target and the Ppp is re-

quired. A target of dimensions 0.1m x 2m is defined. A scanner operating
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(a) (b)

Figure 6.6: Effect of Large Scanner Rotations on Point Density (a) Large
Horizontal Scanner Rotation Results in an Increased range to Target on the
Far Side of the MMS (b)Horizontal and Vertical Scanner Rotation Results
in Decreased Point Spacing on the Road Center.

at a 300kHz PRR and a 100Hz mirror frequency is also defined. These tests

are designed with a constant vehicle velocity of 50km/h. Unlike the tests in

the previous sections, target parameters are varied in these tests. The range

to the target is increased in 5m increments. The target range is varied in

these tests to identify the effect of increased point spacing on the number

of points per profile, as this is particularly important for surveying narrow

targets. Table 6.9 lists the target and test parameters.

The horizontal scanner rotation is fixed at 60o whereas the vertical scan-

ner rotation is increased by 15o after each test. The target is simulated at

three different ranges, increased in 5m intervals. By examining Table 6.10

the effect of the increased point spacing on point density at longer ranges for

vertical rotations can be seen. For example, at 15m range, the 8 profile lines

resulting from the 15o vertical scanner rotation will approximately have only

three Ppp. This is not ideal, but three points may provide some idea of the

dimensions of the object, or depending on the accuracy of the scanner and
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navigation solution may show that it is a curved surface. For the 60o vertical

rotation this is not the case, as for the 50 profile lines this will result in just

over 1 Ppp. One point per profile is not sufficient to define an object.

Table 6.9: Target and Test Parameters for Assessing the Impact of a Dual
Axis Scanner Rotation on Point Density for a Narrow Target

Target Width Target Height PRR Mf Velocity

0.1m 2m 300kHz 100Hz 50km/h

Table 6.10: Assessing the Importance of Vertical Scanner Rotations in a Dual
Axis Scanner Orientation for a Narrow Vertical 0.1m x 2m target at Different
Horizontal Ranges

Test αscan/γscan Profiles MIMIC 5m MIMIC 10m MIMIC 15m

1 60o/15o 8 85pts 40pts 26pts
2 60o/30o 17 117pts 49pts 30pts
3 60o/45o 29 197pts 71pts 41pts
4 60o/60o 50 393pts 136pts 72pts

The next test examines the impact of dual axis scanner rotations and

vehicle velocity on point density for narrow targets. The vehicle velocity is

increased in 10km/h increments and the point density is measured on the

target defined in Table 6.9 for each velocity. The range to the target is con-

stant at 5m for these tests. Figure 6.7 illustrates the results of the point

density calculation and vehicle velocity on a narrow target for a selection

of dual axis scanner rotations. The complete set of results are detailed in

Table 25 in Appendix .3. The increased point density arising from a 60o/60o

scanner orientation is approximately double the point density of the 45o/45o

scanner orientation. As previously explained, this is due to the smaller ver-

tical profile spacing arising from a high vertical scanner rotation. To verify
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this, two different dual axis scanner rotations and their intersection with

a parallel vertical surface is calculated by MIMIC. The profile spacing and

profile angle are measured. The difference in profile angle between the two

is 19.10o, and this results in a difference in profile spacing of 0.058m which

could be significant for smaller targets. Table 6.11 details the influence of

smaller profile angles on vertical point spacing for two scanner configurations.

Figure 6.7: Calculating the Effect of Vehicle Velocity and a Dual Axis Scanner
Rotation on the Point Density of a Narrow Vertical Target. Target Range is
5m and Target Dimensions are 0.1m x 2m

It is important to note that at shorter ranges, the reduction in Ppp may

not be an issue. To demonstrate this, a test is designed to measure the Ppp

for a narrow target using four different dual axis scanner rotations. A target
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Table 6.11: Identifying the Relationship Between Profile Angle and Profile
Spacing for Different Dual Axis Rotations

No. αscan γscan αtarg βtarg θPrA dPrS

1 45o 45o 0o 0o 35.26o 0.098m
2 60o 60o 0o 0o 16.10o 0.040m

range of 5m and a vehicle velocity of 50km/h is applied. Table 6.12 lists the

number of Ppp for these tests. Six is the lowest number of Ppp occurring in

these tests. This occurs in Test 4, which is the 60o/60o dual axis rotation

and therefore has the highest number of profiles. Although the number of

Ppp from the 15o/15o dual axis rotation is five times this amount, six points

is sufficient for defining a narrow object only 0.1m wide. Conversely, the

15o/15o rotation provides the highest number of Ppp, but this must be offset

against the number of scan profiles that may be required by an automated

algorithm. Figure 6.8 illustrates the number of scan profiles on a target at

different velocities for each scanner rotation. At all velocities the number of

scan profiles for each dual-axis scanner rotation drops significantly, reinforc-

ing the link between velocity and profile spacing.

Table 6.12: Calculating Points per Profile on a Narrow Vertical Target 0.1m
x 2m for Different Dual Axis Scanner Rotations at 5m range and Velocity of
50km/h

No. αscan γscan αtarg βtarg Ppp

1 15o 15o 0o 0o 30
2 30o 30o 0o 0o 14
3 45o 45o 0o 0o 10
4 60o 60o 0o 0o 6

As has been demonstrated, when designing a system to maximise point
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Figure 6.8: Calculating the Effect of Vehicle Velocity and a Dual Axis Scanner
Rotation on the Number of Profiles Intersecting a Narrow Vertical Target.
Target Range is 5m and Target Dimensions are 0.1m x 2m
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density there is a trade off between the number of scan profiles intersecting

a narrow target and also the number of Ppp. A high point density may not

accurately define a target if the number of Ppp is too low, or if the profile

spacing is too high. A number of factors influence point density; system pa-

rameters, target parameters and vehicle parameters. Consideration must also

be given to target orientations that will return no points for specific scanner

orientations. Therefore when designing a fixed scanner system, deciding on

the scanner orientation is an extremely important decision. It is a decision

that could cause manufacturers to err on the side of caution to ensure the

MMS can be operated in the majority of scenarios. Alternatively, including

a second scanner will largely negate these risks. A second scanner will also

increase the number of returns from a target.

6.2.3.3 Recommended Orientation

Although the final choice of scanner orientation is largely target dependent,

this section identifies the effect of combining higher vertical scanner rotations

with lower horizontal scanner rotations. These tests investigate whether this

is a more practical configuration for a dynamic real-world environment. A

number of trends are apparent when investigating the results in Sections

6.2.3.1 and 6.2.3.2.

� As the dual scanner vertical and horizontal rotations are increased by

15o (e.g. 15o/15o up to 30o/30o) the point density approximately dou-

bles.

� As the dual scanner vertical and horizontal rotations are increased by

15o, the number of profiles approximately doubles.
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� As the velocity doubles, the point density approximately halves.

� As the range doubles, the resulting point density is approximately half.

When selecting the horizontal scanner rotation for the tests in this section,

two important factors must be considered. Firstly, higher horizontal rota-

tions (≥ 60o) of the scanner could potentially miss a surface that is angled

away from the MMS (≥ -30o). Additionally, a low horizontal rotation (15o)

results in too few points striking a surface perpendicular to the direction of

travel, which is the primary reason for introducing a horizontal rotation of

the scanner. For these reasons, horizontal scanner rotations of 30o and 45o

are selected while vertical scanner rotations of 30o, 45o and 60o are selected.

A 2m x 1m parallel vertical target is defined for these tests. The target range

is fixed at 5m and the vehicle velocity is set at 50km/h. A scanner operating

at a 300kHz PRR and a 100Hz mirror frequency is also defined in MIMIC.

The target and test parameters are listed in Table 6.13.

Table 6.13: Target and Test Parameters for Assessing the Impact of a Dual
Axis Scanner Rotation on Point Density for a Narrow Target

Target Width Target Height PRR Mf Velocity

2m 1m 300kHz 100Hz 50km/h

The point density for each scanner orientation is calculated. The point

density results are then assessed to identify whether these configurations

perform better than the 30o/30o and 45o/45o configurations employed in the

previous sections. For each scanner rotation combination, the increased verti-

cal rotation of the scanner leads to an increased point density. By combining

a 45o horizontal rotation with a 60o vertical rotation the point density is
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increased from 10,188 to 14,343 points on the target when compared to the

45o/45o orientation. This equates to a 40% increase in point density and

also diminishes the risk of missing a negatively rotated target that would

arise with a 60o horizontal scanner rotation. Additionally it also decreases

the distance to the target when compared with the 60o horizontal scanner

rotation and therefore decreases the point spacing on the target. Figure 6.9

illustrates the results of these tests, while Table 26 in Appendix .3 details

each test.

These results are target dependant and system specific. For standard

parallel targets, a αscan/γscan of 45o/60o is the recommended orientation for

near side infrastructure. This orientation is particularly relevant for max-

imising point density with single scanner MMSs. The 45o αscan increases the

number of profiles intersecting with objects perpendicular to the direction

of travel, yet does not constitute an excessive αscan that could potentially

result in zero returns on negatively rotated targets. The 60o γscan decreases

the vertical profile spacing and therefore increases point density. However,

for the multiple possible angled targets, the recommended orientation may

change. MIMIC allows for examination of multiple target orientations and

dimensions. MIMIC can therefore provide the recommended configuration

information for any valid user defined target.

6.3 Scanner Position

In this thesis, MIMIC has provided the capability to assess point density

on targets for different system configurations. One potential variable is the

horizontal position of the scanner on the MMS. This can be varied in the X
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Figure 6.9: Calculated Point Density: Identifying the Recommended Dual
Axis Scanner Rotation for Increasing Point Density on a Parallel Vertical
Target at Different Vehicle Velocities. Target Range is 5m and Target Di-
mensions are 2m x 1m
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or Y plane, as illustrated in Figure 6.10 with Scanners 1 - 4. Different MMSs

may have different vehicle coordinate systems (X and Y are interchangeable)

and so the axis labels may differ between MMSs. In these tests X refers to

the horizontal axis (the width of the vehicle) and Y refers to the vertical axis

(the length of the vehicle). The impact that changing the scanner location

in either axis has on point density is examined in the following sections. It

is important to note that changes in the location of the scanner assume no

obstructions caused by the vehicle body or the navigation sensors. Scanners

located near the extremities of the MMS should be able to avoid obstructions

from the vehicle by introducing a vertical rotation of the scanner, although

this could result in a situation similar to that displayed in Figure 6.6(b). In

the previous sections in this chapter, only positive scanner rotations were

explored. In this section, negative horizontal scanner rotations are also ex-

plored. Negative scanner rotations were not explored in the previous tests

because the change in position on the MMS that facilitates a negative rota-

tion of the scanner had not been investigated. The orientation of the target

is even more influential on the point density when comparing a positively

rotated scanner (Scanners 1,2 and 4) to a negatively rotated scanner (Scan-

ner 3). Therefore, different target rotations are incorporated in these tests

to identify the strengths and weaknesses of each scanner configuration.

6.3.1 Varying Scanner Position on X Axis

For Scanners 1 and 2, a change in the horizontal axis of the scanner, as illus-

trated in Figure 6.10, is analogous with an increase in the horizontal range

to the target. These tests quantify the effect that altering the position of

the scanner on the X axis of the MMS has on point density. The two scan-
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Figure 6.10: Horizontal Scanner Position - Scanners 1, 2, 3 and 4 Situated
on the X/Y Axes

ners used in these tests are orientated at a 45o horizontal and a 45o vertical

rotation matching the scanner orientation on the XP1. Table 6.14 details

the scanner parameters. An offset of 1m is defined for Scanner 2. A 2m x

1m target and a vehicle velocity of 50km/h is defined. The target and test

parameters are listed in Table 6.15.

Table 6.14: Scanner Parameters for Assessing the Impact of Horizontal Scan-
ner Position in the X Axis on Point Density for an Angled Target - Scanners
1 and 2

Scanner αscan γscan PRR Mf

1 45o 45o 300kHz 100Hz
2 45o 45o 300kHz 100Hz

Four different target orientations are applied in these tests. The first

target is parallel to the direction of travel, whereas the second is rotated
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Table 6.15: Test and Target Parameters for Assessing the Impact of Hori-
zontal Scanner Position in the X Axis on Point Density for an Angled Target
- Scanners 1 and 2

Target Width Target Height Offset Velocity Hr

2m 1m 1m 50km/h 5m

horizontally and the third vertically. The fourth target is a combination of

both rotations. The point density is then measured for both scanners on the

same target after each rotation. Table 6.16 details the results for each test in

both scanner positions. For each target, Scanner 1 consistently outperforms

Scanner 2. Scanner 1 returns 333 more points than Scanner 2 for a parallel

target. The results in Table 6.16 show that although the percentage drop

in point density varies depending on the orientation of the surface, a 1m

change in horizontal scanner position in the X axis results in approximately

an average 16% decrease in point density on each target.

Table 6.16: Calculating Point Density on Angled Targets Dimensions 2m x
1m for Two Different Scanner Positions at 5m Range and Velocity of 50km/h
- Scanners 1 and 2

Target Scanner αtarg βtarg MIMIC % Change

1 1 0o 0o 2039
17%

1 2 0o 0o 1706
2 1 15o 0o 2107

14%
2 2 15o 0o 1818
3 1 0o 15o 2185

18%
3 2 0o 15o 1797
4 1 15o 15o 2257

16%
4 2 15o 15o 1906

A potential configuration for a dual scanner MMS is for the second scan-

ner to be orientated at -45o horizontal and offset from Scanner 1 in the X
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axis. This configuration is illustrated in Figure 6.10 as Scanner 3 and is

similar to the scanner arrangement on the Optech Lynx. To assess the effect

of this configuration on point density the same tests are repeated. However,

to eliminate the effect of two different Hr on the point density, a 0m scanner

offset is applied to Scanner 3. Therefore Scanner 3 is placed at the same

location as Scanner 1, but retains its -45o horizontal rotation. Table 6.17

details the scanner parameters. The target is a 2m x 1m target at 5m range

from the scanner and the vehicle velocity is defined at 50km/h. Table 6.18

details these test and target parameters.

Table 6.17: Scanner Parameters for Assessing the Impact of Horizontal Scan-
ner Position on the X Axis on Point Density for an Angled Target - Scanners
1 and 3

Scanner αscan γscan PRR Mf

1 45o 45o 300kHz 100Hz
3 -45o 45o 300kHz 100Hz

Table 6.18: Test and Target Parameters for Assessing the Impact of Horizon-
tal Scanner Position on the X Axis on Point Density for an Angled Target -
Scanners 1 and 3

Target Width Target Height Offset Velocity Hr

2m 1m 0m 50km/h 5m

Four positive target rotations and one negative target rotation are ap-

plied. The point density is calculated for both scanners on each target after

every rotation. Table 6.19 details the results of these tests. Scanner 1 has

outperformed Scanner 3. For a parallel target, a negatively rotated scanner

such as Scanner 3 results in a 68% drop in point density when compared to a
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positively rotated scanner. The underlying reason for the lower point density

for Scanner 3 in these tests is the increased point spacing resulting from a

different angle of intersection, θscan, between the scan pulse and the surface.

It is important to note that although the values for Scanner 3 are lower than

for Scanner 1, obtaining an equivalent point density with both scanners is

not the primary reason for incorporating a second scanner. A second scanner

is installed and orientated in this manner to eliminate data shadows in the

survey by capturing information in areas that the first scanner has no line of

sight to, as the work by [Yoo et al., 2009] has demonstrated. Additionally,

negatively rotated scanners result in an improved point density for negatively

rotated targets. The test on Target 5 displays this. This target is orientated

at -300 horizontally, and the % drop in point density for Scanner 3 when

compared to Scanner 1 has now decreased to 26%.

Table 6.19: Calculating Point Density on Angled Targets Dimensions 2m
x 1m for Two Different Scanner Orientations at 5m Range and Velocity of
50km/h - Scanners 1 and 3

Target Scanner αtarg βtarg MIMIC % Change

1 1 0o 0o 2039
68%

1 3 0o 0o 643
2 1 15o 0o 2107

84%
2 3 15o 0o 332
3 1 0o 15o 2185

68%
3 3 0o 15o 696
4 1 15o 15o 2257

82%
4 3 15o 15o 402
5 1 -30o 0o 1504

26%
5 3 -30o 0o 1115
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6.3.2 Varying Scanner Position on Y Axis

This section explores the effect that changing the scanner position in the Y

axis has on point density. Changing the scanner’s position in the Y axis but

keeping the same rotation has no effect on the point density. This is because

the range to the target and the angle of intersection between the scan plane

and target would not vary between the two scanners. An identical orienta-

tion for both scanners would also negate the primary advantage arising from

installation of a second scanner, elimination of data shadows. To assess the

possibility of utilising the Y axis for a second scanner, Scanner 4 is defined,

as shown in Figure 6.10. Scanner 4 is rotated horizontally to 135o and verti-

cally to 45o. Table 6.20 details the scanner parameters in these tests. Table

6.21 details the test and target parameters.

Table 6.20: Scanner Parameters for Assessing the Impact of Horizontal Po-
sition in the Y Axis on Point Density for an Angled Target - Scanners 1 and
4

Scanner αscan γscan PRR Mf

1 45o 45o 300kHz 100Hz
3 135o 45o 300kHz 100Hz

Table 6.21: Test and Target Parameters for Assessing the Impact of Hori-
zontal Scanner Position in the Y Axis on Point Density for an Angled Target
- Scanners 1 and 4

Target Width Target Height Offset Velocity Hr

2m 1m 0m 50km/h 5m

One potential benefit of placing a scanner in this position is that it elim-

inates scanner offset. This decreases the measurement range to near side
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objects but requires a suitable vertical rotation of the scanner to ensure the

scanners FOV is not obstructed by the vehicle body or other MMS sensors.

It is important to note that this scanner configuration increases the range

to objects on the far side of the vehicle and is therefore more suitable when

surveying near side targets. The point density is calculated for both scan-

ners on the target after each target rotation. Table 6.22 details the results

of these tests. Scanner 4 displays a comparable point density with Scanner 1

for parallel targets. On Target 2, as the target orientation changes by 15%,

the point density is reduced for Scanner 4, resulting in a 13% drop in point

density. As in the previous tests, a negative horizontal target rotation has

the opposite effect. On Target 5, a negative target rotation results in a 13%

drop in point density for Scanner 1 and a corresponding rise for Scanner 4.

Each scanner orientation exhibits higher point density on targets that face

towards that scanner. Positive target rotations result in an increased point

density for positive scanner rotations. Negative target rotations result in an

increased point density for negative scanner rotations.

An additional benefit of Scanner 4 is that this scanner is able to survey

the face of an object that Scanner 1 is incapable of surveying due to the

objects orientation (a negative target rotation ≥ -45o). This is one of the

primary benefits of a dual scanner system. A drawback of the Scanner 1 and

4 configuration is that it results in a decrease in point density on targets on

the other side of the MMS. In a vehicle with a fixed configuration, this would

lead to difficulties in countries where vehicles drive on a different side of the

road.
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Table 6.22: Calculating Point Density on Angled Targets Dimensions 2m
x 1m for Two Different Scanner Orientations at 5m Range and Velocity of
50km/h - Scanners 1 and 4

Target Scanner αtarg βtarg Points % Change

1 1 0o 0o 2039
0%

1 4 0o 0o 2039
2 1 15o 0o 2107

13%
2 4 15o 0o 1832
3 1 0o 15o 2185

0%
3 4 0o 15o 2185
4 1 15o 15o 2257

25%
4 4 15o 15o 1986
5 1 -15o 0o 1832

-13%
5 4 -15o 0o 2107

6.4 Scanner Settings

The previous sections have investigated the effect that scanner position and

orientation have on point density. Although scanner settings are largely

hardware dependant, three scanner settings are investigated in this section

to identify their effect on point spacing and profile spacing. These are the

Mf , the PRR and the FOV. The Mf impacts on profile spacing, whereas the

PRR and FOV impact on point spacing. The point and profile spacing that

a MMS will display for different target and survey parameters is important

when surveying for small targets of specific dimensions.

6.4.1 Mirror Frequency and Profile Spacing

The scanner hardware settings and configuration of the XP1 were simulated

in the previous tests. This section simulates the hardware settings and con-

figuration of the Optech Lynx because it is capable of a higher Mf . A series
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of tests are designed to assess the effect of the Mf on vertical profile spac-

ing on a parallel vertical target for multiple vehicle velocities. The target

and test parameters are listed in Table 6.23. The Optech Lynx αscan/γscan

are 37.49o/29.6o. The maximum Mf for the Optech Scanner is 200HZ. The

point density is calculated for the target at four different 50Hz increments

of the Mf . The vehicle velocity is increased in 10km/h increments and the

results of these tests are displayed in Figure 6.11. These complete results are

detailed in Table 27 in Appendix .3.

The 50Hz mirror frequency exhibits significantly higher profile spacing at

all velocities than the other three mirror frequencies. For users of MIMIC, the

profile spacing information can be applied to ascertain whether the vertical

profile spacing is sufficient for the required target. The vertical profile spacing

displayed by the 200Hz Mf at 40km/h (0.074m) is comparable with the 50Hz

Mf at 10km/h (0.077). The performance of the 50Hz Mf in relation to the

200Hz Mf demonstrates the importance of Mf in reducing profile spacing.

For instance, at 50Km/h, profiles are 40cm apart and no data in between

these would be captured by a scanner operating at 50Hz. However, a high

Mf will result in less points per profile, and therefore a target-dependant

compromise must be reached.

Table 6.23: Target and Test Parameters for Examining the Correlation Be-
tween Mirror Frequency and Vertical Profile Spacing on a Parallel Vertical
Target at Different Vehicle Velocities

Target Width Target Height PRR Mf Velocity

2m 1m 200kHz 200Hz 50km/h
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Figure 6.11: Calculated Profile Spacing: Examining the Correlation Between
Mirror Frequency and Vertical Profile Spacing on a Parallel Vertical Target
at Different Vehicle Velocities. Target Range is 5m and Target Dimensions
are 2m x 1m
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6.4.2 PRR and Point Spacing

PRR is one of the primary factors influencing point spacing. A series of tests

are defined to measure the impact of range and PRR on the point spacing

on a target. The target is a parallel vertical target, of dimensions 2m x 1m.

The scanner that is defined for the point spacing tests is a Riegl VQ-250

operating at a 100Hz mirror speed. The Riegl VQ-250 is defined in MIMIC

for these tests because it has a higher PRR than the Optech V200. The PRR

is increased by 50kHz after each measurement and the horizontal distance is

increased by 5m increments for each PRR test. Table 6.24 lists the target

and test parameters for these tests. Table 28 in Appendix .3 details the tests.

Table 6.24: Target and Test Parameters for Examining the Influence of PRR
and Target Range on Point Spacing on a Parallel Vertical Target

Target Width Target Height PRR Mf Velocity

2m 1m 300kHz 100Hz 50km/h

Figure 6.12 displays the results of the tests carried out to identify the cor-

relation between PRR and Hr on a parallel vertical target. For the majority

of near side infrastructure a 25m Hr is excessive, but it has been included to

provide information on point spacing at long ranges. MIMIC can be used to

generate information similar to this to ascertain whether a specific configu-

ration is suitable for surveying a specific target. For example, with a 100kHz

PRR, objects that are at 10m range from the MMS cannot be smaller than

0.1m. If a specific number of returns are required to define the 0.1m object

at 10m range for an automated object recognition algorithm, then a higher

PRR is required.
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Figure 6.12: Calculated Point Spacing: Examining the Correlation Between
PRR and Horizontal Range for Point Spacing on a Parallel Vertical Target.
Target Dimensions are 2m x 1m
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6.4.3 Field of View

The FOV of a scanner is a user selectable setting. The FOV can be set to

limit a survey to a particular area around the MMS. By decreasing the FOV

it is possible to achieve a smaller ASW. A smaller ASW will decrease point

spacing in this area and therefore increase point density. A series of tests are

designed to identify the correlation between FOV, PRR and point spacing.

These tests are carried out on a parallel vertical target of dimensions 2m x

1m for a 2D scanner operating a full-circle 360o FOV. Table 6.25 lists the

target and test parameters. Table 29 in Appendix .3 details these tests in

their entirety.

Table 6.25: Target and Test Parameters for Examining the Influence of PRR
and Target Range on Point Spacing on a Parallel Vertical Target

Target Width Target Height PRR Mf Velocity

2m 1m 300kHz 100Hz 50km/h

The PRR is increased in 50Hz increments. The FOV is then decreased in

45o increments for each PRR. The point density is calculated for the target

after each decrease. The FOV is not decreased below 180o for two reasons.

� Limiting the FOV could result in incomplete scan coverage of an area.

In the example illustrated in Figure 6.13 the scanner is assigned a dual

axis rotation and the FOV is limited to 180o. With this configuration,

the road under the vehicle is not surveyed.

� A low FOV could also potentially decrease the ASW below the smallest

selectable ASW for that piece of hardware. For example, if a FOV of

180o were applied to the VQ-250 it would result in an ASW of 0.06o.
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Figure 6.13: The effect of Decreasing the Scanner FOV on the Coverage of
the Environment

The minimum possible ASW setting for this scanner is 0.018o and there-

fore a 180o FOV is valid as it does not result in an ASW of lower than

the minimum allowable by the hardware. This may become an issue at

lower FOVs and for this reason 180o is the cut-off for these tests.

A Mf of 100Hz is defined in these tests and a constant Hr of 5m is ap-

plied. Figure 6.14 illustrates the results for the FOV tests and the effect of

decreasing FOV for increased point spacing, while the full table is available

in Table 29 in Appendix .3. The impact of a higher FOV on point spacing is

linear. For specific targets the point density can be increased if the area of

interest in relation to the MMS is defined beforehand. If the Surveyor is cer-

tain that no extra features or redundancy from different scanner viewpoints is

required, this is an acceptable solution. Examples of potential targets could

be road-side crash barriers or kerb stones. By Minimising the FOV the area
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Figure 6.14: Calculated Point Spacing: Examining the Correlation Between
PRR and FOV for Point Spacing on a Parallel Vertical Target. Target Di-
mensions are 2m x 1m

of interest could be surveyed with a higher point density.
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6.5 Conclusion

In this chapter, the scanner configuration and hardware settings were varied

to measure their influence on point density, profile spacing and point spac-

ing. Three areas were investigated and a series of tests designed for each to

assess their impact on point density. The first area that was investigated was

the orientation of the scanner. These tests encompassed horizontal, vertical

and dual axis scanner rotations. The second area that was investigated was

the position of the scanner. These tests investigated the impact of position-

ing the scanner at different points on the X and Y axis of the MMS. The

final area investigated was the impact of scanner settings on point density.

Changes to the scanner’s pulse repetition rate, mirror frequency and field of

view were examined. A number of important findings were made in these

three areas.

The scanner orientation tests identified and verified four important points.

Firstly, in general horizontal rotations of the scanner increase point spacing

and therefore decrease point density. Secondly, in general vertical rotations

of the scanner decrease profile spacing and therefore increase point density.

Thirdly, a trade off between profile spacing and the number of points per

profile is required, particularly for narrow targets. Finally, the recommended

orientation for a scanner on a MMS was identified as a αscan/γscan of 45o/60o.

This recommended orientation has been optimised to maximise point density

on near side infrastructure while minimising the possibility of zero returns

from negatively rotated target with a single scanner MMS.

The scanner position tests identified and verified two important points.
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Firstly, a change in scanner position on the X axis is analogous with a change

in the horizontal range to the target. Secondly, utilising the Y axis of the

MMS for the second scanner results in an increased performance on near

side infrastructure and also provides the benefits of traditional dual scan-

ner systems. Dual scanner systems potentially eliminate data shadows and

increase point density on targets rotated away from the first scanner. The

recommended scanner position when surveying near side infrastructure was

identified as scanner positions 1 and 4. This scanner set-up increases point

density while minimising data shadows.

The tests on scanner hardware settings identified and verified three im-

portant points. Firstly, while increasing mirror frequency is important for

decreasing profile spacing, these tests reinforced the issue of a trade-off be-

tween points per profile and profile spacing. Secondly, a high PRR is im-

portant when surveying small or narrow targets. If the PRR can not be

increased, the range to target must be decreased or the FOV decreased. The

FOV can be tailored for specific surveys. Halving the FOV has the same

effect as halving the point spacing.

In the next chapter MIMIC is applied in a series of tests benchmarking

MMS point density. The performance of one commercial and two hypothet-

ical MMSs will be calculated for a combination of target parameters.
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Chapter 7

Benchmarking MMS Point

Density

This chapter details the methods and tests employed to benchmark the per-

formance of three different MMSs in terms of their point density. This is the

third and final objective of this thesis. One real-world and two theoretical

MMSs are included in this benchmarking process. Each of the MMSs are

dual scanner systems. In this chapter a series of tests are applied to compare

the two theoretical systems against a commercial system. Both theoretical

systems are a modified and improved version of the XP1 and the commercial

system is the Optech Lynx. The first theoretical system is designed using

the recommended scanner orientation and position identified in Chapter 6

for near side infrastructure. The second theoretical system is a dual scanner

version of the XP1.
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7.1 Introduction

The three MMSs have been selected for these tests because of specific scan-

ner hardware and configuration differences. These MMSs therefore provide a

range of systems suitable for benchmarking. Point density is measured on a

selection of targets under different test parameters. The point density tests

for large planar targets are detailed in Section 7.3 and for multi-faced targets

in Section 7.4. Section 7.5 summarises all of the findings in this chapter.

7.2 Test Systems

Three MMSs are assessed in these tests. The hardware and configuration of

the two theoretical versions of the XP1 are described in this section. These

MMSs are called the XP1+ and XP2. The scanner configuration of the

Optech Lynx is also detailed in this section. MIMIC enables benchmarking

of multiple scanner configurations in terms of their point density. Scanner

elevations are standardised for each system at the height of the scanner on the

XP1, which is 3.1m. This ensures the results are dependant on the hardware

configuration only and not influenced by the dimensions of the platform.

7.2.1 XP1 + Configuration

The XP1 is a single scanner system employing a single VQ-250, whereas the

XP1+ is a dual scanner system. Incorporating another high specification

scanner can be very costly and increases data throughput on the MMS. The

XP1+ incorporates a cheaper, limited FOV, low PRR, SICK LMS. Table 7.1

lists the relevant parameters of the two scanners on the XP1+. The PRR of
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the SICK is only 9% that of the Riegl. This shortcoming is partially offset by

the lower FOV of the SICK which decreases the ASW. The two scanners are

orientated and positioned in accordance with the recommended configuration

identified in the previous chapter. Figure 7.1 illustrates the scanner position

and configuration on the XP1+ while Table 7.2 details this configuration.

The SICK LMS is situated at the same position on the vehicles X axis as the

Riegl VQ-250 but is offset in the Y axis by 2m. This offset does not influence

point density in any way but is assigned merely to reinforce the difference

in the Y axis of the two scanners. A 60o vertical rotation is applied to both

scanners to maximise point density. Horizontal scanner rotations of 45o and

135o respectively are introduced to minimise the range change resulting from

a large horizontal rotation of the scanner and minimise the risk of zero returns

from angled surfaces.

Table 7.1: XP1 + Scanner Parameters
Scanner Mf PRR FOV ASW

Riegl VQ-250 100Hz 300kHz 360o 0.12o

SICK LMS 221 75Hz 27.075kHz 180o 0.99o

Table 7.2: XP1+ Scanner Configuration
Scanner αscan γscan XY Position (m)

Riegl VQ-250 45o 60o 0,0
SICK LMS 221 135o 60o 0,2

7.2.2 XP2 Configuration

The XP2 incorporates a second VQ-250 scanner and has retained the XP1s

45o/45o αscan/γscan scanner orientation. The second scanner is negatively

247



Figure 7.1: XP1+ Scanner Locations

rotated to -45o/45o. In Table 7.3 the parameters for both scanners are listed.

Figure 7.2 illustrates the scanner location and configuration on the XP2.

This scanner configuration is detailed in Table 7.4. The second scanner is

offset by 1.389m in the X axis, assigning it the same X,Y coordinates as the

second scanner on the Optech Lynx. A standard offset is assigned to enable

a comparison between the XP2 and the Optech Lynx.

Table 7.3: XP2 Scanner Parameters
Scanner Mf PRR FOV ASW

Riegl VQ-250 (1) 100Hz 300kHz 360o 0.12o

Riegl VQ-250 (2) 100Hz 300kHz 360o 0.12o
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Figure 7.2: XP2 Scanner Locations

Table 7.4: XP2 Scanner Configuration
Scanner αscan γscan XY Position (m)

Riegl VQ-250 (1) 45o 45o 0,0
Riegl VQ-250 (2) -45o 45o 1.389,0
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7.2.3 Optech Lynx Configuration

The Optech Lynx is an existing commercial MMS and data from this system

has been used in the validation tests in the preceding chapters. Two V200

scanners are defined in these benchmarking tests. The parameters of the two

V200 scanners are listed in Table 7.5. The Optech V200 is included in these

tests because it is similar in performance to the Riegl VQ-250 onboard the

XP1. Figure 7.3 illustrates the scanner location and configuration on the

Optech Lynx while Table 7.6 details each scanners position and orientation.

The V200 is capable of a higher mirror frequency than the VQ-250 (200Hz

as opposed to 100Hz) but a lower PRR (200kHz as opposed to 300kHz).

Therefore, the profile spacing from the Optech V200 is lower than the Riegl

VQ-250, but the point spacing is higher for the V200.

Table 7.5: Optech Lynx Scanner Parameters
Scanner Mf PRR FOV ASW

V200 (1) 200Hz 200kHz 360o 0.36o

V200 (2) 200Hz 200kHz 360o 0.36o

Table 7.6: Optech Lynx Scanner Configuration
Scanner αscan γscan XY Position (m)

V200 (1) 37.48o 29.6o 0,0
V200 (2) -37.53o 29.95o 1.389,0
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Figure 7.3: Optech Lynx Scanner Locations

7.3 Benchmarking MMS Point Density on 2D

Targets

The initial benchmarking tests are performed on parallel vertical targets of

two different sizes. Point density is calculated for both target types for all

three systems. The target range and vehicle velocity is varied in these tests

and this facilitates a robust comparison of the three systems.

7.3.1 2D Large Targets

A parallel vertical target 2m wide x 1m high is selected as the first target.

The target range is defined as 5m. This test involves calculating point den-

sity for five vehicle velocities ranging from 10km/h to 50km/h in 10km/h

increments. Point density is calculated for all three MMSs and the results

are detailed in Table 7.7. In Figure 7.4 the point density results are plotted
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as a function of velocity for all three MMSs. These tests identify that the

Riegl Scanners are capable of a higher point density than the Optech scan-

ners on a planar surface. This is primarily due the lower PRR of the Optech

scanner and because the Mf , PRR and FOV of the Optech scanners result

in an angular step width of 0.36o. This ASW is three times greater than that

of the Riegl, which is 0.12o.

Although the higher Mf results in twice the number of profiles on a target

for the Optech V200 than the Riegl VQ-250, the higher vertical rotation of

the Riegl scanners negates this advantage for a parallel target by decreasing

the vertical profile spacing. Figure 7.4 illustrates that the XP1+ is capable

of a higher point density than the XP2 and Optech Lynx which both operate

high grade second scanners. The higher point density demonstrates the posi-

tive effect of implementing the recommended scanner configuration identified

in this thesis.

The results for a large parallel vertical target demonstrate an additional

advantage of the recommended configuration. Table 7.7 shows that the single

VQ-250 in the 45o/60o orientation is capable of a higher point density than

the both Riegl VQ-250s in the 45o/45o orientation combined. For instance, at

10km/h, Scanner 1 on board the XP1+ is capable of capturing 4,155 points

more than the same scanner on the XP2. Applying the recommended config-

uration to the SICK LMS has also improved its performance. By eliminating

the scanner offset and introducing a 60o vertical scanner rotation its perfor-

mance is comparable with the more expensive, second Riegl VQ-250 on the

XP2 and outperforms the second V200 on the Optech Lynx. At 10km/h the
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Table 7.7: Calculating Point Density on Parallel Vertical Targets of Dimen-
sions 2m x 1m for Three Dual Scanner MMSs at 5m Range and Varying
Vehicle Velocities

MMS Velocity Scanner1 Scanner2 Combined

XP1+ 10km/h 14343pts 2581pts 16924pts
XP1+ 20km/h 7171pts 1290pts 8461pts
XP1+ 30km/h 4781pts 860pts 5641pts
XP1+ 40km/h 3585pts 646pts 4231pts
XP1+ 50km/h 2870pts 516pts 3386pts

XP2 10km/h 10188pts 2949pts 13137pts
XP2 20km/h 5094pts 1474pts 6568pts
XP2 30km/h 3395pts 982pts 4377pts
XP2 40km/h 2547pts 737pts 3284pts
XP2 50km/h 2039pts 590pts 2629pts

Lynx 10km/h 4635pts 2262pts 6897pts
Lynx 20km/h 2317pts 1131pts 3448pts
Lynx 30km/h 1544pts 754pts 2298pts
Lynx 40km/h 1158pts 565pts 1723pts
Lynx 50km/h 927pts 452pts 1379pts
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Figure 7.4: Calculated Point Density: Benchmarking Dual Scanner MMS
Performance on a Parallel Vertical Target at Different Vehicle Velocities.
Target Range is 5m and Target Dimensions are 2m x 1m
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SICK LMS captured only 368 points less than Scanner 2 on the XP2 but

319 more than Scanner 2 on the Optech Lynx. Figure 7.5 shows the number

of points for each of the second scanners at different velocities. The XP2 is

capable of the highest point density at all vehicle velocities. However, the

XP1+ with only one high grade scanner is capable of a higher point density

than the Optech Lynx.

Figure 7.5: Calculated Point Density: Benchmarking the Performance of the
Second Scanner on a MMS on a Parallel Vertical Target at Different Vehicle
Velocities. Target Range is 5m and Target Dimensions are 2m x 1m

In the second set of tests, the vehicle velocity is fixed at 50km/h while the

target range is varied from 5m to 25m in 5m increments. Table 7.8 displays

the results for these benchmarking tests and Figure 7.6 plots these results.
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The XP1+ has again returned a higher number of points than the other two

MMSs. The XP1+ is capable of a higher point density than the XP2 and

Optech Lynx even before Scanner 2 is included in the combined point density

figure. For example, at 25m range, Scanner 1 on the XP2 captures only 63%

of the points that Scanner 1 on the XP1+ is capable of, despite being the

same type of scanner, a Riegl VQ-250. This underlines the importance of a

vertical scanner rotation for increasing point density.

Table 7.8: Calculating Point Density on Parallel Vertical Targets of Dimen-
sions 2m x 1m for Three Dual Scanner MMSs at 50km/h and Varying Target
Ranges

MMS Hr Scanner 1 Scanner 2 Combined

XP1+ 5m 2870pts 516pts 3386pts
XP1+ 10m 1616pts 292pts 1908pts
XP1+ 15m 953pts 172pts 1125pts
XP1+ 20m 657pts 119pts 776pts
XP1+ 25m 497pts 90pts 587pts

XP2 5m 2039pts 590pts 2629pts
XP2 10m 937pts 430pts 1367pts
XP2 15m 573pts 332pts 905pts
XP2 20m 409pts 268pts 677pts
XP2 25m 317pts 225pts 542pts

Lynx 5m 927pts 452pts 1379pts
Lynx 10m 472pts 303pts 775pts
Lynx 15m 306pts 224pts 530pts
Lynx 20m 225pts 177pts 402pts
Lynx 25m 178pts 146pts 324pts

For large targets, the Riegl VQ-250 outperforms the Optech V200 scan-

ner at all target ranges. Although the SICK LMS outperforms the Optech at

close range (5m), the low ASW results in a decreased point spacing at long

ranges. The Optech V200 performs better at ranges over 5m. A number

of factors should be considered when interpreting these results. Firstly, the
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Figure 7.6: Calculated Point Density: Benchmarking Dual Scanner MMS
Performance on a Parallel Vertical Target at Different Target Ranges. Vehicle
Velocity is 50km/h and Target Dimensions are 2m x 1m
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primary reason for the predominance of the Riegl scanner in these tests is its

high PRR. Secondly, the SICK has outperformed the second Optech V200

scanner at short ranges, but it is also 1.389m closer to the target than the

second Optech V200 due to the configuration on the XP1+. This influences

the SICK’s performance for all targets.

7.3.2 Small Targets

The tests in the previous section identified that the recommended scanner

orientation positively influences the XP1+ in terms of maximising point den-

sity. However, the Optech Lynx has been designed to maximise point density

360 o around the vehicle, whereas the XP1+ has been designed to maximise

it on near side infrastructure only. For this reason, the XP2 is a fairer com-

parison with the Optech Lynx. The XP2 achieves a higher point density

with a single scanner on a large planar target than the Optech Lynx does

with dual scanners. The main advantage of the Optech V200 is the 200Hz

Mf which minimises profile spacing when compared to the 100Hz Mf on the

Riegl VQ-250. To assess the benefit of a scanner with a higher mirror speed,

the profile spacing and point spacing are tested at different vehicle veloci-

ties and target ranges for each MMS. These tests identify what size target

could potentially be missed by a specific profile spacing or by a specific point

spacing.

7.3.2.1 Profile Spacing

The horizontal and vertical profile spacing for each MMS are measured on a

parallel vertical target of dimensions 2m x 1m. The target range is defined at
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5m and the vehicle velocity is increased from 10km/h to 50km/h in 10km/h

increments. Profile spacing is not influenced by target range and therefore a

constant range to target of 5m is applied throughout these tests. The results

of the horizontal profile spacing tests on a parallel vertical target are detailed

in Table 7.9. Figure 7.7 plots the horizontal profile spacing exhibited by each

MMS on a parallel target at varied vehicle velocities. The XP1+ incorpo-

rates two different scanners and therefore the profile spacing is different for

each. For this reason, both scanners are plotted in this figure. Scanner 1

and Scanner 2 on the XP2 and Optech Lynx are identical. Profile spacing

does not differ for these scanners on a parallel target and therefore only one

scanner is plotted. These tests demonstrate the impact of the higher Mf on

profile spacing as the Optech Lynx is capable of a smaller profile spacing than

the other systems. At 10km/h the Riegl profile spacing of 0.027m is almost

double the profile spacing of the Optech which is 0.014m. The profile spacing

of the SICK LMS is not comparable with the Riegl or Optech scanners, for

example at 10km/h the profile spacing of 0.037m for the SICK LMS is al-

most three times that of the Optech. The Optech profile spacing of 0.694m at

50km/h is similar to the 0.074m profile spacing of the SICK LMS at 20km/h.

The results of the vertical profile spacing tests on a parallel vertical target

are detailed in Table 7.10 and Figure 7.8 illustrates these results. The im-

proved vertical rotation of the scanners on the XP1+ outperforms the other

systems in terms of vertical profile spacing, despite the low MF of the SICK

LMS. The vertical profile spacing of 0.011m for Scanner 1 on the XP1+ is

almost double that of the Optech Lynx(0.019m), a reversal of the results in

the horizontal profile spacing tests. The SICK LMS outperforms the Optech
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Table 7.9: Calculating Horizontal Profile Spacing on Parallel Vertical Targets
of Dimensions 2m x 1m for Three Dual Scanner MMSs at 5m Target Range
and Varying Vehicle Velocities

MMS Velocity Scanner 1 (m) Scanner 2 (m)

XP1+ 10km/h 0.027m 0.037m
XP1+ 20km/h 0.055m 0.074m
XP1+ 30km/h 0.083m 0.110m
XP1+ 40km/h 0.110m 0.148m
XP1+ 50km/h 0.138m 0.185m

XP2 10km/h 0.027m 0.027m
XP2 20km/h 0.055m 0.055m
XP2 30km/h 0.083m 0.083m
XP2 40km/h 0.111m 0.111m
XP2 50km/h 0.138m 0.138m

Lynx 10km/h 0.014m 0.014m
Lynx 20km/h 0.028m 0.028m
Lynx 30km/h 0.042m 0.042m
Lynx 40km/h 0.055m 0.055m
Lynx 50km/h 0.070m 0.070m
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Figure 7.7: Calculated Horizontal Profile Spacing: Benchmarking Dual Scan-
ner MMS Performance on a Parallel Vertical Target at Different Vehicle Ve-
locities. Target Range is 5m and Target Dimensions are 2m x 1m
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V200 scanner in terms of vertical profile spacing. The vertical profile spacing

exhibited by the SICK LMS is 22% shorter than the Optech V200. This

is due to the 60o vertical scanner rotation on the XP1+ compared to 29.95o

vertical scanner rotation on the Optech Lynx. The XP2 and Lynx performed

almost identically. In this case, the larger vertical and horizontal rotations

of the VQ-250s offset the higher mirror speed of the Lynx.

Table 7.10: Calculating Vertical Profile Spacing on Parallel Vertical Targets
of Dimensions 2m x 1m for Three Dual Scanner MMSs at 5m Target Range
and Varying Vehicle Velocities

MMS Velocity Scanner 1 Scanner 2

XP1+ 10km/h 0.011m 0.015m
XP1+ 20km/h 0.022m 0.030m
XP1+ 30km/h 0.034m 0.045m
XP1+ 40km/h 0.045m 0.060m
XP1+ 50km/h 0.056m 0.075m

XP2 10km/h 0.019m 0.019m
XP2 20km/h 0.039m 0.039m
XP2 30km/h 0.058m 0.058m
XP2 40km/h 0.078m 0.078m
XP2 50km/h 0.098m 0.098m

Lynx 10km/h 0.019m 0.019m
Lynx 20km/h 0.038m 0.038m
Lynx 30km/h 0.057m 0.057m
Lynx 40km/h 0.077m 0.077m
Lynx 50km/h 0.096m 0.096m

These tests highlight the effect of Mf on horizontal profile spacing. They

demonstrate that for vertical profile spacing, certain scanner orientations

can offset the disadvantage of a lower mirror speed by increasing profile

angle, reducing vertical profile spacing and thereby increasing point density.

A MMS benefiting from the recommended configuration identified in this
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Figure 7.8: Calculated Vertical Profile Spacing: Benchmarking Dual Scanner
MMS Performance on a Parallel Vertical Target at Different Vehicle Veloci-
ties. Target Range is 5m and Target Dimensions are 2m x 1m
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thesis is then able to capture data on targets that may otherwise have been

too small for that system at that vehicle velocity.

7.3.2.2 Point Spacing

The second important system output that must be considered for small tar-

gets is point spacing. If the point spacing is high, it is possible that there will

be zero returns from a small target regardless of the horizontal and vertical

profile spacing. To quantify this for the three MMSs under investigation in

this chapter, point spacing is calculated for each scanner on a parallel ver-

tical target at different target ranges. The target range is varied from 5m

to 25m in 5m increments. Point spacing is not influenced by vehicle velocity

and therefore a constant velocity of 50km/h is applied throughout these tests.

Table 7.11 lists the results of these tests for each MMS and Figure 7.9

plots the results of these tests for point spacing and target range. In each

test, the Riegl scanner has the lowest point spacing due to it’s high PRR.

At all target ranges, the point spacing of the Riegl is over twice as small

(43%) as the point spacing of the Optech scanner. The SICK LMS results

in a higher point spacing in these tests because of it’s low PRR. At a range

of 25m, the SICK LMS is exhibiting a point spacing that is over four times

(419%) the point spacing of Scanner 2 on the XP2. These results reinforce

the significance in selecting the correct scanner configuration for increasing

point density. Due to the XP1+’s application of the recommended scanner

configuration identified in the previous chapter, the SICK LMS produced

comparable point density with Optech and Riegl scanners in the earlier tests

on larger targets. However, these results demonstrate that the SICK LMS
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is not suitable for surveying narrow targets at long ranges. For instance, for

a target like a circular road sign of radius 0.5m at 10m horizontal range the

SICK’s point spacing of 0.25m would return an insufficient number of points

to distinguish that object in the point cloud. For this target, it could result

in two and possibly only one point hitting the target per scan profile. In this

scenario, the Optech scanner would perform better with approximately five

to six points on each scan profile whereas the Riegl scanners would perform

best with over ten points per scan profile.

Table 7.11: Calculating Point Spacing on Parallel Vertical Targets of Dimen-
sions 2m x 1m for Three Dual Scanner MMSs at 50km/h and Varying Target
Ranges

MMS Range Scanner 1 Scanner 2

XP1+ 5m 0.019m 0.080m
XP1+ 10m 0.039m 0.161m
XP1+ 15m 0.050m 0.242m
XP1+ 20m 0.078m 0.323m
XP1+ 25m 0.097m 0.403m

XP2 5m 0.018m 0.023m
XP2 10m 0.036m 0.041m
XP2 15m 0.054m 0.060m
XP2 20m 0.072m 0.078m
XP2 25m 0.091m 0.096m

Lynx 5m 0.042m 0.054m
Lynx 10m 0.085m 0.097m
Lynx 15m 0.127m 0.139m
Lynx 20m 0.169m 0.182m
Lynx 25m 0.211m 0.224m
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Figure 7.9: Calculated Point Spacing: Benchmarking Dual Scanner MMS
Performance on a Parallel Vertical Target at Different Target Ranges. Vehicle
Velocity is 50km/h and Target Dimensions are 2m x 1m
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7.4 Multi-Faced Targets

The preceding tests have all dealt with parallel, planar targets. However, the

majority of roadside infrastructure are angled targets or have multiple faces.

In this section a number of benchmarking tests are conducted to examine

the performance of each MMS configuration for multi-faced targets. In this

section MIMIC calculates point density on the angled surfaces of two multi-

faced structures. The first structure is represented by three large vertical

planes and the second structure, a cylinder, is represented by three narrow

vertical planes.

7.4.1 Structures

The first structure that is used in these tests is composed of three planar

faces, one facing the road and two angled away from the road. Figure 7.10

illustrates the 3D structure from a front and top-down view. The top down

view in Figure 7.10(b) displays the angular rotation for each face of the tar-

get. A 125o rotation corresponds to a 55o rotation towards and away from the

target for the two faces respectively. This target rotation is chosen to ensure

the scan plane resulting from the horizontal scanner rotation of Scanner 1

on each of the MMSs does not intersect with the third plane of the target,

and therefore the coverage of Face (iii) depends on Scanner 2 only. Similarly,

Face (i) is not visible to Scanner 2. Face (ii) is the only face that will exhibit

an overlap from both Scanner 1 and Scanner 2. Each of the faces is a 2m x

2m square target and Table 7.12 lists the parameters of each face, including

the increased range to the centre of the Face (i) and Face (iii) along with

their orientation. The point density on each face is measured to benchmark

the performance of each MMS on this structure for different vehicle velocities.
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(a) (b)

Figure 7.10: Target Representing a Structure (a) Front View (b) Top-Down
View

Table 7.12: Multi-Faced Targets : 3D Structure Parameters
Face Hr αtarg

i 5.819m 55o

ii 5.000m 0o

iii 5.819m -55o

The point density for each face is measured at different vehicle veloci-

ties. The vehicle velocity is increased in 10km/h increments from 10km/h

to 50km/h. The target range is not varied in these tests. This is because

the effect of increased range on point spacing is more relevant for a narrow

object. A high point spacing decreases the number of Ppp and therefore po-

tentially results in an insufficient number of returns to define narrow targets

in the point cloud. The target range is varied in the tests on cylindrical struc-

tures. Face (i) can only be surveyed by Scanner 1 on each of the MMS and

therefore there is no return from Scanner 2. Due to the target rotation and

position, the Hr is 5.819m. Table 7.13 lists the point density calculated for

Face (i). The point density is illustrated in Figure 7.11 and plotted against
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vehicle velocity. Due to their higher PRR, the Riegl scanners display the

highest point density. Scanner 1 on the XP1+ is capable of 11% more points

than the same scanner on the XP2 because of its application of the recom-

mended configuration identified in the previous chapter. The Riegl scanners

are both capable of over twice the number of points than the Optech scanner.

Table 7.13: Calculated Point Density: Benchmarking Dual Scanner MMS
Performance on Face (i) of a Multi-Faced Structure at Different Vehicle Ve-
locities. Target Range is 5.819m. Target Dimensions are 2m x 2m

MMS Velocity Scanner 1 Scanner 2

XP1+ 10km/h 18353pts 0
XP1+ 20km/h 9181pts 0
XP1+ 30km/h 6121pts 0
XP1+ 40km/h 4590pts 0
XP1+ 50km/h 3672pts 0

XP2 10km/h 16415pts 0
XP2 20km/h 8207pts 0
XP2 30km/h 5471pts 0
XP2 40km/h 4103pts 0
XP2 50km/h 3283pts 0

Lynx 10km/h 8050pts 0
Lynx 20km/h 4025pts 0
Lynx 30km/h 2683pts 0
Lynx 40km/h 2012pts 0
Lynx 50km/h 1610pts 0

This process is repeated for Face (ii) of the multi-faced structure. The

point density for the target is calculated at five different vehicle velocities.

The vehicle velocity is increased in 10km/h increments from 10km/h to

50km/h. Table 7.14 lists the point density calculated for each MMS on

Face (ii). Due to the target rotation and position, the Hr is now 5m. For

each MMS, the point density is higher for this face of the target because it
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Figure 7.11: Calculated Point Density: Benchmarking Dual Scanner MMS
Performance on Face (i) of a Multi-Faced Structure at Different Vehicle Ve-
locities. Range to Target is 5.819m and Target Dimensions are 2m x 2m
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is visible to both scanners and it also has a lower Hr. Figure 7.12 illustrates

the point density for different vehicle velocities for each MMS. It demon-

strates that the XP1+ has again outperformed the other two systems. For

the XP1+, the point density on Face (ii) is approximately double the num-

ber on Face (i). The XP1+ is capable of returning 37% more points than

the XP2 for Face (ii). This is due to implementation of the recommended

scanner configuration for both scanners on the XP1+.

Table 7.14: Calculated Point Density: Benchmarking Dual Scanner MMS
Performance on Face (ii) of a Multi-Faced Structure at Different Vehicle
Velocities. Target Range is 5m. Target Dimensions are 2m x 2m

MMS Velocity Scanner 1 Scanner 2 Combined

XP1+ 10km/h 31041pts 5597pts 36638pts
XP1+ 20km/h 15520pts 2798pts 18318pts
XP1+ 30km/h 10347pts 1865pts 12212pts
XP1+ 40km/h 7760pts 1399pts 9159pts
XP1+ 50km/h 6210pts 1119pts 7329pts

XP2 10km/h 19970pts 6661pts 26631pts
XP2 20km/h 9985pts 3330pts 13315pts
XP2 30km/h 6656pts 2220pts 8876pts
XP2 40km/h 4992pts 1665pts 6657pts
XP2 50km/h 3997pts 1333pts 5330pts

Lynx 10km/h 9404pts 4908pts 14312pts
Lynx 20km/h 4702pts 2453pts 7155pts
Lynx 30km/h 3134pts 1635pts 4769pts
Lynx 40km/h 2351pts 1226pts 3577pts
Lynx 50km/h 1881pts 981pts 2862pts

The Hr to Face (iii) is 5.819m. Face (iii) is only visible to Scanner 2 on

each of the MMSs. The point density is measured for each MMS on Face

(iii) at five different vehicle velocities ranging from 10km/h to 50km/h. Table

7.15 lists the point density for Face (iii). Figure 7.13 plots the point density

in relation to vehicle velocity for each MMS. The point density on Face (iii)
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Figure 7.12: Calculated Point Density: Benchmarking Dual Scanner MMS
Performance on Face (ii) of a Multi-Faced Structure at Different Vehicle
Velocities. Range to Target is 5m and Target Dimensions are 2m x 2m
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is lower than for the previous two faces. The low point density is due to the

negative horizontal scanner rotation of Scanner 2 on the XP2 and the Optech

Lynx and the scanner offset. In these tests, Scanner 2 on the XP2 exhibits

a higher point density than Scanner 2 on the other systems because of the

higher PRR. The Riegl VQ-250 returns over 3 times (327%) the point density

of the SICK LMS. The Optech Scanner 2 also exhibits a higher point density

than the SICK LMS on the XP1+, with the V200 returning almost 89%

more points than the SICK LMS. Despite the decreased Hr arising from the

recommended scanner position on the XP1+, the SICK has underperformed

in these tests in relation to Scanner 2 on the Optech Lynx. This differs

to the findings from the parallel vertical target tests. Table 7.16 lists the

point density measurements for Scanner 2 on each MMS on both a parallel

vertical target of dimensions 2m x 1m and Face (iii) of a multi-faced structure

at 10km/h. Scanner 2 performance is comparable for the parallel target,

but for Face (iii) of the multi-faced, the XP+ returns approximately 30%

of the points when compared with the XP2 and approximately 52% of the

points when compared with the Optech Lynx. This is due to the increased

measurement range to Face (iii) (5.819m). The tests in the previous section

identified that the point density of the SICK decreased in relation to the

Optech at distances over 5m. Additionally, the recommended orientation

of Scanner 2 on the XP1+ is not optimal for targets rotated by -55o. This

reinforces the link between target orientation and the recommended scanner

orientation.
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Table 7.15: Calculated Point Density: Benchmarking Dual Scanner MMS
Performance on Face (iii) of a Multi-Faced Structure at Different Vehicle
Velocities. Target Range is 5.819m. Target Dimensions are 2m x 2m

System Velocity Scanner 1 Scanner 2

XP1+ 10km/h 0 3286pts
XP1+ 20km/h 0 1643pts
XP1+ 30km/h 0 1095pts
XP1+ 40km/h 0 821pts
XP1+ 50km/h 0 657pts

XP2 10km/h 0 10757pts
XP2 20km/h 0 5378pts
XP2 30km/h 0 3585pts
XP2 40km/h 0 2689pts
XP2 50km/h 0 2151pts

Lynx 10km/h 0 6232pts
Lynx 20km/h 0 3116pts
Lynx 30km/h 0 2077pts
Lynx 40km/h 0 1558pts
Lynx 50km/h 0 1246pts

Table 7.16: Calculated Point Density: Comparison of Scanner 2 Point Den-
sity for each MMS on Rotated and Parallel Targets

Target Dimensions XP1+ XP2 Optech Lynx

Face (iii) 2m x 2m 3286pts 10757pts 6232pts
Parallel Vertical 2m x 1m 2581pts 2949pts 2262pts
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Figure 7.13: Calculated Point Density: Benchmarking Dual Scanner MMS
Performance on Face (iii) of a Multi-Faced Structure at Different Vehicle
Velocities. Range to Target is 5.819m and Target Dimensions are 2m x 2m
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7.4.2 Cylinders

The second structure that is used in these tests is also composed of three

planar faces, one facing the road and two angled away from the road. This is

a hexagonal approximation of a cylindrical target. Figure 7.14 illustrates the

cylinder that is used in the benchmarking tests. The proportions and shape

of this hexagonal structure are identical to the multi-faced structure used

in the previous tests. However, the target dimensions have changed. The

cylinder is 0.214m in diameter, and each face of the cylinder is 0.1m wide

and 2m high. The point density is calculated on each face of the cylinder for

each MMS at different vehicle velocities. The velocity is increased in 10km/h

increments from 10km/h to 50km/h. The point density is also calculated for

each face at different target ranges. This is to assess the performance of

each MMS when surveying narrow targets at increasing Hr. Similarly to the

multi-faced structure in the previous tests, the scanners on-board the MMSs

are incapable of surveying all faces of the target. Faces (i) and (ii) are visible

to Scanner 1. Faces (ii) and (iii) are visible to Scanner 2. The scanners over-

lap and increase point density on Face (ii). Table 7.17 lists the parameters

for the three planar faces of the cylinder involved in the calculation.

Table 7.17: 3D Cylinder - Target Parameters
Face Range (m) αtarg

i 5.04 55o

ii 5 0o

iii 5.04 -55o

These results have been plotted against vehicle velocity in Figures 7.15 to

7.17 respectively. The point density measurements for each vehicle velocity
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Figure 7.14: Planar Faces for the Cylindrical Target

on each target face for each MMS are detailed in Tables 30, 31 and 32 in Ap-

pendix .4. Figure 7.15 illustrates the point density from Scanner 1 for Face

(i). The Riegl scanner outperforms the Optech in terms of point density.

The Riegl VQ-250 on the XP2 returns 2.003 times the point density of the

Optech V200. The Riegl scanner on the XP1+ and XP2 perform similarly,

despite their different orientation. This is due to the rotation of the target.

The rotation of the target alters the profile angle and this results in a closer

match between the number of points from the Riegl Scanner 1 on the XP1+

and those from the Riegl Scanner 1 on the XP2. In Figure 7.16, the higher

vertical scanner rotation has resulted in a higher point density for the Riegl

scanners when compared to the Optech scanners. The Riegl VQ-250 on the

XP1+ returns 1.55 times the point density when compared to the VQ-250

on the XP2. The difference is due to its application of the recommended

configuration. Face (iii) is only visible to Scanner 2 on each of the MMSs.

Figure 7.17 highlights how the narrow width of the target and the low ASW

of the SICK LMS has resulted in very few points on the target on Face (iii)

for that scanner. The high PRR VQ250 on the XP2 has performed best for

narrow targets at short ranges over different vehicle velocities.
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Figure 7.15: Calculated Point Density: Benchmarking Dual Scanner MMS
Performance on Face (i) of a Narrow Structure at Different Vehicle Velocities.
Range to Target is 5.04m and Target Dimensions are 0.1m x 2m

A high number of points striking the target does not necessarily define a

target if these points result from a large number of profiles intersecting the

target. A high number of profiles implies a lower Ppp. This effect is increased

at different target ranges because the point spacing increases. Tables 33, 34

and 35 in Appendix .4 list the full set of point density calculations for dif-

ferent target ranges, however a representative subset of this table is included

Table 7.18. The minimum number of points required to define a fixed radius

curve is 3, as illustrated in Figure 7.18(a). Figure 7.18(b) illustrates a cylin-

der with the three required points marked on it. These three points are at the
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Figure 7.16: Calculated Point Density: Benchmarking Dual Scanner MMS
Performance on Face (ii) of a Narrow Structure at Different Vehicle Velocities.
Range to Target is 5m and Target Dimensions are 0.1m x 2m
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Figure 7.17: Calculated Point Density: Benchmarking Dual Scanner MMS
Performance on Face (iii) of a Narrow Structure at Different Vehicle Veloci-
ties. Range to Target is 5.04m and Target Dimensions are 0.1m x 2m
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same elevation on the target. Scanner orientations alter this scenario. Figure

7.18(c) illustrates a scan profile crossing one face of a cylindrical target with

3 Ppp. In this scenario the 3 Ppp are at different elevations. However, it is

reasonable to assume that for a narrow target the 3 Ppp do not deviate sig-

nificantly in elevation. For example, a profile angle of 45o results in a height

deviation between the first and third point of only 0.085m for a target face

0.1m wide. A change in radius of the cylinder is unlikely over that short

distance. Therefore assuming that a minimum of 3 Ppp are required from

angled scan profiles on cylindrical targets is justifiable. These tests demon-

strate that for varying target parameters and system configurations, only a

number of the scan profiles meet this criteria for a narrow cylinder. Table

7.18 lists each of the scan profiles that have 3 or more points and Figure

7.19 plots point density as a function of range for a narrow vertical target.

This image also also highlights the 3 Ppp cut-off. In practice 3 Ppp would

not be a sufficient number due to accuracy errors in the LiDAR data as the

points may not represent the true curve. Additional measurements would be

required. Certain configurations do not return any points at different ranges.

These are represented in Figure 7.19 as a zero return.

These results highlighted a number of issues. Firstly, except for one in-

stance with the XP2 on Face (i), none of the MMSs used in these benchmark-

ing tests can return the required number of Ppp on a target at 15m horizontal

range. The XP2 returned 3 Ppp on Face (ii) at 15m Hr. Performance in terms

of Ppp drops significantly between 5m and 10m horizontal range for narrow

vertical targets. The number of Ppp approximately halves as the range dou-

bles. The XP2 returned the most points for each cylinder face in these tests,
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(a) (b)

(c)

Figure 7.18: Quantifying the Number of Ppp Required. (a) Defining a Fixed
Radius Curve using 3 Points (b) 3 Points at the Same Elevation (c) 3 points
at Different Elevations
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but only returns a maximum of 5 Ppp at 10m range. The Optech scanner re-

turns a lower point density and lower Ppp on each surface. The Riegl scanner

is capable of capturing more points than the Optech scanner. At the shortest

measurement range, 5m, the Optech returns 4 Ppp, whereas the XP2 returns

8. 8 Ppp potentially provide a better definition of the object in the point

cloud. The SICK LMS on the XP1+ fails this test. It is not able to return a

minimum of three points on the scan profile for Face (iii). The SICK LMS is

the only scanner on the XP1+ MMS able to survey that face and therefore

XP1+ could potentially be unable to define the surface and this MMS is not

suitable for narrow objects without employing multiple passes.

Table 7.18: Calculated Points per Profile: Benchmarking Dual Scanner MMS
Performance on a Narrow Multi-Faced Structure at Different Target Ranges.
Vehicle Velocity is 50km/h. Target Dimensions are 0.1m x 2m

MMS Face Hr (m) Ppp

XP1+ i 5 5
XP1+ i 10 4
XP1+ ii 5 9
XP1+ ii 10 4

XP2 i 5 8
XP2 i 10 5
XP2 i 15 3
XP2 ii 5 10
XP2 ii 10 4
XP2 iii 5 5
XP2 iii 10 3

Lynx i 5 4
Lynx i 5 4
Lynx iii 5 3
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Figure 7.19: No. of Points Per Profile at Different Target Ranges
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7.5 Conclusion

A point density benchmarking process was applied to three MMSs in this

chapter. The point density on various targets was measured in MIMIC for

one commercial and two theoretical MMSs. Each of these MMSs operated

dual scanners. These MMSs displayed hardware and configuration differ-

ences and facilitated point density benchmarking in a number of key areas.

2D and 3D targets of different dimensions were defined for these tests.

A combination of large and small 2D vertical parallel targets were em-

ployed in the first stage of the benchmarking tests. The Riegl VQ-250

emerged as the scanner capable of the highest point density on the large

targets. This was primarily due to it’s high PRR. Through application of

the recommended scanner configuration identified in the previous chapter,

the VQ-250 on the XP1+ was capable of outperforming the same piece of

hardware on the XP2. The recommended configuration also allowed the

SICK LMS to outperform the Optech V200 for the large target. The Optech

V200 outperformed the other two scanner types in terms of horizontal profile

spacing due to its higher Mf . However, through application of the recom-

mended configuration, this advantage was negated for the scanners on the

XP1+. This highlights the importance of identifying the correct scanner ori-

entation for a specific target. The Riegl VQ-250 was capable of the smallest

point spacing, and this is an important factor in a MMS survey.

Two 3D, multi-faced structures were designed to assess MMS point den-

sity for this target type. The Riegl VQ-250 performed best in these tests

for each face of the 3D structure. The second multi-faced structure was a
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narrow vertical target, approximating a cylinder. A requirement of three Ppp

was set as sufficient for defining a fixed radius curve. These tests identified

that at ranges over 10m MMS performance is unreliable and only one MMS,

the XP2, was capable of obtaining three Ppp at 15m range. The SICK LMS

was wholly unsuitable for this target type, failing to return 3 Ppp on Face

(iii) of the target. As this scanner is the only one on the XP1+ capable of

surveying Face (iii), this implies that the XP1+ is not suitable for surveying

narrow targets without multiple passes.

The Optech scanner has been outperformed by the Riegl scanner in these

tests in terms of point density, however these results once again raise the

issue of how many points are sufficient to define an object in a a point cloud

manually or using an automated algorithm. This thesis will not answer this

question. The required point density is dependant on the use of the data, or

the automated algorithm being applied for feature extraction. MIMIC can

only calculate the resultant point density.

The final chapter of this thesis will summarise the work completed, intro-

duce work in progress, identify potential future work and answer the research

questions posed in this thesis. It concludes with some final remarks.
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Chapter 8

Conclusions and Additional

Work

The main goal of this thesis is to investigate MMS point density. Achieving

this goal first required a method to calculate point density to be designed.

This method, MIMIC, facilitated assessment of MMS configuration and hard-

ware and also a series of tests benchmarking MMSs. The core contributions

of this thesis included: a wide ranging study on the factors influencing point

density, development of a system to calculate point density, identification of

the importance of a vertical scanner rotation for increasing point density, a

definition of the recommended MMS configuration when surveying near side

infrastructure and identification that a high PRR is preferable to a high mir-

ror frequency for the majority of targets.

This chapter discusses the main conclusions of the research presented in

this thesis, summarises the results from this doctoral research in Section 8.1

and presents the chief novel contributions to the area of MMS performance.
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The main contributions to the area of MMS performance are outlined in

Section 8.2. An introduction to the work in progress is provided in Section

8.3. Potential improvements to MIMIC’s algorithm are detailed in Section

8.4. This chapter concludes with some final remarks on the work in this

thesis in Section 8.5.

8.1 Thesis Summary

This thesis investigated the area of MMS performance and this investigation

incorporated four distinct stages. These stages included an introduction to

the topic, literature review and investigation of the factors influencing point

density, the point density calculations, MMS configuration assessment and

MMS benchmarking.

In stage one, the requirement for improving understanding of the perfor-

mance of MMSs was identified. The area of MMS performance was inves-

tigated in Chapters 1 and 2 and was divided into three sub-topics. These

sub-topics were: absolute and relative accuracy, repeat survey accuracy and

point density. Contemporary research in this field was identified and re-

viewed. A review of contemporary research in the field of MMS performance

illustrated that research in this area was limited. Understanding the relation-

ships between laser scanners, the survey vehicle and the survey environment

is crucial to ensuring a more effective outcome from a MMS survey. It was

the lack of understanding of these relationships that provided the motivation

for this thesis. Point density was introduced as the focus of this thesis and

discussed in Chapters 2 and 3.
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The methodology designed to complete this objective involved designing

algorithms capable of calculating point density for MMS surveys and stage

two detailed and validated the methodology employed to complete this Ob-

jective. These point density calculation algorithms were combined into a

system named MIMIC, and detailed in Chapter 3. MIMIC outputs three

values: the profile angle, the profile spacing and the point spacing. The

profile angle, profile spacing and point spacing calculations were validated in

Chapter 4. Point density was calculated through the combination of these

three outputs and this process was validated in Chapter 5.

The methodology designed to complete the second objective involved de-

veloping a set of tests capable of assessing the configuration of a MMS in

terms of laser scanner orientation, position and hardware settings. The ap-

plication of these tests and the analysis of the results constituted the third

stage of this thesis and was detailed in Chapter 6.

The fourth stage of this thesis was the implementation of a series of tests

designed to complete the third and final objective. The objective was to

benchmark the performance of three MMSs in terms of their point density.

In these benchmarking tests, the impact of multiple system configurations on

the point density of a selection of targets was examined. Chapter 7 detailed

the benchmarking tests.
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8.2 Main Contributions to the Field of MMS

Performance

The work carried out to complete the three objectives of this thesis contribute

to the field of MMS performance. In the following sections, the methodol-

ogy designed to complete each objective is briefly assessed in terms of it’s

contribution to the body of knowledge in the field of MMS performance.

8.2.1 Calculating Point Density

Although each of the existing methods for calculating profile information,

point spacing and point density had their strengths, Chapter 2 identified

shortcomings in each of these existing methods. In this chapter, three fac-

tors were identified as impacting on point density, these were: the scanner

parameters, the vehicle parameters and the target parameters. Existing stud-

ies employed manual measurements, geometric formulae and LiDAR simula-

tions to assess the point density of a target although these methods were only

capable of providing limited information. None of these methods provided

specific values for profile angle, profile spacing or point spacing and none

investigated their contribution to the point density calculation. The manual

measurements were a labour intensive process and do not provide a method

for calculating point density. The LiDAR simulations required additional

manual measurements after rendering to identify profile information, point

spacing and point density and do not provide a method for calculating point

density. The limited geometric formulae employed to-date did not incorpo-

rate scanner parameters, such as scanner elevation, position or orientation.

Target parameters such as dimension and orientation were also excluded.
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These parameters influence the uniformity of the point spacing and therefore

the point density.

The system for calculating point density designed in this thesis, MIMIC,

addressed the shortcomings of each of the existing methods by incorporating

additional parameters for all three identified factors. Horizontal and vertical

scanner rotations were included. Target rotations were applied and the tar-

get dimensions were altered. Point spacing was calculated at multiple loca-

tions across a target rather than at a single central location. Multiple point

spacing measurements on the target are important when calculating point

density for angled surfaces or large targets. Target dimensions can be varied

and narrow targets and planar approximations of 3D features like cylinders

are acceptable inputs. A series of tests have validated MIMIC’s ability to

calculate profile angle, profile spacing, point spacing and ultimately point

density. Potential error sources have been identified as vehicle dynamics and

incorrect system calibration. MIMIC has been validated as an accurate and

efficient method for calculating point density for generic MMSs.

8.2.2 Assessing MMS Configuration

The number, position and orientation of the scanner(s) on a MMS influence

point density. Scanner hardware settings such as the field of view, pulse

repetition rate and mirror frequency also influence point density. Only one

existing study focussed on assessing system configuration and it employed a

simulator to project laser pulses from a MMS onto surrounding structures.

However, different scanner hardware were not investigated. The effect of
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system configurations on specific targets were also not investigated. The sys-

tem for calculating point density designed in this thesis facilitated these tests

enabling MMS configuration to be assessed for multiple target types. The

effect of different hardware settings on point density was quantified. The im-

portance of vertical rotations of the scanner for large targets was identified

and the importance of a high PRR for narrow targets at different ranges was

also investigated.

These tests identified the recommended scanner location and scanner ori-

entation when surveying near side infrastructure. The importance of a ver-

tical rotation of the scanner when attempting to increase point density was

identified and investigated. By utilising the Y axis of the vehicle for the sec-

ond scanner position the scanner offset was eliminated while simultaneously

minimising data shadows. This contradicts current thinking in that both

scanners are generally placed at the rear of the vehicle. MIMIC can be used

to provide definitive information on a specific target type and a MMS can be

configured accordingly to maximise point density. The recommended con-

figuration varies depending on the target type, but the tests in this section

provide a useful guideline for generic targets.

8.2.3 Benchmarking MMS

The final topic of this thesis was the benchmarking of MMSs in terms of

their point density. Existing studies have been limited to tables listing MMS

hardware components. Benchmarking has been applied to MMSs in terms

of their planimetric and elevation accuracy but not in terms of their point

density. MIMIC facilitated benchmarking of the system configuration and
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hardware settings of one commercial and two hypothetical MMSs in terms

of point density. The two hypothetical MMSs were designed from the guide-

lines of the system configuration tests. Through the calculation of point

density on a set of targets, these theoretical MMSs were compared to a com-

mercial MMS. The application of the recommended configuration identified

in the previous objective resulted in an increase in performance of the low

specification scanner when compared to higher specification scanners. Lower

specification scanners were demonstrated not to be suitable for longer ranges.

An additional finding in these tests is that a higher PRR was more important

when surveying for small or narrow objects, particularly at long ranges.

8.3 Current Work

This section details work that is ongoing on MIMIC. The next version of

MIMIC will incorporate a visualisation component and will accept circular

and irregular shapes as valid target types.

8.3.1 Visualisation Module

The visualisation module will enable the presentation of the information on

profile angle, profile spacing, point spacing and point density to the user in

a clear and easily understandable format depending on their requirements.

Using a form of interpolation known as Inverse Distance Weighting (IDW)

[Shepard, 1968], point spacing can be displayed. An example of this is illus-

trated in Figure 8.1 where point spacing has been calculated for a target 5m

wide x 4m high on a planar surface for a single scanner system. The target
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range was 5m and the target was rotated 30o in the horizontal plane. An 8x8

grid structure has been applied. Each grid cell represents a planar surface

0.625m wide x 0.5m high. This method effectively visualises the point spac-

ing on the target and demonstrates the non-uniform distribution of point

spacing on the target. Additional work is required to expand the IDW from

the grid cells out to the extremities of the target. Visualisation methds for

point density and profiles are required. These visualisation methods also

require validation.

Figure 8.1: IDW Displaying Point Spacing on an Angled Target. Dimensions
5m x 4m and Range 5m

8.3.2 Circular Targets

To calculate point density for circular targets such as circular road signs the

next version of MIMIC will develop the point density calculation. When

calculating the path of each profile line through the grid structure, MIMIC

will assign limits to the line segment calculations for each grid cell. These
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limits are the points of intersection of the circle and the line as illustrated in

Figure 8.2.

Figure 8.2: Intersections of Scan Profile and Circular Target

By substituting the equation of the circle where x1, y1 are the center

points of the target and r is the radius

Circle = (x− x1)2 + (y − y1)2 = r2, (8.1)

into the equation of the line

Line = y − y1 = m(x− x1), (8.2)

and then by finding the determinant using

Determinant =
−b±

√
(b2 − 4ac)

2a
, (8.3)

these points of intersection will be calculated. These points will then be

specified by MIMIC as the start and end points of the scan profile and will
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be calculated for each scan profile. No line segments outside of these points

will be included in the point density calculation. This will enable calculation

of point density for circular targets. Additional work is required to code this

algorithm and to validate the point density calculations for this target type

robustly.

8.3.3 Irregular Shapes

Not all roadside infrastructure conforms to a regular shape like rectangles or

circles. A method is required to enable MIMIC to calculate point density for

irregular shapes. One potential method for irregular shapes is the ray casting

principle. Ray casting operates by counting the number of boundaries that a

line crosses. In the case of MIMIC, each scan profile is a ray, set at a specific

profile angle and separated by the profile spacing. The theory behind ray

casting is that any ray that is cast from the inside of a polygon will cross

an uneven number of boundaries, whereas any ray cast from the outside of a

polygon will cross an even number of boundaries. Figure 8.3(a) illustrates this

for a circular target. The ray originating from the centre of the circular target

only crosses one boundary (an uneven number) whereas the ray originating

outside the circular target crosses two boundaries (an even number). This is

also valid for more complex targets like the one illustrated in Figure 8.3(b).

The ray originating from inside the polygon crosses three boundaries whereas

the ray originating outside crosses four boundaries. For MIMIC to apply this

principle would require the inside/outside polygon check to be carried out

for each line segment start and end point and would result in a significant

increase in processing. Additional work is required to code this algorithm

and to validate the point density calculations for this target type robustly
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and to assess the efficiency of the algorithm.

(a) (b)

Figure 8.3: Ray Casting (a) Simple Target - Circle (b) Complex Target

8.4 Algorithm Improvements

In the course of this research, five avenues where MIMIC can be improved

have been identified.

� Vehicle Dynamics 1. The first of these is the inclusion of vehicle roll

and pitch as inputs to MIMIC. Roll and pitch can alter the profile angle

and profile spacing on a target which influences point density. Their

inclusion would enable MIMIC to calculate point density for roads with

a gradient or cross-fall.

� Vehicle Dynamics 2. The second potential improvement would be to

incorporate yaw in MIMIC. This would allow for point density to be

calculated on infrastructure along curved sections of road.

� The third improvement would be the automated generation of valid

system configurations for specific targets. The reverse of this could also

be applied. Given a system configuration, MIMIC would automatically
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identify what targets can not be surveyed by it. This would also aid

researchers developing automated algorithms as the point density and

distribution on targets can be clearly defined and quantified.

� MIMIC requires the user to manually identify the individual faces of

a multi-faced structure. Future versions of MIMIC would accept these

structures as valid target types and would automatically deconstruct

these 3D objects into 2D planar targets and calculate the point density.

� Finally, point density calculations in MIMIC have been limited to near

side infrastructure. The next version of MIMIC will include targets

on both sides of the vehicle. This will enable further testing of dual

scanner systems.

8.5 Final Remarks

MIMIC’s capabilities for calculating point density have been experimentally

validated. Although vehicle dynamics impact on the accuracy of the calcula-

tion, MIMIC is not a tool capable of predicting point density in every scenario

at every stage in a survey. It is designed to be a tool to assist with system

design, system configuration and automated algorithm design. MIMIC en-

ables a user to identify the capabilities of their current MMS configuration,

or to identify the recommended configuration for a specific target type.

The system configuration and benchmarking tests recommended large

vertical rotations of the scanner. However, these tests compared a theoretical

MMS configuration that was specifically configured for near side infrastruc-

ture with the Optech Lynx, a MMS that was designed for both near side
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and far side infrastructure. It is the authors opinion that the Optech Lynx

is the more practical for real world surveys. However, the increase in point

density that arises from vertical rotations of the scanner demonstrate that

improvements can be made to the current commercial MMS. Also, follow-

ing on the trend of adjustable survey mounts as explained in Section 2.3.4,

these findings will be of use for specific survey scenarios. MIMIC can then

be applied to identify the recommended configurations and the MMS can be

dynamically configured at the start of the survey.
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.1 Chapter 4 - Calculating Profile Informa-

tion and Point Spacing

Table 1: Road Surface Profile Angle Tests - XP1 and Optech Lynx Data.
Part 1

Test αscan γscan θPrA1 θPrA2 θPrA3 θPrA4 θPrA5

1 37.48o 29.6o 37.6o 37.43o 36.993o 37.86o 37.12o

2 37.48o 29.6o 37.77o 37.36o 37.42o 37.47o 37.24o

3 37.48o 29.6o 37.69o 37.69o 37.65o 37.46o 37.22o

4 45o 45o 44.88o 44.45o 44.48o 45.78o 44.9o

5 45o 45o 44.59o 45.11o 45.23o 45.02o 44.7o

6 45o 45o 44.86o 44.79o 45.14o 45.14o 45.11o

Table 2: Road Surface Profile Angle Tests - XP1 and Optech Lynx Data.
Part 2

Test Average θPrA MIMIC Roll Pitch Yaw Error

1 37.401o 37.48o -0.4194o -0.3436o 0.003o 0.0794o

2 37.452o 37.48o -0.4573o -0.3426o 0.001o 0.028o

3 37.542o 37.48o -0.4191o -0.3337 o 0.004o 0.062o

4 44.898o 45o -2.6641o 1.2214o 0.0315o 0.102o

5 44.93o 45o -2.5781o 1.0149o 0.0015o 0.07o

6 45.008o 45o -2.5747o 1.1013o 0.0415o 0.008o
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Table 3: Profile Angle CAD Tests on an Angled Plane - Horizontal Target
Rotation

αscan γscan αtarg θPrA MIMIC

45o 45o 0o 35.272o 35.264o

45o 45o 15o 40.840o 40.893o

45o 45o 30o 43.858o 44.007o

45o 45o 45o 45.000o 45.000o

45o 45o 60o 44.092o 44.007o

45o 30o 0o 50.784o 50.769o

45o 30o 15o 56.235o 56.310o

45o 30o 30o 59.108o 59.133o

45o 30o 45o 60.000o 60.000o

45o 30o 60o 59.050o 59.133o

30o 30o 0o 56.243o 56.310o

30o 30o 15o 59.172o 59.133o

30o 30o 30o 60.000o 60.000o

30o 30o 45o 59.097o 59.133o

30o 30o 60o 56.052o 56.310o

30o 15o 0o 72.811o 72.808o

30o 15o 15o 74.412o 74.496o

30o 15o 30o 75.000o 75.000o

30o 15o 45o 74.438o 74.496o

30o 15o 60o 72.720o 72.808o

15o 15o 0o 74.461o 74.496o

15o 15o 15o 75.000o 75.000o

15o 15o 30o 74.379o 74.496o

15o 15o 45o 72.641o 72.808o

15o 15o 60o 68.900o 69.246o
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Table 4: Profile Angle CAD Tests on an Angled Plane - Vertical Target
Rotation

αscan γscan βtarg θPrA MIMIC

45o 45o 0o 35.272o 35.260o

45o 45o 15o 31.270o 31.610o

45o 45o 30o 29.992o 30.105o

45o 45o 45o 30.850o 30.361o

45o 45o 60o 32.718o 32.443o

45o 30o 0o 50.784o 50.768o

45o 30o 15o 43.650o 43.671o

45o 30o 30o 39.650o 39.639o

45o 30o 45o 37.866o 37.902o

45o 30o 60o 38.080o 38.123o

30o 30o 0o 56.243o 56.310o

30o 30o 15o 51.580o 51.572o

30o 30o 30o 49.040o 49.107o

30o 30o 45o 49.020o 48.663o

30o 30o 60o 50.500o 50.194o

30o 15o 0o 72.810o 72.808o

30o 15o 15o 65.680o 65.854o

30o 15o 30o 60.830o 60.899o

30o 15o 45o 57.820o 57.911o

30o 15o 60o 56.910o 56.787o

15o 15o 0o 74.460o 74.496o

15o 15o 15o 71.200o 71.361o

15o 15o 30o 69.480o 69.484o

15o 15o 45o 68.850o 68.912o

15o 15o 60o 69.670o 69.658o
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Table 6: Profile Angle - MIMIC’s Calculations Compared to Point Cloud
Measurements for Angled Surfaces - XP. Part 2

Test σ Average dPrS MIMIC Error Roll Pitch

1 0.198o 38.015o 43.94o 5.925o 0.62o -1.02o

2 0.432o 39.497o 44.94o 5.443o -1.89o -1.85o

3 0.145o 31.523o 36.55o 5.027o -1.78o -1.50o

4 0.195o 37.889o 42.99o 5.101o 1.52o 2.71o

5 0.333o 40.916o 41.62o 0.704o -1.98o 3.10o

6 0.315o 28.854o 30.01o 1.156o -2.36o 2.71o

7 0.209o 31.074o 31.72o 0.646o -2.54o 2.78o

8 0.408o 38.238o 38.83o 0.592o -3.02o 2.53o

9 0.225o 40.835o 43.05o 2.215o -0.85o 2.60o

10 0.350o 30.155o 32.31o 2.155o -2.61o 2.38o

11 0.306o 36.572o 40.83o 4.258o -1.38o 1.54o

12 0.266o 24.545o 27.94o 3.395o 2.08o -0.96o

13 0.134o 32.268o 37.96o 5.692o 2.98o -0.47o

14 0.385o 39.048o 41.98o 2.932o -1.63o 0.81o

15 0.231o 36.689o 36.96o 0.271o -3.96o 1.42o

16 0.206o 33.370o 36.37o 3.000o -1.97o 0.13o

17 0.140o 40.992o 43.50o 2.508o -1.00o 2.68o

Table 7: Angled Surface, Profile Angle - Real World Tests - Part 3, Optech
Lynx2

Test αtarg βtarg MIMIC θPrA1 θPrA2 θPrA3 θPrA4 θPrA5

1 19.66o 0o 59.175o 59.41o 59.57o 59.51o 59.25o 59.25o

2 17.83o 0o 58.902o 59.45o 59.52o 59.12o 59.09o 59.27o

3 -0.75o 0o 54.126o 55.15o 54.44o 54.32o 54.98o 54.04o

4 -3.80o 0o 52.913o 54.35o 54.41o 54.57o 54.46o 54.28o

5 -11.05o 0o 49.376o 49.10o 49.32o 49.37o 49.21o 49.1o
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Table 8: Angled Surface, Profile Angle - Real World Tests - Part 4, Optech
Lynx2

Test Average θPrA σ Roll Pitch Yaw Error

1 59.400o 0.145o -0.848o -0.019o 0.0028o 0.225o

2 59.293o 0.195o -0.786o -0.163o 0.008o 0.391o

3 54.586o 0.464o -0.193o -0.478o 0.006o 0.460o

4 54.416o 0.108o 0.005o 0.965o 0.006o 1.503o

5 49.221o 0.126o -0.473o -0.136o 0.006o 0.155o

Table 9: Road Surface Profile Spacing Tests - Real World Tests - Part 1

Test Vel(m/s) dPrS1 dPrS2 dPrS3 dPrS4 dPrS5 Mf (Hz)

1 7.088 0.047m 0.047m 0.047m 0.047m 0.047m 150
2 7.53 0.050m 0.050m 0.050m 0.049m 0.049m 150
3 3.42 0.023m 0.023m 0.023m 0.024m 0.024m 150
4 5.80 0.039m 0.039m 0.039m 0.039m 0.039m 150
5 5.58 0.037m 0.037m 0.037m 0.037m 0.036m 150
6 6.86 0.035m 0.035m 0.035m 0.035m 0.034m 200
7 7.32 0.028m 0.028m 0.028m 0.028m 0.028m 200
8 3.35 0.016m 0.016m 0.016m 0.016m 0.016m 200
9 6.80 0.035m 0.035m 0.036m 0.036m 0.036m 200
10 5.60 0.027m 0.027m 0.027m 0.027m 0.027m 200

Table 10: Road Surface Profile Spacing Tests - Real World Tests - Part 2
Test Average dPrS MIMIC Error Roll Pitch Yaw

1 0.047m 0.047m 0.000m -0.839o -0.105o -0.005o

2 0.049m 0.050m 0.001m -0.659o -0.119o 0.012o

3 0.023m 0.023m 0.000m 0.621o 1.569o 0.0053o

4 0.039m 0.039m 0.000m 0.759o 0.880o -0.031o

5 0.037m 0.037m 0.000m -0.821o -0.21o 0.009o

6 0.035m 0.034m 0.001m 0.733o 0.383o 0.003o

7 0.028m 0.028m 0.000m 0.497o 1.163o 0.001o

8 0.016m 0.017m 0.001m -0.493o -0.572o 0.002o

9 0.036m 0.034m 0.002m -0.104o 1.54o 0.004o

10 0.027m 0.028m 0.001m -0.481o -0.252o 0.004o
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.2 Chapter 5 - Calculating Point Density

Table 17: Calculated and Measured Point Density for an Angled Target of
Dimensions 1m x 0.5m. Part 1

Test Hr Width Height Zdiff αtarg βtarg

1 7.665m 1m 0.5m 1.218m 17.338o 0o

2 7.665m 0.5m 0.5m 1.218m 17.338o 0o

3 11.796m 1m 0.5m 1.953m -1.120o 0o

4 11.796m 0.5m 0.5m 1.953m -1.120o 0o

5 11.432m 1m 0.5m 2.089m 0.100o 0o

6 11.432m 0.5m 0.5m 2.089m 0.100o 0o

7 6.422m 1m 0.5m 1.345m 22.790o 0o

8 6.422m 0.5m 0.5m 1.345 m 22.790o 0o

Table 18: Calculated and Measured Point Density for an Angled Target of
Dimensions 1m x 0.5m. Part 2

Test Vel(m/s) PRR (kHz) Mf (Hz) Roll Pitch Yaw

1 5.813 125 100 -0.892o 0.037o -0.002o

2 5.813 125 100 -0.892o 0.037o -0.002o

3 7.224 125 100 -0.249o -0.440o 0.002o

4 7.224 125 100 -0.249o -0.440o 0.002o

5 7.21 250 150 -0.313o -0.400o 0.002o

6 7.21 250 150 -0.313o -0.400o 0.002o

7 5.318 250 150 -0.121o -0.170o 0.001o

8 5.318 250 150 -0.121o -0.170o 0.001o

313



Table 19: Calculated and Measured Point Density for each Face of a Cylin-
drical Target. Part 1

Test Width Height Zdiff αtarg βtarg Hr Face

1 0.197m 0.741m 2.130m 0.814o 0.0o 5.118m i
2 0.197m 0.741m 2.130m 49.350o 0.0o 5.118m ii
3 0.080mm 1.590m 1.834m 29.120o 0.0o 6.69m i
4 0.080m 1.590m 1.834m 77.228o 0.0o 6.692m ii
5 0.050m 1.100m 1.906m 71.360o -3.4o 7.95m i
6 0.050m 1.100m 1.906m 19.711o -3.4o 7.95m ii
7 0.050m 1.100m 1.773m 66.816o 0.0o 7.438m i
8 0.050m 1.100m 1.773m 19.085o 0.0o 7.438m ii

Table 20: Calculated and Measured Point Density for each Face of a Cylin-
drical Target. Part 2

Test Vel(m/s) αscan γscan Mf PRR Roll Pitch Yaw

1 3.95 37.49o 29.6o 150 250 0.202o 1.158o 0.011o

2 3.95 37.49o 29.6o 150 250 0.198o 1.162o 0.012o

3 5.77 37.49o 29.6o 150 250 0.176o 1.164o 0.011o

4 5.77 37.49o 29.6o 150 250 0.174o 1.15o 0.012o

5 4.808 45o 45o 100 300 0.212o 1.158o 0.024o

6 4.808 45o 45o 100 300 0.216o 1.157o 0.024o

7 4.301 45o 45o 100 300 0.209o 1.154o 0.032o

8 4.301 45o 45o 100 300 0.209o 1.152o 0.032o
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.3 Chapter 6 - Assessing MMS Parameters

Table 23: Assessing the Impact of Horizontal an Vertical Scanner Rotations
on Point Density for a Parallel 2m x 1m Target at a Horizontal Range of 5m
and Varied Vehicle Velocities

Velocity(km/h) αscan MIMIC αscan γscan MIMIC γscan

10 15o 5308pts 15o 5513pts
20 15o 2647pts 15o 2757pts
30 15o 1767pts 15o 1837pts
40 15o 1323pts 15o 1378pts
50 15o 1103pts 15o 1103pts

10 30o 4953pts 30o 5833pts
20 30o 2471pts 30o 2916pts
30 30o 1649pts 30o 1944pts
40 30o 1235pts 30o 1458pts
50 30o 1029pts 30o 1168pts

10 45o 4284pts 45o 6269pts
20 45o 2138pts 45o 3134pts
30 45o 1427pts 45o 2083pts
40 45o 1069pts 45o 1578pts
50 45o 890pts 45o 1264pts

10 60o 3220pts 60o 6634pts
20 60o 1608pts 60o 3317pts
30 60o 1072pts 60o 2211pts
40 60o 804pts 60o 1658pts
50 60o 937pts 60o 1328pts
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Table 24: Calculating the Effect of Vehicle Velocity and a Dual Axis Scanner
Rotation on the Point Density of a Large Parallel Vertical Target. Target
Range is 5m and Target Dimensions are 2m x 1m

Velocity (km/h) αscan γscan MIMIC

10 15o 15o 5713pts
20 15o 15o 2856pts
30 15o 15o 1904pts
40 15o 15o 1428pts
50 15o 15o 1142pts

10 30o 30o 6870pts
20 30o 30o 3422pts
30 30o 30o 2249pts
40 30o 30o 1723pts
50 30o 30o 1380pts

10 45o 45o 10188pts
20 45o 45o 5094pts
30 45o 45o 3395pts
40 45o 45o 2547pts
50 45o 45o 2039pts

10 60o 60o 20981pts
20 60o 60o 10490pts
30 60o 60o 6993pts
40 60o 60o 5245pts
50 60o 60o 4196pts
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Table 25: Calculating the Effect of Vehicle Velocity and a Dual Axis Scanner
Rotation on the Point Density of a Narrow Vertical Target. Target Range is
5m and Target Dimensions are 0.1m x 2m

Velocity (km/h) αscan γscan MIMIC Profiles Ppp

10 15o 15o 609pts 20 30
20 15o 15o 304pts 10 30
30 15o 15o 204pts 7 29
40 15o 15o 152pts 5 30
50 15o 15o 121pts 4 30

10 30o 30o 714pts 51 14
20 30o 30o 357pts 26 14
30 30o 30o 237pts 17 14
40 30o 30o 178pts 12 15
50 30o 30o 146pts 10 15

10 45o 45o 994pts 105 9
20 45o 45o 497pts 52 10
30 45o 45o 331pts 35 9
40 45o 45o 248pts 26 10
50 45o 45o 200pts 21 10

10 60o 60o 1964pts 253 8
20 60o 60o 982pts 126 8
30 60o 60o 655pts 85 8
40 60o 60o 491pts 63 8
50 60o 60o 393pts 50 8
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Table 26: Calculated Point Density: Identifying the Recommended Dual Axis
Scanner Rotation for Increasing Point Density on a Parallel Vertical Target
at Different Vehicle Velocities. Target Range is 5m and Target Dimensions
are 2m x 1m

Velocity (km/h) αscan γscan MIMIC

10 30o 30o 6870pts
20 30o 30o 3422pts
30 30o 30o 2249pts
40 30o 30o 1723pts
50 30o 30o 1380pts

10 30o 45o 8798pts
20 30o 45o 4399pts
30 30o 45o 2932pts
40 30o 45o 2199pts
50 30o 45o 1762pts

10 30o 60o 10776pts
20 30o 60o 5347pts
30 30o 60o 3647pts
40 30o 60o 2673pts
50 30o 60o 2141pts

10 45o 30o 6991pts
20 45o 30o 3495pts
30 45o 30o 2330pts
40 45o 30o 1747pts
50 45o 30o 1399pts

10 45o 45o 10188pts
20 45o 45o 5094pts
30 45o 45o 3395pts
40 45o 45o 2547pts
50 45o 45o 2039pts

10 45o 60o 14343pts
20 45o 60o 7171pts
30 45o 60o 4781pts
40 45o 60o 3585pts
50 45o 60o 2870pts
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Table 27: Calculated Profile Spacing: Examining the Correlation Between
Mirror Frequency and Vertical Profile Spacing on a Parallel Vertical Target
at Different Vehicle Velocities. Target Range is 5m and Target Dimensions
are 2m x 1m

Test Mf (Hz) Velocity (km/h) dPrSV

1 200 10 0.019m
2 200 20 0.039m
3 200 30 0.058m
4 200 40 0.074m
5 200 50 0.097m

6 150 10 0.026m
7 150 20 0.052m
8 150 30 0.078m
9 150 40 0.103m
10 150 50 0.129m

11 100 10 0.034m
12 100 20 0.078m
13 100 30 0.116m
14 100 40 0.155m
15 100 50 0.194m

16 50 10 0.078m
17 50 20 0.155m
18 50 30 0.232m
19 50 40 0.310m
20 50 50 0.388m
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Table 28: Calculated Point Spacing: Examining the Correlation Between
PRR and Horizontal Range for Point Spacing on a Parallel Vertical Target.
Target Dimensions are 2m x 1m

Test PRR (kHz) Hr dPS

1 300 5m 0.018m
2 300 10m 0.036m
3 300 15m 0.054m
4 300 20m 0.072m
5 300 25m 0.090m

6 250 5m 0.022m
7 250 10m 0.043m
8 250 15m 0.065m
9 250 20m 0.086m
10 250 25m 0.108m

11 200 5m 0.027m
12 200 10m 0.054m
13 200 15m 0.814m
14 200 20m 0.108m
15 200 25m 0.135m

16 150 5m 0.036m
17 150 10m 0.072m
18 150 15m 0.108m
19 150 20m 0.144m
20 150 25m 0.180m

21 100 5m 0.054m
22 100 10m 0.108m
23 100 15m 0.162m
24 100 20m 0.217m
25 100 25m 0.271m
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Table 29: Calculated Point Spacing: Examining the Correlation Between
PRR and FOV for Point Spacing on a Parallel Vertical Target. Target Di-
mensions are 2m x 1m

Test PRR FOV dPS

1 300o 360o 0.018m
2 300o 315o 0.016m
3 300o 270o 0.014m
4 300o 225o 0.011m
5 300o 180o 0.009m

6 250o 360o 0.022m
7 250o 315o 0.019m
8 250o 270o 0.016m
9 250o 225o 0.013m
10 250o 180o 0.011m

11 200o 360o 0.027m
12 200o 315o 0.024m
13 200o 270o 0.020m
14 200o 225o 0.017m
15 200o 180o 0.014m

16 150o 360o 0.036m
17 150o 315o 0.032m
18 150o 270o 0.027m
19 150o 225o 0.023m
20 150o 180o 0.018m

21 100o 360o 0.054m
22 100o 315o 0.047m
23 100o 270o 0.041m
24 100o 225o 0.034m
25 100o 180o 0.027m
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.4 Chapter 7 - Benchmarking MMS Point Den-

sity
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Table 33: No. of Points Per Profile at Different Target Ranges XP1+
Face Hr Scanner 1 Scanner 2 Combined Ppp

i 5.04m 176pts 0pts 176pts 5
i 10.04m 143pts 0pts 143pts 4
i 15.04m 98pts 0pts 98pts 3
i 20.04m 73pts 0pts 73pts 2
i 25.04m 57pts 0pts 57pts 2

ii 5m 310pts 56pts 366pts 9
ii 10m 151pts 27pts 178pts 4
ii 15m 89pts n/a 89pts 2
ii 20m 62pts n/a 62pts 2
ii 25m 47pts n/a 47pts 1

iii 5.04m 0pts 32pts 32pts 1
iii 10.04m 0pts 26pts 26pts 1
iii 15.04m 0pts 0pts 0pts 0
iii 20.04m 0pts 0pts 0pts 0
iii 25.04m 0pts 0pts 0pts 0

Table 34: No. of Points Per Profile at Different Target Ranges XP2
Face Hr Scanner 1 Scanner 2 Combined Ppp

i 5.04m 178pts 0pts 178pts 8
i 10.04m 101pts 0pts 101pts 5
i 15.04m 67pts 0pts 67pts 3
i 20.04m 50pts 0pts 50pts 2
i 25.04m 39pts 0pts 39pts 2

ii 5m 200pts 66pts 266pts 10
ii 10m 89pts 46pts 135pts 4
ii 15m 55pts 34pts 89pts 3
ii 20m 40pts 27pts 67pts 2
ii 25m 31pts 23pts 54pts 1

iii 5.04mm 0pts 116pts 116pts 5
iii 10.04m 0pts 73pts 73pts 3
iii 15.04m 0pts 53pts 53pts 2
iii 20.04m 0pts 41pts 41pts 2
iii 25.04m 0pts 34pts 34pts 2
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Table 35: No. of Points Per Profile at Different Target Ranges Optech Lynx
Face Hr Scanner 1 Scanner 2 Combined Ppp

i 5.04m 89pts 0pts 89pts 4
i 10.04m 50pts 0pts 50pts 2
i 15.04m 33pts 0pts 33pts 2
i 20.04m 25pts 0pts 25pts 1
i 25.04m 21pts 0pts 21pts 1

ii 5m 94pts 48pts 142pts 4
ii 10m 46pts 31pts 77pts 2
ii 15m 30pts 23pts 53pts 1
ii 20m 22pts 0pts 22pts 1
ii 25m 0pts 0pts 0pts 0

iii 5.04m 0pts 68pts 68pts 3
iii 10.04m 0pts 41pts 41pts 2
iii 15.04m 0pts 29pts 29pts 1
iii 20.04m 0pts 23pts 23pts 1
iii 25.04m 0pts 0pts 0pts 0
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H., and Others (2007). Road Environment Mapping System of the

Finnish Geodetic Institute-FGI Roamer. In Ronnolm, P., Hyyppä, H.,
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[Lin et al., 2012] Lin, Y., Hyyppä, J., Kukko, A., Jaakkola, A., and Kaarti-

nen, H. (2012). Tree height growth measurement with single-scan airborne,

static terrestrial and mobile laser scanning. Sensors, 12(9):12798–12813.

[Lohani and Mishra, 2007] Lohani, B. and Mishra, R. (2007). Generating

LiDAR data in laboratory: LiDAR simulator. In International Archive

of Photogrammetry, and Remote Sensing XXXVI (3), volume 52, pages

12–14.

[Madeira et al., 2012] Madeira, S., Gonalves, J. A., and Bastos, L. (2012).

Sensor integration in a low cost land mobile mapping system. Sensors,

12(3):2935–2953.

[McElhinney et al., 2011] McElhinney, C., lewis, P., T, M., and McCarthy,

T. (2011). Mobile terrestrial LiDAR data-sets in a Spatial Database Frame-

work. In MMT11,The 7th International Symposium on Mobile Mapping

Technology, June 2011, Krakaw, Poland.

[McElhinney et al., 2010] McElhinney, C. P., Kumar, P., Cahalane, C., and

McCarthy, T. (2010). Initial results from European Road Safety Inspection

(EURSI) mobile mapping project. In ISPRS Commission V Technical

Symposium, volume 2007.

340



[Miller and Mills, 2008] Miller, P. and Mills, J. (2008). Terrestrial laser scan-

ning for assessing the risk of slope instability along transport corridors.

International Archives of Photogrammetry, Remote Sensing and Spatial

Information Sciences, 37(B5):495–500.

[O Cathain, 2011] O Cathain, E. (2011). M1 Lane Improvement Scheme,

Phase 2. Drinan Junction to Lissenhall Junction. Detailed Topographi-

cal Survey Survey Specification. http://www.nra.ie/Publications/. Ref:

08.234.108.08. Date Accessed:5-12-2011.

[Ohio Land Surveys, 2012] Ohio Land Surveys (2012). Survey Crew Image.

http://www.ohiolandsurveys.com/. Date Accessed: 09-10-2012.

[Optech, 2012] Optech (2012). Optech Lynx M1 and V200 System Specifi-

cations. http://www.optech.ca/lynx.htm. Date Accessed: 09-10-2012.

[Ordnance Survey Ireland, 2012] Ordnance Survey Ireland (2012). OSi Ac-

tive GPS Station Data. http://www.osi.ie/Services/GPS-Services/Active-

GPS-Station-Data.aspx. Date Accessed: 11-10-2012.

[Petrie and Toth, 2009] Petrie, G. and Toth, C. K. (2009). Terrestrial Laser

Scanners. In Shan, J. and Toth, C. K., editors, Topographic Laser Ranging

and Scanning: Principles and Processing. Taylor & Francis Group, Boca

Raton, US.

[Pothoua et al., 2006] Pothoua, A., Tothc, C., Karamitsosb, S., and Geor-

gopoulosa, A. (2006). ON USING QA/QC TECHNIQUES FOR LIDAR-

IMU BORESIGHT MISALIGNMENT. In MMT07,The 5th International

Symposium on Mobile Mapping Technology.

341



[Prendergast, 2004] Prendergast, W. (2004). Best Practice Guidelines for

Precise Surveying In Ireland. Irish Institution of Surveyors.

[Prendergast et al., 2008] Prendergast, W., Flynn, M., Corrigan, P., Sweeny,

B., Martin, A., and Moran, P. (2008). Green Paper Proposing Reform of

Boundary Surveys in Ireland. Irish Institution of Surveyors.

[Pu and Vosselman, 2007] Pu, S. and Vosselman, G. (2007). Extracting

windows from terrestrial laser scanning. In International Archives of

Photogrammetry, Remote Sensing and Spatial Information Sciences Voll

XXXVI, (Part 3/W52), volume 36, pages 320–325, Espoo, Finland. IS-

PRS.

[RIEGL, 2009a] RIEGL (2009a). Dual Scanner Data sheet

Riegl VMX-250. http://www.riegl.com/nc/products/mobile-

scanning/produktdetail/product/scannersystem/6/. Date Accessed:

09-10-2012.

[RIEGL, 2009b] RIEGL (2009b). Scanner Data Sheet Riegl VQ-

250. pages 1–4, http://www.riegl.com/nc/products/mobile-

scanning/produktdetail/product/scanner/22/. Date Accessed: 09-10-

2012.

[RIEGL, 2011a] RIEGL (2011a). Dual Scanner Data sheet

Riegl VMX-450. http://www.riegl.com/nc/products/mobile-

scanning/produktdetail/product/scannersystem/10/. Date Accessed:

09-10-2012.

[RIEGL, 2011b] RIEGL (2011b). Scanner Data Sheet

Riegl VQ-450. http://www.riegl.com/nc/products/mobile-

342



scanning/produktdetail/product/scanner/31/. Date Accessed: 09-10-

2012.

[RIEGL, 2012a] RIEGL (2012a). RiACQUIRE Software Datasheet.

http://products.rieglusa.com/item/software-packages/riacquire-data-

acquisition-software/item-1011. Date Accessed: 11-10-2012.

[RIEGL, 2012b] RIEGL (2012b). Riegl VZ-6000 Time of Flight Ter-

restrial Laser Scanner. http://www.riegl.com/nc/products/terrestrial-

scanning/produktdetail/product/scanner/33/. Date Accessed: 11-10-

2012.

[Schaer et al., 2007] Schaer, P., Skaloud, J., Landtwing, S., and Legat, K.

(2007). Accuracy estimation for laser point cloud including scanning ge-

ometry. In 5th International Symposium on Mobile Mapping Technology

(MMT2007), Padua, Italy.

[Schofield, 2007] Schofield, W. (2007). In Engineering Surveying.

Butterworth-Heinemann, Oxford, UK, 6th edition.

[Schwarz and El-Sheimy, 2004] Schwarz, K. and El-Sheimy, N. (2004). MO-

BILE MAPPING SYSTEMS - STATE OF THE ART AND FUTURE

TRENDS. In International Archives of Photogrammetry, Remote Sensing

and Spatial Information Sciences, page 10, Istanbul, Turkey.

[Schwarz et al., 1993] Schwarz, K. P., Martell, H. E., El-Sheimy, N., Li, R.,

Chapman, M. A., and Cosandier, D. (1993). VISAT - A mobile highway

survey system of high accuracy. In Vehicle Navigation and Information

Systems, pages 476–481, Ottawa, Canada. IEEE.

343



[Seo et al., 2005] Seo, J., Member, S., Lee, J. G., and Park, C. G. (2005).

Leverarm compensation for integrated navigation system of land vehicles.

Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA

2005., pages 523–528.

[Shepard, 1968] Shepard, D. (1968). A two-dimensional interpolation func-

tion for irregularly-spaced data. In Proceedings of the 23rd National Con-

ference ACM, pages 517–524. ACM Press.

[Shi et al., 2008] Shi, Y., Shibasaki, R., and Shi, Z. (2008). An efficient

method for extracting road lane mark by fusing vehicle-based stereo image

and laser range data. In Earth Observation and Remote Sensing Applica-

tions, 2008. EORSA 2008. International Workshop on, pages 1 –5.

[SICK, 2010] SICK (2010). SICK LMS221 Scanner Specifications.

https://www.mysick.com/saqqara/im0012759.pdf. Date Accessed: 09-10-

2012.

[Soudarissanane et al., 2011] Soudarissanane, S., Lindenburgh, R., Menenti,

M., and Teunissen, P. (2011). Scanning geometry: Influencing factor on

the quality of terrestrial laser scanning points. ISPRS Journal of Pho-

togrammetry and Remote Sensing, 66(4):389–399.

[Stratag, 2012] Stratag (2012). Strategic Research into Advanced Geotech-

nologies (StratAG) Webpage. http://www.stratag.ie/.

[Talaya et al., 2000] Talaya, J., Bosch, E., Alamús, R., Serra, A., and Baron,
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