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Abstract

Recent work on Geographically Weighted Regression (GWR) (Bruns-
don, Fotheringham, and Charlton 1996) has provided a means of inves-
tigating spatial non-stationarity in linear regression models. However,
the emphasis of much of this work has been exploratory. Despite this,
GWR borrows from a well founded statistical methodology (Tibshi-
rani and Hastie 1987; Staniswalis 1987a; Hastie and Tibshirani 1993)
and may be used in a more formal modelling context. In particular,
one may compare GWR models against other models using modern
statistical inferential theories. Here, we demonstatrate how Akaike’s
Information Criterion (AIC) (Akaike 1973) may be used to decide
whether GWR or ordinary regression provide the best model for a
given geographical data set. We also demonstrate how the AIC may
be used to choose the degree of smoothing used in GWR, and how ba-
sic GWR models may be compared to ‘mixed’ models in which some
regression coefficients are fixed and others are non-stationary.

1 Introduction

In this short article we intend to do two things - firstly to show how GWR can
be considered as a “proper” statistical model and secondly to consider how



different GWR models may be compared. One matter that we will single out
for special consideration is the “effective number of parameters” or “effective
degrees of freedom” in a GWR model. Here we consider these quantities in
terms of the expected value of the residual sum of squares. This concept
is important, as it plays a key role in defining the Akaike Information Cri-
terion (AIC) (Akaike 1973), which we will use as a model comparison tool.
Initially, we will only consider the basic GWR model (Brunsdon, Fother-
ingham, and Charlton 1996) rather than the spatially autocorrelated model
variant described in Brunsdon, Fotheringham, and Charlton (1998), although
we intend to consider autocorrelated models eventually.

2 GWR as a Statistical Model

Suppose we have a set of observations {x;;} for i = 1...n cases and j = 1...k
explanatory variables, and a set of dependent variables {y;} for each case.
This is a standard data set for a global regression model. Now suppose that
in addition to this we have a set of location coordinates {(u;,v;)} for each
case. The underlying model for GWR is

k
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where {fo(u, v)...0k(u, v) } are k+1 continuous functions of the location (u,v)
in the geographical study area. The ¢;’s are random error terms. In the basic
GWR model we assume that these are independently normally distributed
with mean zero and common variance o2. The aim of GWR is to obtain
non-parametric estimates of these functions. A related technique, the expan-
sion method (Casetti 1972) attempts to obtain parametric estimates. Both
are special cases of the very general varying coefficient model of Hastie and
Tibshirani (1993). More specifically, GWR attempts to obtain estimates of
the functions using kernel-based methods.
The log-likelihood for any particular set of estimates of the functions may
be written as
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where D is the union of the sets {z;;}, {v;} and {(u;,v;)}. As with many
situations involving non-parametric regression, choosing function estimates
to maximise this expression is not very helpful. With the distribution as-
sumptions for the error terms above, this maximum likelihood approach is



equivalent to choosing the functions using least squares. However, since the
functions are arbitary we can simply choose them to obtain a residual sum of
squares of zero, with an associated and rather unconvincing estimate of o of
zero. For this reason a straightforward ML approach to calibrating equation
1 is not used.

3 Local Likelihood

A more useful way forward is to consider local likelihood. Rather than at-
tempting to minimise equation 2 globally, we consider the problem of es-
timating {Go(u, v)...0k(u,v)} on a pointwise basis. That is, given a specific
point in geographical space (ug, vg) (which may or may not correspond to one
of the observed {(u;,v;)}’s) we attempt to estimate {5o(ug, vo)...0k(uo, vo)}-
We do this by assuming that if these functions are reasonably smooth, we
can assume that a simple regression model

k
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holds close to the point (ug, vo), where each v; is a constant valued approxi-
mation of the corresponding f;(u,v) in model 1. We can calibrate a model of
this sort by considering observations close to (ug, vg). An obvious way to do
this is to use weighted least squares, that is to choose {~g...7x} to minimise
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where dy; is the distance between the points (ug, v9) and (u;,v;). This gives
us the standard GWR approach. We simply set Bj(uo, vp) as 4; to obtain
the familiar GWR estimates. At this stage it is worth noting that 4 may be
multiplied by —o~2 and be considered as a local log-likelihood expression:
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The properties of such estimators have been studied fairly comprehensively
over the past decade or so. Typically' this is in the context where the weight-
ing function is applied to the {z;;}’s, but this does not have to be the case
- see for example Hastie and Tibshirani (1993). In particular, Staniswalis

In the early work of Joan Staniswalis, for example



(1987a) notes that if w() is scaled to sum to unity (which it may be without
loss of generality) then WL(vg...7|D) is an empirical estimate of the ex-
pected log-likelihood (not the local log-likelihood) at the point of estimation.
Further work by Staniswalis (1987b) shows that under certain conditions -
which will apply for any bounded (;(u, v) functions with bounded first second
and third derivatives - the ~;’s do provide pointwise consistent estimators for
the (3;(ug,vp)’s. Furthermore, the distribution of the estimates for the ~,’s
is asymptotically normal and asymptotically unbiased. Thus, the referee’s
statement that the “framework used ... is simply not applicable” is incorrect
— it overlooks some recent very useful practical and theoretical work by a
large number of statisticians, only a few of which I have cited here. For
a more in-depth view of this body of work, see for example Bowman and
Azzalini (1997).

Thus, GWR does provide a reasonable calibration technique for model
1. On a historical note, it must be admitted that GWR was first devised
as an exploratory technique, and not as an explicit attempt to fit model 1,
but with hindsight it now seems that the approach does have a more formal
interpretation. What is interesting to note, however, is that although model
1 has non-stationary regression coefficients, o2, the variance of the error term,
is a global constant. However, the local likelihood interpretation can also be
used to generalise GWR to non-normal error models (for example Poisson
or Binomial models), or to heteroskedastic or non-independent normal error
models.

4 Inference

4.1 Inference and Local Likelihood

Here inference will be regarded more in terms of confidence intervals for
estimated values, rather than significance testing. This simply reflects trends
in the statistical community over the past few years — see Nester (1996) for
a discussion of this. To establish (pointwise) confidence intervals for the
regression coefficients we need to know the form for the asymptotic variance-
covariance matrix. In a GWR context, this is given by inverting the local

information matrix: the expression may be found by re-casting a result from
Staniswalis (1987b):

0-20) = oter(B({ 0 g, ) ) ©)

Where outer() denotes a multiplicative outer product. Note that although
the estimates of the (3;(ug,v) are the local ones for (ug,v), the likelihood
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function is the global one. Since we do not know the true values of these
partial derivatives, we could use the fact that the local likelihood is an es-
timator of the expected global likelihood and ‘plug in’ the local likelihood
estimates of the functions in the likelihood expression. In fact, although this
is a general result which could be applied to a variety of models, there is a
more direct approach for model 1. To see this, we note that for any pointwise
model calibration, we may write in matrix form

¢ = (X'WX) ' X'Wy (7)

where the matrix X and the vectors y and ¢ correspond to the x’s y’s and
v’s used previously in this article, and W is the diagonal matrix of the local
weights around (ug, vg). Thus, the vector of local coefficient estimates ¢ is a
linear function of the observed dependent variable vector, y. Thus, equation
7 could be simplified to ¢ = Cy, where C = (X’WX)1X'W. But, in model
1 we have assumed that the y;’s are independently distributed with the same
variance o2. Thus, var(y) = o?I. Thus, the pointwise variance of the vector
¢ is just CC'o?. Thus, we can obtain pointwise confidence intervals for the
surface estimates once we have a way of estimating 0. As it turns out, this
has a lot to do with the “degrees of freedom” issue, and so discussion of this
will be deferred until section 5.which we discuss in the next section.

5 Degrees of Freedom

In the non-parametric framework set out here, the concept of “number of pa-
rameters” or “degrees of freedom” seems meaningless. However, as is the case
with many nonparametric regression problems, the related idea of “effective
degrees of freedom” can be considered. In global linear regression models,
the idea of degrees of freedom relates to the expected value of the residual
sum-of-squares (RSS) of the model. In particular, for a global model with k
linear parameters, E(RSS) = (n — k)o?. Here we regard k as the degrees of
freedom of the model, and so write

E(RSS) = (n — D.F.)o? (8)
Note that this also gives the usual estimate for o2,

.,  RSS

7 T L_DPF. 9)

Now we consider the distribution for the RSS in the GWR situation. First
we note that the fitted values for the y;’s, denoted by {g;} can be expressed as
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a matrix transform of the “raw” y;’s (Brunsdon, Fotheringham, and Charlton
1999). In matrix form we write this as

y =Sy (10)
for some n by n matrix S. Thus, fitted residuals are just (I — S)y, and
RSS =y'(I-S)'(I—-s)y (11)

Following Cleveland (1979) and Tibshirani and Hastie (1987) we then note
that

E(RSS) = (n — [2tx(S) — tr(S'S)])o? + E(y)(I- S)'(I - S)Ey  (12)

The first term of this expression relates to the variance of the fitted values,
and the second to the bias. However, if we assume that the bandwidth for
the GWR is chosen so that bias is negligible - which is reasonable for a large
sample, as the asymptotic results suggest - then we have the approximation

E(RSS) = (n — [2tx(S) — t(S'S)])0> (13)

which is analogous to equation 8. In this sense, the degrees of freedom is in
fact 2tr(S) —tr(S’S). This result is often not an integer, but does in fact vary
from k (as the bandwidth tends to infinity) to n (as the bandwidth tends to
zero). In many cases, tr(S) is very close to tr(S’S) so an approximate value
for the degrees of freedom is tr(S).

Note that this then provides a method of estimating o°, as required in
the previous section, by substituting the effective degrees of freedom into
equation 9. This in turn may be used in conjunction with the methods in
section 4.1, to obtain standard errors for the pointwise ; estimates. Note that
the standard error estimates obtained in this way differ from those obtained
in the original, exploratory formulation of GWR (Brunsdon, Fotheringham,
and Charlton 1996), since they exploit the fact that o? is spatially stationary.

2

6 Model Comparison

The previous sections have outlined a framework in which GWR models may
be regarded as “real” statistical models, where certain inferential techniques
such as estimation of confidence intervals may be applied. Another important
inferential process is the selection of statistical models. An approach we
suggest here is based on the Akaike Information Criterion (AIC) (Akaike
1973). In the following sections we will provide a short overview of the AIC,
and argue that it may be used as a tool for model comparison in GWR.
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7 An Overview of the AIC

The Akaike Information Criterion is best understood by first considering the
Kullback-Liebler information distance (KLID) between two statistical distri-
butions. If f and g are two continuous (possibly multivariate) probability
distribution functions, then this quantity is defined by

17.9) = [ ftoyion (£ o (14

This can be thought of as the information loss when approximating the
distribution f with the distribution g.

Note that I(f, g) may be thought of as a distance between f and g — the
lower the value it takes, the closer f is to g. It can also be shown (although
it takes some effort) that

I(f,g9) = O
I(f.9)=0 if f=g (15)

The relationships in (15) imply some form of distance measure, although
distance here is not symmetric since I(f, g) # 1(g, f)-

The measure is particularly useful when comparing two distributions, say
g1 and go as approximators of a distribution f. Given the interpretation of I
as a distance between functions, we need to find which of g; and g5 is ‘closest’
to f. We are therefore interested in whether the statement

/f 10g< )d </f ( 3) dz (16)

is true. If it is, then ¢y is the best approximator, otherwise g5 is the better
choice. Note that 16 can be written as

/ f(z) (log(f(x)) —log(gi(z))) dx < / f(z) (log(f(r)) —log(ga(z))) d
(17)

or, more simply

[ F@)og(gr(@)) dz > [ f(a)log(ga(x) da (18)

If the true distribution of the variable x is f(z), then 18 can be written
in terms of expected values:

Eflog(g1(2))] > Ellog(g2(x))] (19)



Equation 19 is useful if g; and g, are competing models of an unknown true
distribution f. Since f is not known, theoretical expectations cannot be

computed. However, if we have a set of observed z-values {z1, s, ..., 2,}
the expectations can be estimated by sample means:
Ellog(g;(x))] = n~" Y log(gj(x)) for j = 1,2 (20)
i=1,n

Thus, we have a method for choosing between two models g; and g
given a data set {1, zs,...,2,}. Note that the method does not require
the unknown true distribution f to be specified. Information relating to f
is extracted from the data sample. The assymetry of the KLID can now be
justified — the respective roles of model and reality are not interchangeable
in this theory.

There is still one issue which must be addressed. Here we assume that
g1 and go are fully specified, but in practice each of these models would
have a number of unspecified parameters which must also be estimated from
{x1,29,...,2,}. Denote these vectors of parameters by &; and &, respec-
tively. For example, g; and g, could both be regression models with different
predictor variables. Then &1 and &, would be the regression coefficients for
each model. In this case, one might expect the estimates in (20) to take the
form

Ellog(g;(x))] = n™" 21: log(g; (218 ;)) (21)
where & ; is the maximum likelihood estimate of & ;. Up to a constant of
proportionality, the left hand side of expression 21 is just the log-likelihood
of &,;. However, the likelihood maximising procedure introduces bias into
the estimate 21 — this should be apparent from the fact that this estimate
is in fact dependent on the likelihood. In fact Akaike (1973) demonstrates
that this bias is roughly equal to k;, the dimension of & ;. Correcting for this
bias leads to the definition of the Akaike Information Criterion (AIC)

AIC = —2log(L(8 j|x1 ... xy)) + 2k; (22)

where £(& ;|77 ... x,) is the likelihood of & ; given the data sample {x1, zs, . . .,
This gives a number which, up to multiplication by one constant and multi-
plication by another, gives an estimate of I(f, g;). Thus, comparing the AIC
for each model g; gives a method for deciding which model is best: the small-
est AIC corresponds to the smallest estimated value of I(f, g;) and hence the
‘closest’” model to f, the true situation.



8 Use in Practice

Note that although the discussion above refers to the comparison of two mod-
els, the argument holds for any number. This gives a general methodology for
comparing several competing models for the same data set {1, z9,...,2,}:

—_

. Identify a set of [ models which it is thought may apply to the data.
2. Calibrate these models using maximum likelihood.

3. Compute the AIC for each model.

4. Select the model with the smallest AIC.

This method has a number of advantages over the more conventional use
of hypothesis tests for model selection. Firstly, models being compared do
not have to be nested. For example, it is possible to compare two linear
regression models involving entirely different predictor variables, or two non-
linear regression models with entirely different functional forms. Secondly,
there are no problems with multiple hypothesis tests, as it is quite reasonable
to compare several AICs for a given data set. However, it would be wrong to
give the impression that the model selection procedure is error-proof. Since
the AICs are in fact sample estimates of the true information distances, they
are subject to sampling variation. Thus, a degree of uncertainty surrounds
any estimated AIC, and if two competing models have very close AIC values
it is unclear which one is truly the closest to f.

9 A Refinement to the AIC

One refinement to the AIC is the corrected AIC, or AIC,. Recall that k; was
used as an approximation of the bias in the estimate of E[log(g;(x))] for the
AIC. An improved, but more complex estimate of this bias is the expression

k; (n—/Z—l) . (23)

Note that when there are much fewer parameters than observed data points,
this is approximately equal to kj;, the original expression. However, when
this is not the case, it is recommended that this expression is substituted for
k; in the expression for the AIC, giving the AIC,. The latter may be easily
computed from the former, using the relationship

2k;j(k; +1)

AIC, = AIC
] +n—k—j—1

(24)



10 Least Squares Problems AIC and GWR

In the case of least squares problems, such as ordinary linear regression, the
likelihood model assumed is one of normally distributed error terms, so that
a random variable z; is assumed to be distributed as

x; = ; + ¢; where ¢; ~ N(0, 0?) (25)

where p; is the expected value of x;, and is assumed to depend on a number
of model parameters. Here, the AIC may be written as

AIC = nlog(6?) + 2k; (26)
where se
) €
— 2 2
5= = (27)

and the ¢;’s are the residuals after fitting the model. Care should be taken
here regarding k; - this is the total number of parameters in the model
including o. Thus, in a regression model with v variables, iSf there is an
intercept term then k; = v + 2. These ideas can also be applied to local
likelthood situations, such as those set out in section 3. In situations where
the fitted y-values can be found by pre-multiplying the observed y values by
a matrix S the AIC can be reasonably estimated by the expression

n + Tr(S)
n+ 2 — Tr(S)

(Hurvich and Simonoff 1998). Since GWR falls into this general category of
model, we may compute the AIC of a GWR model in this way. In particular,
we may compare GWR models with different bandwidths - or different pre-
dictor variables. Additionally, we may compare GWR models with ordinary

global regression models in order to determine which gives the better model
fit.

AIC, =2nlog(d) + (28)

11 Mixed GWR models and AIC

One interesting class of GWR models are mized GWR models (Brunsdon,
Fotheringham, and Charlton 1999), where some parameters are stationary
and others vary geographically. If S* is the S-matrix associated with the
geographically varying parameters in the model, assuming the stationary
parameters are known, then it can be shown that the relationship between
v and y for a mixed GWR model is given by

A~

y =Sy

10



where

S=X(X'(I-8)X)'X'(I-8)+1-W

Therefore mixed GWR models may also be expressed using an S-matrix
equation, and so their AIC may also be defined using equation 28. This
allows mixed GWR models to be compared with full GWR models. This
provides a framework for further model comparison. For example, one could
conmpare a model in which a specific parameter is allowed to vary spatially
against one where it is fixed.

12 Conclusion

This article has attempted to demonstrate the statistical properties of the
basic and mixed GWR models, and also to suggest ways for analysing more
complex GWR-type models. Theoretical work by a number of statistical
workers implies that GWR will provide consistent estimates of models in
the form of equation 1. Of course, these will provide less efficient estimates
than “global” regression models in the case when there is no spatial nonsta-
tionarity, but it should be noted that when stationarity is present no global
model, with or without spatially autocorrelated errors, could ever provide a
consistent estimate of the true model. In addition to this, the AIC provides
a method for comparing competing GWR models. This method works on
a realistic framework which, rather than testing for the absolute truth of a
particular hypothesis, compares several models as approximations of reality.
Its is hoped that these methods may be generalised further, to provide a
flexible set of model assessment tools.
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