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The error matrix is the most common way of expressing the accuracy of remote sensing image classifications,
such as land cover. However, it and the measures that can be calculated from it have been criticised for not
providing any indication of the spatial distribution of errors. Other research has identified the need for
methods to analyse the spatial non-stationarity of error and to visualise the spatial variation in classification
uncertainty. This research uses geographically weighted approaches to model the spatial variations in the ac-
curacy of both (crisp) Boolean and (soft) fuzzy land cover classes. Remotely sensed data were classified using

Keywords: f A ° . >
Remote sensing a maximum likelihood classifier and a fuzzy classifier to predict Boolean and fuzzy land cover classes respec-
Accuracy tively. Field data were collected at sub-pixel locations and used to generate soft and crisp validation data. A

Geographically Weighted Regression was used to analyse spatial variations in the relationships between ob-
servations of Boolean land cover in the field and land cover classified from remote sensing imagery. A geo-
graphically weighted difference measure was used to analyse spatial variations in fuzzy land cover
accuracy. Maps of the spatial distribution of accuracy were created for fuzzy and Boolean classes. This re-
search demonstrates that data collected as part of a standard remote sensing validation exercise can be
used to estimate mapped, spatial distributions of accuracy that would augment standard accuracy measures
reported in the error matrix. It suggests that geographically weighted approaches, and the spatially explicit
representations of accuracy they support, offer the opportunity to report land cover accuracy in a more infor-
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mative way.
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1. Introduction

Land cover information can be generated through the classification
of remotely sensed data. Areas or pixels with similar spectral character-
istics are allocated to classes or categories each of which represents a
different type of land cover feature. It is a process of generalisation,
and involves a number of choices about image type, resolution, number
and types of classes, training sites, etc. (Campbell, 2007). Assessing map
accuracy in an objective manner is fundamental to most land cover
mapping projects (Foody, 2002; Strahler et al., 2006). The accepted
paradigm for doing this is through comparison with some alternative
data in order to determine measures of accuracy which “express the
degree of ‘correctness’ of a map or classification” (Foody, 2002, p186).
Determining the accuracy of land cover classified from remotely sensed
data is important. Land cover is an input into environmental models in-
corporating land-atmosphere interactions (GLP, 2005) and land cover
change is a major variable in climate change analyses (Feddema et al.,
2005). In this context, accuracy descriptions can help the user to assess
the uncertainties associated with incorporating land cover data into
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their model or to decide between land cover datasets, especially
where there is a choice between data with different thematic or spatial
characteristics (See & Fritz, 2006). Thus accuracy is one of the key as-
pects of any remotely sensed data product.

The most common approach for assessing thematic map accuracy
is to compare the classified land cover with alternative but spatially
and temporally coincident data, which are considered to be of higher
accuracy. A sample of the land cover data created by the remote sens-
ing analysis (here referred to as ‘classified’ data) is compared against
some validation data (here referred to as ‘reference’ data). The
resulting cross tabulation of classified data against reference data is
commonly known as the error matrix, but in the literature is also
called the confusion, contingency or validation matrix. The cross tabula-
tion provided by the error matrix allows a number of standard
reporting measures to be calculated including overall accuracy as
well as user's and producer's accuracies (Congalton, 1991; Congalton
& Green, 1999). These accuracy statistics provide measures of the reli-
ability of the classified data and the degree (but not spatial extent) to
which they are correct. Therefore the appropriateness of the informa-
tion conveyed by the error matrix may be limited when specific local
conditions vary, for example when non-stationary error distributions
occur, or in the presence of heteroscedastic residual distributions —
i.e. when sub-sets of the data vary from the overall trend (Stehman,
2000, 2006).
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There are two related limitations associated with accuracy assess-
ments and error summaries calculated from the error matrix
(McGwire & Fisher, 2001):

1) The error matrix and the accuracy measures it supports provide no
information about the spatial distribution of error;

2) The overall accuracy measures derived from the error matrix may
be inappropriate for sub-regions, where local error rates may be
much larger or smaller than the global measures.

Overcoming such problems is important because many users of
land cover data may be interested only in a particular subset of the
data, either relating to a specific locale or to specific classes.

Some work in the remote sensing literature has explored the spatial
distribution of different types of error and methods for reporting it.
Campbell (1981) compared Landsat multispectral scanner images in
the same growing season and found that misclassified pixels tended
to be clustered. Congalton (1988) applied a Getis and Ord approach to
analyse join count statistics to compare two datasets. Steele et al.
(1998) used kriging to provide an optimal interpolation of map error.
McGwire and Fisher (2001) recommended the use of Monte Carlo ap-
proaches to model the spatial distribution of errors. Some more recent
research has examined the variability or non-stationarity of the distri-
bution of errors. Riemann et al. (2010) describe a number of metrics
for characterising the accuracy of spatial data that are dependent on ref-
erence data properties and Foody (2005) estimated local accuracy mea-
sures by interpolating the outputs of confusion matrices calculated at
regular spaced intervals. Current validation and accuracy techniques
in remote sensing have largely ignored the advances supported by
such methods.

This research is in the spirit of Foody (2005). It uses Geographically
Weighted Regression (GWR), a statistical method that explicitly deals
with spatial non-stationarity (Brunsdon et al., 1996; Fotheringham
et al,, 2002), and a geographically weighted difference measure to
analyse the spatial variations in the relationship between reference
data and classified data for Boolean and fuzzy classes respectively.
Geographically weighted approaches estimate spatially distributed
measures of accuracy that are more informative than those provided
by the confusion matrix. The paper proceeds as follows. Section 2 de-
scribes some of the scientific background to error matrices and their
use in Boolean and fuzzy classifications. The methods and GWR are de-
scribed in Section 3. Section 4 presents the results before a discussion
of the issues arising from this research (Section 5) and some conclu-
sions are drawn (Section 6).

2. Background

It is typical for the quality of spatial data such as land cover from
remotely sensed imagery to be described using measures of thematic
accuracy. The origins of the requirement of at least 85% thematic map
accuracy can be traced back to Anderson (1971). Although the scien-
tific basis for this accuracy level has been criticised (Congalton &
Green, 1999; Pontius & Millones, 2011), it is historically related to
land information being used for taxation assessments (Fisher, 1991;
Fisher et al., 2002). Attribute accuracy is included in the major stan-
dards for spatial data quality reporting and metadata (Comber et al.,
2008). Post classification comparisons of thematic data using the
error matrix are the accepted method for describing the attribute ac-
curacy of land cover classified from remotely sensed data.

One of the key issues associated with the error matrix relates to
the use of crisp, Boolean data. Many of the key developments associ-
ated with confusion matrices and the measures of accuracy they sup-
port, are predicated on per pixel comparisons between reference and
classified data. Analyses of crisp land cover classes are facilitated by
the per pixel comparison embedded in the confusion matrix. It is be-
coming increasingly recognised within the remote sensing research
community that soft classifications can provide a more representative

model of the real world (Arnot & Fisher, 2007; Dronova et al., 2011;
Fisher, 2010; Oldeland et al., 2011; Phillips et al., 2011; Rocchini,
2010). They allow some of the uncertainty associated with a pixel
view of the world (Fisher, 1997) to be explicitly accommodated in
the outputs of remote sensing analyses. In fuzzy classifications pixels
can have partial memberships to different classes and the assumption
of crisp membership embedded in the error matrix may be inappro-
priate. A number of extensions to the error matrix have been pro-
posed by different authors, a selection of which is reviewed below.

Methods for assessing the accuracy of fuzzy classifications were
suggested by Fisher and Pathirana (1991) based on estimating the
portions of any pixel occupied by candidate land covers and were ex-
tended by Lewis and Brown (2001). Gopal and Woodcock (1994)
suggested a fuzzy error matrix that incorporated linguistic descrip-
tors to evaluate the land cover attributes associated with each sample
location against each category in the classification scheme. Woodcock
and Gopal (2000) illustrated the application of this method. The de-
scriptors were used to calculate a set of discrete membership values
to each map class at each sample site, which were then compared
with fuzzy memberships extracted from remotely sensed data.
Pontius and Cheuk (2006) developed this approach to describe an ex-
tended fuzzy error matrix that compared reference and classified
fuzzy memberships. Their matrix contained multiple entries at each
cell in the cross tabulation, describing the results of applying Boolean,
Multiplication, Minimum and Composite operators. In particular they
emphasised the applicability of the composite operator for multiple
resolution analysis. More recently Lowry et al. (2008) extended the
Gopal and Woodcock (1994) method and developed an approach
that considered the off-diagonal elements in a fuzzy error matrix
using a decision framework incorporating sets of rules, criteria and
contexts within which class similarities are evaluated.

A second major reservation in relation to the error matrix is that is
does not deal with geographic space very well. Foody (2005, p1218)
says “The confusion matrix and the estimates of classification accuracy
derived from it provide no information on the spatial distribution of
error”. The error matrix has been adopted as both the de facto and the
de jure standard; the way to report on the accuracy of any remotely
sensed data product. However, it does not allow the spatial distribution
of errors to be described or reported, despite these having been found to
be spatially autocorrelated in many studies over a long period of time.
Some early examples include Campbell (1981), Labovitz (1984),
Congalton (1988) and more recent examples can be found in Chen
and Wei (2009) and Gonzalez et al. (2010). The implications of the spa-
tial autocorrelation of errors are that different sub-regions of the study
area will have different accuracies (e.g. Loveland et al., 1999; McGwire
& Fisher, 2001) due to systematic errors associated with sensor, to the
properties of the classes under investigation or because of the nature
of the landscape, which the error matrix is unable to communicate.
More recent research has considered the spatial information that can
be obtained from the error matrix. Pontius and Millones (2011) show
how the marginal totals can be used to estimate the quantity disagree-
ment, whilst entries within the matrix are needed to compute allocation
disagreement. Thus, although the error matrix and the typical measures
that are calculated from it are aspatial and provide no information on
the spatial distribution of error, some recent work has started to explore
these issues in greater depth.

GWR has been used in some remote sensing research. Foody
(2003) used GWR to analyse the relationship between normalized
difference vegetation index (e.g. Richards, 1993), and rainfall and
illustrated the extent to which global regression models provided
poor local descriptions of the relationship. Similarly Wang et al.
(2005) used GWR to examine the relationships between net primary
production and a range of environmental variables. They noted that
GWR made better predictions than ordinary least squares regression
due to the spatial autocorrelation of the features under observation.
Foody (2005) developed local accuracy descriptions using a moving
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window to derive local estimates of thematic classification accuracy.
Local confusion matrices were calculated from the nearest 150 out
of 1000 sample points at 48 locations evenly distributed across the
study area. Accuracy surfaces were estimated from these locations
using an inverse distance squared interpolation algorithm, reporting
for example the user's accuracy for winter wheat and so on. Three in-
teresting and salient aspects of Foody's research were the use of a
large number of sample points in a small area (and Foody notes that
local accuracy assessment may not be appropriate in circumstances
where the number of sample points was low), the use of a fixed win-
dow (compared to the dynamically optimised one described below),
and second the lack of any distance weighting — all of the 150 points
contributed equally to the result at each location.

This research builds on Foody's, 2005 work and extends the use of
explicitly geographical approaches to remote sensing accuracy as-
sessment. It addresses two long-standing gaps in the analysis and
communication of error in thematic land cover data. First, it uses geo-
graphically weighted methods to describe the varying spatial relation-
ship between reference and classified land cover classes to for
Boolean and fuzzy class assignments. Second, it uses these methods
to determine the non-stationarity of errors to show how they vary
discontinuously (McGwire & Fisher, 2001) and to visualise spatial
variations in classification errors (Foody, 2002).

3. Methods
3.1. Data and study area

The area of the present study is located in the north western part
of Libya in Jifara Plain, around Tripoli. Satellite imagery from the
Systéme Pour 1'Observation de la Terre (SPOT) 5 sensor from 2009
was resampled to 30 mx 30 m as part of a wider study examining
land cover changes using Landsat data from 1976, 1989 and 2005. It
was classified into 6 classes: Urban, Woodland, Vegetation, Grazing
Land and Bare areas and Water. Water was not a focus for this re-
search. The class descriptions are shown in Table 1. Two supervised
classifications were generated: a standard, crisp Boolean classification
using the maximum likelihood classifier in Idrisi (the Maxlike mod-
ule), and a fuzzy classification model using the fuzzy c-Means de-
scribed in Wang (1990) as implemented in the Fuzclass module in
Idrisi. Fuzzy c-Means defines fuzzy class memberships based on dis-
tance to the class centroid as defined by the mean of all points,
weighted by their degree of belonging to the class. Both classifications
used the same training data.

In classic set theory an object can be assigned values of only
0 (non-membership) or 1 (membership) to each element x of a univer-
sal set X to indicate whether that object belongs to a certain crisp, Bool-
ean set A. In Fuzzy Set theory this is generalized into the membership
function, which allows for the assignment of a value in the range [0,1]
to each element x of the universal set, corresponding to grades of

Table 1
Land cover class descriptions.

Classes Descriptions of land cover classes

Urban Areas characterised by buildings, asphalt, concrete, and
artificial surfaces.

Woodland Land dominated by trees, including natural woodland and
woody plantations.

Grazing Land Areas where herbivores feed on plants; any vegetated land such
as small shrubs that is grazed or that has the potential to be
grazed by animals.

Vegetation All other types of vegetation, including shrubs, and crops,
whether irrigated or rainfed.

Bare area Areas of bare rock, sand, silt, gravel or other earthen material
with little or no vegetation including beaches and sandy areas.

Water All types of water such as sea and lakes.

membership of element x to the Fuzzy Set A (Klir & Yuan, 1995). The
use of Fuzzy Sets in remote sensing is described by Fisher and
Pathirana (1991) and by Foody (1996). This approach calculates a de-
gree of membership to each class for each pixel in the range [0,1] as de-
fined by the training data and a similarity relation model.

A validation dataset was collected by field survey. The study area
was divided into 21 blocks of approximately 100 km? and 10 sample
locations in each block were selected randomly. Thus, sampling loca-
tions were identified using a spatially stratified random scheme. Each
sample location represented a pixel. At each sample location the
overall land cover class and the land cover at 16 points in a 4x4
grid within a 30 m x 30 m area were recorded. Precise sub-pixel loca-
tions were established using differential GPS. The sub-pixel measures
of land cover were combined to create fuzzy memberships to the dif-
ferent land cover classes for each pixel location. Consequently the
fuzzy data collected in the field at the validation locations were
limited to only one of 17 values between 0 and 1 (0/16, 1/16, 2/16,
3/16 ...16/16), whereas the fuzzy classification of remotely sensed
data were allowed to take any value between 0 and 1. The reference
data points and their locations are shown in Fig. 1. The spatial distri-
bution of the Boolean data, the fuzzy memberships as determined
from the remotely sensed data and as observed in the field are
shown in Fig. 2 for each land cover class.

For the analysis of the Boolean data, a geographically weighted lo-
gistic regression analysed binary data indicating the presence (1) or
absence (0) of a particular land cover class for both reference (valida-
tion) and classified land cover. For the analysis of the fuzzy data, a
geographically weighted difference analysis compared fuzzy mem-
bership values in the range [0,1] of the fuzzy reference and the classi-
fied land cover. In the geographically weighted analyses described
below, spatially distributed estimates of the coefficients (Boolean)
and of the mean differences (fuzzy) were calculated to describe the
relationships between classified and reference validation data.

3.2. Geographical analysis

Geographically weighted approaches were used to analyse the
spatial variations in the relationships between the reference data col-
lected in the field and classified data from the remote sensing analy-
sis. A 'geographically weighted' approach is one that uses a moving
window or kernel and applies a distance weighting to the data. A
Geographically Weighted Regression computes local estimates of
the regression coefficients from the distance weighted data under
the kernel at locations throughout the study area. Linear regression
is used in many areas of science and implicitly assumes spatial sta-
tionarity of the relationships identified in the analysis — it assumes
that the relationships between the variables remain constant over
geographical space. When a relationship (or pattern) that applies in
one region does not apply in another, spatial non-stationarity is said
to occur. GWR accommodates the possibility that relationships vary
over geographical space by allowing regression coefficient estimates
to vary with location and the relative likelihood of a correct predic-
tion to change spatially. A full description of GWR can be found in
Fotheringham et al. (2002) and Brunsdon et al. (1996), but the gener-
ic process is summarised here.

3.2.1. Boolean accuracy

In overview, the approach was to logistically regress the reference
Boolean class (dependent variable) on the classified Boolean class
(independent variable). This was carried out for each class.

The logit function is defined by:

l0Bit(Q) = 1 "o (1)

where Q is any value.



240 A. Comber et al. / Remote Sensing of Environment 127 (2012) 237-246

N
! 5000 __ 10000 m

Fig. 1. The study area in Libya, around the port of Tripoli (red circle in the North), and the location of the 210 reference data sites.
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Fig. 2. The data collected in the field and classified from remotely sensed (RS) data. In the Boolean maps, solid symbols (®) indicate where both Field and RS agree, hollow circles
(O) where only the RS indicates the class and crosses (+) where only field survey indicates the class. In the maps of fuzzy classes, the size of the plot characters indicates the degree
of membership to the class.
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The logistic Geographically Weighted Regressions were calculated
as follows:

priyi = 1) = logit(bo, v, + bixi,y,) )

where pr(y;=1) is the probability that the reference Boolean class is
present, x;; is the explanatory or independent variable (the presence
of the classified Boolean class) and the coefficient estimates for the
explanatory variable are assumed to vary across the two-dimensional
geographical space defined by the coordinates (u, v). Thus the coeffi-
cient estimates in the logistic GWR can be considered as functions of
these coordinates, rather than constants.

In contrast to global models where processes are assumed to be
stationary (i.e. location invariant), local models are spatial disaggre-
gations of global models, the results of which are location-specific.
So, the template of GWR is similar to an ordinary logistic regression
model but the coefficient estimates are allowed to vary geographical-
ly using a kernel function. A moving window allows a local regression
analysis to be computed at each location with points that are further
away from the specific location under consideration contributing less
to the solution. That is, a weighted regression is carried out where the
weight, w;, associated with each location (u;v;) is a decreasing func-
tion of d;, the distance from the centre of the window to (u;v;):

w; = h?

0 otherwise

ifd; < h 3)

where h is known as the bandwidth of the GWR calibration. In this
way the weights associated with each location change depending on
the location for which a prediction is to be calculated.

The kernel function defines the data and weights that are used to
calibrate the model at each location. The bandwidth may be varied to
ensure that enough data points are used in the calibration to minimise
the cross validation prediction error. Usually the number of data points
is a trade-off between working with a dataset that is too small to cali-
brate the local model reliably and too big to avoid averaging out local
effects. In this case, the bandwidth was selected automatically by
leave-one-out cross validation, which finds a bandwidth for a given
geographically weighted analysis by optimising the ability of the GWR
(Eq. 2) and geographically weighted difference (Eq. 5 below) analyses
to predict each individual reference value when it has been removed
from the dataset. Further details on bandwidth selection can be found
in Fotheringham et al. (2002). The bandwidths for the Boolean and
fuzzy analyses were adaptively defined to determine the number of
data points required to minimise the cross validation prediction error.
For example, the Boolean class of Urban required a bandwidth that in-
cluded 9.0% of the total number of data points and the fuzzy class of
Grazing Land a bandwidth that incorporated 6.2% of them. Thus, by
allowing bandwidths to vary, by using spatially dependent weights
and by computing estimates of the regression coefficients locally,
GWR is an approach that addresses spatial non-stationarity. It reflects
one of the fundamental tenets of geographical analyses by operating
under the assumption that the effect of the explanatory variables on
the dependent variable will vary continuously over space.

The probabilities of correctly identifying Boolean reference class,
y, given the classified data, x, were estimated as follows:

pr(y =x) =pr(y =1x=1)pr(x =1) + pr(y = O)x = O)pr(x = 0) ~ (4)

where a value of 0 denotes the absence of that class and 1 denotes the
presence for both x and y, and pr(statement 1|statement 2) denotes the
probability that statement 1 is true given that statement 2 is true.
Therefore the right hand side of Eq. (4) denotes the probability that
the reference and classified Boolean statements agree. In this case
the terms pr(y=1|x=1) and pr(y =0|x=0) were estimated using

the values obtained in Eq. (2). The terms pr(x=0), the proportion
of cases for which x=0, and pr(x=1), the proportion of cases for
which x =1, were determined from the Boolean data from the counts
of the number of times the class was either 0 or 1. Note that because a
geographically weighted approach was used, a different value for
pr(y=x) is associated with each location (u, v).

This is a portmanteau measure of accuracy that includes both
specificity and sensitivity — i.e. the probability that that either the
presence or absence of a particular land cover class is correctly classi-
fied. This is further illustrated by consideration of Table 2, where n;,
ny, n3 and ny represent the full set of probabilities at each location,
as estimated by the geographically weighted approach. Whilst user's
accuracy is ny/(n;+ny) and producer's accuracy is n;/(n; +ns), in
this case we are measuring portmanteau accuracy using (n;+ny)/
(n;+ny+n3+ny,). Thus portmanteau accuracy describes the overall
accuracy when the data are collapsed to two classes, the land cover
type of interest, and all other land cover types combined into a single
class. Although global measures of portmanteau accuracy could be
computed without using logistic regression, specifying the model
using GWR allows spatial variations in accuracy to be identified.

3.2.2. Fuzzy accuracy

A fuzzy geographically weighted difference analysis for each land
cover class was applied under the following logic: y is the fuzzy mem-
bership of the reference data based on observation in the field and x is
the fuzzy membership of the classified data from the remote sensing
analysis. Now consider classified and reference fuzzy membership
values to a given class at a given location: the difference measure is
defined to be the absolute difference, D between the two fuzzy mem-
berships:

D(u,v) = abs <y(u.v) _x(u,v)) (5)

where y; is the reference fuzzy membership, x;; is the classified fuzzy
membership and (u, v) the two-dimensional geographical space. Note
that if all membership functions were Boolean, such that y and x can
only take values 1 and 0, then D also only takes values 1 and 0, and
that if these are interpreted as true and false respectively, then this
corresponds to the membership of the Boolean set of locations
where the two classifications disagree. Thus, the quantity D defined
above can be thought of as a fuzzy generalisation of the Boolean situ-
ation described in Section 3.2.1. As D can take any value in the range
0 to 1, with O corresponding to a crisp classification of agreement and
1 corresponding to a crisp classification of disagreement between
reference and classified land classes, it can be thought of as a fuzzy
measure of accuracy.

Having defined this measure of accuracy, it is now necessary to con-
sider spatial patterns in the levels of accuracy. One approach is to com-
pute a surface of weighted moving window means of D, whose weights
use the same kernel as defined in Eq. (3) in a similar manner to GWR —
see for example Brunsdon et al. (2002). This surface can then be used to
visualise spatial trends in the fuzzy accuracy measure.

All of the statistical analysis and mapping were implemented in R
version 2.15.1, the open source statistical software http://cran.r-
project.org. The spgwr library was used to perform the geographically
weighted analyses. The maps were created with the GISTools library.
The data and code developed for this analysis will be provided to in-
terested researchers on request.

Table 2
The 2-class error matrix suggested by the probabilities in Eq. (4).

Reference true (y=1) Reference false (y=0)

Classified true (x=1) n; n,
Classified false (x=0) ns ny
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Table 3
Error matrix comparing reference and classified Boolean land cover.

Reference

Classified Bare Grazing Urban Vegetation Woodland Total User

Land

Bare 18 8 7 2 4 39 0.46
Grazing Land 3 23 3 8 6 43 0.53
Urban 0 0 27 1 2 30 0.90
Vegetation 0 4 7 31 5 47 0.66
Woodland 0 4 2 18 27 51 0.53
Total 21 39 46 60 44 0.60 Overall
Producer 0.86 0.59 0.59 0.52 0.61

Table 4
A summary of the variation portmanteau accuracies — i.e. the probability that the presence
or absence of each class is correctly predicted in the reference data.

Class Min. 1stQu. Median Mean 3rdQu. Max. IQR

Bare 0.883  0.883 0.885 0.885  0.887 0.888  0.004
Grazing Land  0.741  0.803 0.819 0.829 0.864 0.931 0.060
Urban 0.776  0.852 0.905 0.898  0.937 0.996 0.086

Vegetation 0.785  0.787 0.787 0.788  0.788 0.790  0.002
Woodland 0.800 0.802 0.809 0.807 0.811 0.812  0.009

4. Results

The validation data were used to construct a standard error matrix
(Table 3). The crisp, Boolean data allow a straightforward comparison
between data classified from the remote sensing imagery and the ref-
erence data collected in the field, as well as user's and producer's
accuracies to be calculated. Whilst it is evident that some classes are
more reliably classified than others, the table provides no information
about the spatial distribution of either overall error or errors for dif-
ferent classes.

4.1. Boolean accuracy

A geographically weighted logistic regression was used to explore
the spatial variation in the relationship between reference and classi-
fied Boolean data. Summaries of the portmanteau accuracy of Boolean
classes using Eq. (4) are shown in Table 4, where the minimum, me-
dian, maximum and 1st and 3rd quartiles of the probabilities of the
class predictions being correct are reported, together with the global

under 0.8
0.8100.85
0.85t0 0.9
0.9100.95
over 0.95

g

EERODOO

Urban

Table 5
A summary of the variation of the mean differences between reference and classified
fuzzy classes.

Class Min. 1stQu. Median  3rdQu. Max. Global  IQR

Bare 0.158 0.158 0.159 0.160 0.160  0.159 0.002
Grazing Land  0.058 0.137 0.192 0.237 0304 0.178 0.100
Urban 0.022  0.057 0.089 0.141 0299 0.110 0.084
Vegetation 0.173  0.179 0.192 0.203 0211 0.191 0.024
Woodland 0.161 0.163 0.163 0.164 0.165 0.164 0.001

value and the inter-quartile range (IQR). These show two things: the
probabilities that the reference data are correctly predicted by the
Boolean remote sensing classification and the variation of these prob-
abilities. The IQR gives an indication of the overall spatial variation in
these accuracies. Table 4 shows that there are greater spatial varia-
tions in the relationships between classified and reference data for
the Urban and Grazing Land classes highlighted in bold. The map-
pings in Fig. 3 illustrate these variations.

4.2. Fuzzy accuracy

A geographically weighted difference analysis was used to examine
the spatial variation in the difference between reference and classified
fuzzy memberships. Table 5 shows the variations in these differences
for each class. The low numbers in Table 5 indicate that the differences
between the classified and reference fuzzy classes are quite small, and
similar to the Boolean results the greatest variation was found for the
classes of Urban and Grazing Land, highlighted in bold. By subtracting
the differences from unity, the accuracies were determined and Fig. 4
shows the spatial variations in accuracy.

4.3. Summary of results

The spatial distributions of Boolean portmanteau accuracy and fuzzy
difference for the Urban and Grazing Land classes in Figs. 3 and 4 are
closely linked to the spatial pattern of those land cover classes in the ref-
erence and classified data. Consider the situation where a class is absent
over a part of the study area (i.e. no membership to the fuzzy or Boolean
set of either the classified or the reference data), then the ‘error’ of the
classified data relative to the reference data (either probability or differ-
ence) would be low. This can be seen to the south for the Urban class
and to the North for the Grazing Land class in Fig. 5.
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Fig. 3. The spatial distribution of portmanteau accuracies for Urban and Grazing Land.
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Fig. 4. The spatial distributions of the accuracies of fuzzy Urban and Grazing Land.

5. Discussion

The major contributions of this research relate to the development
of 1) spatially distributed measures of accuracy using a kernel and dis-
tance weighting in geographically weighted accuracy measures; 2) a
portmanteau accuracy measure for Boolean land cover data; and 3) a
fuzzy difference measure to describe the accuracy of fuzzy classifica-
tions. The outputs of the Boolean analysis, using a portmanteau mea-
sure of accuracy, indicate the spatial variation in the extent to which
the reference classes in the field were predicted by the remote sensing
analysis. They describe the spatial variations in the probability of cor-
rectly identifying reference field values, given the classified data. The
outputs of the fuzzy analysis, using a geographically weighted differ-
ence measure, provide spatially distributed measures of fuzzy predic-
tion accuracy. Figs. 3 and 4 show broadly similar patterns for Boolean
and fuzzy accuracy for the class of Urban and of Grazing Land, but
with subtle local differences in each case, reflecting the different classi-
fication approaches.

The geographically weighted approach uses a kernel, defined in
Eq. (3), in a similar way to Foody (2005) but with a number of critical
differences. Foody analysed a dataset with 1000 validation points, com-
pared to the 210 used in this study. From this, he computed local confu-
sion matrices at 48 locations regularly distributed in the study area.
Thus Foody's method arbitrarily partitions the study area into a fixed
set of equal-sized sub-regions, computes accuracy for each sub-region,
and then spatially interpolates over those sub-regions. Foody's analysis
was ‘geographical’ in that he used the nearest 150 validation points to
calculate the local confusion matrices and user and producer accuracy,
but the effect of the distance of the validation point from the centre of
the window was not taken into account. Whereas the method proposed
in this study is ‘geographically weighted’ as it allows for the fact that the
more distant observations may be of less local relevance. This means
that in the presence of trends, where more peripheral points may reflect
different levels of accuracy, their influence is weighted accordingly. In
this way the application of geographically weighted methods in this re-
search extends Foody's approach and reflects his observation that infor-
mation on local accuracy can be calculated “at no extra cost to the
analysis other than a small amount of time and effort” (p. 1226) from
standard validation data.

Geographically explicit (i.e. local) analyses of the spatial accuracy of
land cover classified from remotely sensed data have not been widely
reported, despite books and conferences of this name originating from
the remote sensing community, as well as research in other areas that
have reported the spatial distribution of errors (Oksanen and
Sarjakoski (2007) considered DEMs, for example). Evidence for this
statement can be found in a review of the scientific literature of recent

research and in the standards for spatial data quality reporting, where
spatially static protocols for data quality metadata persist in all the
major standards (OGC, ISO and Dublin Core). In part this situation may
be driven by a lack of demand for spatially more informative descrip-
tions of error and accuracy and it may also be that such developments
have not been offered as a possibility by methodology researchers. The
error matrix is the accepted paradigm for reporting the accuracy of the-
matic maps and a number of observations relating to the aspatial nature
of the error matrix were made earlier in this paper. The static accuracy
measures supported by the error matrix reflect a cartographic legacy
of paper map production rather than digital mapping (Fisher, 1998).
However, historically in cartography it was also a common practice to
include small inset maps of reliability to report accuracy related infor-
mation. This is particularly evident in thematic soil mapping. One exam-
ple is the FAO/UNESCO Soil Map of the World (e.g. Volume V1-2 Africa),
where small inset maps show whether information originates from
“Systematic soil survey”, “Soil reconnaissance” or from “General Infor-
mation with local soil observations”. The most reliable information is
from the first of these and the last produces the least reliable. The oppor-
tunities offered by such paradigms have been ignored in the digital
revolution: they may no longer be perceived to be relevant to digital
products or to the way that they are used and treated. In part this may
be related to the way that land cover products are commissioned:
many land cover mapping projects are required to specify a minimum
level of overall error, with an implicit assumption that it is evenly dis-
tributed. The methods described in this article estimates spatial distri-
butions of accuracy and these offer the opportunity for more nuanced
specifications of accuracy, for example a proportion of the area within
ranges of acceptable error.

This research does not seek to overcome all of the shortcomings in
the error matrix. Rather, this research explored spatially explicit
methods for reporting accuracy using geographically weighted statis-
tical methods to identify spatial variations in the relationship be-
tween classified and reference data. The maps in Figs. 3-5 provide
spatial information on the distribution and variation in accuracy.
They are not accompanied by standard errors, which may be high if
a fixed kernel size is used (it was not in this research) because the ac-
curacy at any given location is calculated from the sample observa-
tions defined by the kernel. Under a fixed kernel the number of
sample observations may be small. However, the ability to estimate
spatially explicit measures of accuracy and error from data collected
as part of validation exercise, suggests that maps of the distribution
of accuracy could accompany confusion matrices.

The spatially explicit outputs that can be produced using geo-
graphically weighted approaches indicate the potential advantages
of including the results of any validation exercise along with the
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Fig. 5. The spatial variation of accuracies as in Figs. 3 and 4, but with the classified and reference data points. In the Boolean maps, solid symbols (®) indicate where they both agree,
hollow circles (O) where only the data classified by remote sensing indicates the class and crosses (+) where only the reference data from the field survey indicates the class. In the
maps of fuzzy classes, the size of the plot characters indicates the degree of membership to the class.

land cover data product. McGwire and Fisher (2001) commented that
“the expansion of error documentation methods may include the ad-
dition of a spatial error summary in the product metadata, including
at the least both the coordinates and the attribute data that were
used in the standard product validation” (p328). Such practice,
in combination with the methods described in this paper, would
allow data users to explore the spatial distribution of errors and the

relationships between classes relative to their intended uses of the
data. It would provide opportunities for users to apply dynamic anal-
yses of such metadata as suggested by Comber et al. (2008). Finally,
the methods introduced in this paper and by Foody (2005) support
a potential methodological shift in the way that land cover error
and validation are reported away from static, aspatial measures of ac-
curacy, towards ones which are geographically explicit. Portmanteau
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accuracies provide an alternative to user/producer accuracies, and the
spatial variation in absolute fuzzy difference obviates the need for
fuzzy confusion matrices.

6. Conclusions

This research uses geographically weighted approaches to describe
the spatial variation in the accuracy of Boolean and fuzzy classifications
of remotely sensed data. It proposes a portmanteau approach to de-
scribe Boolean land cover accuracy and fuzzy difference measures to de-
scribe the accuracy of fuzzy land cover. It addresses two long-standing
gaps in the analysis and communication of accuracy and error land
cover. First, by analysing the spatial distribution of errors it provides a
better understanding of non-stationarity in land cover errors, which fre-
quently vary in a discontinuous manner, than can be determined
from the confusion matrix. Second, it uses a geographically weighted
approach to estimate the spatial variation in classification accuracy,
which can be mapped as accompaniments to the classification. Addi-
tionally, generic geographically weighted approaches - computing
local measures under a kernel with a distance weighting - could be
used for any statistic or calculation. Such approaches would better re-
flect Tobler's 1st law of geography: “Everything is related to everything
else, but near things are more related than distant things” (Tobler, 1970,
p236). Finally, the geographically weighted approaches using a moving
window or kernel described in this research suggest potential advance-
ments in the way that accuracy and error in spatial datasets are de-
scribed. Spatially explicit measures of accuracy are more informative
precisely because they are spatial and provide greater support to user
assessments of data accuracy than the global measures derived from
the confusion matrix. The research presented in this paper suggests
that perhaps it is time to reconsider current thinking around the
reporting of accuracy and error associated with remote sensing.
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