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Abstract—Lower bounds for the average probability of error
of estimating a hidden variable X given an observation of
a correlated random variable Y , and Fano’s inequality in
particular, play a central role in information theory. In th is
paper, we present a lower bound for the average estimation
error based on the marginal distribution of X and the principal
inertias of the joint distribution matrix of X andY . Furthermore,
we discuss an information measure based on the sum of the
largest principal inertias, called k-correlation, which generalizes
maximal correlation. We show that k-correlation satisfies the
Data Processing Inequality and is convex in the conditional
distribution of Y given X. Finally, we investigate how to answer
a fundamental question in inference and privacy: given an
observation Y , can we estimate a functionf(X) of the hidden
random variable X with an average error below a certain
threshold? We provide a general method for answering this
question using an approach based on rate-distortion theory.

I. I NTRODUCTION

Consider the standard problem in estimation theory: Given
an observation of a random variableY , what can we learn
about a correlated, hidden variableX? For example, in security
systems,X can be the plaintext message, andY the ciphertext
or any additional side information available to an adversary.
Throughout the paper, we assume thatX andY are discrete
random variables with finite support.

If the joint distribution betweenX and Y is known, the
probability of error of estimatingX given an observation ofY
can be calculated exactly. However, in most practical settings,
this joint distribution is unknown. Nevertheless, it mightbe
possible to estimate certain correlation measures ofX andY
reliably, such as maximal correlation,χ2-statistic or mutual
information.

Given estimates of such correlation measures, is it possible
to determine a lower bound for the average error probabilityof
estimatingX from Y over all possible estimators? We answer
this question in the affirmative. In the context of security,this
bound might characterize the best estimation of the plaintext
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that a (computationally unbounded) adversary can make given
an observation of the output of the system.

Furthermore, owing to the nature of the joint distribution,
it may be infeasible to estimateX from Y with small error
probability. However, it is possible that a non-trivial function
f(X) exists that is of interest to a learner and can be estimated
reliably. If f is the identity function, this reduces to the
standard problem of estimatingX from Y . Determining if
such a function exists is relevant to several applications in
inference, privacy and security [1].

In this paper, we establish lower bounds for the average
estimation error ofX and f(X) given an observation ofY .
These bounds depend only on certain measures of information
betweenX and Y and the marginal distribution ofX . The
results hold for any estimator, and they shed light on the
fundamental limits of what can be inferred about a hidden
variable from a noisy measurement. The bounds derived here
are similar in nature to Fano’s inequality [2], and can be
characterized as the solution of a convex program which,
in turn, is closely related to the rate-distortion optimization
problem.

Our work has two main contributions. First, we analyze
properties of a measure of information (correlation) between
X andY based on the principal inertias of the joint distribution
of X and Y . The estimation of principal inertias is widely
studied in the field of correspondence analysis, and is used in
practice to analyze categorical data. The metric we propose,
called k-correlation, is defined as the sum of thek largest
principal inertias, which, in turn, are the singular valuesof
a particular decomposition of the joint distribution matrix of
X and Y . We show thatk-correlation generalizes both the
maximal correlation and theχ2 measures of correlation. We
also prove thatk-correlation satisfies two key properties for
information measures: (i) the Data Processing Inequality and
(ii) convexity in the conditional probabilitiespY |X . Further-
more, we derive a family of lower bounds for the average error
probability of estimatingX given Y based on the principal
inertias betweenX andY and the marginal distribution ofX .

The second contribution is a general procedure for bounding
the average estimation error of a deterministic function of
X given an observation ofY . These bounds are non-trivial
and help characterize the fundamental limits of what can be
learned aboutX given an observation ofY . For example,
given I(X ;Y ) ≤ θ, a positive integerM and the marginal
distribution of X , this procedure allows us to compute a
lower bound for the average estimation error of any surjective
function that maps the support ofX onto {1, . . . ,M}.

The rest of the paper is organized as follows. Section II
presents an overview of the main results and discusses related
work. Section III introduces thek-correlation metric of infor-
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mation, and proves that it is convex in the transition probability
pY |X and satisfies the Data Processing Inequality. Section IV
presents a Fano-like inequality based on the principal inertias
and the marginal distributionpX . Section V presents a general
method for deriving bounds for the average estimation errorof
deterministic surjective functions ofX from an observation of
Y . Finally, concluding remarks are presented in section VI.

II. OVERVIEW OF MAIN RESULTS AND RELATED WORK

A. Notation

We assume throughout this paper that, for a given sample
spaceΩ, X : Ω → X is the hidden random variable and
Y : Ω → Y is the observed random variable, whereX =
{1, . . . ,m} and Y = {1, . . . , n} are the respective support
sets. We denote byPX,Y andPY |X them× n matrices with
entries [PX,Y ]i,j , pX,Y (i, j) and

[
PY |X

]
i,j

, pY |X(j|i),
respectively. Furthermore, we denote bypX ∈ R

m, pY ∈ R
n

andpY |X=j ∈ R
n the column vectors with entries

[pX ]i , pX(i), [pY ]i , pY (i) and
[
pY |X=j

]
i
, pY |X(i|j),

respectively. The diagonal matrices with entriespX and pY
are represented asDX = diag (pX) andDY = diag (pY ).
For a discrete random variableZ, we denote byX → Y → Z
the fact thatpX,Y,Z(x, y, z) = pX(x)pY |X(y|x)pZ|Y (z|y) (i.e.
X,Y, Z form a Markov chain).

Given an observation ofY , the estimation problem consid-
ered here is to find a functionh(Y ) = X̂ that minimizes the
average error probabilityPe, defined as

Pe , Pr
{
X̂ 6= X

}
. (1)

Note thatX → Y → X̂. Pe is minimized whenX̂ is the
maximum-likelihood estimate ofX .

The column vector with all entries equal to 1 is represented
by 1. The length of the vector will be clear from the context.
For any given matrixA, we denote byσk(A) the k-th largest
singular value ofA. If A is hermitian, we denote thek-th
largest eigenvalue ofA by Λk(A). We denote bySm

++ the set
of positive definite matrices inRm×m. Furthermore,

Tm,n ,
{
A ∈ R

m×n : A is row-stochastic,[A]i,j ≥ 0
}
. (2)

For a given measure of information (correlation)I(X ;Y )
betweenX and Y (such as mutual information or maximal
correlation), we denoteI(X ;Y ) = I(pX , PY |X) when we
wish to highlightI(X ;Y ) as a functionpX and the transition
matrix PY |X .

B. Overview of main results

Assume that the joint distributionpX,Y is unknown, but that
the marginal distributionpX is given. Furthermore, assume
that a certain measure of information (correlation)I(X ;Y )
betweenX and Y is bounded above byθ, i.e. I(X ;Y ) ≤
θ. In practice, the value ofθ and pX could be determined,
for example, from multiple i.i.d. samples drawn according to
pX,Y . The number of samples available might be insufficient
to characterizepX,Y , but enough to estimateθ andpX reliably.
Under these assumptions, what can be said about the smallest

Pe possible? Our goal in this paper is to derive lower bounds
of the formPe ≥ LI(pX , θ), creating a limit on how wellX
can be inferred fromY .

The characterization ofLI(pX , θ) for different measures
of information I is particularly relevant for applications in
privacy and security, whereX is a variable that should remain
hidden (e.g. plaintext). A lower bound forPe can then be
viewed as a security metric: regardless of an adversary’s
computational resources, he will not be able to guessX
with an average estimation error smaller thanLI(pX , θ) given
an observation ofY . Therefore, by simply estimatingθ and
calculatingLI(pX , θ) we are able to evaluate the privacy
threat incurred by an adversary that has access toY .

If I(X ;Y ) = I(X ;Y ), where I(X ;Y ) is the mutual
information betweenX and Y , then Fano’s inequality [2]
provides a lower bound forPe. However, in practice, several
other statistics are used in addition to mutual informationin
order to capture the information (correlation) betweenX and
Y . In this work, we focus on one particular metric, namely
the principal inertia componentsof pX,Y , denoted by the
vector (λ1, . . . , λd), where d = min{m − 1, n − 1}, and
λ1 ≥ λ2 ≥ · · · ≥ λd. The exact definition of the principal
inertias is presented in Section III.

1) Bounds based on principal inertia components:The
principal inertias generalize other measures that are usedin
information theory. In particular,λ1 = ρ2m(X ;Y ), where
ρm(X ;Y ) is the maximal correlationbetweenX and Y .
Given

S , {(f(X), g(Y )) :E [f(X)] = E [g(Y )] = 0,

E
[
f2(X)

]
= E

[
g2(Y )

]
= 1
}
,

the maximal correlationρm(X ;Y ) is defined as [3]

ρm(X ;Y ) = max
(f(X),g(Y ))∈S

E [f(X)g(Y )] .

In section III and appendix B, we discuss how to compute the
principal inertias and provide two alternative characterizations.
Compared to mutual information, the principal inertias provide
a finer-grained decomposition of the correlation betweenX
andY .

We propose a metric of information calledk-correlation,
defined asJk(X ;Y ) ,

∑k
i=1 λi. This metric satisfies two

key properties:
• Convexity inpY |X (Theorem 1);
• Data Processing Inequality (Theorem 2). This is also

satisfied byλ1, . . . , λd individually.
By making use of the fact that the principal inertia com-

ponents satisfy the Data Processing Inequality, we are able
to derive a family of bounds forPe in terms of pX and
λ1, . . . , λd, described in Theorem 3. This result sheds light on
the relationship ofPe with the principal inertia components.

One immediate consequence of Theorem 3 is a useful
scaling law forPe in terms of the largest principal inertia (i.e.
maximal correlation). LetX = 1 be the most likely outcome
for X . Corollary 3 proves that the advantage an adversary has
of guessingX , over the trivial solution of simply guessing the
most likely outcome ofX (i.e. X = 1), satisfies

Adv(X ;Y ) , |1− pX(1)− Pe| ≤ O
(√

λ1

)
. (3)
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2) Bounding the estimation error of functions:For most
security applications, minimizing the probability that anad-
versary guesses the hidden variableX from an observation
of Y is insufficient. Cryptographic definitions of security, and
in particular semantic security [1], require that an adversary
has negligible advantage in guessing any function of the input
given an observation of the output. In light of this, we present
bounds for the best possible average error achievable for
estimating functions ofX given an observation ofY .

Still assuming thatpX,Y is unknown, pX is given and
I(X ;Y ) ≤ θ, we present in Theorem 6 a method for adapting
bounds of the formPe ≥ LI(pX , θ) into bounds for the aver-
age estimation error of functions ofX givenY . This method
depends onI satisfying a few technical assumptions (stated
in section V), foremost of which is the existence of a lower
boundLI(pX , θ) that is Schur-concave1 in pX for a fixedθ.
Theorem 6 then states that, under these assumptions, for any
deterministic, surjective functionf : X → {1, . . . ,M}, we
can obtain a lower bound for the average estimation error of
f by computingLI(pU , θ), whereU is a random variable that
is a functionX .

Note that Schur-concavity ofLI(pX , θ) is crucial for this
result. In Theorem 4, we show that this condition is always
satisfied whenI(X ;Y ) is concave inpX for a fixed pY |X ,
convex in pY |X for a fixed pX , and satisfies the Data Pro-
cessing Inequality. This generalizes a result by Ahlswede
[4] on the extremal properties of rate-distortion functions.
Consequently, Fano’s inequality can be adapted in order to
bound the average estimation error of functions, as shown in
Corollary 4. By observing that a particular form of the bound
stated in Theorem 3 is Schur-concave, we also present a bound
for the error probability of estimating functions in terms of the
maximal correlation, as shown in Corollary 5.

C. Background

The joint distribution matrixPX,Y can be viewed as a
contingency table and decomposed using standard techniques
from correspondence analysis [5], [6]. We note that this
decomposition was originally investigated by Hirschfield [7],
Gebelein [8] and later by Rényi [3]. For a quick overview of
correspondence analysis, we refer the reader to [9].

The largest principal inertia ofPX,Y is equal toρ2m(X ;Y ),
whereρm(X ;Y ) is the maximal correlationbetweenX and
Y . Maximal correlation has been widely studied in the infor-
mation theory and statistics literature (e.g [3]). Anantharamet
al. present in [10] an overview of different characterizationsof
maximal correlation, as well as its application in information
theory.

The Data Processing Inequality for the principal inertias was
shown by Kang and Ulukus in [11, Theorem 2] in a different
setting than the one considered here. Kang and Ulukus make
use of the decomposition of the joint distribution matrix to
derive outer bounds for the rate-distortion region achievable
in certain distributed source and channel coding problems.

1A function f : Rn → R is said to beSchur-concaveif for all x, y ∈ R
n

wherex is majorized byy, thenf(x) ≥ f(y).

Lower bounds on the average estimation error can be
found using Fano-type inequalities. Recently, Guntuboyina
et al. ([12], [13]) presented a family of sharp bounds for
the minmax risk in estimation problems involving generalf -
divergences. These bounds generalize Fano’s inequality and,
under certain assumptions, can be extended in order to lower
boundPe.

Most information-theoretic approaches for estimating or
communicating functions of a random variable are concerned
with properties of specific functions given i.i.d. samples of the
hidden variableX , such as in the functional compression lit-
erature [14], [15]. These results are rate-based and asymptotic,
and do not immediately extend to the case where the function
f(X) can be an arbitrary member of a class of functions, and
only a single observation is available.

More recently, Kumar and Courtade [16] investigated
boolean functions in an information-theoretic context. Inpar-
ticular, they analyzed which is the most informative (in terms
of mutual information) 1-bit function (i.e.M = 2) for the
case whereX is composed byn i.i.d. Bernoulli(1/2) random
variables, andY is the result of passingX through a discrete
memoryless binary symmetric channel. Even in this simple
case, determining the most informative function is non-trivial.

Bellare et al. [17] considered the standard wiretap setting
[18], and proved the equivalence between semantic security
and minimizing the maximum mutual information over all
possible input message distributions. Since semantic security
[1] is achieved only when an adversary’s advantage of cor-
rectly computing a function of the hidden variable given an
observation of the output is negligibly small, the results in
[17] are closely related to the ones presented here.

III. A MEASURE OF INFORMATION BASED ON PRINCIPAL

INERTIAS

In this section we discuss how the joint probability matrix
PX,Y can be decomposed into principal inertia components2,
and introduce thek-correlation measure. We also prove that the
k-correlation measure is convex inpY |X and satisfies the Data
Processing Inequality. Several equivalent characterizations of
the principal inertias have appeared in the literature (e.g. [8]
and [9]). We discuss two of these characterizations in appendix
B.

Consider the singular value decomposition [19] of the
matrix D

−1/2
X PX,Y D

−1/2
Y , given by

D
−1/2
X PX,Y D

−1/2
Y = UΣV T , (4)

and defineÃ , D
1/2
X U and B̃ , D

1/2
Y V . Then

PX,Y = ÃΣB̃T , (5)

whereÃTD−1
X Ã = B̃TD−1

Y B̃ = I.

Definition 1. The square of the diagonal entries ofΣ̃ are called
the principal inertias, and are denoted byλ1, . . . , λd, where
d = min(m − 1, n − 1). Throughout this paper, we assume
that principal inertias are ordered asλ1 ≥ λ2 ≥ · · · ≥ λd.

2The termprincipal inertias is borrowed from the correspondence analysis
literature [6].



4

It can be shown that̃A, B̃ andΣ have the form

Ã = [pX A] , B̃ = [pY B] , (6)

Σ = diag
(
1,
√
λ1, . . . ,

√
λd

)
,

and, consequently, the joint distribution can be written as

pX,Y (x, y) = pX(x)pY (y) +
d∑

k=1

√
λkby,kax,k, (7)

where ax,k and by,k are the entries ofA and B in (6),
respectively,

Based on the decomposition of the joint distribution matrix,
we define below a measure of information betweenX andY
based on the principal inertias.

Definition 2. Let ‖A‖k denote thek-th Ky Fan norm3 [19,
Example 7.4.8] of a matrixA. For 1 ≤ k ≤ d, we define the
k-correlation betweenX andY as

Jk(X ;Y ) , ‖D−1/2
X PX,Y D

−1
Y PT

X,Y D
−1/2
X ‖k − 1 (8)

=

k∑

i=1

λi. (9)

Note that
J1(X ;Y ) = ρ2m(X ;Y ),

whereρm(X ;Y ) is the maximal correlationof (X,Y ) [10],
and

Jd(X ;Y ) = EX,Y

[
pX,Y (X,Y )

pX(X)pY (Y )

]
− 1 = χ2.

We now show thatk-correlation and, consequently, maximal
correlation, is convex inpY |X for a fixedpX and satisfies the
Data Processing Inequality.

1) Convexity inpY |X : We use the next lemma to prove
convexity ofJk(X ;Y ) in the transition probabilitypX,Y .

Lemma 1. For W ∈ Sm
++ and 1 ≤ k ≤ m, the function

hk : Rm×n × Sn
++ → R defined as

hk(C,W ) , ‖CW−1CT ‖k (10)

is convex.

Proof: Let Q , CW−1CT . SinceQ is positive semidef-
inite, ‖Q‖k is the sum of thek largest eigenvalues ofQ, and
can be written as [20], [21]:

hk(C,W ) = ‖Q‖k = max
ZTZ=Ik

tr
(
ZTQZ

)
. (11)

Let Z be fixed andZTZ = Ik, and denote thei-th column
of Z by zi. Note thatg(a,W ) , aTW−1a is convex [22,
Example 3.4] and, consequently,g(CT zi,W ) is also convex
in C and W . Since the sum of convex functions is itself
convex, thentr

(
ZTQZ

)
=
∑m

i=1 g(C
T zi,W ) is also convex

in X andY . The result follows by noting that the pointwise
supremum over an infinite set of convex functions is also a
convex function [22, Sec. 3.2.3].

3For A ∈ R
m×n, ‖A‖k =

∑k
i=1

σi, whereσ1, . . . , σmin{m,n} are the
singular values ofA.

Theorem 1. For a fixedpX , Jk(X ;Y ) is convex inpY |X .

Proof: Note thatJk(X ;Y ) = hk(DXPY |X , DY ) − 1,
wherehk is defined in equation (10). For a fixedpX , DY is
a linear combination ofpY |X . Therefore, sincehk is convex
(Lemma 1), and composition with an affine mapping preserves
convexity, the result follows.

2) A data processing result:In the next theorem, we
prove that the principal inertias satisfy the Data Processing
Inequality.

Theorem 2. Assume thatX ′ → X → Y , whereX ′ is a dis-
crete random variable with finite support. Letλ1, λ2, . . . , λd

andλ′
1, λ

′
2, . . . , λ

′
d denote the principal inertias ofPX,Y and

PX′,Y , respectively. Thenλ1 ≥ λ′
1, λ2 ≥ λ′

2, . . . , λd ≥ λ′
d.

Remark 1. This data processing result was also proved by
Kang and Ulukus in [11, Theorem 2], even though they do
not make the explicit connection with maximal correlation
and principal inertias. A weaker form of Theorem 2 can be
derived using a clustering result presented in [6, Sec. 7.5.4] and
originally due to Deniauet al. [23]. We use a different proof
technique from the one in [6, Sec. 7.5.4] and [11, Theorem
2] to show result stated in the theorem, and present the proof
here for completeness. Finally, a related data processing result
was stated in [24, Eq. (31)].

Proof: Assume without loss of generality thatX ′ =
{1, . . . ,m′} is the support set ofX ′. ThenPX′,Y = FPX,Y ,
whereF is a m′ × m column stochastic matrix. Note that
F represents the conditional distribution of the mapping
X ′ → X , where the(i, j)-th entry ofF is pX′|X(i|j).

Consider the decomposition ofPX′,Y = FPX,Y :

S′ = D
−1/2
X′

(
PX′Y − pX′pT

Y

)
D

−1/2
Y

= D
−1/2
X′ F

(
PXY − pXpT

Y

)
D

−1/2
Y

= D
−1/2
X′ FD

1/2
X S,

whereS is given by

S , D
−1/2
X

(
PX,Y − pXpT

Y

)
D

−1/2
Y . (12)

Note that the singular values ofS′ are the principal inertias
λ′
1, . . . , λ

′
d.

Let E = D
−1/2
X′ FD

1/2
X , where that the size ofE is m′×m.

Since[FDX ]i,j = pX′,X(i, j), then the(i, j)-th entry ofE is

[E]i,j =
pX′,X(i, j)√
pX′(i)pX(j)

.

Observe thatE has the same form as (4), and, therefore,
‖E‖1 = 1. Let H = STS − S′TS′. Then fory ∈ R

n and
Sy = z:

yTHy = yTSTSy− yTS′TS′y

= ‖z‖2 − ‖Ez‖2
≥ ‖z‖2 − ‖E‖1‖z‖2
= 0.

Consequently,H is positive semidefinite. SinceH is symmet-
ric, it follows from Weyl’s theorem [19, Theorem 4.3.1] that
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for k = 1, . . . , n,

Λk(S
′TS′) ≤ Λk(S

′TS′ +H)

= Λk(S
TS)

= λk.

SinceΛk(S
′TS′) = λ′

k, the result follows.

The next corollary is a direct consequence of the previous
theorem.

Corollary 1. For X ′ → X → Y forming a Markov chain,
Jk(X

′;Y ) ≤ Jk(X ;Y ).

IV. A LOWER BOUND FOR THE ESTIMATION ERROR

PROBABILITY IN TERMS OF THE PRINCIPAL INERTIAS

Throughout the rest of the paper, we assume without loss of
generality thatpX is sorted in decreasing order, i.e.pX(1) ≥
pX(2) ≥ · · · ≥ pX(m).

Definition 3. Let ΛΛΛ(PX,Y ) denote the vector of principal
inertias of a joint distribution matrixPX,Y sorted in decreasing
order, i.e.ΛΛΛ(PX,Y ) = (λ̃1, . . . , λ̃d). We denoteΛΛΛ(PX,Y ) ≤ λλλ

if λ̃1 ≤ λ1, . . . , λ̃d ≤ λd and

R(qX ,λλλ) ,
{
PX,Y

∣∣pX = qX andΛΛΛ(PX,Y ) ≤ λλλ
}
. (13)

In the next theorem we present a Fano-like bound for the
estimation error probability ofX that depends on the marginal
distributionpX and on the principal inertias.

Theorem 3. For λλλ = (λ1, . . . , λd), define

k∗ , max
{
k ∈ {1, . . . ,m}

∣∣ pX(k)− pT
XpX ≥ 0

}
, (14)

f∗
0 (pX ,λλλ) ,

k∗∑

i=1

λipX(i) +

m∑

i=k∗+1

λi−1pX(i)

− λk∗pT
XpX ,

g0(β,pX ,λλλ) , f∗
0 (pX ,λλλ) +

m∑

i=1

(
[pX(i)− β]

+
)2

,

U0(β,pX ,λλλ) , β +
√
g0(β,pX ,λλλ),

U1(pX ,λλλ) , min
0≤β≤pX (2)

U0(β,pX ,λλλ).

Then for anyPX,Y ∈ R(pX ,λλλ),

Pe ≥ 1− U1(pX ,λλλ). (15)

Proof: The proof of the theorem is presented in the
appendix.

Remark 2. If λi = 1 for all 1 ≤ i ≤ d, (15) reduces to
Pe ≥ 0. Furthermore, ifλi = 0 for all 1 ≤ i ≤ d, (15)
simplifies toPe ≥ 1− pX(1).

We now present a few direct but powerful corollaries of
the result in Theorem 3. We note that a bound similar to (16)
below has appeared in the context of bounding the minmax
decision risk in [25, (3.4)]. However, the proof technique

used in [25] does not lead to the general bound presented
in Theorem 3.

Corollary 2. If X is uniformly distributed in{1, . . . ,m}, then

Pe ≥ 1− 1

m
−
√
(m− 1)χ2

m
. (16)

Furthermore, if only the maximal correlationρm(X ;Y ) =√
λ1 is given, then

Pe ≥ 1− 1

m
−
√
λ1

(
1− 1

m

)

= 1− 1

m
− ρm(X ;Y )

(
1− 1

m

)
.

Corollary 3. For any pair of variables(X,Y ) with marginal
distribution inX equal topX and maximal correlation (largest
principal inertia) ρ2m(X ;Y ) = λ1, we have for allβ ≥ 0

Pe ≥ 1−β−

√√√√λ1

(
1−

m∑

i=1

p2X(i)

)
+

m∑

i=1

(
[pX(i)− β]

+
)2

.

(17)
In particular, settingβ = pX(2),

Pe ≥ 1− pX(2)−

√√√√λ1

(
1−

m∑

i=1

p2X(i)

)
+ (pX(1)− pX(2))2

≥ 1− pX(1)− ρm(X ;Y )

√√√√
(
1−

m∑

i=1

p2X(i)

)
. (18)

Remark 3. The bounds (17) and (18) are particularly in-
sightful in showing how the error probability scales with the
input distribution and the maximal correlation. For a given
pX,Y , recall thatAdv(X ;Y ), defined in (3), is the advantage
of correctly estimatingX from an observation ofY over a
random guess ofX whenY is unknown. Then, from equation
(18)

Adv(X ;Y ) ≤ ρm(X ;Y )

√√√√
(
1−

m∑

i=1

p2X(i)

)

= O(ρm(X ;Y )).

Therefore, the advantage of estimatingX from Y decreases
at least linearly with the maximal correlation betweenX and
Y .

V. L OWER BOUNDS ON ESTIMATING FUNCTIONS

For any functionf : X → U , we denote bŷf the maximum-
likelihood estimator off(X) given an observation ofY . For
a given integer1 ≤ M ≤ |X |, we define

FM ,
{
f : X → U

∣∣ f is surjective and|U| = M
}

and
Pe,M , min

f∈FM

Pr{f(X) 6= f̂}. (19)

Pe,|X | is simply the error probability of estimatingX from Y ,
i.e. Pe,|X | = Pe.
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Throughout this section we adopt the following additional
assumption.

Assumption 1. An upper boundθ for a given measure
of information I(X ;Y ) betweenX and Y is given, i.e.
I(X ;Y ) ≤ θ. Furthermore, I(X ;Y ) satisfies the Data
Processing Inequality, is convex inpY |X for a given pX ,
and is invariant to row and column permutations of the joint
distribution matrix pX,Y . Finally, we also assume that the
marginal distribution ofX , given bypX , is known.

Under this assumption, what can be said aboutPe,M? In
the next sections we present a general procedure to derive
non-trivial lower bounds forPe,M .

A. Extremal properties of the error-rate function

Before investigating how to boundPe,M , we first study how
to boundPe in a more general setting than the one in section
IV. Note that

Pe ≥ min
PY |X ,E

1− tr
(
DXPY |XE

)

s.t. I(pX , PY |X) ≤ θ, PY |X ∈ Tm,n, E ∈ Tn,m.

HereE denotes the mapping fromY to X̂ . By fixing PY |X

and taking the dual inE of the previous convex program,
we can verify thatE will always be a row-stochastic matrix
with entries equal to 0 or 1. SinceI(X ;Y ) satisfies the Data
Processing Inequality,Pe ≥ eI(pX , θ), where eI(pX , θ) is
defined below.

Definition 4. Theerror-rate functioneI(pX , θ) is the solution
of the following convex program:

eI(pX , θ) , min
P

X̂|X

1− tr
(
DXPX̂|X

)
(20)

s.t. I(pX , PX̂|X) ≤ θ, PX̂|X ∈ Tm,m .

Due to convexity ofI(pX , PX̂|X) in PX̂|X , it follows
directly thateI(pX , θ) is convex inθ for a fixedpX . Further-
more, the cost function (20) is equal to the average Hamming
distortion EX,X̂

[
dH(X, X̂)

]
betweenX and X̂. Therefore,

eI(pX , θ) has a dual relationship4 with the rate-distortion
problem

RI(pX ,∆) , min
P

X̂|X

I(pX , PX̂|X)

s.t.EX,X̂

[
dH(X, X̂)

]
≤ ∆, PX̂|X ∈ Tm,m.

We will now prove that, for a fixedθ (respectively, fixed
∆), eI(pX , θ) (resp.RI(pX ,∆)) is Schur-concavein pX if
I(pX , PY |X) is concave inpX for a fixedPY |X . Ahlswede
[4, Theorem 2] proved this result for the particular case where
I(X ;Y ) = I(X ;Y ) by investigating the properties of the
explicit characterization of the rate-distortion function under
Hamming distortion. The proof presented here is considerably
simpler and more general, and is based on a proof technique
used by Ahlswede in [4, Theorem 1].

4The authors thank Prof. Yury Polyansky (MIT) for pointing out the dual
relationship.

Theorem 4. If I(pX , PY |X) is concave inpX for a fixed
PY |X , theneI(pX , θ) and RI(pX ,∆) are Schur-concave in
pX for a fixedθ and∆, respectively.

Proof: Consider two probability distributionspX and
qX defined overX = {1, . . . ,m}. As usual, letpX(1) ≥
pX(2) ≥ · · · ≥ pX(m) and qX(1) ≥ qX(2) ≥ · · · ≥ qX(m).
Furthermore, assume thatpX majorizesqX , i.e.

∑k
i=1 qX(i) ≤∑k

i=1 pX(i) for 1 ≤ k ≤ m. ThereforeqX is a convex
combination of permutations ofpX [26], and can be written as
qZ =

∑l
i=1 aiπipX for somel ≥ 1, whereai ≤ 0,

∑
ai = 1

andπi are permutation operators, i.e.πipX = pπiX . Hence,
for a fixedA ∈ Tm,n:

I(qX , A) = I
(

l∑

i=1

aiπipX , A

)

≤
l∑

i=1

aiI(πipX , A),

=

l∑

i=1

aiI(pX , πiAπi),

where the inequality follows from the concavity assumption
and from I(X ;Y ) being invariant to row and column per-
mutations of the joint distribution matrixpX,Y . Consequently,
from equation (20),

eI(qX , θ) = inf
A∈Tm,m

{
1−

l∑

i=1

aitr (DXπiAπi)) :

l∑

i=1

aiI(pX , πiAπi) ≤ θ

}

≥ inf
A1,...,Al∈Tm,m

{
l∑

i=1

ai(1− tr (DXAi)) :

l∑

i=1

aiI(pX , Ai) ≤ θ

}

= inf
θ1,...,θl≥0

{
l∑

i=1

aieI(pX , θi) :

l∑

i=1

aiθi = θ

}

≥ inf
θ1,...,θl≥0

{
eI

(
pX ,

∑
aiθi

)
:

l∑

i=1

aiθi = θ

}

= eI (pX , θ) ,

where the last inequality follows from the convexity of the
error-rate function. Since this holds for anyqX that is ma-
jorized by pX , eI(pX , θ) is Schur-concave. Schur-concavity
of RI(pX ,∆) follows directly from its dual relationship with
eI(pX , θ).

For I = Jk, the convex program (20) might be difficult
to compute due to the constraint on the sum of the singular
values. The next theorem presents a convex program that
evaluates a lower bound foreJk

(pX , θ) and can be solved
using standard methods.
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Theorem 5.

eJk
(pX , θ) ≥ min

P
X̂|X

1− tr
(
DXPX̂|X

)

s.t.
k∑

i=1

m∑

j=1

pX(i)p2
X̂|X

(j|i)
yj

≤ θ + 1, (21)

PX̂|X ∈ Tm,m,
m∑

j=1

pX(i)pX̂|X(j|i) = yj , 1 ≤ j ≤ m.

Proof: Let F , D
−1/2
X PXY D

−1/2
Y . Then

Jk(X ;Y ) = ‖FFT‖k − 1.

Let

ci ,

m∑

j=1

pX(i)p2
X̂|X

(j|i)
yj

be the i-th diagonal entry ofFFT . By using the fact that
the eigenvalues majorize the diagonal entries of a Hermitian
matrix ([19, Theorem 4.3.45]), we find

k∑

i=1

ci ≤ ‖FFT‖k,

and the result follows. Note that convexity of the constraint
(21) follows from the fact that the perspective of a convex
function is convex [22, Sec. 2.3.3].

B. Bounds forPe,M

Still adopting assumption 1, a lower bound forPe,M can be
derived as long aseI(pX , θ) or a lower bound foreI(pX , θ)
is Schur-concave inpX .

Theorem 6. For a given M,1 ≤ M ≤ m, and pX , let U =
g(X), wheregM : {1, . . . ,m} → {1, . . . ,M} is defined as

gM (x) ,

{
1 1 ≤ x ≤ m−M + 1

x−m+M m−M + 2 ≤ x ≤ m .

Let pU be the marginal distribution5 of U . Assume that,
for a given measure of informationI(X ;Y ), there exists a
functionLI(·, ·) such that for all distributionsqX and anyθ,
eI(qX , θ) ≥ LI(qX , θ). Under assumption 1, ifLI(pX , θ) is
Schur-concave inpX , then

Pe,M ≥ LI(pU , θ) . (22)

Proof: The result follows from the following chain of
inequalities:

Pe,M

(a)

≥ min
f∈FM ,θ̃

{
eI

(
pf(X), θ̃

)
: θ̃ ≤ θ

}

≥ min
f∈FM

{
eI
(
pf(X), θ

)}

(b)

≥ min
f∈FM

{
LI

(
pf(X), θ

)}

(c)

≥ LI(pU , θ),

5The pmf of U is pU (1) =
∑m−M+1

i=1
pX(i) and pU (k) = pX(m −

M + k) for k = 2, . . . ,M .

where (a) follows from the Data Processing Inequality, (b)
follows from eI(qX , θ) ≥ LI(qX , θ) for all qX , andθ and (c)
follows from the Schur-concavity of the lower bound and by
observing thatpU majorizespf(X) for everyf ∈ FM .

The following two corollaries illustrate how Theorem 6 can
be used for different measures of information, namely mutual
information and maximal correlation.

Corollary 4. Let I(X ;Y ) ≤ θ. Then

Pe,M ≥ d∗

whered∗ is the solution of

hb(d
∗) + d∗ log(m− 1) = min{H(U)− θ, 0},

andhb(·) is the binary entropy function.

Proof: RI(pX , δ) is the well known rate-distortion func-
tion under Hamming distortion, which satisfies ([27, (9.5.8)])
RI(pX , δ) ≥ H(X) − hb(d

∗) − d∗ log(m − 1). The result
follows from Theorem 4, since mutual information is concave
in pX .

Corollary 5. Let J1(X ;Y ) = ρm(X ;Y ) ≤ θ. Then

Pe,M ≥ 1− pU (1)− θ

√√√√
(
1−

M∑

i=1

p2U (i)

)
.

Proof: The proof follows directly from Theorems 1, 2
and Corollary 3, by noting that (18) is Schur-concave inpX .

VI. CONCLUDING REMARKS

We illustrated in this paper how the principal inertia-
decomposition of the joint distribution matrix can be applied
to derive useful bounds for the average estimation error. The
principal inertias are a more refined metric of the correlation
betweenX andY than, say, mutual information. Furthermore,
the principal inertia components can be used in metrics, such
as k-correlation, that share several properties with mutual
information (e.g. convexity).

Furthermore, we also introduced a general method for
bounding the average estimation error of functions of a hidden
random variable. This method depends on the Schur-concavity
of a lower bound for the error-rate function. We proved that
the eI(pX , θ) itself is Schur-concave whenever the measure
of information is concave inpX . It remains to be shown
if eI(pX , θ) is Schur-concave for more general measures of
information (such ask-correlation), and finding the necessary
and sufficient conditions for Schur-concavity would be of both
theoretical and practical interest.

Finally, the creation of bounds forPe and Pe,M given
constraints on different metrics of information is a promising
avenue of research. Most information-theoretic lower bounds
for the average estimation error are based on mutual informa-
tion. However, in statistics, a wide range of metrics are used
to estimate the information between an observed and a hidden
variable. Relating such metrics with the fundamental limits of
inference is relevant for practical applications in both security
and machine learning.
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APPENDIX A
PROOF OFTHEOREM 3

Theorem 3 follows directly from the next two lemmas.

Lemma 2. Let the marginal distributionpX and the principal
inertiasλλλ = (λ1, . . . , λd) be given, whered = m − 1. Then
for anyPX,Y ∈ R(pX ,λλλ), 0 ≤ α ≤ 1 and 0 ≤ β ≤ pX(2)

Pe ≥ 1− β −

√√√√f0(α,pX ,λλλ) +

m∑

i=1

(
[pX(i)− β]

+
)2

,

where

f0(α,pX ,λλλ) =

d+1∑

i=2

pX(i)(λi−1 + ci − ci−1)

+ pX(1)(c1 + α)− αpT
XpX , (23)

and ci = [λi − α]+ for i = 1, . . . , d and cd+1 = 0.

Proof: Let X andY have a joint distribution matrixPX,Y

with marginalpX and principal inertias individually bounded
by λλλ = (λ1, . . . , λd). We assume without loss of generality
thatd = m− 1, where|X | = m. This can always be achieved
by adding inertia components equal to 0.

ConsiderX → Y → X̂, whereX̂ is the estimate ofX from
Y . The mapping fromY to X̂ can be described without loss
of generality by a|Y|×|X | row stochastic matrix, denoted by
F , where the(i, j)-th entry is the probabilitypX̂|Y (j|i). The
probability of correct estimationPc is then

Pc = Pr
{
X̂ = X

}
= tr (PX,X′) ,

wherePX,X′ , PX,Y F .
The matrix PX,X′ can be decomposed according to (5),

resulting in

Pc = tr
(
D

1/2
X U Σ̃V TD

1/2
X′

)
= tr

(
Σ̃V TD

1/2
X′ D

1/2
X U

)
,

(24)

where

U =
[
p
1/2
X u2 · · · um

]
,

V =
[
p
1/2
X′ v2 · · · vm

]
,

Σ̃ = diag
(
1, λ̃

1/2
1 , . . . , λ̃

1/2
d

)
,

DX′ = diag (pX′) ,

and Ũ and Ṽ are orthogonal matrices. The probability of
correct detection can be written as

Pc = pT
XpX′ +

m∑

k=2

m∑

i=1

(
λ̃k−1pX(i)pX′(i)

)1/2
uk,ivk,i

= pT
XpX′ +

m∑

k=2

m∑

i=1

λ̃
1/2
k−1ũk,iṽk,i

whereuk,i = [uk]i, vk,i = [vk]i, ũk,i = pX(i)uk,i and ṽk,i =
pX′(i)vk,i. Applying the Cauchy-Schwarz inequality twice, we

obtain

Pc ≤ pT
XpX′ +

m∑

i=1

(
m∑

k=2

ṽ2k,i

)1/2( m∑

k=2

λ̃k−1ũ
2
k,i

)1/2

= pT
XpX′ +

m∑

i=1

(
pX′(i)(1− pX′(i))

m∑

k=2

λ̃k−1ũ
2
k,i

)1/2

≤ pT
XpX′ +

(
1−

m∑

i=1

p2X′(i)

)1/2( m∑

i=1

m∑

k=2

λ̃k−1ũ
2
k,i

)1/2

(25)

Let U = [u2 · · ·um] andΣ = diag
(
λ̃1, . . . , λ̃d

)
. Then

m∑

i=1

m∑

k=2

λ̃k−1ũ
2
k,i = tr

(
ΣU

T
DXU

)

≤
d∑

k=1

σkλ̃k,

≤
d∑

k=1

σkλk. (26)

whereσk = Λk(U
T
DXU). The first inequality follows from

the application of Von-Neumman’s trace inequality and the
fact that U

T
DXU is symmetric and positive semi-definite.

The second inequality follows by observing that the principal
inertias satisfy the data processing inequality and, therefore,
λ̃k ≤ λk.

We will now find an upper bound for (26) by bounding the

eigenvaluesσk. First, note thatU U
T

= I − p
1/2
X

(
p
1/2
X

)T

and consequently

d∑

k=1

σk = tr
(
U

T
DXU

)

= tr

(
DX

(
I − p

1/2
X

(
p
1/2
X

)T))

= 1−
m∑

i=1

p2X(i) . (27)

Second, note thatU
T
DXU is a principal submatrix of

UTDXU , formed by removing the first row and columns of
UTDXU . It then follows from Cauchy’s interlacing theorem
that

pX(m) ≤ σm−1 ≤ pX(m−1) ≤ · · · ≤ pX(2) ≤ σ1 ≤ pX(1).
(28)

Combining the restriction (27) and (28), an upper bound for
(26) can be found by solving the following linear program

max
σi

d∑

i=1

λiσi (29)

subject to
d∑

i=1

σi = 1− pT
XpX ,

pX(i+ 1) ≤ σi ≤ pX(i), i = 1, . . . , d .
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Let δi , pX(i)−pX(i+1) andγi , λipX(i+1). The dual
of (29) is

min
yi,α

α
(
pX(1)− pT

XpX

)
+

m−1∑

i=1

δiyi + γi (30)

subject to yi ≥ [λi − α]
+
, i = 1, . . . , d .

For any given value ofα, the optimal values of the dual
variablesyi in (30) are

yi = [λi − α]
+
= ci, i = 1, . . . , d .

Therefore the linear program (30) is equivalent to

min
α

f0(α,pX ,λλλ), (31)

wheref0(α,pX ,λλλ) is defined in the statement of the theorem.
Denote the solution of (29) byf∗

P (pX ,λλλ) and of (30) by
f∗
D(pX ,λλλ). It follows that (26) can be bounded

d∑

k=1

σkλk ≤ f∗
P (pX ,λλλ)

= f∗
D(pX ,λλλ)

≤ f0(α,pX ,λλλ) ∀ α ∈ R. (32)

We may consider0 ≤ α ≤ 1 in (32) without loss of generality.
Using (32) to bound (25), we find

Pc ≤ pT
XpX′ +

[
f0(α,pX ,λλλ)

(
1−

m∑

i=1

p2X′(i)

)]1/2
(33)

The previous bound can be maximized over all possible output
distributionspX′ by solving:

max
xi

[
f0(α,pX ,λλλ)

(
1−

m∑

i=1

x2
i

)]1/2
+

m∑

i=1

pX(i)xi

(34)

subject to
m∑

i=1

xi = 1,

xi ≥ 0, i = 1, . . . ,m .

The dual function of (34) over the additive constraint is

L(β) = max
xi≥0

β +

[
f0(α,pX ,λλλ)

(
1−

m∑

i=1

x2
i

)]1/2

+

m∑

i=1

(pX(i)− β)xi

= β +

√√√√f0(α,pX ,λλλ) +

m∑

i=1

(
[pX(i)− β]

+
)2

. (35)

SinceL(β) is an upper bound of (34) for anyβ and, therefore,
is also an upper bound of (33), then

Pc ≤ β +

√√√√f0(α,pX ,λλλ) +

m∑

i=1

(
[pX(i)− β]

+
)2

. (36)

Note that we can consider0 ≤ β ≤ pX(2) in (36), sinceL(β)
is increasing forβ > pX(2). TakingPe = 1 − Pc, the result
follows.

The next result tightens the bound introduced in lemma 2
by optimizing over all values ofα.

Lemma 3. Let f∗
0 (pX ,λλλ) , minα f0(α,pX ,λλλ) and k∗ be

defined as in(14). Then

f∗
0 (pX ,λλλ) =

k∗∑

i=1

λipX(i) +
m∑

i=k∗+1

λi−1pX(i)

− λk∗pT
XpX , (37)

whereλm = 0.

Proof: Let pX and λλλ be fixed, andλk ≤ α ≤ λk−1,
where we defineλ0 = 1 andλm = 0. Thenci = λi − α for
1 ≤ i ≤ k − 1 andci = 0 for k ≤ i ≤ d in (23). Therefore

f0(α,pX ,λλλ) =

k−1∑

i=1

λipX(i) + αpX(k)

+

m∑

i=k+1

λi−1pX(i)− αpT
XpX (38)

Note that (38) is convex inα, and is decreasing when
pX(k)−pT

XpX ≤ 0 and increasing whenpX(k)−pT
XpX ≥ 0.

Therefore,f0(α,pX ,λλλ) is minimized whenα = λk such
that pX(k) ≥ pT

XpX and pX(k − 1) ≤ pT
XpX . If pX(k) −

pT
XpX ≥ 0 for all k (i.e. pX is uniform), then we can take

α = 0. The result follows.

APPENDIX B
EQUIVALENT CHARACTERIZATIONS OF THE PRINCIPAL

INERTIAS AND k-CORRELATION

In this appendix we discuss two distinct characterizationsof
the principal inertia components. The first characterization is
based on the work of Gebelein [8] and the overview presented
in [10]. The second characterization is based on the overview
presented in [9], and is analogous to the definition of moments
of inertia from classical mechanics.

A. Correlation characterization

Let S be a collection of random variables defined as

S , {(f(X), g(Y )) :E [f(X)] = E [g(Y )] = 0,

E
[
f2(X)

]
= E

[
g2(Y )

]
= 1
}

.

Then, for1 ≤ k ≤ d, we can compute the principal inertias
recursively as

λ
1/2
k = max

(f(X),g(Y ))∈Sk

E [f(X)g(Y )] ,

(fk(X), gk(Y )) = argmax
(f(X),g(Y ))∈Sk

E [f(X)g(Y )] ,

whereS1 = S and

Sk = {(f(X), g(Y )) ∈ S : E [f(X)fi(X)] = 0,

E [g(Y )gi(Y )] = 0, i = 1, . . . , k − 1} .
for 2 ≤ k ≤ d. We can verify thatfk(x) = ax,k/pX(x) and
gk(x) = by,k/pY (y).
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B. Spatial characterization

Let S be defined in equation (12). Then the square of the
singular values ofS are the principal inertias ofPX,Y [6].
The decomposition ofS can be interpreted as the moment of
inertia of a set of masses located in discrete points in space,
as described below. We will change the notation slightly in
this appendix in order to make this analogy clear.

Consider ann-dimensional Euclidean spaceV with a sym-
metric positive definite formQ = DY . For x, y ∈ V we let
〈x, y〉 = xTQy, ‖x‖Q =

√
〈x, x〉 andd(x, y) = ‖x− y‖Q.

Let x1, . . . , xm ∈ V , where each point isxi = pY |X=i. We
associate to each pointxi a masswi = pX(i), 1 ≤ i ≤ m.
Thebarycenter(center of mass)̄x of the pointsx1, . . . , xm is
simply x̄ = pY .

Let G = PY |X . If we translate the space so the barycenter
x̄ is the origin, the new coordinates ofx1, . . . , xm are then
the rows ofC = G−1x̄T , We denoteCT = [c1, . . . , cm]. We
define themoment of inertiaI of the collection ofm points
as the weighted sum of the squared distances of each point to
the barycenter:

I ,

m∑

i=1

wid
2(xi − x̄) (39)

= tr
(
DXCQCT

)
. (40)

We now ask: What is the subspaceW t ∈ V of dimension
t ≤ m where the projection ofx1, . . . , xm has the largest
moment of inertia? To answer this question we need to
determine a basisa1, . . . , at of W t. This is equivalent to
solving the following optimization:

It , max
a1,...,at

d∑

j=1

‖D1/2
X CQaj‖22 (41)

s.t.‖aj‖Q = 1, aj ∈ V j = 1, . . . , t

〈ai, aj〉 = 0, 1 ≤ i < j ≤ t

Note thatS = D
1/2
X CQ1/2, and the decomposition in (12) can

be interpreted accordingly. The solution of (41) is exactlythe
sum of the square of thet largest singular values ofS, which,
in turn, is equal toJt(X ;Y ).
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[3] A. Rényi, “On measures of dependence,”Acta Math. Hung., vol. 10, no.
3-4, pp. 441–451, Sep. 1959.

[4] R. Ahlswede, “Extremal properties of rate distortion functions,” IEEE
Trans. on Info. Theory, vol. 36, no. 1, pp. 166–171, 1990.

[5] M. Greenacre,Correspondence Analysis in Practice, Second Edition,
2nd ed. Chapman and Hall/CRC, May 2007.

[6] M. J. Greenacre,Theory and Applications of Correspondence Analysis.
Academic Pr, Mar. 1984.

[7] H. O. Hirschfeld, “A connection between correlation andcontingency,”
in Math Proc. Cambridge, vol. 31, 1935, pp. 520–524.

[8] H. Gebelein, “Das statistische problem der korrelationals variations- und
eigenwertproblem und sein zusammenhang mit der ausgleichsrechnung,”
ZAMM-Z. Angew. Math. Me., vol. 21, no. 6, pp. 364–379, 1941.

[9] M. Greenacre and T. Hastie, “The geometric interpretation of correspon-
dence analysis,”J. Am. Stat. Assoc., vol. 82, no. 398, pp. 437–447, Jun.
1987.

[10] V. Anantharam, A. Gohari, S. Kamath, and C. Nair, “On maximal
correlation, hypercontractivity, and the data processinginequality studied
by erkip and cover,” arXiv e-print 1304.6133, Apr. 2013.

[11] W. Kang and S. Ulukus, “A new data processing inequalityand its
applications in distributed source and channel coding,”IEEE Trans. Inf.
Theory, vol. 57, no. 1, pp. 56–69, 2011.

[12] A. Guntuboyina, “Lower bounds for the minimax risk using -
divergences, and applications,”IEEE Trans. Inf. Theory, vol. 57, no. 4,
pp. 2386–2399, 2011.

[13] A. Guntuboyina, S. Saha, and G. Schiebinger, “Sharp inequalities for
f -divergences,”arXiv:1302.0336, Feb. 2013.

[14] V. Doshi, D. Shah, M. Médard, and M. Effros, “Functional compression
through graph coloring,”IEEE Trans. Inf. Theory, vol. 56, no. 8, pp.
3901 –3917, Aug. 2010.

[15] A. Orlitsky and J. Roche, “Coding for computing,”IEEE Trans. Inf.
Theory, vol. 47, no. 3, pp. 903 –917, Mar. 2001.

[16] G. R. Kumar and T. A. Courtade, “Which boolean functionsare most
informative?” arXiv:1302.2512, Feb. 2013.

[17] M. Bellare, S. Tessaro, and A. Vardy, “Semantic security for the wiretap
channel,” inAdvances in Cryptology – CRYPTO 2012, ser. Lecture Notes
in Comput. Sci. Springer, Jan. 2012, no. 7417, pp. 294–311.

[18] Y. Liang, H. V. Poor, and S. Shamai (Shitz), “Information theoretic
security,” Found. Trends Commun. Inf. Theory, vol. 5, no. 4, pp. 355–
580, Apr. 2009.

[19] R. A. Horn and C. R. Johnson,Matrix Analysis, 2nd ed. Cambridge
University Press, Oct. 2012.

[20] K. Fan, “On a theorem of Weyl concerning eigenvalues of linear
transformations I,”P. Natl. Acad. Sci. USA, vol. 35, no. 11, pp. 652–655,
Nov. 1949.

[21] M. L. Overton and R. S. Womersley, “On the sum of the largest
eigenvalues of a symmetric matrix,”SIAM J. Matrix Anal. A., vol. 13,
no. 1, pp. 41–45, Jan. 1992.

[22] S. P. Boyd and L. Vandenberghe,Convex optimization. Cambridge,
UK; New York: Cambridge University Press, 2004.

[23] C. Deniau, G. Oppenheim, and J. P. Benzécri, “Effet de l’affinement
d’une partition sur les valeurs propres issues d’un tableaude correspon-
dance,”Cahiers de l’analyse des données, vol. 4, no. 3, pp. 289–297.

[24] Y. Polyanskiy, “Hypothesis testing via a comparator.”[Online].
Available: http://people.lids.mit.edu/yp/homepage/data/htstruct.pdf

[25] A. Guntuboyina, “Minimax lower bounds,” Ph.D., Yale University,
United States – Connecticut, 2011.

[26] A. W. Marshall, I. Olkin, and B. C. Arnold,Inequalities: theory of
majorization and its applications. New York: Springer Series in
Statistics, 2011.

[27] R. G. Gallager,Information theory and reliable communication. New
York: Wiley, 1968.

http://people.lids.mit.edu/yp/homepage/data/htstruct.pdf

	arxiv.org
	http://arxiv.org/pdf/1310.1512v1.pdf
	I Introduction
	II Overview of main results and related work
	II-A Notation
	II-B Overview of main results
	II-B1 Bounds based on principal inertia components
	II-B2 Bounding the estimation error of functions

	II-C Background

	III A measure of information based on principal inertias
	III-1 Convexity in pY|X
	III-2 A data processing result


	IV A lower bound for the estimation error probability in terms of the principal inertias
	V Lower bounds on estimating functions
	V-A Extremal properties of the error-rate function
	V-B Bounds for Pe,M

	VI Concluding remarks
	Appendix A: Proof of Theorem ??
	Appendix B: Equivalent characterizations of the principal inertias and k-correlation
	B-A Correlation characterization
	B-B Spatial characterization

	References



