PHYSICAL REVIEW E, VOLUME 65, 057103
One-dimensional Potts model, Lee-Yang edges, and chaos
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It is known that the exact renormalization transformations for the one-dimensional Ising model in a field can
be cast in the form of the logistic md§x) =4x(1—x) with x a function of the Ising coupling& andh. The
locus of the Lee-Yang zeros for the one-dimensional Ising model itKtheplane is given by the Julia set of
the logistic map. In this paper we show that the one-dimensigisthte Potts model fog=1 also displays
such behavior. A suitable combination of couplings, which reduces to the Ising cage-forcan again be
used to define am satisfying f(x) =4x(1—x). The Lee-Yang zeros no longer lie on the unit circle in the
complexz=e" plane forq# 2, but their locus still maps onto the Julia set of the logistic map.
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I. INTRODUCTION: ISING MODEL which defines the Lee-Yang edge singularity exponent
This also impliesM ~ (68— 6,)“. Various finite size scaling
Yang and Led1,2], later followed by various other au- relations relate the Lee-Yang exponent to the other critical
thors[3], provided an important paradigm for understandingexponentg5].
the nature of phase transitions by looking at the behavior of At first sight there is no apparent reason why the Lee-
spin models incomplexexternal fields. They observed that Yang edge singularity should bear any relation to the onset of
the partition function of a system above its critical tempera-chaotic behavior and Julia sets for nonlinear maps. However,
ture T, was nonzero throughout some neighborhood of thehe relation is well known in the case of spin models on
real axis in the complex external field plane. As-T_ the  hierarchicalfractal lattices[6], where exact renormalization
end points of loci of zeros moved in to pinch the real axis,group (RG) transformations exist. It was realized that the
signalling the transition. When such end points occur at nonJulia sets of the renormalization group transformations gave
physical(i.e., complex external field values they can be con- the boundaries of the basins of attractigne., complex ex-
sidered as ordinary critical points with an associated edgéended phasg®f the high and low temperature attractors in
critical exponent. This appealing picture was later extende¢he complex temperature plane and hence determined the

by Fisher to temperature driven transitidis. loci of partition function zeros for such models. The idea has
On any finite graptG, with n vertices the free energy of also been applied using an approximate renormalization
an Ising-like spin model can be written as group transformation to the two-dimension&D) Ising

model on a square lattice and the two circles of Fisher zeros
were recovered7]. This picture of partition function zeros
arising as complex temperature or field phase boundaries
also ties in nicely with the recent work of Biskugt al. [8]

who investigated Lee-Yang singularities in a general class of
models with first-order transitions.

where the fugacityz=exp(), and h is the (possibly com- In this paper we look at another class of model with an
plex) external field. The,(3) are the Lee-Yang zeros, which exact renormalization group transformation, the 1D Potts
in the thermodynamic limit often condense on curves in themodel, and show that the Julia set of this transformation also
complexz plane. In the infinite volume limih—o the free  gives the partition function zeros. The work reported in this

F(Gn,B,2)= —nh—lnk[[1 [z—2z(B)], (1)

energy per spin is paper extends the earlier observations of one of the authors
on the 1D Ising model in Ref.9], which we now briefly
- review for completeness. The partition function for the 1D
F(GW,B,Z)=—h—f dgp(ﬂ,g)m(z_ei@), 2) Ising model is given by
N N
where p(B,6) is the density of the zeros, which can be ZN(K’h):{Z‘} ex;{ szl Ui"i+1+hj21 Ol (4)

shown to appear on the unit circle in the compteplane in
the Ising caséthe Lee-Yang circle theoremFor T>T, or, if . . .
one preg‘ersﬁi/i’c, there g a gap Witrp{z:, 6)=0 fcor 0] whereK=J/kT andh=!—|/I§T, with J thg spin coupling and .
<6, and at these edge singularities we have H the extgrnal magnetic field, and periodic poundary condi-
tions requireoy . 1=04. The well-known solution to the 1D
Ising model proceeds by expressiig(K,h) in terms of the
p(B,0)~(0—6y)°, 3 transfer matrixV asZy="Tr VN, where
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Diagonalizing V gives the eigenvaluea . =eX{coshh
t\/sithJre‘Z(} and allows us to express the partition func-
tion as

V(K,h):( ) (5)

e e

Zn=AY AN (6)

The Lee-Yang zeros of this partition function in the com-

plex h plane are the\ roots of Zy(K,h) =0, which are for
realK the solutions of

inm

ZN=(A+)N+()\)N=O<:>)\+=exp(w))\ , (7)

where —N<n=<N is odd. This gives thé&\ Lee-Yang zeros
h,=i6,,

n

—) Ve *+sinkt(h,) =i sin(n—w) coshh,). (8)
n 2N n/-

T
co
2N

We can see that wheld— o (the zero temperature “transi-
tion point” for the 1D Ising model the zeros are uniformly
distributed on the unit circle in the complex e" plane, as

demanded by the Lee-Yang theorem.

N
- So far, so standard. Now note that the recursive renormal- z (y z)="> eXF{RE
ization group transformation for the 1D Ising model can be {o} =1

obtained by demanding that any renormalized coupliigs
andh’ satisfy
Znp(K',h)=ANZy(K h), €)

whereA is some renormalization factor. Thinking in terms of
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to transform Eq.(11) into the logistic mapx’ =4x(1—Xx).
This will exhibit chaotic behavior for &x<1, i.e., if m
=1+e* sint?(h)<0 which for imaginary external fieldy
=i6, will occur if sir?(g)>e .

What has this got to do with Lee-Yang edge singularities?
Looking back at Eq(8) we can see that the lowest Lee-Yang
zero will lie at sirf(6)=e~*, which is precisely the “bound-
ary of chaos,"m=0, in x observed in the renormalization
transformation above. One can also identify a gap exponent
for the chaotic map that is identical to the Lee-Yang expo-
nento=—1/2 for the 1D Ising mode[9]. The example of
hierarchical models where exact transformations also exist
suggests that the identification of the Julia set of an RG
transformation and the loci of partition function zeros,
whether Lee-Yang edge singularities or Fisher zeros, is ge-
neric so it would be of interest to see other examples of the
phenomenon. In the remainder of the paper we discuss just
such an example, the 1D Potts model, where one can also
construct an exact renormalization transformation along
similar lines to the Ising model and obtain the Lee-Yang
zeros explicitly.

Il. 1D POTTS MODEL AND LEE-YANG ZEROS

The partition function for the 1D Potts model is given by
N
8(a; ,aj+1)+ﬁj§l 8(a; ,1)},
(13
where thed()s are Kronecker deltas and there are ngw

possible states for each spin We have definey=eX and

z=e" for later convenience. We can write down a transfer
matrix for this as ajyx g matrix V(y,z) with g—2 diagonal

a decimation-type renormalization scheme it is clear that wey o ents Y—1)/(y2)¥ and a 2¢2 submatrixT(y,z) [10]

can satisfy this by taking
V(K',h")=A2V(K,h)?, (10

whereV is the transfer matrix given in E@5). Viewed geo-

1
(yz2)*a

2%(q-1)
y+q-2

yz
Z1/2

T(y,2)= ( ) (14

metrically, we are welding two line segments together and-or g=2 we recoverV(K,h) from T(y,z) providing we
demanding a suitable rescaling of the couplings, so one copyentify K=2K,h=2h.

of the rescaled transfer matrix(K',h’) must serve in place
of two copies of the originaV(K,h). This leads to the re-
cursion relations

o2 e2hcosf(2K+ h)
~ 7 cosh2K—h)’
,  cosh4K)+cosh2h)
4K" _
€= 2coski(h) (11)

The crucial observation of Ref9] was that these recursion

relations could be recast by making use of the renormaliza-

tion invariantm= 1+ e*< sint?(h) to eliminateh and intro-
ducing the variable

m

_—(e4K—l) (12

The solution proceeds as in the Ising case by writing
Zn(y,2)=trV(y,z2)N and diagonalizingv [10]. The domi-
nant eigenvalues, ; come fromT(y,z)

No1=3 [(Y(1+2)+q—2]
+J[y(1-2)+q—2]°+(q—1)4z)(yz) 1

(19
which can be rewritten as
Noa=y (Lt +ze (=) (z— ) (y2 4 (16
with
1
ti=§(J(y—1)(y+q—l)t Vi-q). (17)
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The otherq—2 eigenvalues given by\,=Az=---=(y [y(1-2)+q—2]?
—1)(y2) Y play no role in the thermodynamic limit fag C= - : (23
=1 as discussed in some detail in Ref0].
The Lee-Yang zeros,=e" , as for the Ising model, ap- so we can use the expression ®to eliminatez and reduce
pear as solutions of our two recurrence relations to one fpmlone. Eliminating
z' from Eq.(22) leads to a single recursion relation that can

inm ;
ZN=()\1)N+()\O)N=O<:>)\l=eX‘{W)AOv (18) be written as

Zly(y+q—2)—(q—1)]?

which, upon substituting in the values above igf;, gives y'(y'+a-2)—(a-1)= [y(z+1)+q—2]
(24)
na > >~ . . (nm
€os 5N V(zy—t3)(z,—t2) =i sin on) (L+t=F2Z0), Now we can use Eq23) to write

19 o et
which is clearly of the same form as the Ising result in Eq. +ay(y+ta-2)= z ' (25
(8) for generalq and reproduces it exactly whep=2 (and .
we setk =2K,fi=2h), as it should. The resemblance runs S° We define
i:ieeper even for generg) as noted in Ref.10]. If we define [(C/4)+q—1]
z=17/(t,t_)=yz/(y+q—2) the Lee-Yang zeros are again T Iy=D(y+q-1)] (26)
uniformly distributed round the unit circle in the compiex
plane asK — oo andt, —1t_—1. and the relatiorf24) is again reduced to the logistic map with

We now pursue the same path to construct the renormathe prefactor 4,
ization group transformation for the Potts model as we did ,
for the Ising model. We demand that the renormalized cou- X'=4x(1-Xx). (27)

lin "andz’ i o . .
plingsy" andz’ satisfy For C real and positivex is real and negative and so is out-

Zualy' 2 =ANZA(Y,2) (20) side the domain of chaos, but f6<< —4(g—1) x is positive
’ Y we have chaos for €x<1. On the critical line itself,C
which can be solved by tak|rM(y’ ,Z/) :AZV(y,Z)z, where = _4(q_ 1), we allow ourselves the pOSSIbIlIty of Comp|eX

V is now the Potts transfer matrix. Since only, are play- z=|z|e"” and find from Eq(23) that
ing any role in the thermodynamic limit we discard the re-

mainingg— 2 eigenvalues and concentrate our attentions on 7= (y+a-2) elf=(t.t_)e’ (28)
the submatrixT, by demandingr(y’,z')=A?T(y,z)>. y B
We find the following recursion relations:
where
2
—  (v'7\= 2,2 _ -1
(ylzr)llq(y z ) (yZ)Z/q[y z +Z(q 1)]' COS{ 0): 1_2y(;c_]’_—q_)2) (29)
1 , A? 5 These are precisely the equations defining the Lee-Yang edge
——(y'+q-2)= [z(q—=1)+(y+9—2)7], singularity in the 1D Potts model.

(yrzl)l/q (yZ)Z/q L. . .

We have thus seen that defining a decimation-type renor-
malization transformation for the 1D Potts model gives rise
1 A221/2 . . .

N2 to a set of recursion relations that may be reduced using the
——(Z')" = (zy+y+q—2), s . . :
(y'z')ta (yz)2a renormalization invariant of E¢23) to a single equation.

This may in turn be mapped on to the logistic equation. The
(21

boundary of the chaotic region for this logistic map is iden-

which can be used to eliminate giving tical to the critical line of the Lee-Yang edge singularity. This
behavior is entirely analogous to that seen in the 1D Ising
y'z' B y2z?+z(q—1) model in Ref.[9] and in the hierarchical models that also
y'+q—-2 (y+q—-2)%+z(q—1)’ possess an exact renormalization group transformation.
(Y2 Ayziy+q-2) lll. DISCUSSION
= . 22
y'+q-2 (y+q—2)°+z(q—1) 22 The similarity of the Lee-Yang edge singularity for the

generalq state Potts models in 1D and for the Ising model
It is then straightforward to show that, as for the Isingwas already remarked in RdfL0]. The exponent=—1/2
model, an invariant exists, in this case is identical for allg>1, and in suitably rescaled variables the
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Lee-Yang zeros lie on the unit circle @0 for allg>1.In  when elements of powers of the transfer matrix were zero or,
this paper we have seen that a similar construction of arquivalently, the eigenvalues degenerated in pairs. Although
exact renormalization transformation may be employed irthe net result is the same in both cases—a zero partition
both the 1D Potts and 1D Ising models and that in both caseéinction—the mechanism by which this arises and the impli-
the Julia set of the mapping gives the Lee-Yang Smgu|arity_cations are rather different. In the clock models the Lee-

That this should be so is in accordance with both earlierfang-type singularities are interpreted as indications of non-
observations of spin models on hierarchical lattifgksand universal pathologies for certain real-space renormalization
the idea in Ref[8] that loci of partition function zeros can (ransformations for particular regions in parameter space,

profitably be thought of as phase boundaries in the COmme;g/hereas the standard Lee-Yang singularity is viewed more as

temperature or field planes. Just as in the hierarchical lattice:@ndard critical behavior, albeit at a complex parameter

models, the Julia set of the renormalization map forms the/ aéllltjee' rTeg? gser;ireal rpe%Sosrlrlr)wlgﬂszti?r: pt?gr‘gzg:szﬂgzsprxﬁﬁi;
boundary between the different basins of attraction, Olmhases in hi I?1er-dimensional models were also discussed in
phases, and hence coincides with the locus of zeros of e 9 .
. : a rigorous manner in Ref13].
partition function, Other cases exist where recursive nonlinear maps are used
An interesting counterpoint to these results is provided by, P

the very detailed analysis of real-space renormalizatior” the definition of exact partition functions, notably for spin

group flow ing-state clock models with an additional imagi- models on Bethe latticedrees. There has been discussion

nary interaction that was carried out in REf1]. Without the of (.:T"Ot'c ef{gctshm such mbodels vk\)/hq :1d [f14] andttr;e
imaginary term the three-state clock model is equivalent t Ogistic equation has even been observed 1ay al state
2otts model related to percolation on a Bethe lattice with

the three-state Potts model and displays only the zero te dinati ber 815
perature continuous transition, but the addition of the imagi—Coor ination number 815
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