
 > RFIM Numéros > n° 4 - automne 2014

Numéros / n° 4 - automne 2014

« Faust Programs in Csound »

Victor Lazzarini

1. Introduction

Csound (Boulanger, 2000) is a Music-N language that was first released in 1986 as a C-port of the Music
11 language, originally developed for the DEC PDP-11 computers at MIT in the 1970s. Since its release,
it has undergone a number of changes, and in 2006, a completely re-engineered system, Csound 5, was
launched. This system had a number of new possibilities, as it was designed as a library that could be
embedded in a variety of environments. It also included the possibility of plugin opcodes, which would
extend the language without the need for the whole re-compilation of the code base. In 2013, a further
review of the system was carried out, and a new major version, Csound 6 (Cabrera et al., 2013), was
launched, with substantial improvements and additions. This is the current system, discussed in this
article.

Faust (Orlarey, 2009) is a functional language designed to translate signal processing flowcharts into C++
or Javascript source code, or into LLVM bitcode. It allows plugins to be designed and then translated to
C++ code that can be compiled into dynamic libraries, which can then be loaded into Csound as new unit
generators (opcodes). This is done by the Faust compiler, which can be executed from the command-line,
from the IDE Faustworks or on-line, via a web-based frontend.

Recently, however, a new version of the system, Faust 2, has been developed where the Faust compiler is
now provided as a library (libfaust) that can be embedded into another program. Libfaust can provide the
Faust functionality in a dynamic way, where Faust programs can be compiled on-the-fly into LLVM
bitcode that can be executed directly. This allows the possibility of short- circuiting the development
process, so that a plugin opcode is not required anymore as an in-between the original Faust program and
the running Unit generator in Csound.

2. Using the Faust library

There are three basic steps in the Faust dynamic compilation and performance:

1.
Compilation of Faust code into a DSP Factory.

2.
Instantiation of a DSP object from a DSP Factory.

3.
Performance of the DSP process.

The first step employs one of the two functions

llvm_dsp_factory*

createDSPFactoryFromFile(const std::string& filename, int argc,

http://www.mshparisnord.fr/
http://revues.mshparisnord.org/rfim

 > RFIM Numéros > n° 4 - automne 2014

const char *argv[],

const std::string& target,

std::string& error_msg, int opt_level = 3);

.

llvm_dsp_factory*

createDSPFactoryFromString(const std::string& name_app, const

std::string& dsp_content,

int argc, const char *argv[], const

std::string& target,

std::string& error_msg, int opt_level = 3);

They translate the Faust code into a bitcode form that resides in memory and is ready to be executed in a
program. In order to do so, we need to instantiate a DSP object from the factory:

llvm_dsp* createDSPInstance(llvm_dsp_factory* factory);

The DSP class has a number of public methods that can be used to manipulate it:

class llvm_dsp :public dsp {

public:
virtual int getNumInputs();
virtual int getNumOutputs();
virtual void init(int samplingFreq);
virtual void buildUserInterface(UI* inter);
virtual void compute(int count,

FAUSTFLOAT** input, FAUSTFLOAT** output);
};

Finally, with a DSP object created, we can execute it by invoking its compute() method. This will
consume a block of input samples and produce a block of output samples. To control the
synthesis/processing, we can also set controls via a user interface object of our own design. This can be
added to the functionality of the DSP object via the buildUserInterface() method. In the case of
Csound, this is used to pass control data from Csound to the Faust program.

3. The Opcodes

The Csound Faust opcodes (see The Csound Reference Manual) are built using the above functionality. In
order to facilitate their use, they split the steps into two: compilation and performance.

In Csound, initialisation and DSP performance are separated into two distinct phases. During the former,
all unit generators that have initialisation tasks to execute are run (once), and this is followed by the latter

http://www.mshparisnord.fr/
http://revues.mshparisnord.org/rfim

 > RFIM Numéros > n° 4 - automne 2014

phase, which is a loop that invokes the performing functions of each signal-processing opcodes. Some
opcodes do not have these functions, as they are not signal generators or consumers (or both). These
opcodes run only at initialisation time.

The compilation step in Faust is an eminently initialisation-time affair. It does not involve any
performance tasks (by which I mean signal processing). It makes sense to make it an init-time only
opcode. Separating it from a DSP performance opcode also allows any number of DSP objects to be
created from the same factory.

The performance aspect of the Faust integration is subdivided into two elements: signal processing and
controls, and exists in two separate opcodes. The signal processing part is only concerned in picking up
any input audio (if it exists), doing something it and passing it to the output. In order to do parameter
control, we use another opcode that can adjust a given user interface element defined in the DSP.

Finally, there is also an opcode that has been designed for single-instance DSPs, which integrates a
compilation phase at init-time and signal processing at perf-time. This opcode can be employed for
"one-off" effects that are not designed to be run in multiple instances.

3.1. Faustcompile

The faustcompile opcode invokes the just-in-time compiler to produce an instantiable DSP process
from a Faust program. It will compile a Faust program from a string, controlled by various arguments.
Multi-line strings are accepted, using {{ }} to enclose the string.

3.1.1. Syntax

ihandle faustcompile Scode, Sargs

Scode? a string (in double-quotes or enclosed by {{ }}) containing a Faust program.

Sargs? a string (in double-quotes or enclosed by {{ }}) containing Faust compiler args.

Example:

ihandle faustcompile "process=+;", ''-vec -lv 1"}

3.2. Faustaudio

The faustaudio opcode instantiates and runs a compiled Faust program. It will work with a program
compiled with faustcompile

ihandle,a1[,a2,...] faustaudio ifac[,ain1,...]

ifac? a handle to a compiled Faust program, produced by faustcompile

ihandle? a handle to the Faust DSP instance, which can be used to access its
controls with faustctl

ain1,...? input signals

http://www.mshparisnord.fr/
http://revues.mshparisnord.org/rfim

 > RFIM Numéros > n° 4 - automne 2014

a1,...? output signals

Example:

ifac faustcompile "process=+;", ''-vec -lv 1"

idsp,a1 faustaudio ifac,ain1,ain2

3.3. Faustctl

The faustctl opcode adjusts UI controls in a Faust DSP instance. It will set a given control in a
running Faust program.

3.3.1. Syntax

faustctl idsp,Scontrol,kval

Scontrol? a string containing the control name

dsp? a handle to an existing Faust DSP instance

kval? value to which the control will be set.

Example:

idsp,a1 faustgen {{

gain = hslider("vol",1,0,1,0.01);

process=(_ * gain);

}}, ain1

faustctl idsp, "vol", 0.5

3.4. Faustgen

The opcode faustgen compiles, instantiates and runs a compiled Faust program. It will invoke the
just-in-time compiler at i-time, and instantiate the DSP program. At perf-time, it will run the compiled
Faust code.

3.4.1. Syntax

ihandle,a1[,a2,...]faustgen SCode[,ain1,...]

http://www.mshparisnord.fr/
http://revues.mshparisnord.org/rfim

 > RFIM Numéros > n° 4 - automne 2014

Scode? a string containing a Faust program

ihandle? a handle to the Faust DSP instance, which can be used to access its controls with
faustctl

ain1,...?input signals

a1,...?outputsignals

Example:

idsp,a1 faustgen "process=+;",ain1,ain2

4. Applications

A number of applications can be envisaged for Csound (and its frontends) with the new Faust opcodes:

●

Synthesis: Csound can work as standalone software synthesiser, controlled by MIDI messages or by
OSC commands. It can be used by MIDI sequencing software as the system synthesiser, and Faust
programs can augment that. The classic CLI frontend, or any other frontend can be used for this.

●

Plugin instruments: The Cabbage frontend can be used to generate VSTi plu- gins from Csound
code. These can be loaded into any VST host program (such as sequencers, notation programs etc).
Plugins can be created from standard Csound code, with no need of any extensions.

●

Audio processor: Csound can be used as a realtime or offline audio processor.
●

For realtime operation, Cabbage and CsLadspa can be used to generate plugins that can be loaded
into VST or LADSPA hosts. The power of Faust can be used to augment Csound for the efficient
implementation of custom processing algorithms.

●

Custom software: Csound can also be used to create custom software applications, both for desktop
operating systems and mobile (android, iOS). It can be programmed from a variety of levels, from
the basic, top-level through Cabbage and csoundo, to middle-level, through Python, Clojure, Java,
to lower-level through C and C++.

5. Conclusions

In this paper, we introduced the possibility of embedding Faust programs directly into the Csound
orchestra. The details of the technology and its mechanisms have been explored, and we have shown how
the Faust library is used in a series of opcodes supplied in a plugin library to Csound. Each opcode has
been discussed separately and their syntax was presented. We conclude the exposition with a number of
envisaged applications for the technology.

Pour citer ce document:
Victor Lazzarini, « Faust Programs in Csound », RFIM [En ligne], Numéros, n° 4 - automne 2014, Mis à
jour le 14/10/2014
URL: http://revues.mshparisnord.org/rfim/index.php?id=361
Cet article est mis à disposition sous contrat Creative Commons

http://www.mshparisnord.fr/
http://revues.mshparisnord.org/rfim
http://revues.mshparisnord.org/rfim/index.php?id=361
http://creativecommons.org/licenses/by-nc-nd/2.0/fr/

	mshparisnord.org
	http://revues.mshparisnord.org/rfim/pdf/361.pdf

