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Abstract

We present an approximate technique, based on the principles of multimode Gaussian optics and perturbation theory,
for calculating the distortions that occur when an off-axis cllipsoidal mirror is placed in the path of a weakly diffracting
beam. More specifically, we calculate the Gaussian-beam-mode scattering matrices of off-axis ellipsoidal mirrors. The
technique can be applied when the phase errors across the surface of the mirror are small. In this case, power is only
scattered into a few neighbouring modes, and simple closed-form expressions can be derived for the clements of the

scattering matrix.

1. Introduction

Off-axis cllipsoidal mirrors are often used at
submillimetre wavelengths for controlling the
characteristics of free-space beams. Unfortunately,
mirrors of this kind introduce cross-polar scatter-
ing and spatial aberrations of the types well known
in classical optics [1-3]. These undesirable effects
occur even at the wavelength for which the mirror
was designed; that is to say, even at the wavelength
for which the surface of the mirror correctly trans-
forms the phase front of the spherically-expanding
input beam into the phase front of the spherically-
contracting output beam. The distortions are
caused by the need to conserve flux at the surface
of the mirror. For example, if the intention is to
couple two circularly-symmetric beams, and if the

mirror is regarded as an inclined phase-transform-
ing plane, then the difficulty of matching the flux
of the diverging input beam to the flux of the
contracting output beam at every point on the
surface of the mirror is clear. Normally one thinks
of amplitude distortions, and therefore coupling
efficiency, as being associated with the shape of the
mirror; for long-focal-length systems, however, the
coupling efficiency can, in a sense, be regarded as
being intrinsic to the two undistorted beams and
independent of the precise form of the phase-trans-
forming surface over which the reflection occurs.
In the case of a diffracting beam, the distortions are
particularly awkward to analyse because the form
of the beam changes over the region occupied by
the mirror. In this paper, we study the behaviour
of off-axis ellipsoidal mirrors in the context of
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surface of the mirror, of the incident component
modes in terms of the true propagating modes of
the reflected beam. Using this technique, we can
calculate the scattering matix relating the complex
mode coefficients of the input beam to the complex
mode coefficients of the output beam. Moreover,
we can derive simple analytical forms for the
elements of the scattering matrix.

Throughout the paper, we shall treat fields as
scalar and ignore cross-polar scattering. Let the
modes of the incident beam have their waist at
some plane A4, and let the distance from A4 to O (the
mirror centre) be d,. Also, let the modes of the
output beam have their waist at some plane B, and
let the distance from O to B be d,. The (x, y,z2)
coordinate axes are defined so that the z axis lies
along OC, (sece Fig. 1), with z =0 at O and
z = —d, at A. Similarly, the (x’, y', ") coordinate
system is defined so that the z’ axis coincides with
the optical axis of the reflected beam, OC,, with
z’=0at O and z'=d, at B. In Fig. 1 the (z,z")
plane lies in the plane of the paper in such a way
that the y” and y axes coincide. The angle of
incidence, 0, is simply the angle between the axis
of the input beam and the surface normal at the
centre of the mirror.

On describing the incident beam in terms of a
modal expansion we can write

Zamﬂlfl’g)n(x’ ,Vs Z)

=T Ay tto (%, 73 Wi(Z) 5000, (1)
mn

where & is a Gaussian mode of amplitude u,,, and
phase ¢ and g,,, is the complex mode coefficient.
Z =z + d, is the distance measured from the pos-
ition of the mode waist along the z-axis. Because
the mirror is essentially an inclined phase-trans-
forming plane, it is convenient to work in terms of
Gaussian—Hermite modes. In this case u,, is given
by

U, (X, y: Wi(Z))
H,(J2x|WA(Z) H,(/29|W.(2))
Wi(Z)/2" " 'mintn

X exp(-x——‘»y‘) 2)

[

E(x,y,z)

WiHZ)

where H,(s) represents a2 Hermite polynomial of
order m in s, and W,(Z) is the Gaussian radius of
the input beam at Z. W, (Z) is given by the usual
relationship [7]

Zi
wi(z)= Wm[l+(m)] . (3)

Notice that the above modes have been normalised
to make the total generalised power [y > dx dyin

cach mode unity. The phase term ¢@ (x, y, Z) for
the mnth mode is given by

0 (x, 3. Z) = -k(z + ;,;%)
+(m +n+ DAGIZ), ()

where R,(Z) is the phase curvature, and A¢§(Z) is
the phasc slippage for the incident beam. R(Z)
and Ap§(Z) are given by

— LAY ,
R.(Z)-z[l +( > )] ©)

and

ApNZ) = tan"’<&%> —tan '(n_/g}?;)’ (6)
respectively. In this way the form of the field at any
plane is completely parameterised by the Gaussian
radius, W,(Z), the radius of curvature of the phase
front, R,(Z), and the phase slippage A@§(Z). It is
important to realise that, in general, the radius of
curvature of the mode set is not the same as the
radius of curvature of the field. The radius of
curvature of the mode set is a well-defined quantity
whereas, because of structure in the phase of the
field, the radius of curvature of the field is not.

It is also important to notice that the part of the
slippage corresponding to propagation between
the waist and the plane perpendicular to the beam
at the centre of the mirror is included in the mode
coefficients, whereas the phase slippage between
the plane at the centre of the mirror and the actual
surface is retained as part of the mode. In this way
the mode coefficients of the input beam are refer-
enced to the centre of the mirror. In the same way
we reference the mode coeflicients of the output
beam to the centre of the mirror. From the point
of view of generating computer software, this
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Fig. 2. The reflected beam represented as though in
transmission.

scheme is a perfectly natural way of working
because we can represent the diffraction of the
input beam between its focus and the centre of the
mirror by a scattering matrix which simply multi-
plies the mode coefficients by the appropriate
phase slippage; we can then describe the amplitude
distortion introduced by the mirror by a further
scattering matrix; and finally we can describe the
diffraction of the output beam between the centre
of the mirror and its focus by yet another scatter-
ing matrix. In short, the reference plane for the
scattering of modes at the mirror is taken to the
plane perpendicular to the beam at the centre of
the murror.

The mode set for the reflected beam is most
sensibly chosen so that (a) its axis of propagation
is the same as the z’-axis in Fig. 1, (b) its Gaussian
radius W.(Z"), where Z’' =z’ —d,, corresponds
to that of the incident mode set at O(W,(0) =
W.(0)), and (c) the phase curvatures of the inci-
dent and reflected mode sets satisfy the usual
thin-lens formula at O:

1 1 1

e 7
RO RO f @

Since, however, z is not a constant over the mirror,
W and R for both the incident and reflected modes
vary across the surface. A mismatch will result
between the phase and amplitude of an incident
mode and the corresponding reflected mode. Thus,
if the incident beam is described in terms of the
modal sum Za,, i@ , and the reflected beam by an
equivalent sum Xb, % then a,, will not in
general equal b,,,. The two sets of mode coefficients
can be regarded as being related through a scatter-
ing-matrix of the form

by= Z Y - (8)

The aim of this paper is to derive simple ex-
pressions for the elements of the scattering matrix.

To make the problem easier to visualise, we shall
treat the refiected beam as though it is transmitted
through the mirror. To obtain the correct “trans-
mitted” beam, we reflect the true reflected beam
and the surface of the mirror in the plane tangent
to the surface of the mirror at the centre of the
mirror O: this concept is illustrated in Fig. 2. The
two coordinate axes (x,y,z) and (x',y’,z") are
then adjusted to coincide under this transform-
ation. The optical path length between the input
and output surfaces is clearly zero when the beam
is considered in transmission; mathematically, the
advancement of the phase front towards the out-
side of the mirror can be achieved by applying a
phase transformation, which is dependent on the
precise form of the mirror, over the tangent plane.

In the case of a diffracting beam, we have to be
certain that the phase transformation provided by
an off-axis ellipsoidal mirror is able to accommo-
date the changes in the radii of curvature of the
incoming and outgoing phase fronts that occur
within the region occupied by the mirror. More-
over, when calculating the amplitude distortions
we have to consider the changes in the cross-sec-
tional forms of the incoming and outgoing beams
that occur within the region occupied by the
mirror. In this paper, we show that the behaviour
of an off-axis ellipsoidal mirror can, to first order,
be described by an imaginary optical component,
which provides a perfect phase transformation
over a plane perpendicular to the unfolded beam at
the centre of the mirror and which introduces
amplitude distortions which can be characterised
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by a real-valued scattering matrix. More specifi-
cally, we will show that to first order the phase
errors caused by the input beam diffracting within
the region occupied by the mirror are cancelled by
the phase errors caused by the output beam
diffracting within the region occupied by the mir-
ror. Let us proceed, therefore, by making the
assumption, which we will show later to be correct,
that at every point on the surface of the mirror the
phase of each incident mode is approximately
matched to the phase of the corresponding
reflected mode and to the phases of the neighbour-
ing modes into which power is scattered. In this
way, we eliminate any phase curvature distortion
introduced by the reflection of the incident beam,
and we concentrate on amplitude mismatches due
to projection effects.

2.1. Amplitude distortion

Our aim in this section is to express the ampli-
tude distortion suffered by an incident Gaussian
mode as a first-order perturbation expansion of the
ideal reflected Gaussian modes. As pointed out
above, the width of the incident beam at point P
in Fig. 2, W,(P), is not the same as the width of the
“transmitted” beam at point P’, W, (P"). At the
centre of the mirror O, however the two beam radii
are forced to be equal, W,(0)=W.(0)=W,.
Another complicating factor, which must be taken
into account when calculating the amplitude dis-
tortions, is that the distance of a point on the input
surface from the z-axis (such as P in Fig. 2) is
different from the distance of the corresponding
point on the output surface (P’ in Fig. 2) from the
z-axis.

Since the amplitude of an incident mode,
U, (P; W,(P)), and the amplitude of the corre-
sponding undistorted reflected mode, u,,(P";
W.(P")), are not equal at related points (P, P'), we
express the amplitude of the incident mode,
U, (P W.(P)), as a first order perturbation series
of the transmitted mode amplitude u, (P’ W, (P")).
To this end, let us denote the coordinates of P by
(x;, ¥i» ;) and the coordinates of P* by (x;, ¥, 2,)
as shown in Fig. 2. For the geometry chosen in Fig.
1, ¥, = y. = y; because, however, P and P’ are not

the same distances from the x- and z-axes, x; # X,
and z; # z,. We can write however,

U (X3 Vi3 W) = th (%, + AX, ps W+ AW). (9)

Thus, there are effectively two contributions to
the mismatch between the incident and reflected
mode amplitudes, u,, (X, y; Wi(z))) and u,,(x., y:
W.(z,)) respectively. These are (i) x, # x; and (ii)
Wi(z)# W.(z) As Ax=x—x, and AW =
W(z,) — W.(z,), we can write down a first-order
Taylor expansion relating the mode amplitudes:

unm(xi’y; Wl) x umn(xny; Wr)

(s .
+ (a—p?)(x,,}, W,) AW

+(ag"‘")(x,,y; W,) Ax. (10)

X

In this expression we have ignored high-order
terms. When the high-order terms are included
it is clear that the sum of the terms containing
derivatives constitutes an error function which
when added to the output mode gives the corre-
sponding input mode. Regardless of the functional
forms of AW and Ax we can write the error
function at any plane for which z is constant as
a sum of output modes. The mode coefficients
will be constant as we move over this plane, but
will in general vary if we move to a different
plane. It is also clear after some consideration
that, because the ouput beam has a unique
expansion in terms of the output mode set, if we
restrict ourselves to moving over any surface,
regardless of what the surface may be, then we can
write the error function in terms of the output
mode set, and the mode coefficients will not vary
as we move over this surface. As a way forward,
we will assume that for the functional forms of AW
and Ax used in this paper the above statement is
true even when we only consider the linear terms
of the expansion. This assumption will turn out to
be correct.

Expressions for the terms on the right hand side
of the above equation are derived in the Appendix;
it is shown that
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In the case of the first expression we have restricted
ourselves to moving over the tangent plane of the
mirror, whereas in the second expression we
have restricted ourselves to moving over the sur-
face of the mirror. Loosely speaking, the first
expression describes the amplitude distortions
caused by the inclination of the mirror whereas the
second expression describes the amplitude distor-
tions caused by the projection of the beams on the
curved mirror surface. These approximations are
valid as long as (W, tan 6,/f)” < 1. Since, in gen-
eral, for Gaussian-beam-mode theory to be a valid
description of propagation the focal ratios of the
beams must not be too small, the inequality will
in fact be true for all reasonable quasi-optical
systems.

Table 1
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We can now use the usual recursion relation-
ships for H, to generate an expansion in Hermite
polynomials for the error terms:

dH,(:
,_a:fﬁ =2nH, (s) (13)
H,.\(s) = 2sH,(s) — 2nH, (). (14)

As described above, we wish to express the error
function over the surface of the mirror as a sum of
output modes, and we assume from the above
argument that this expansion will give rise to a set
of mode coefficients that are invariant over the
surface of interest. We therefore write

""’AW+6—"'"Ax~za,,,,,,l Ui (15)

where |a,,, ;| are all much less than one and inde-
pendent, for a given surface, of position. Forming
the derivatives and manipulating the resulting
equations into the appropriate forms is a straight-
forward but tedious process. For convenience we
used Mathematica as a symbolic manipulator to
derive expansions for the error function in terms of
the output modes (a,, ;). Finally, because we are
interested in the scattering of power between
modes, rather than just the error function, we write

umn(xisy; u/l) =zsmn,ijuij(xr! s Wr)’ (16)
iof

where Sy, = 8;pjn + %y The expressions for the
scattering coefficients derived in this way are given
in Table 1. We shall discuss these equations later;
for the moment, it is sufficient to observe that they
all have exceedingly simple forms.

Non-zero scatlering matrix terms S, ,, where f = W, tan 6,/8/, with f being the focal length of the mirror and W, the beam radius

at the mirror

i i

n—2 n n+2
m—3 0 —fmm = D)im =28 0 -
m—1 —Jmn{n — DB Sm@n —m 4+ Df 3/mn + 1) + 2)f
n 0 I (1]
m+ 1 —3/tm + Dnin — DB (m —2n)Jm + 1) JmE D@+ D0+ 2
m+3 0 Slm +3)m + 2 (m + DB 0
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We can now substitute the above expression for
the amplitudes of the input modes into the modal
expansion for the input beam across the surface of
the mirror, and after changing the order of the
summations, equate the result to the modal expan-
sion for the output beam across the surface of the
mirror. It is clear that the above scattering matrix
completely describes the behaviour of the mirror,
and casts the expansion of the output beam in
terms of the output modes into the correct form,
as long as at every point on the surface of the
mirror the phase-front radius of curvature of the
input mode set is transformed into the phase-front
radius of curvature of the output mode set, and the
phase error duc to the phase-slippage term is
approximately zero. In short §,,; cannot be re-
garded as scattering coefficients unless it can be
shown that the modal phase fronts are perfectly
matched by the phase transformation introduced
by the mirror. We shall now consider each of the
phase factors in turn.

2.2, Phase-front distortion

As the beam propagates along the z-axis, the
phase curvature of the beam evolves in such a way
that the centre of curvature does not remain fixed.
This situation will cause a phase mismatch between
the incident mode set and the reflected mode set,
even if the reflecting surface is an off-axis ellipsoid,
since for an ellipsoid the centres of curvature for
the mirror surface (in other words the geometrical
foci) are fixed in position. Of course, in the geo-
metrical-optics limit (1 —0) the surface is a perfect
phase transformer for any incident beam with a
waist at one of the foci.

In general for any wavelength, it is easy to show
that the rate at which R, the beam-mode phase
curvature, varies with Z, the distance from the
waist, is given by

E[-E -] o

On the other hand, for an ellipsoidal mirror the
geometrical foci (or centres of curvature) are fixed.
In that case we can write OR,/8Z = 1, where for
the input beam, R,(z) is the distance of an on-axis
point from C, (or C, for the reflected beam). Thus,

even though the surface of the mirror is designed
so that R,;(0) = R, = R,(O) for the incident beam
and R, (0) = R, = R.(O) for the reflected beam at
the centre of the mirror (at point O in Fig. 1), away
from O,(z #0), a phase match is not guaranteed.
More precisely, there will be a phase error of

NI PINE 1
46() p [Rg(z) R(z}]' (18)
Atz =0, R,;(0) = R;(0) = R, so that A (0) = 0 for
the input beam. Then, assuming that the fractional
changes in the curvatures over the surface of the
mirror, (Ry;(z) — Ry)/R, and (Ri(z) — Ry)/R,, are
very much less than one, we can expand the first
and second terms of the phase-error expression
separately to first order and apply Eq. (17) to get,
after some manipulation

Axr+ )z

nwi
1f we assume that almost all of the power is
contained within the beam radius W, we have
x'+yt= W2 tan@,=z/W,, and the maximum
phase error for the input beam becomes

Ap()~ — (19)

A tan 6,
W,

For the reflected modes an identical expression is
obtained except that sign is reversed; consequently,
the total phase error associated with the phase-
front radii of curvature changing within the region
occupied by the mirror is, to first order, zero.
Numerically, we have found this conclusion to be
an accurate representation of actual behaviour.
Thus, as expected, an ellipsoid of revolution is
essentially a perfect phase transformer for any
reasonable Gaussian mode.

It is important to remember that there is an
implied assumption in the above analysis: it is
assumed that the spherical phase front of a mode
is adequately approximated by a parabolic phase
front. In other words R is much larger than W such
that

A (W, tan6) ~ —

(20)

~ exp[j—z—;(\/(x2+y2)+R2—R)]. 2n
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This approximation will break down in the extreme
far-field; in that case, however, the propagation of
the beam can be described in terms of geometrical
optics, with R(z)=z +d,, and the ellipsoid of
revolution becomes the perfect phase-transforming
surface.

To complete the analysis we need to show that
the phase errors caused by the beam diffracting
within the region occupied by the mirror can to
first order be ignored. For the input mode set, the
functional behaviour of the phase slippage of the
fundamental with z is described by the relationship

1&”’@.2]
n %s

44§ (z)) = tan '[

e

tan [n ng] ] W (22)
where we have expanded the first term in z and
noted that A<« W,_. Similarly one finds that the
phase slippage for the transmitted beam is given by
AP(z,y ~ — (Az,/nW?2). Since for the mnth mode
there is a total phase slippage of (m +n + 1) Ag,,
we can assume that there is no phase mismatch to
first order between the mnth incident mode and the
corresponding mnth reflected mode. This obser-
vation will be approximately true for the actual
phase slippage as long as (m +n + 1) is not too
large. Now, when we consider the scattering of the
mnth mode to reflected modes of order other than
mn we do need to consider the phase slippage term
because cancellation will not occur. More specifi-
cally, we are left with a maximum phase error of
the form

8Py = (M +MAGY () + (i + AG(z,)

=D+ —j))(’l—‘i‘f‘gﬂf),
W,
with the approximation that z; =z x x tanf,. It
turns out (as discussed below) that / and j are only
different from m and » by at most 3, and therefore
the 8¢ term generates an error of order
(4 tan §,/mW,). since exp(jdd;,,) = 1 + 8¢ m,-
Since 4, is already small, this error will only
generate second-order terms. Thus, even for the
case of an inclined mirror, the phase errors can be
neglected, as we set 8¢,,,;~ 0. This implies only
amplitude mismatch is important at the design

23

wavelength and an input mode is scattered
according to

:ril)n(xiiyv zi; w’w Rr) = ll’}irl;]!(x!"» }’.* Zrs wu Rr)
+ Xty W (60 2 WL R (24)

as required. We can interpret «,,; as a pertur-
bation error-matrix term, and S, ; = 8,5+ %o
as a scattering-matrix term. In matrix notation
S =1+a The S,,, are tabulated in Table 1. As
already indicated power is only scattered between
neighbouring modes; thus i only takes on values of
m—3 m—1, m+1, and m + 3 and j values of
n—2, n, and n+ 2. The total amount of power
scattered from the math mode into neighbouring
orders is approximately given by .., .Sy, 1 A
subtle but important point is that according to this
first-order approximation, power is scattered into
neighbouring modes but no power is lost from the
original mode. This curious situation occurs be-
cause the scattering out of the original mode is not
a first-order effect. Tt turns out that the best way
to calculate the actual scattering coefficient is to
subtract the power which is known to be lost to
high-order modes. An analogous procedure is used
regularly in quantum mechanics.

3. Discussion

In the preceding sections we have shown
through a detailed process of elimination that an
off-axis ellipsoidal mirror is an excellent approxi-
mation to the true surface that is required in order
to focus a weakly diffracting beam. Tt has been
shown that the phase errors introduced by the
beam diffracting within the volume of the mirror
can, to first order, be ignored. All of the distortions
result from the need to conserve flux at the surface
of the mirror. The analysis is complicated, but the
result is extremely simple. In the context of Gaus-
sian beam modes, we can represent an off-axis
ellipsoidal mirror as a thin lens which introduces
amplitude distortions. The amplitude distortions
are characterised by a scattering-matrix, the el-
ements of which are listed in Table 1. As a
consequence, it is straightforward to propagate an
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Fig. 3. Contour plots of the intensity in dB of (a) the incident beam and (b) the reflected beam at an off-axis ellipsoidal mirror in
the case of the F3 Gaussian beam. The contour level interval is 3dB. The first contour level is at —3 dB and the lowest level shown

is —30dB.

image through a mirror and study the emerging
forms.

In many quasi-optical systems it is assumed that
the propagating beam is adequately approximated
by a pure Gaussiam mode. Any off-axis curved
mirrors will tend to distort the Gaussian shape and
introduce high-order modes. It is often of interest
to quantify the power lost to the high-order modes.
As can be seen from Table 1, in the case of the
fundamental mode, power is scattered only into the
(30) and (12) modes; the relevant scattering-matrix
coefficients are S = \/g W,tan 6,/8f and
Seos2 = /2W, tan 6,/8. The total fraction of the
power scattered from the fundamental is given by
|Ss0302 + [So0.12 2 = [tan 0; Wi /2/2fF, in  agree-
ment with [2]. Moreover, we find that the scattering
coefficients are in excellent agreement with those

Off-axis Mirror

Corrugated
Hom

Fig. 4. Optical configuration showing an off-axis ellipsoidal
mirror illuminated by a corrugated horn.

calculated using the more rigorous method de-
scribed elsewhere [3]. Using Sgg.3 and Sgy2, We can
reconstruct the incident Gaussian and the distorted
reflected beam at the plane defined by z = 0 (at the
centre of the mirror), for the case when W, /f = 1/6

Image
Plane
-
— 7

(a)

\
8

M2

Plane

Corrugated
Hom

®

Fig. 5. Alternative optical configurations for a Gaussian beam
telescope illuminated by a diffraction limited corrugated horn.
The first mirror is in the far ficld of the horn.
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Fig. 6. Contour plots of the intensity in dB of the beam from an F3 diffraction limited corrugated horn illuminating an off-axis mirror
as illustrated in Fig. 4. (a) Shows the beam at the horn mouth, (b} the beam incident on the off-axis mirror, (c) the beam reflected
beams from the off-axis mirror and (d) the beam in the far-ficld of the mirror. The contour levels are the same as those in Fig. 3.

(F3) and 6, = 45°. In this way we regard the plane
at the centre of the mirror as an effective aperture
from which the output beam propagates. The
results are shown in Fig. 3a and Fig. 3b as contour
plots of intensity. The axes are normalised to the
beam width at the centre of the mirror W,,. The
output beam is distorted in the way one would
expect.

A more interesting situation, and one of particu-
lar practical importance, occurs when the beam of
a corrugated horn is reflected from an off-axis
ellipsoidal mirror. Following Wylde [8], we de-
scribe the beam from the corrugated horn in terms
of a small number of Gaussian modes. In our case,
however, we describe the beam in terms of Hermite

polynomials rather than Laguerre polynomials as
was originally done by Wylde. In the case of
Hermite-Gaussian modes essentially all of the
power (99.9%]) is contained in the modes having
order of less than (10,10). The two optical
configurations we have chosen arc shown in Fig. 4
and Fig. 5. The first, Fig. 4, consists simply of a
corrugated horn illuminating an off-axis mirror.
The second, Fig. 5, shows two Gaussian-beam
telescope configurations of magnification unity
(f, =/»), where the two mirrors are separated by
the sum of their focal lengths. In each case, we have
assumed a diffraction-limited horn, and we have
placed the aperture of the horn in the focal plane
of the first mirror. It should be remembered that
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Fig. 7. Contour plots of the intensity in dB of the F5 diffraction limited corrugated horn beam (a) reflected from and (b) in the far-field
of the off-axis mirror illustrated in Fig. 4 calculated using a projected aperture technique. (¢) Shows the beam pattern comparison
at the mirror with the beam illustrated in Fig. 6b. The contour levels in (a} and (b) are the same as those in Fig. 3.

for a diffraction-limited horn the position of the
waist is at the aperture. We have also assumed that
the horn produces an F5 beam (W, /f = 1/10) and
that the distance between the aperture of the horn
and the mirror is 1000/. The beam radius at the
second focal plane of the first mirror is much larger
than the input waist, and clearly the beam is highly
collimated in that region.

In Fig. 6a. we show the power pattern at the
aperture of the horn. The pattern shown was
reconstructed by summing the appropriate set of
Gaussian-Hermite modes. As expected, the calcu-
lated fields are well constrained within the aperture
of the horn. In Fig. 6b, we show the intensity
distribution incident on the first mirror. This ficld

was reconstructed by using the incident mode set
at the central reference plane of the first mirror. At
this plane we should simply have the far-field
pattern of a corrugated horn, or equivalently the
Fourier transform of the field distribution over the
aperture; indeed, the first sidelobe can easily be
seen. In Fig. 6¢, we show the scattered beam at the
central reference plane. This intensity distribution
was calculated by determining the scattering co-
efficients according to Table 1 and reconstructing
the scattered field at the centre of the mirror. The
beam is clearly skewed to one side and non-sym-
metrical sidelobes appear. Finally in Fig. 6d, we
show the far-field power distribution of the horn-
mirror combination. In this position we should see
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Fig. 8. Contour plots of the intensity in dB of the beams reflected from the second off-axis mirror (a) and (b) and the output image
plane (¢) and (d) in the alternative Gaussian beam telescope configurations shown in Fig. 5. The contour levels are the same as those

in Fig. 3.

the Fourier transform of the field distribution at
the second focus, which is very similar to the field
distribution at the reference planc_of the mirror.
Clearly, the beam is no longer skewed, but the
beam is elongated due to the distortions introduced
by the mirror. All of these findings are consistent
with the known behaviour of off-axis reflectors.

We have already compared the mode coefficients

calculated using the above scheme with the mode’

cocfficients calculated using a more rigorous
method; we do, however, still require independent
verification that the technique gives reasonable
results. To this end we can consider the above
example in the short-wavelength limit, in which
case we have a paraboloidal mirror illuminated by

a diffraction-limited F5 corrugated feedhorn. In
this example, the mirror is effectively an infinite
number of wavelengths away from the horn, and
it is possible to determine the output ficld at the
mirror using the usual projected-aperture tech-
nique [9,10]. In Fig. 7a, we show the power distri-
bution for the fields in the focal plane of the
scattering mirror; in Fig. 7b, we show the intensity
of the Fourier transform of the field distribution,
which of course gives the far-field power pattern of
the horn-reflector combination. These distri-
butions can be considered exact in this short-wave-
length limit. We can now compare Fig. 7a and
Fig. 6c and also Fig. 7b and Fig. 6d: the agreement
is extraordinarily good considering the simplicity
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of the Gaussian-mode calculation. In Fig. 7c, we
emphasise the agreement by showing cuts through
the y =0 axis of Figs. 7a and 6¢c. Much of the
difference in the sidelobe structure is actually due
to errors in the representation of the original beam
rather than due to errors in the scattering matrix.
We believe that by choosing mode sets that are
more correctly chosen on the basis of sampling
theory, we can improve the quality of the
calculations yet further.

We now consider the two arrangements shown
in Fig. 5. In case (b}, the mirrors are orientated to
minimise the total distortion; whereas in case (a),
the mirrors are orientated to maximise the total
distortion. In principle, both of these combinations
should form an image of the aperture of the horn
at the output waist of the second mirror [11]. In
Fig. 8a, we show the reflected beam at the reference
plane of the second mirror in the case when the
distortions should be minimised. In Fig. 8c, we
show the beam at the second focus. This contour
plot should be identical to that shown in Fig. 6a.
It is clear that the fields have returned to those of
the aperture of the horn. In Fig. 8b, we show the
reflected beam at the reference plane of the second
mirror when the mirrors are orientated in a way
which should maximise the distortions. In Fig. 8d,
we show the resulting intensity distribution of the
field at the second focus, and again this distri-
bution should be compared with that of Fig. 6a.
The incorrect orientation results in an elongation
of the beam. The pinching across the middle of the
beam is a real phenomenon. It is clear that onc
configuration (Fig. 5a) does indeed reduce the
aberrations, while the other (Fig. 5b) increases the
aberrations. If there had been a narrow waist
between the two mirrors the effect of the two
configurations would have been reversed [2).

4. Conclusions

We have shown through a detailed process of
climination that the phase transformation pro-
vided by an off-axis ellipsoidal mirror is an excel-
lent approximation to the ideal surface that is
required in order to focus a weakly diffracting
beam. More specifically, we have shown that

the phase errors incurred as a result of the input
beam diffracting within the region occupied by
the mirror are cancelled by the phase errors
incurred as a result of the output beam also
diffracting within the region occupied by the
mirror. The distortions seen on the output beam
are a consequence of having to conserve flux at
the surface of the mirror, and can be regarded as
a result of geometrically propagating through the
mirror the amplitude distribution that is incident
on thesmirror. If we use Gaussian-beam modes
to propagate a diffracting image, the field distor-
tions can be included in a simple way by scattering
power between neighbouring modes. The elements
of the scattering matrix needed for this calculation
have simple analytical forms. The technique can
be used for assessing the distortions that occur
when an off-axis ellipsoidal or parabolic mirror
is used to focus a weakly diffracting beam. When
incorporated in efficient multi-mode beam-propa-
gation software it will provide a powerful tool
for modelling the distortions that occur in real
millimetre- and submillimetre-wave quasioptical
systems.
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A. Appendix
A. L. Derivation of an expression for (Ou,,, [OW)AW

We begin by finding a suitable expression for
AW. We will assume that the mismatch between
the incident and transmitted beam widths is the
same across the tangent plane as between the two
mirror surfaces. This is a reasonable approxi-
mation for shallow mirrors. If we choose the origin
of the z-axis to lic at O in Fig. 2 then W can be
expressed as
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Wix,p.z)= W%;l:l + (i&*ﬁ'))}
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VAR iz '\
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m 2(1;Wl,i) diz+ (n Wm) !
(A.1)

where Wy, is the incident beam-waist radius, which
is located at z = —d,. Similarly, we can write for
the reflected beam

. 7 — 2
Or

. iy iz
w2 Y s+ 22,
m (nW,,,) & +(7c W(,,)

(A2)

where W), is the reflected beam waist radius, which
is located at z = +d,. It is easy to show that
TWZLIAR(O) = id)/nW} and nW?Z/AR(0)=
~ Ady /W3, which implies

AN, oWy AV Wi, :
() o= () = 9

/

so that for corresponding points (x, y, z) on the
tangent plane shown in Fig. 2, we can write

7 -S| N 772
W Z[Riw) R,«))]W’"

-d 2
Zz

A A
* {d. R©) " dm.m)J Wa.  (A4)

If we can assume that AW « W, and also, therefore,
that W, x W,z W, then AW =~(W}z)-
Wiz)2W,,, and

1 1 z\?
AW“’[““”‘nxofﬁ:(éﬂ"’m”(@)
zEW z ' , A.
: m+0((f)) (A.5)

where we neglect terms of order O((z,,//)%). Clearly

if the mirror has a long focal ratio, >z for any

point on the surface of the mirror. On the tangent

plane z = x tan 0;, which will be approximately true

for the output surface. Thus we can express AW as

W, tan 0;)‘ (A6)
S

Using this approximation for AW, we obtain

AW=x(

du,,, AW = [M]

oW 7
x s 7Y
e [on(van)n()
e :
V2 mintn
wexp| ~ X +Y (A7)
p WA . .

A.2. Derivation of an expression for (Qu,,/0x)Ax

Ax = x; — x,, the “error” in x, occurs because
corresponding points P(x;, y,, z;) and P'(x,, y,, z, ),
as shown in Fig. 2, for the input and output surfaces
of the mirror have different coordinates. If the
surface of the mirror is an ellipsoid of revolution
and R, and R, are the two distances from the centre
of the mirror to the geometrical foci, then clearly

2a =R+ Ry=/x}+y*+ (R +z)

+/xE+y Ry =z (A8)

Then assuming R, and R, are much greater than
the dimensions of the mirror, this equation reduces
to

X4yl x14y?
5 xz : - e A9
‘ ‘+( 3R, T IR, (A9

But since (x;.y,z) and (x,,y.z) lic on a line
perpendicular to the tangent plane, x;,—x,=

(z, — z;) tan 8;; also Ax is small compared to x; one
therefore obtains

tan Hi ] 2
Ax w—z—/_-—' (.\' +y ) (A.IO)

Using this approximation for Ax, we obtain:

Bty Ax = W, tan 6,7/ x* +;y’l
ax 2 wt

N X 2
2 (e ()

Py
V,izxn-+::—lm!n!n

X exp( — X;,l-—) . (A.11)
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