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Phase transitions for rotating asymptotically anti–de Sitter black holes in four dimensions are described
in the P − T plane, in terms of the Hawking temperature and the pressure provided by the cosmological
constant. The difference between constant angular momentum and constant angular velocity is highlighted;
the former has a second order phase transition while the latter does not. If the angular momentum is fixed
there a line of first order phase transitions terminating at a critical point with a second order phase transition
and vanishing latent heat, while if the angular velocity is fixed there is a line of first order phase transitions
terminating at a critical point with infinite latent heat. For constant angular velocity the analytic form of the
phase boundary is determined, latent heats derived and the Clapeyron equation verified.
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I. INTRODUCTION

There has recently been interest in interpreting the
cosmological constant in an asymptotically de Sitter or
anti–de Sitter (AdS) black hole space-time to be a pressure
in a thermodynamic sense. The thermodynamically con-
jugate variable would then be interpreted as a volume
associated to the black hole, though it would not neces-
sarily be related to any notion of geometric volume [1–3].
The idea of varying the cosmological constant goes back to
[4,5], but the interpretation adopted here was first given in
[1]. In this paper we reexamine some of the known
thermodynamics of asymptotically AdS-Kerr black holes
from this perspective, emphasizing the role that the
pressure plays in the analysis.
As usual in thermodynamics, the phase structure depends

on the constraints. For examplewhen the angularmomentum
J is held fixed there is a critical point with a second order
phase transition at finite pressure and temperature, first found
in [6]. This constant J phase transition is known to havemean
field exponents [7,8], putting it in the same universality class
as a van der Waals gas and the phase diagram (Fig. 3) looks
the same as that of a van der Waals gas.
On the other hand fixing the angular velocityΩ results in

a phase diagram which, like the one-dimensional Ising
model, has no second order transition at any finite temper-
ature. There is a critical point at finite T and P where the
free energy has a cusp, but the latent heat diverges there.
Strictly speaking there is a second critical point, with
vanishing latent heat, but it is at infinite T and there is no
phase transition as one cannot pass through this point—this
is similar to the 1-d Ising model, though there the critical
point is at T ¼ 0.

The phase structure for constant Ω and constant J is
different in the pressure-temperature plane.1 In the former
case the phase boundary is determined by the condition
ρ ¼ 2P, where ρ ¼ M

V is the black hole mass per unit
volume, while it is not so easy to find an analytic expression
for constant J. Many familiar notions from ordinary
thermodynamics are applicable, such as the Clapeyron
equation for the slope of the phase boundary in the P − T
plane, but there are also significant differences.
While the analysis produces some explicit expressions

for phase boundary curves in the P − T plane and latent
heats in black hole phase transitions that have not appeared
in the literature before, these are not the main point of the
paper, being just trivial consequences of the structure of the
Hawking-Page phase transitions. Rather the main point is
to emphasize the shift in viewpoint that occurs when the
thermodynamic volume is introduced. The phase diagram
in Fig. 2 is the same as that of [11], but drawn using
thermodynamic variables rather than the geometric varia-
bles that are explicit in the metric. This is done to
emphasize the physics of the thermodynamics: the free
energy is a single valued function of the geometric
variables, but is multiple valued in terms of thermodynamic
variables, giving the different branches in the P − T plane
that are the hallmark of phase transitions in the grand
canonical ensemble. This conceptual shift may well prove
to be important for the analysis of rotating superfluids in the
AdS/CFT correspondence [12].
In Sec. II, static nonrotating black holes are treated as a

warm-up for the constant Ω case in Sec. III and constant
J in Sec. IV. Conclusions are given in Sec. V.

*B.P.Dolan@hw.ac.uk

1The fixed J and fixed Ω ensembles were analyzed in [9] and
[10] in terms Ehrenfest equations.
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II. STATIC BLACK HOLES

A nonrotating, neutral, asymptotically anti–de Sitter
black hole has line element

d2s ¼ −fðrÞdt2 þ f−1ðrÞdr2 þ r2dΩ2;

with

fðrÞ ¼ 1 −
2m
r

−
Λ
3
r2; ð1Þ

and dΩ2 ¼ dθ2 þ sin2θdϕ2. The horizon radius, rh, is
determined by the largest real root of fðrÞ ¼ 0 giving

m ¼ rh
2

�
1 −

Λ
3
r2h

�
; ð2Þ

which is the asymptotically AdS equivalent of the
Arnowitt-Deser-Misner (ADM) mass, M ¼ m, in the non-
rotating case. Following [1], M will be identified with the
enthalpy,

HðS; PÞ ¼ 1

2

�
S
π

�1
2

�
1þ 8PS

3

�
; ð3Þ

where the Bekenstein-Hawking entropy is 1=4 of the event
horizon area

S ¼ πr2h

and P ¼ − Λ
8π is the pressure (GN and ℏ are set to 1). The

temperature follows either from the surface gravity

T ¼ f0ðrhÞ
4π

¼ ð1 − Λr2hÞ
4πrh

ð4Þ

using (1) or from the thermodynamic relation

T ¼ ∂H
∂S

����
P
¼ ð1þ 8PSÞ

4
ffiffiffiffiffiffi
πS

p ð5Þ

using (3); these are the same formulas written in geometric
and thermodynamic variables, respectively.
The temperature has a minimum at S ¼ 1

8P when

Tmin ¼
ffiffiffiffiffiffi
2P
π

r
: ð6Þ

For S < 1
8P the heat capacity

CP ¼ T
∂S
∂T

����
P
¼ 2S

�
8PSþ 1

8PS − 1

�
ð7Þ

is negative while for S > 1
8P it is positive and it diverges

at Tmin.

The thermodynamic volume is the Legendre transform
of the pressure [1,2], namely

V ¼ ∂M
∂P ¼ 4

3
ffiffiffi
π

p SðT; PÞ32 ¼ 4π

3
r3h: ð8Þ

This is a rather surprising result as there is no a priori
reason for the thermodynamic volume to be related to a
geometric volume.2 Indeed when rotation is introduced
there is no such obvious relation [3].
The Gibbs free energy is the Legendre transform of the

enthalpy,

GðT; PÞ ¼ H − TS ¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðT; PÞ

π

r �
1 −

8PSðT; PÞ
3

�

¼ rh
4

�
1þ Λ

3
r2h

�
;

with

SðT; PÞ ¼ πT2 − P� T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2T2 − 2πP

p

8P2
ð9Þ

(the heat capacity is positive for the plus sign, negative for
the minus sign and diverges when P → πT2=2).
We have the thermodynamic relation

dG ¼ −SdT þ VdP ð10Þ

and, for AdS space-time, G ¼ 0 and so SAdS ¼ VAdS ¼ 0
(this is the thermodynamic volume of AdS space-time, not
a geometric volume). For a black hole, on the other hand,
the thermodynamic volume is given by (8).
If PS > 3

8
the Gibbs free energy of the black hole is

negative and thus lower than that of anti–de Sitter space-
time, the former is then the more stable thermodynamic
configuration, while for PS < 3

8
pure anti–de Sitter space-

time is the more stable and any black hole with S < 3
8P will

tend to evaporate. This is the Hawking-Page phase tran-
sition [14], which occurs on the line Λr2h ¼ −3, or

S ¼ 3

8P
⇒ P ¼ 3π

8
T2; ð11Þ

when the two states can exist together as shown in the
P − T plane in Fig. 1 below. (Similar phase diagram plots
appeared in [15] and are shown here with a view to

2It is not immediately clear how the geometric volume of a
black hole might be defined, as r is a timelike coordinate and t a
spacelike coordinate for r < rh. Inside the event horizon surfaces
of constant t have a time-dependent metric. Note that the entropy
and the volume are not independent for a Schwarzschild black
hole. This is not a pathology: they are independent for rotating
black holes and the above formula can be obtained by taking the
nonrotating limit of the rotating case [13].
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extending the analysis to constant angular velocity in the
next section.)
Clearly there is a jump in entropy,

ΔS ¼ 3

8P
; ð12Þ

when a black hole nucleates from pure AdS space time,
energy must be supplied to form the black hole at constant
temperature and the latent heat is

L ¼ TΔS: ð13Þ
From the form of the coexistence curve in (11) the latent
heat is

L ¼ 1

πT
¼

ffiffiffiffiffiffiffiffiffi
3

8πP

r
; ð14Þ

which is equal to the mass on the coexistence curve, in the
black hole phase. The latent heat is nonzero for any finite T
and goes to zero as T → ∞, as though the system were
aiming for a second order phase transition but could not
reach it. For asymptotically flat space-times, P ¼ 0 and the
latent heat is infinite; hence black holes will not sponta-
neously nucleate in Minkowski space.
The Clapeyron equation for static black holes follows

from equating the Gibbs free energy of the two phases at a
point on the coexistence curve. For AdS space-time
GAdS ¼ 0, so in particular

dGAdS ¼ 0

on the coexistence curve, while for the black hole

dGBH ¼ −SBHdT þ VBHdP:

The coexistence curve is defined by GAdS ¼ GBH, so

0 ¼ dGAdS − dGBH ¼ SBHdT − VBHdP

⇒
dP
dT

¼ SBH
VBH

¼ 3

4rh
: ð15Þ

Since there is no black hole in pure AdS space-time we
define

ΔV ¼ VBH; ΔS ¼ SBH

giving

dP
dT

¼ ΔS
ΔV

; ð16Þ

which is the Clapeyron equation [16]. It is easily checked,
using (4) and (11) directly, that indeed dP

dT ¼ 3
4rh
. The

Clapeyron equation for static charged black holes, and
its relation to Ehrenfest’s equations, was considered in [10].

III. ROTATING BLACK HOLES

In this section the analysis of the Hawking-Page phase
transition is extended to rotating black holes in asymptoti-
cally AdS space times. The ADM mass for a black hole
rotating with angular momentum J can be expressed as a
function of the entropy, the angular momentum and the
pressure [6]

HðS; P; JÞ ≔ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 8PS

3
ÞðS2ð1þ 8PS

3
Þ þ 4π2J2Þ

πS

s
; ð17Þ

which is again interpreted here as the enthalpy.

G

0.04

0.02

0

-0.02

-0.04

T
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2

1

T

0
21.510.50

Black hole
    phase

AdS phase

FIG. 1 (color online). Left: The black hole free energy, for static black holes, at fixed P ¼ 1. The heat capacity is negative on the upper
branch, positive on the lower branch and diverges at the cusp. The Hawking-Page temperature is where G ¼ 0. Right: The coexistence
curve of the Hawking-Page phase transition is the lower (red) line; the heat capacity diverges on the upper (green) line. The lower branch
of the free energy tends to minus infinity on the P ¼ 0 axis.
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In asymptotically AdS space-times there can be rotating
black holes that are in equilibrium with thermal radiation
rotating at infinity [11,14]. The black hole is stable against
decay if its Euclidean action is less than that of pure AdS,
which is zero, so it is stable if theEuclideanaction is negative.
The Euclidean action of the black hole, IE, is a function ofT,
P and the angular velocity,Ω, and is related to the Legendre
transform of the ADM mass [17], IE ¼ Ξ=T with

ΞðT;Ω; PÞ ¼ M − ST − JΩ: ð18Þ

The Legendre transforms can be performed to obtain Ξ
explicitly. First express the temperature and the angular
velocity as functions of entropy and angular momentum

T ¼ ∂H
∂S

����
J;P

¼ 1

8πH

��
1þ 8PS

3

�
ð1þ 8PSÞ − 4π2

�
J
S

�
2
�

ð19Þ

Ω ¼ ∂M
∂J

����
S;P

¼ 2π3=2J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3þ 8PSÞ

Sð3S2 þ 8PS3 þ 12π2J2Þ

s
: ð20Þ

While it is easy to invert the latter to write J as a function
of Ω, expressing S explicitly as a function of T requires the
solution of an eighth order polynomial equation.
Nevertheless we can eliminate J in favor of Ω,

TðS;Ω;PÞ¼ð64P2S2π−24PS2Ω2þ32πPS−6Ω2Sþ3πÞ
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sð3þ8PSÞð3πþ8πPS−3Ω2SÞ

p :

ð21Þ

Solving for S now only involves a quartic, but simpler is to
use (21) in (18) to give

ΞðTðS;Ω;PÞ;Ω;PÞ¼
ffiffiffi
S

p ð9πþ24PS2Ω2−64P2S2πÞ
12π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3þ8PSÞð3πþ8πPS−3Ω2SÞ

p ;

ð22Þ

which, togetherwith (21), givesΞðT;Ω; PÞparametrically in
terms of S.
The Hawking-Page phase transition is determined by the

locus of points where Ξ ¼ 0, i.e.

S2 ¼ 9π

8Pð8πP − 3Ω2Þ : ð23Þ

Note that

Ω2 ≤
8πP
3

ð24Þ

is a condition that must be imposed on Ω in order to ensure
that the Einstein universe at infinity is not rotating faster
than the speed of light [11].

The free energy at a fixed pressure P > 3Ω2

8π is plotted as a
function of temperature in Fig. 2, using the dimensionless
variables

p ¼ 8πP
Ω2

≥ 3; t ¼ T
Ω

and s ¼ Ω2S
π

: ð25Þ

For p > 3 there are two branches and the Hawking-Page
temperature is determined by the point where the lower
branch cuts the t axis. As p → 3 from above the lower
branch becomes steeper until it disappears at p ¼ 3, the
upper branch remaining and terminating at T ¼ Ω

2π, where
Ξ ¼ 1

4Ω. For p < 3 there are black hole solutions for all
positive T with the black hole free energy ΞBH a positive
function decreasing monotonically with T.
Substituting (23) in (21) gives an analytic expression for

the coexistence curve TðPÞ at fixed Ω: it has the parametric
form

p ¼ 3ðsþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 4

p
Þ

2s
;

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 4

pp
2π

ffiffiffi
s

p ð26Þ

and is plotted as the upper-left boundary of the region
marked “Black hole phase” in the right-hand panel of
Fig. 2. It terminates at p ¼ 3 and the temperature of the
black hole cannot go below T ¼ Ω

2π for p ≥ 3. Black holes
are stable against decay to AdS in the region labeled “Black
hole phase.” In this region ΞBH is double valued, with a
positive and a negative branch, the negative branch being
the more stable of the two and also more stable than AdS
which has ΞBH ¼ 0. Below the horizontal line p ¼ 3 the
negative branch of ΞBH disappears and only the positive
branch remains. Across this line the negative branch jumps
discontinuously from minus infinity (black hole) to
zero (AdS).3

When there is rotation present angular momentum
contributes to the change in enthalpy across the coexistence
curve, which is the latent heat. For the Hawking-Page
transition the latent heat is just the mass of the black hole:

(i) On the first order line, ΞBH ¼ M − TS −ΩJ ¼ 0,
hence

L ¼ M ¼ TSþΩJ:

Since the entropy and angular momentum vanish on
the AdS side of the transition the jumps in entropy
and angular momentum are ΔS ¼ S and ΔJ ¼ J,
giving latent heat

3For finite jumps such phase transitions have been termed
zeroth order and it has been suggested that they could occur in
superconductors and superfluids [18]. Indeed it was proposed in
[11] that the horizontal line p ¼ 3 may be associated with a
superfluid transition.
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L ¼ TΔSþ ΩΔJ ¼ 16π3T3

ð4π2T2 −Ω2Þ2 ; ð27Þ

which diverges at the critical point4 T ¼ Ω
2π, P ¼ 3Ω2

2π .
Of courseM ¼ TSþ ΩJ is not a general formula;

it only holds on the coexistence curve and gives a
quick and convenient way of determining the curve.
It can be combined with the Smarr relation,

M ¼ 2ðTSþΩJ − PVÞ;
to give M ¼ 2PV, or

ρ ¼ 2P ð28Þ
with ρ ¼ M

V , on the coexistence curve.
The Clapeyron equation can be checked using

thermodynamic volume, V ¼ ∂H
∂P jS;J, first calculated

in [3]. Written as a function of Ω it reads

V ¼ 2S
3
2ð16πPS − 3Ω2Sþ 6πÞ

3π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3þ 8PSÞð3π þ 8πPS − 3Ω2SÞ

p : ð29Þ

On the coexistence curve (23) this is

V ¼ 2π

3Ω3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s3ð2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 4

p
Þ

q
:

Again, as the thermodynamic volume of AdS with-
out a black hole vanishes, ΔV ¼ V and

ΔS
ΔV

¼ 3Ω

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 4

p
Þ

q ;

and this is indeed equal to dP
dT along the coexistence

curve, from (26).
Another way of writing this is to use (28) to give

dP
dT

¼ S
V
¼ 2PS

M
; ð30Þ

hence, at a given value of Λ, the slope of the
coexistence curve is determined by the entropy
per unit mass of the black hole.

(ii) The Clapeyron equation does not hold across the
horizontal zeroth order transition line in Fig. 2,
because ΞBH ≠ 0 there. In fact ΞBH < 0 on this line
and the free energy jumps across it.

The free energy ΞBH is plotted in Fig. 2 as a function of
the dimensionless variable t in (25), with p ¼ 4. There is a
cusp at the minimum temperature t ¼ 1

2π, where the heat
capacity and the latent heat diverge, but no phase transition.

t

0.2

0.8

0.1

0
0.6

-0.1

-0.2

0.40.20

FIG. 2 (color online). Left: The dimensionless free energy for a rotating black hole as a function of the dimensionless variable t. The
upper branch represents small black holes (negative heat capacity), the lower branch large black holes (positive heat capacity). Only
negative Ξ black holes are stable against Hawking-Page decay. The vertical axis is the dimensionless combination ΩΞ and the figure is
drawn for p ¼ 4 (other values of p > 3 move the position of the cusp but the shape of the figure is the same). Right: Phase diagram in
the p − t plane. The constraint that the Einstein universe at infinity is not rotating faster than the speed of light imposes the condition
p ≥ 3. In the region below this line ΞBH is single valued and positive. In the white region (upper left labeled “AdS phase”) there are no
black hole solutions (a black hole in this region would have negative entropy). The right-hand boundary of the white region is the locus
of points on which the heat capacity diverges (black line), to the right of this there is a wedge shaped region (dark gray, green) in which
ΞBH has two branches and is positive on both branches. AdS is still the preferred phase in this region as 0 ¼ ΞAdH < ΞBH. In the gray
region, labeled “Black hole phase,” one branch of ΞBH becomes negative and black holes are more stable than AdS. The Hawking-Page
phase transition occurs on the upper-left boundary of the region marked “Black hole phase,” where the lower branch of ΞBH equals zero.

4This is a critical point in the original sense of the phrase; it is
necessary to tune both T and P very carefully to access this point.
A critical point in this sense is a separate concept to the notion of
zero latent and a “second order” phase transition.
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IV. THE CALDARELLI, COGNOLA
AND KLEMM PHASE TRANSITION

It was found in [6] that there is a phase transition for
asymptotically AdS rotating black holes with fixed angular
momentum, J, between small and large black holes, the
Caldarelli-Cognola-Klemm (CCK) phase transition. The
phase structure associated with constant J transitions has
been more extensively studied from the point of view of
varying P than the constant Ω case [15]. It is more like the
familiar liquid-gas transition than the constant Ω case and
in higher dimensions there can be a triple point associated
with three different black hole phases [15]. There is no
Hawking-Page phase transition for constant J, because
AdS with no black hole cannot have nonzero J. The results
in this section are not new and are included for complete-
ness and comparison to the constant Ω case in Sec. III.
The thermodynamic form of the mass for the asymp-

totically AdS-Kerr metric is (17), the temperature is (19)
and the thermodynamic volume (29) is, in terms of J,

V ¼ ∂M
∂P

����
S;J

¼ 2

3πM

�
S2
�
1þ 8PS

3

�
þ 2π2J2

	
: ð31Þ

This is greater than (or equal to when J ¼ 0) the naïve
geometric result V ¼ 4π

3
ðSπÞ

3
2, as first observed in [3].

In the P − V plane the CCK transition mimics the van
der Waals gas-liquid phase transition very closely. Below a
critical temperature Tc the transition is first order, culmi-
nating at a second order transition at Tc, in the same
universality class as the van der Waals transition (with
mean field exponents [7,8]) and no transition for T > Tc.
The free energy

GðT; PÞ ¼ MðS; PÞ − ST ð32Þ

is plotted in Fig. 3, as a function of T at fixed P, together
with the coexistence curve in the P − T plane.
Just like the van der Waals equation of state there is a line

of second order phase transitions, but here between large
and small black holes, terminating at critical point where
there is a second order phase transition.
The heat capacity at constant J and P is

CJ;P ¼ T
∂S
∂T

����
J;P

: ð33Þ

The full expression is not very illuminating and we shall
focus on the spinodal curve at constant J, the locus of
points in the S − P plane where the heat capacity diverges.
In terms of the dimensionless variables

~p ¼ 16πPJ; ~s ¼ S
2πJ

the spinodal curve is given by a quartic polynomial in ~p,

~p4 ~s8 þ 4~s5ð2~s2 þ 3Þ ~p3 þ 18~s4ð~s2 þ 5Þ ~p2 þ 36~sð6~s2 þ 1Þ ~pþ 162~s2 þ 81 − 27~s4 ¼ 0:

Defining a dimensionless temperature ~t ¼ T
ffiffiffi
J

p
,

curves of constant ~p are plotted in the ~s − ~t plane in
Fig. 4.
The spinodal curve is the peaked curve (red) whose

maximum is tangent to the third isobaric curve, and the
negative slope of the lines of constant P under the
spinodal curve is an unstable region, where the heat
capacity is negative. The temperature of the large-small
black hole phase transition can in principle be obtained

from the Maxwell equal area rule: the Gibbs free energy,
at constant J,

GðT; P; JÞ ¼ MðS; P; JÞ − TS

should be the same in both phases, Gl ¼ Gs.
At constant P

dG ¼ −SdT þ VdP ¼ −SdT;
so

0 ¼ Gl −Gs ¼
Z

Sl

Ss

dG ¼ −
Z

Sl

Ss

SdT ¼ −½ST�ls þ
Z

Sl

Ss

TðSÞdS

⇔
Z

Sl

Ss

TðSÞdS − ðSl − SsÞT ¼ 0:

J

t~

G

p

t

Small

Large
black hole

black hole

~

~

FIG. 3 (color online). Left: Gibbs free energy, G=
ffiffiffi
J

p
, as a

function of ~t for a black hole at constant J with ~p ¼< ~pc. Right:
Coexistence curve at fixed J, in the ~p − ~t plane. The curve ends at
the critical point ~tc ¼ 0.0417, ~pc ¼ 0.144.
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The last expression determines the transition temperature,
T ¼ TðSlÞ ¼ TðSsÞ, by demanding that the filled area in
Fig. 4 be zero. The two phases coexist on a line in the T − S
plane, terminating at the critical pointwhere the two sizes are
equal (the Maxwell equal area rule for the first order
Hawking-Page transition, associated with static AdS-
Schwarzschild, was investigated in theP − V plane in [19]).
One must however be careful about applying ordinary

thermodynamic intuition to black holes. In the S − T plane
the segment of an isotherm on which T decreases with S
corresponds to negative heat capacity and signals an
instability. The Maxwell rule states that, for the liquid-
gas phase transition, such an isotherm should be replaced
by one which is horizontal between the two extremes of
pure gas and pure liquid, the horizontal section of the
isotherm being a mixture of liquid and gas in linear
proportion to the distance to its two end points [16] (the
argument is usually given in the P − V plane, when
compressibility replaces heat capacity, but it is essentially
the same). There does not appear to be any such inter-
pretation for black holes: a classical black hole solution is
not a combination of large and small black holes, it is either
one or the other and there does not seem to be any simple
way in which the horizontal section of the constant P curve
in Fig. 4 can be thought of as a “mixture” of black holes
with different entropies, as there is only one black hole. The
negative heat capacity in the unstable region of Fig. 4, and

the negative compressibility [20], may be a feature that one
must live with, just like the negative heat capacity of
asymptotically flat Schwarzschild black holes.
Based on the Clapeyron equation dP

dT ¼ ΔS
ΔV, it follows

from standard reasoning that the Gibbs free energy of the
two phases agrees across the coexistence curve,
GlðT; PÞ ¼ GsðT; PÞ, but an explicit verification for the
CCK transition would require solving a high order poly-
nomial by numerical computation.

V. CONCLUSIONS

Phase transitions for asymptotically AdS-Kerr black
holes have been analyzed in thermodynamic variables,
viewing the (negative) cosmological constant as a pressure
and taking its thermodynamically conjugate variable to be a
volume. For nonrotating black holes the analytic form of
the Hawking-Page transition line in the P − T plane is
quadratic (11) and the latent heat is inversely proportional
to the temperature. At constantΩ the transition line is given
parametrically in Eqs. (25) and (26) while the latent heat is
(27) and is proportional to the mass per unit entropy. The
Clapeyron equation has been explicitly checked to hold
true, which is a consistency check on the thermodynamic
interpretation of Λ presented here. Analytic expressions are
harder to obtain for constant J, but similar concepts apply.
From the AdS/CFT perspective the constant Ω case is

relevant for rotating superfluids in the boundary conformal
field theory. The main difference between the phase
diagrams when Ω ¼ 0 and Ω ≠ 0 is that the lower
boundary of the black hole phase is at P ¼ 0 in the former
case, and cannot be crossed for positive P, whereas it is at
P > 0 in the latter case, corresponding to Bose condensa-
tion on the boundary conformal field theory [11].
The phase diagram in higher dimensions is more

complicated, due to the presence of more than one angular
momentum, but is all the richer for that: the constant J case
exhibiting triple points [21] and reentrant phase transitions
[22]. It would be interesting to explore the constantΩ phase
diagram in higher dimensions in more detail. Bose con-
densation of vortices at a critical angular velocity for
example could be a new phase when Ω ≠ 0.
There is much still to discover in this new picture of

black hole thermodynamics.
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FIG. 4 (color online). Curves of constant ~p in the ~s − ~t plane.
The lowest curve (green) is ~p ¼ 0. The the peaked curve (red)
whose maximum is tangent to the third isobaric curve is the
spinodal curve. The temperature of the phase transition is
calculated using the Maxwell equal area rule.
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