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Abstract—Lower bounds for the average probability of error that a (computationally unbounded) adversary can makengive
of estimating a hidden variable X given an observation of an observation of the output of the system.
a correlated random variable Y, and Fano's inequality in Furthermore, owing to the nature of the joint distribution,

particular, play a central role in information theory. In th is . . . . .
paper, we present a lower bound for the average estimation it may be infeasible to estimat® from " with small error

error based on the marginal distribution of X and the principal ~ Probability. However, it is possible that a non-trivial fttion
inertias of the joint distribution matrix of X and Y. Furthermore,  f(X) exists that is of interest to a learner and can be estimated

we discuss an information measure based on the sum of thereliably. If f is the identity function, this reduces to the
largest principal inertias, called k-correlation, which generalizes standard problem of estimating from Y. Determining if

maximal correlation. We show that k-correlation satisfies the h a functi ists | | - | licati .
Data Processing Inequality and is convex in the conditional such a function exists IS reiévant to several applicaions |

distribution of Y given X. Finally, we investigate how to answer inference, privacy and security! [1].
a fundamental question in inference and privacy: given an In this paper, we establish lower bounds for the average

observation Y, can we estimate a functionf(X) of the hidden estimation error ofX and f(X) given an observation oY .
random variable X with an average error below a certain tpege hounds depend only on certain measures of information
threshold? We provide a general method for answering this betweenX and Y and the marginal distribution oK. The
question using an approach based on rate-distortion theory 3 .
results hold for any estimator, and they shed light on the
fundamental limits of what can be inferred about a hidden
l. INTRODUCTION variaple_from a noisy measureme_nt. Thel bounds derived here
are similar in nature to Fano’s inequality! [2], and can be
Consider the standard problem in estimation theory: GiV@haracterized as the solution of a convex program which,
an observation of a random variable what can we learn in turn, is closely related to the rate-distortion optintiaa
about a correlated, hidden variab{e? For example, in security problem.
systems X can be the plaintext message, andhe ciphertext ~ Our work has two main contributions. First, we analyze
or any additional side information available to an adversamroperties of a measure of information (correlation) betwe
Throughout the paper, we assume thatandY are discrete X andy based on the principal inertias of the joint distribution
random variables with finite support. of X andY. The estimation of principal inertias is widely
If the joint distribution betweenX andY is known, the studied in the field of correspondence analysis, and is used i
probability of error of estimatind( given an observation df  practice to analyze categorical data. The metric we prgpose
can be calculated exactly. However, in most practicalrsgsti called k-correlation is defined as the sum of the largest
this joint distribution is unknown. Nevertheless, it migte principal inertias, which, in turn, are the singular valuss
possible to estimate certain correlation measureX @ndY  a particular decomposition of the joint distribution matdf
reliably, such as maximal correlation?-statistic or mutual X and Y. We show thatk-correlation generalizes both the
information. maximal correlation and thg? measures of correlation. We
Given estimates of such correlation measures, is it passilso prove that-correlation satisfies two key properties for
to determine a lower bound for the average error probalufity information measures: (i) the Data Processing Inequality a
estimatingX from Y over all possible estimators? We answefii) convexity in the conditional probabilitiepy| x. Further-
this question in the affirmative. In the context of secutitys more, we derive a family of lower bounds for the average error
bound might characterize the best estimation of the plaintgyrobability of estimatingX given Y based on the principal
inertias betweerX andY and the marginal distribution oX'.
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mation, and proves that it is convex in the transition prdligb P, possible? Our goal in this paper is to derive lower bounds

py|x and satisfies the Data Processing Inequality. Se€fion of the form P. > Lz(px,0), creating a limit on how wellX

presents a Fano-like inequality based on the principatiaser can be inferred front.

and the marginal distributiopy . Sectior Y presents a general The characterization ofz(px,6) for different measures

method for deriving bounds for the average estimation exfor of information Z is particularly relevant for applications in

deterministic surjective functions &f from an observation of privacy and security, wher& is a variable that should remain

Y. Finally, concluding remarks are presented in sedfidn VI.hidden (e.g. plaintext). A lower bound faP. can then be

viewed as a security metric: regardless of an adversary’s

II. OVERVIEW OF MAIN RESULTS AND RELATED WORK computational resources, he will not be able to guéss

A. Notation with an average estimation error smaller tHarn(px, 6) given

h h hi hat f . a]n observation o’". Therefore, by simply estimating and
We assume throughout this paper that, for a given samii@: jating .7 (py, ) we are able to evaluate the privacy

space(, X : © — A is the hidden random variable anty, ot incurred by an adversary that has access.to

Y : Q — )Y is the observed random variable, whete= If Z(X;Y) = I(X;Y), where I(X;Y) is the mutual

{1,...,m} andy = {1,...,n} are the respective SUpPOrtntormation betweenX and Y, then Fano's inequality [2]
sets. We denote EPX-,Y and Py|x them xn Tatnces With  provides a lower bound foP,. However, in practice, several
entries [_PX,YL-_J- = px.v(i,j) and [PY\X]Z-,J- = pyix(lY),  other statistics are used in addition to mutual information
respectively. Furthermore, we denotey < R™, py € R"  orger to capture the information (correlation) betweérand

andpy|x—; € R" the column vectors with entries Y. In this work, we focus on one particular metric, namely
N . a . a e the principal inertia component®f px y, denoted by the
L= i), NS i) and —il. = il7), Y

[pxls = px(@): Pl = pr () [Py JL pyix (i) vector (A1, ..., \q), whered = min{m — 1,n — 1}, and

respectively. The diagonal matrices with entrigg andpy )\, > X\, > --- > \;. The exact definition of the principal

are represented aBx = diag (px) and Dy = diag(py). inertias is presented in Sectibn]lll.

For a discrete random variab#, we denote byX — Y — Z 1) Bounds based on principal inertia componeniBhe

the fact thabx v,z (=, y, 2) = px (2)py|x (y|z)pz|v (2]y) (i.e. principal inertias generalize other measures that are irsed

X, Y, Z form a Markov chain). information theory. In particular\; = p2,(X;Y), where
Given an observation of’, the estimation problem consid-p,,(X;Y) is the maximal correlationbetweenX and Y.

ered here is to find a functioh(Y) = X that minimizes the Given

average error probability?,, defined as SE{(f(X),gV):E[f(X)]=E[g(Y)] =0
pep{X2x}. @) E[f*(X)] =E [¢*(Y)] =1},
Note thatX — Y — X. P, is minimized whenX is the the maximal correlatiop,,,(X; V) is defined as([3]

maximume-likelihood estimate oX. m(X;Y) = max  E[f(X)g(Y)].
i i i (F(X).9(Y))eS
The column vector with all entries equal to 1 is represented _ 9 _
by 1. The length of the vector will be clear from the contextn sectiorL1ll and appendixIB, we discuss how to compute the
For any given matrix4, we denote by, (A) the k-th largest Principal inertias and provide two alternative characttions.
singular value ofA. If A is hermitian, we denote thg-th Compared to mutual information, the principal inertiasvide
largest eigenvalue aft by A;(A). We denote byS”", the set @ finer-grained decomposition of the correlation betwéén

of positive definite matrices ilR™*™. Furthermore, andY. _ _ _ _
We propose a metric of information callgdcorrelation,

T & {A € R™ ™ : Ais row-stochastic[A];; > 0}. (2) defined asJ,(X;Y) 2 S°F  \i. This metric satisfies two

For a given measure of information (correlatigi)x;y) K&y Properties:
betweenX andY (such as mutual information or maximal ¢ Convexity inpy x (Theorenil); o
correlation), we denot€(X;Y) = Z(px, Py|x) When we . Da?a.Processmg Ineque.\h.ty (Theordmh 2). This is also
wish to highlightZ(X;Y") as a functiorpx and the transition sat|sf|_ed byAi, ..., Aq individually. S
matrix Py x. By maklng use of the fact that _the prmmpgl inertia com-
ponents satisfy the Data Processing Inequality, we are able
to derive a family of bounds for, in terms of px and
R ) A1, ..., Ag, described in Theoref 3. This result sheds light on
Assume that the joint distributiop y- is unknown, but that the relationship o, with the principal inertia components.
the marginal distributiorpx is given. Furthermore, assume Qpe immediate consequence of TheorEm 3 is a useful
that a certain measure of information (correlatidi)X;Y’)  scaling law forP. in terms of the largest principal inertia (i.e.
betweenX andY is bounded above by, i.e. Z(X;Y) < maximal correlation). LefY = 1 be the most likely outcome
0. In practice, the value off and px could be determined, for X Corollary(3 proves that the advantage an adversary has
for example, from multiple i.i.d. samples drawn according tyf guessingX, over the trivial solution of simply guessing the

px.y- The number of samples available might be insufficiemfost likely outcome ofX (i.e. X = 1), satisfies
to characterize x,y, but enough to estimateandpx reliably.

Under these assumptions, what can be said about the smallest Adv(X;Y) £ |1 —px(1) = P.| <O (\/ )\1) N )

B. Overview of main results



2) Bounding the estimation error of function&or most Lower bounds on the average estimation error can be
security applications, minimizing the probability that ad- found using Fano-type inequalities. Recently, Guntubayin
versary guesses the hidden variablefrom an observation et al. ([12], [13]) presented a family of sharp bounds for
of Y is insufficient. Cryptographic definitions of security, andhe minmax risk in estimation problems involving genefal
in particular semantic securityl[1], require that an adaers divergences. These bounds generalize Fano’s inequality an
has negligible advantage in guessing any function of thatinpunder certain assumptions, can be extended in order to lower
given an observation of the output. In light of this, we preseboundP..
bounds for the best possible average error achievable foMMost information-theoretic approaches for estimating or
estimating functions ofX given an observation of". communicating functions of a random variable are concerned

Still assuming thatpx y is unknown,px is given and with properties of specific functions given i.i.d. sampléshe
Z(X;Y) < 0, we present in Theorefl 6 a method for adaptingidden variableX, such as in the functional compression lit-
bounds of the formP, > Lz(px,#) into bounds for the aver- erature[[14],[[15]. These results are rate-based and asyirpt
age estimation error of functions af givenY. This method and do not immediately extend to the case where the function
depends orf satisfying a few technical assumptions (statedl(X) can be an arbitrary member of a class of functions, and
in section[Y), foremost of which is the existence of a lowepnly a single observation is available.

boundLz(px,0) that is Schur-concalldn px for a fixedd. More recently, Kumar and Courtadé [16] investigated
Theoren{ b then states that, under these assumptions, for haglean functions in an information-theoretic contextphr-
deterministic, surjective functioff : X — {1,..., M}, we ticular, they analyzed which is the most informative (imter

can obtain a lower bound for the average estimation error @f mutual information) 1-bit function (i.eM = 2) for the

f by computingLz(py, #), whereU is a random variable that case whereX is composed by i.i.d. Bernoulli(1/2) random

is a functionX. variables, and” is the result of passing through a discrete
Note that Schur-concavity of z(px,6) is crucial for this memoryless binary symmetric channel. Even in this simple

result. In Theoreni]4, we show that this condition is alwaygase, determining the most informative function is nowidti

satisfied wherZ(X;Y") is concave inpx for a fixed py x, Bellare et al. [17] considered the standard wiretap setting

convex inpy|x for a fixed px, and satisfies the Data Pro18], and proved the equivalence between semantic security

cessing Inequality. This generalizes a result by Ahlswed@d minimizing the maximum mutual information over all

[4] on the extremal properties of rate-distortion function possible input message distributions. Since semanticriggcu

Consequently, Fano’s inequality can be adapted in order [ is achieved only when an adversary’s advantage of cor-

bound the average estimation error of functions, as shownrggctly computing a function of the hidden variable given an

Corollary[4. By observing that a particular form of the boundbservation of the output is negligibly small, the resulis i

stated in Theoreifl 3 is Schur-concave, we also present a bo[ibf] are closely related to the ones presented here.

for the error probability of estimating functions in termistioe

maximal correlation, as shown in Corollddy 5. I1l. A MEASURE OF INFORMATION BASED ON PRINCIPAL

INERTIAS

In this section we discuss how the joint probability matrix
Px y can be decomposed into principal inertia compor{ﬁants
The joint distribution matrixPx y can be viewed as a and introduce thé-correlation measure. We also prove that the
contingency table and decomposed using standard tectmigu@orrelation measure is convexjif- x and satisfies the Data
from correspondence analysis! [5].] [6]. We note that thirocessing Inequality. Several equivalent charactévizsitof
decomposition was originally investigated by Hirschfi€ld, [ the principal inertias have appeared in the literature. (8l
Gebelein[[8] and later by Rényil[3]. For a quick overview ofnd [9]). We discuss two of these characterizations in agigen
correspondence analysis, we refer the reader|to [9]. Bl
The largest principal inertia dPyy is equal top?, (X;Y), Consider the singular value decomposition][19] of the
where p,,,(X;Y) is the maximal correlationbetweenX and matrix D)—(l/?pX,YD;l/?, given by
Y. Maximal correlation has been widely studied in the infor- 172 172 .
mation theory and statistics literature (€.¢ [3]). Anangmaet Dy /'"PxyDy ' =UXV", (4)
al. presentin [10]_ an overview of_d|ﬁerent chara_ctgnzat_lohs and defined 2 DY2U and B 2 DY2V. Then
maximal correlation, as well as its application in inforinat X Y
theory. Pxy = ASBT, (5)
The Data Processing Inequality for the principal inertiasw v mp
shown by Kang and Ulukus ifi [L1, Theorem 2] in a different/here A" Dx"A = BY Dy B = I.
setting than the one considered here. Kang and Ulukus maigfinition 1. The square of the diagonal entriesSoére called

derive outer bounds for the rate-distortion region actbé¥a j — in(m — 1, — 1). Throughout this paper, we assume

in certain distributed source and channel coding problems.inat principal inertias are ordered as > o > -+ > A\4.

C. Background

1A function f : R™ — R is said to beSchur-concavéf for all z,y € R™ 2The termprincipal inertiasis borrowed from the correspondence analysis
wherez is majorized byy, then f(z) > f(y). literature [6].



It can be shown thatl, B and ¥ have the form Theorem 1. For a fixedpx, Ji(X;Y) is convex inpyx.

A= px 4], B= [py B, (6) ) Proof: I\(Ijotfe ﬂ:jatjk(x;Y)ﬂ::(:lh)k(DXPYfIXéiﬂ -1,
L wherehy, is defined in equatio 0). For a fixed;, Dy is
2 = diag (1’ VAL -y )‘d) ’ a linear combination opy|x. Therefore, sincéy, is convex

and, consequently, the joint distribution can be written as (Lémmall), and composition with an affine mapping preserves
convexity, the result follows. ]

d .
B 2) A data processing resultin the next theorem, we
pxy (2,y) = px (2)py (y) + Z V Akby ke, (7) prove that the principal inertias satisfy the Data Procggsi
k=1 Inequality.
where a, ;, and b, are the entries ofA and B in (©),

respectively. Theorem 2. Assume thaf{’ — X — Y, whereX' is a dis-
Based on the decomposition of the joint distribution matri'€te /ran/dom va}rlable with finite support. L&, A, ..., Ag

we define below a measure of information betwegrandy  and A1, A2, A, denote the principal inertias oPx,y and

based on the principal inertias. Px:y, respectively. Theny > A, A2 > Aj,... A = A

Definition 2. Let || A[s denote thek-th Ky Fan nor 19, Remark 1. This data processing result was also proved by

Example 7.4.8] of a matrid. For1 < k < d, we define the Kang and Ulukus in[[11, Theorem 2], even though they do
k-correlation betweenX andY as not make the explicit connection with maximal correlation

12 1/ and principal inertias. A weaker form of Theorém 2 can be
Je(X;Y) 2 ||Dy"PxyDy'PiyDy "k —1 (8) derived using a clustering result presentedn [6, Sec4Fahd

k originally due to Deniatet al. [23]. We use a different proof
= Z/\i' (9) technique from the one in 6, Sec. 7.5.4] and|[11, Theorem
i=1 2] to show result stated in the theorem, and present the proof
Note that here for completeness. Finally, a related data processmgtr
T(X:Y) = p2 (X;Y), was stated in[[24, Eq. (31)].
wherep,,(X;Y) is the maximal correlationof (X,Y") [10], Proof: Assume without loss of generality that’ —
and {1,...,m'} is the support set oK’. ThenPx.y = FPxy,

where F' is am’ x m column stochastic matrix. Note that
M] —1=x2 F represents the conditional distribution of the mapping
px (X)py (Y) X' — X, where the(i, j)-th entry of F is px/|x (i]j).
We now show thak-correlation and, consequently, maximal Consider the decomposition @ty y = FPx y:
correlation, is convex ipy | x for a fixedpx and satisfies the

Ja(X;Y) =Exy {

—1/2 T —1/2
Data Processing Inequality. S"=Dyx,”” (Px'y —px'py) Dy

1) Convexity inpy|x: We use the next lemma to prove = Dy//*F (Pxy — pxp¥) Dy'/?
convexity of 7, (X;Y) in the transition probabilitp x y . _ p2ppl/2g

- X X ’
Lemma 1. For W € 87", and 1 < k < m, the function o
hi, s R™*™ x S — R defined as whereS is given by
—1/2 —1/2
h(C,W) 2 |CW O (10) $ £ D' (Pxy —pxpy) Dy (12)

is convex. Note that the singular values &f are the principal inertias

/ /
N

LetE = D;(}/QFD;/Q, where that the size df is m/ x m.
nce[FDxl;; = px/,x(4,7), then the(i, j)-th entry of E' is

Proof: Let Q £ CW~'CT”. SinceQ is positive semidef-
inite, [|Q|[x is the sum of the: largest eigenvalues @, and  ;
can be written as [20]/ [21]:

bx X(za])
hi(C, W) = = tr (27Q7). 11 [Blij = e
k( ) ”62”1C Z;nZa:XIk I‘( Q ) ( ) J pX’(Z)pX(])
Let Z be fixed andZ”Z = I, and denote the-th column Observe thatE has the same form a§l(4), and, therefore,
of Z by z;. Note thatg(a, W) £ a”W~'a is convex [22, ||E| = 1. Let H = S5 — §'7'S". Then fory € R™ and
Example 3.4] and, consequently,C”'z;, W) is also convex Sy = z:
in C and . Since the sum of convex functions is itself

T _ JTaToy, Tl
convex, therntr (Z7QZ) =31, g(C"z;, W) is also convex y Hy =y 575y -y 575y

in X andY. The result follows by noting that the pointwise = |lzll2 — || £z
supremum over an infinite set of convex functions is also a > |lzllz — || Ell1llzl|2
convex function([[2R2, Sec. 3.2.3]. [ ] —0.

3For A € R™*7, || Allx = SF_, 0y, Whereot, . .., oynin(m.ny are the (.Zon.sequentIyH is positive semidefinite. SincH is symmet-
singular values ofd. ric, it follows from Weyl's theorem[[19, Theorem 4.3.1] that



fork=1,...,n, used in [25] does not lead to the general bound presented

in Theoren( 8.
Ap(STS") < AR(S'TS" + H) 3
= AL(STS) Corollary 2. If X is uniformly distributed in{1,...,m}, then
— _ 2
= k. P621_l_ (m—1)x (16)

m m
m Furthermore, if only the maximal correlatiop,,(X;Y) =
The next corollary is a direct consequence of the previoy& IS given, then

theorem. 1 1
poi-toyn(i-d)
m m

L (- 1),

Since A, (S'TS") = \;, the result follows.

Corollary 1. For X’ — X — Y forming a Markov chain,
Je(X;Y) < Jp(X;Y).

m
IV. A LOWER BOUND FOR THE ESTIMATION ERROR Corollary 3. For any pair of variables X,Y’) with marginal
PROBABILITY IN TERMS OF THE PRINCIPAL INERTIAS distribution in X equal topx and maximal correlation (largest

Throughout the rest of the paper, we assume without losspsfncipal inertia) p2,(X;Y) = Ay, we have for all3 > 0
generality thap x is sorted in decreasing order, iy (1) >

px(2) >+ = px(m). . PeZI_B_JM <1—pr >+Z(”X )2'

Definition 3. Let A(Px,y) denote the vector of principal
inertias of a joint distribution matri¥y y sorted in decreasing (17)
order, i.e A(Px.y) = (A1,...,Aq). We denoted(Pxy) <A In particular, settings = px (2),

if A1 < A1,..., A < A\g and

R(ax,A) 2 {Pxy|px = ax andA(Pxy) <A}. (13) Fe=1-px(2) - J A1 <1 - Zﬁc(ﬂ) + (px(1) — px(2))?

In the next theorem we present a Fano-like bound for the

estimation error probability ok that depends on the marginal | _ 1 (X:Y) 1_ 18
distributionpx and on the principal inertias. - px (1) = pm ZPX ‘ (18)

Theorem 3. For A = (A1, ..., Aq), define Remark 3. The bounds[{17) and{lL8) are particularly in-
RN max{k e{l,...,m} | px (k) — phpx > O} . (14) .sightfullin _sho_wing how the error probability scales witrgth

input distribution and the maximal correlation. For a given

px.y, recall thatAdv(X;Y), defined in[(B), is the advantage

m
. of correctly estimatingX from an observation ol over a
, A i i . .
0 (Px: A Z px (i i:%;l i-1px (0) random guess ak whenY is unknown. Then, from equation
N @)
- k*poX )

2 Adv(X;Y) < p(X;Y <1_ )
90(B,px,A) £ fi(px,A +Z([px ) ’ P $ ZPX

R = O(pm(X;Y)).
Uo(ﬂaan)\): 9o ﬂapX7 . .
U 2 2 . Us(8 A Therefore, the advantage of estimatiigfrom Y decreases
1(Px,A) = 035212((2) 0L PX, A)- at least linearly with the maximal correlation betwe&nand
Y.
Then for anyPx y € R(px,A),
P.>1-U(px, ). (15) V. LOWER BOUNDS ON ESTIMATING FUNCTIONS
Proof: The proof of the theorem is presented in the FOrany functionf : & — i/, we denote by the maximum-
appendix. m likelihood estimator off (X)) given an observation of". For

a given integed < M < |X|, we define
Remark 2. If \; = 1 forall 1 < i < d, (I8) reduces to

P, > 0. Furthermore, if\;, = 0 for all 1 < i < d, (A8) Fu & {f: X —>U| [is surjective andi/| = M}

simplifies toP, > 1 — px(1). and

We now present a few direct but powerful corollaries of P, 2 min Pr{f(X) # f}. (19)
the result in Theorerinl 3. We note that a bound similaitd (16) feFm
below has appeared in the context of bounding the minma&X || is simply the error probability of estimating from Y,
decision risk in [[25, (3.4)]. However, the proof techniquee. P, x| = P-..



Throughout this section we adopt the following additionalheorem 4. If Z(px, Py|x) is concave inpx for a fixed
assumption. Py x, thenez(px,0) and Rz(px,A) are Schur-concave in

Assumption 1. An upper boundf for a given measure px forafixedd and A, respectively.

of information Z(X;Y) betweenX and Y is given, i.e. Proof: Consider two probability distributiongyx and
I(X;Y)_ < 6. Fur_ther_more, I(X;_Y) satisfies _the Data ¢y defined overt = {1,...,m}. As usual, letpx (1) >
Processing Inequality, is convex ipy|x for a givenpx, py(2) > - > px(m) andgx(1) > qx(2) > -+ > gx(m).
and is invariant to row and column permutations of the jointyrthermore, assume that majorizes;y, i.e. > Lax (i) <

. . . . . L 1 " . 1= —
distribution matrix px y. Finally, we also assume that therzle(i) for 1 < k < m. Thereforeqyx is a convex
marginal distribution ofX, given bypy, is known. combination of permutations @fy [26], and can be written as

l

Under this assumption, what can be said abBuf;? In 4z = >_i—; @imipx for somel > 1, wherea; <0, 3 a; =1

the next sections we present a general procedure to defdil ™ are permutation operators, i.e;px = pr,x. Hence,

non-trivial lower bounds for>, j,. for a fixed A € Ty,
l
A. Extremal properties of the error-rate function
121 PIOPET _ T(gx, A) = T [ Y aimpx, A

Before investigating how to boung. ,,, we first study how )
to boundP, in a more general setting than the one in section 1
V] Note that <Y aZ(mpx, A),

. =1
P, Zpg‘l)l(I}E 1—tr (DXPY‘XE) .
st Z(px, Pyix) <0, Pyix € Ton, E € Tam. - Zaiz(pX’FiAm)’

i=1
Here E denotes the mapping frofi to X. By fixing Py x _ . _ _
and taking the dual inZ of the previous convex program,Wwhere the inequality follows from the concavity assumption
we can verify thatE will always be a row-stochastic matrix@nd fromZ(X;Y’) being invariant to row and column per-
with entries equal to 0 or 1. Sinc&(X;Y) satisfies the Data Mutations of the joint distribution matriy y . Consequently,
Processing InequalityP. > ez(px,6), whereez(px,6) is from equation[(2D),
defined below.

l
Definition 4. Theerror-rate functionez(px, 0) is the solution ez(qx,0) = inf 1— Z astr (Dxm; Am;)) -
of the following convex program: AETm,m

I
0) = min 1 — tr ( Dx Py 20
ez(px, ) B r( X X\X) (20) ZaiI(anﬂ'iAWi)Se}

S't'I(pX’PX|X) <4, PX\X S Tm,m . =1 .
it follows > inf {Zaz‘(l —tr(DxA;)) :

=1

=1

Due to convexity ofI(pX,PX‘X) in Py x,
directly thatez(px, 6) is convex ind for a fixedpx. Further-

more, the cost functio 0) is equal to the average Hammin !
o unctiori (20) is equ verag g 3 aiZ(px, A) <0
distortion E . ¢ [dH(X,X)} betweenX and X. Therefore,
er(px,6) has a dual relationsfﬂpwith the rate-distortion l !

bl — . AW . _
problem 917.1..I}£l>0{;azel'(p)(ael) Zazoz 0

=1
N l
X|x > 917.1.?5120 {eZ (an Zaib’i) : Zaiei = 9}

SLEy ¢ [dH(X,X)} <A, Pgpx € T

——

i

We will now prove that, for a fixed (respectively, fixed =ez(px,0),

A), ez(px,0) (resp.Rz(px,A)) is Schur-concavén py if _ _ .

Z(px, Py|x) is concave inpx for a fixed Py|x. Ahlswede where the last inequality follows from the convexity of the
[4, Theorem 2] proved this result for the particular casenghe€rror-rate function. Since this holds for agy that is ma-
I(X:Y) = I(X;Y) by investigating the properties of thelorized by px, ez(px,0) is Schur-concave. Schur-concavity
explicit characterization of the rate-distortion funetiander ©Of Rz(px,A) follows directly from its dual relationship with

Hamming distortion. The proof presented here is considyeral§I(PX, 0). u
simpler and more general, and is based on a proof techniqu&or Z = J;, the convex progran{_(20) might be difficult
used by Ahlswede in [4, Theorem 1]. to compute due to the constraint on the sum of the singular

values. The next theorem presents a convex program that

4The authors thank Prof. Yury Polyansky (MIT) for pointingtdhe dual eV‘.aluateS a lower bound farz, (px,0) and can be solved
relationship. using standard methods.



Theorem 5. where (a) follows from the Data Processing Inequality, (b)
er. (px,0) > Iglin 1—tr (DXP ) follows fromez(¢x,0) > Lz(qx,0) for all ¢x, andd and (c)

1% XX follows from the Schur-concavity of the lower bound and by
Eom px(i)p%. () observing thg{nU majorizesp ;(x) for every f € Fy. ]
s.t. Z Z XX oy 1, (21 The following two corollaries illustrate how Theordr 6 can
=1 = Yj be used for different measures of information, namely mutua
PowcT information and maximal correlation.
X|X m,my

Corollary 4. Let I(X;Y) <6. Then
> ox(@pg k(i) = g5, 1<j<m,

Py > d
Proof: Let F 2 D;(l/QpXYD;l/?, Then whered* is the solution of
Te(X;Y) = |FFT||, — 1. hp(d*) + d*log(m — 1) = min{H(U) — 6,0},
Let and hy(-) is the binary entropy function.

pX|X(j| D Proof: R;(px,d) is the well known rate-distortion func-

tion under Hamming distortion, which satisfies ([27, (9)).8
Rr(px,d8) > H(X) — hp(d*) — d*log(m — 1). The result
follows from Theoreni ¥4, since mutual information is concave
| ]

be thei-th diagonal entry ofFFT. By using the fact that
the eigenvalues majorize the diagonal entries of a Hermltl
matrix ([19, Theorem 4.3.45]), we find npx.
Corollary 5. Let /1 (X;Y) = p,n(X;Y) < 6. Then
Zci < |FETx,
i=1

Peyr>1— 1-— .
and the result follows. Note that convexity of the constrain M po(1) ( ZPU )
follows from the fact that the perspective of a convex
D) persp Proof: The proof follows directly from Theorenid [] 2

function is convex([22, Sec. 2.3.3]. - ) .
: ] and CorollaryB, by noting thal (1.8) is Schur-concavejp
[ |

B. Bounds forP, s

Still adopting assumptidnl 1, a lower bound fr ,; can be Vi
derived as long asz(px,#) or a lower bound foez(px,0)
is Schur-concave ipx.

. CONCLUDING REMARKS

We llustrated in this paper how the principal inertia-
decomposition of the joint distribution matrix can be apgli

Theorem 6. For a given M,1 < M <'m, andpx, letU = to derive useful bounds for the average estimation erroe. Th
9(X), wheregas : {1,...,m} — {1,..., M} is defined as  principal inertias are a more refined metric of the correfati
. [1 l<z<m-M+1 betwe_enX an.dY t.han, say, mutual mformatlon._Furthe_rmore,
gm () M Mao<a< the principal inertia components can be used in metricdj suc
romt m-Myisrsm. as k-correlation, that share several properties with mutual

Let py be the marginal distributidh of U. Assume that, information (e.g. convexity).
for a given measure of informatiofi(X;Y), there exists a  Furthermore, we also introduced a general method for

function Lz (-, -) such that for all distributiong;x and any#, bounding the average estimation error of functions of aénidd
ez(qx,0) > Lz(gx,0). Under assumptiofl1, iftz(px, 6) is random variable. This method depends on the Schur-cogcavit

Schur-concave ipy, then of a lower bound for the error-rate function. We proved that
the ez(px, 0) itself is Schur-concave whenever the measure
Penr 2 Lz(pu,0) - (22) of information is concave inpx. It remains to be shown
Proof: The result follows from the following chain of if ez(px,®) is Schur-concave for more general measures of
inequalities: information (such a#-correlation), and finding the necessary
(@) N and sufficient conditions for Schur-concavity would be offbo
P.y > min ~{ez (pf(X), 0) 10 < 9} theoretical and practical interest.
feFm,0 Finally, the creation of bounds foP. and P. s given
2 f@}n {ez (pp(x).0)} constraints on different metrics of information is a proimis
®) M avenue of research. Mpst information-theoretic lower _tnisun
> min {Lz (psx),0)} f_or the average estimation error are based on mqtual informa
ferm tion. However, in statistics, a wide range of metrics areduse

(>) Lz(pu, 6) to estimate the information between an observed and a hidden
= “T\PU, 0)s variable. Relating such metrics with the fundamental knait
5The pmf of U is pyy(1) = S M+ px (i) and py (k) = px (m — inference is relevaqt for practical applications in bothuséy
M+k)fork=2,..., M. and machine learning.



APPENDIXA obtain
PROOF OFTHEOREM[3|

m m 1/2 m 1/2
TheoreniB follows directly from the next two lemmas. P < pxpx + Z (Z 51%,1') (Z )\k—fﬁi,i)
i=1 \k=2

Lemma 2. Let the marginal distributiorpx and the principal m m 1/2
inertias A = (A1,...,Aq) be given, wherel = m — 1. Then _ 4 (@) (1 — pxr o T2
for any Pxy € R(px,A), 0 <a<land0<pj <px(2) = PiPx ; Pl Pl kZZQ R
m 1/2 m m 1/2
m ) 2 <plpw, 1— 2 (i N T2
Rgzl—w?—$]Ma4unA%+§:(@x@)—ﬂP) , —poX‘*< g;px<”> (_1;;Ak1“hJ

=l (25)

where
LetU = | ] andX = diag ()\1, A ) Then
d+1
o, px, A pr Ai—1+ ¢ —¢i—1) mom. T
SN N, = tr (EU Dy U)
+px(1)(cl +a)—apkpx .  (23) i=1 k=2
d
andciz[/\i—a]Jrforz':l,...,d andcgy1 = 0. SZUMk,
.. . . . . k=1
Proof: Let X andY” have a joint distribution matri®x y d

with marginalpx and principal inertias individually bounde_d < Z or M. (26)
by A = (\1,...,Aq¢). We assume without loss of generality Pt
thatd = m — 1, where|X| = m. This can always be achieved I
by adding inertia components equal to 0. whereoy, = A (U DxU). The first inequality follows from

ConsiderX — Y — X, whereX is the estimate o from the application of Von-Neumman’s trace inequality and the
Y. The mapping fromt” to X can be described without lossfact that UTDXU is symmetric and positive semi-definite.
of generality by Y| x | X'| row stochastic matrix, denoted byThe second inequality follows by observing that the priatip
F, where the(i, j)-th entry is the probablllt)pXIY(ﬂ i). The inertias satisfy the data processing inequality and, theze
probability of correct estimatio®. is then Ak < Ag.

We will now find an upper bound fof (26) by boundingpthe

eigenvaluesr,. First, note thal7 T = I — p'/? (pﬁ(“)
and consequently

P. = PT{X = X} = tr(PX,X’),

where Px x: = Px yF.
The matrix Px, x- can be decomposed according (5), d

—T —
resulting in Zak =tr (U DXU)
k=1
P, =tr (D%QUEVTD;/,Q) — tr (EVTDQ?D}{QU) , 12 [ 1\ T
=tr{Dx |I—-py (pX )
(24)
where =1-Y pk(i). (27)
=1
U = |:p})({2 u --- um:| , o .
12 Second, note that/" DxU is a principal submatrix of
V= {Px/ Vg oo Vm} ’ UTDxU, formed by removing the first row and columns of
~ T P .
S diag (17)\}/27 o /\lli/g) 7 t({]atDXU. It then follows from Cauchy’s interlacing theorem

D/:dia r)y
xr = diag (px) px(m) < s < px(m—1) < < px(2) < o1 < px(1).

and U and V are orthogonal matrices. The probability of (28)

correct detection can be written as Combining the restrictiori (27) and (28), an upper bound for
(29) can be found by solving the following linear program

m o m. 1/2
P, = pxpx: + Z Z ()\k—wx(i)PX'(i)) Uk, i Vk,i

d
k;2 i;l max g Aioi (29)
=pkpx + > > N2 i, d
k=21i=1 subject to Z o;=1-pipx,

whereuy. ; = [ugli, vii = [Vili, ki = px (i)uk,; anduvy ; = =t

px(1)vk,;. Applying the Cauchy- Schwarz inequality twice, we px(i+1) <o <px(i), i=1,....d.



Letd; £ px (i) —px(i+1) andy; 2 \;px(i+1). The dual Note that we can considér< 8 < px(2) in 38), sinceL(3)
of 29) is is increasing fors > px(2). Taking P. = 1 — P, the result
follows. ]
The next result tightens the bound introduced in leniina 2

i 1) 0y + Vi 30 L
oo a(px( ppr Z v (30) by optimizing over all values of.

Yi, &

subjecttoy; > [\ — o], i=1,.. .,d . Lemma 3. Let f¢(px,A) £ min, fo(e, px,A) and k* be
. _ defined as in(4). Then
For any given value ofn, the optimal values of the dual
variablesy; in are " .
Y €0 an Z/\sz Z Xi—1px (1)
yi=hi—at=¢,i=1,...,d. i=k*+1

- A - : 37
Therefore the linear prograrn (30) is equivalent to #PXPX (37)
where \,,, = 0.

min fo(a, px, A), (31) Proof: Let px and X be fixed, and\; < a < A\s_1,

wherefy(a, px,A) is defined in the statement of the theoremvhere we definé\y = 1 and A, = 0. Thene; = A; — a for
Denote the solution Omg) byl;;(prA) and of @) by 1 < 2 < k—1 and C; = 0 for k < (3 S din @) Therefore
f5(px,A). It follows that [26) can be bounded

. (a,px,A Z Aipx (i) + apx (k)
Zak/\k < fp(px,A)
k=1 + Z )\i—lpx(i) — apﬁpx (38)
= fb(Px.3) =k
< fola,px,A) VaeR. (32) Note that [(3B) is convex inv, and is decreasing when
px(k)—pkpx < 0andincreasing whepy (k) —pkpx > 0.
We may consided < a < 1 in (32) without loss of generality. Therefore fole, px; A) is minimized whena = A such
Using [32) to bound(25), we find that px (k) > pkpx andpx(k —1) < pLpx. If px(k) —
" 1/2 pkpx > 0 for all k (i.e. px is uniform), then we can take
P. <pkpx' + |fola,px,A) <1 _ Zpg(,(i)ﬂ (33) = 0. The result follows. m
APPENDIX B
The previous bound can be maximized over all possible oUtpUtEQUIVALENT CHARACTERIZATIONS OF THE PRINCIPAL
distributionspx by solving: INERTIAS AND k-CORRELATION
/2, In this appendix we discuss two distinct characterizatmns

+ pr(i)xi the principal inertia components. The first characternizats
; based on the work of Gebelein [8] and the overview presented
(34) in [10]. The second characterization is based on the ouwgrvie
presented in [9], and is analogous to the definition of moment

max [fg(a,px,/\) (1 — ixf)
! i=1

subject to Zwi =1, of inertia from classical mechanics.
=1
z; >20,i=1,...,m. A. Correlation characterization
The dual function of[{34) over the additive constraint is Let S be a collection of random variables defined as
. 1/2 SE{(f(X),9(Y)):E[f(X)] =E[g(Y)] =0,
)=y 5+ e (1-3547)] B [0)] =B [ =1}
= i=1

Then, for1 < k < d, we can compute the principal inertias

+ Z(px (i) — B); recursively as
i=1 1/2 _ <
- A= e EIFX)9(Y)]
=B+ $ fola,px,A) + Z ([px +) . (35) (fe(X),g:(Y)) = argmax E[f(X)g(Y)],
(F(X),9(Y))€ESk

. ) whereS; = S and
SinceL(3) is an upper bound of (34) for angand, therefore,

is also an upper bound df{33), then Se ={(f(X),9(Y)) € S:E[f(X)fi(X)] =0,
E[g(Y)g:i(Y)] = 0,i=1,...,k—1}.

P<pB+ \l Fola, px, A +Z (px +)2' (36) for 2 < k < d. We can verify thatfi(z) = a, 1/px(z) and
gr(x) = by x/py (y)-




B. Spatial characterization

Let S be defined in equation_(112). Then the square of the
singular values ofS are the principal inertias oPx y [6].

The decomposition of can be interpreted as the moment of
inertia of a set of masses located in discrete points in spa

(7]

E]

ce

as described below. We will change the notation slightly in

this appendix in order to make this analogy clear.

Consider am-dimensional Euclidean spadé with a sym-

metric positive definite fornQ = Dy. Forz,y € V we let

(@,y) =27Qy, |lzllq = V/(z,2) andd(z,y) = ||z — yo-

Letzq,..

., Tm € V, where each point is; = py|x—;. We

associate to each poin a massw; = px (i), 1 < i < m.

The barycenter(center of mass} of the pointszy, . .
simply z = py.

T IS

[20]

[11]

[12]

[13]

Let G = Py |x. If we translate the space so the barycenté4]
Z is the origin, the new coordinates of, ..., x,, are then

the rows ofC = G —1zT, We denoteC ™

cm). We

[Clv"'v

define themoment of inertiaZ of the collection ofm points

as the weighted sum of the squared distances of each poinﬁl?é
the barycenter:

[15]

[17]

T2 wid(z; — 1) (39) g
=1
=tr (DxCQCT). (40) [19]
We now ask: What is the subspadé’ € V' of dimension [20]

t < m where the projection ofrq, ..

.,Zm has the largest

moment of inertia? To answer this question we need to

determine a basia,..

solving the following optimization:

.,a; of Wt This is equivalent to [21]

[22]

d
7,2 max Y |DY*CQql3 (41)
seeeyQt =1

stllajllo=1,a; €V j=1,...,t
<ai,aj>=0, 1<i<y <t

[23]

[24]

[25]

Note thatS = D%QCQW, and the decomposition if_({12) canpg;
be interpreted accordingly. The solution bfl(41) is exattky

sum of the square of theelargest singular values &, which,

in turn, is equal to/;(X;Y).
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