
1

Incentivising fairness and policing nodes in WiFi
Ian Dangerfield, David Malone, Douglas J. Leith

Abstract—In this paper we propose a feedback-based scheme
to penalise misbehaving nodes in an 802.11 network based on
gains achieved due to their (mis)configuration. Only the access
point (AP) is modified and the scheme requires no additional
communication or cooperation from other nodes. We achieve this
by failing to send MAC-level ACKs with a probability determined
by the online feedback scheme. The scheme is designed so that
it can incentivise nodes to configure themselves correctly and
avoids the need to explicitly detect misbehaving nodes.

I. INTRODUCTION

In current 802.11 networks, individual nodes have little
incentive not to behave in a selfish manner. Further, the
widely deployed 802.11e extensions provide the mechanisms
needed for nodes to reconfigure themselves to gain a sig-
nificant advantage. We consider situations where the node
aims to benefit from its behaviour, creating the possibility
of incentivising good behaviour1. The existing literature on
misbehaving 802.11 nodes primarily focuses on determining
the mechanism of cheating (e.g. shorter back-off counter), so
that a specific action can then be taken to correct for the
behaviour (e.g. [1], [2]). In this paper we take a different
approach, exploiting the fact that an appropriate response to
misbehaviour is to impose a penalty related to the gain made
by the misbehaving node. We construct the penalty so that it
can provide an incentive for the node to behave correctly.

Suppressing the generation of MAC ACKs has been sug-
gested as a way to allocate bandwidth for traffic prioritisation
in a network of well-behaved nodes [3]–[5]. Packets for which
no ACK is generated are also dropped by the AP, just as
if the packet was incorrectly received. We adapt the above
idea of not sending ACKs and show how it can be used
to control misbehaving nodes. The AP chooses not to send
MAC-level ACKs with some probability, Pack. If the sender
follows the standard 802.11 CSMA protocol this causes the
sender to back-off by increasing its MAC-level contention
window. In addition, if the sender is not following these rules
our scheme implicitly detects this allowing action to be taken.
This approach has a number of advantages. Firstly, it operates
on a fundamental part of 802.11 so it is difficult to counter:
if we do not generate a MAC-layer ACK the sender knows
that its packet has not been forwarded; even a misbehaving
sender must retransmit to ensure delivery. Consequently, we
do not need to make any assumptions about any possible
transport layer. Secondly, since the scheme requires changes
to the AP only, no modification needs to be made to the
sender, which is an obvious advantage if selfish behaviour

This material is based upon work supported by Science Foundation Ireland
under Grant No. 08/SRC/I1403 and 07/SK/I1216a.

1A node which simply wishes to disrupt the network can do so in any case,
simply by transmitting packets and causing collisions.

is suspected. Thirdly, this scheme provides a mechanism to
penalise a node without resorting to jamming [6]. We focus
on uplink traffic as downlink traffic can be policed using more
traditional techniques by the AP.

II. THROUGHPUT MODEL

Since we propose dropping MAC ACKs in order to cause a
node to back-off its contention window, it is important that we
model the effects that both finite retries and back-off stages
have on the network. The model used is a Bianchi-type model
which takes into account finite retries R as well as m back-off
stages, with R ≥ m. For simplicity, we consider packets of
constant size. Combining the approachs in [7], [8] we have
the probability of attempting a transmission in a slot τ(p),
with p being the probability that the transmission fails, can
be expressed as τ(p) = E[# attempts]/E[# slots], with the ith

node having τ = τi and p = pi. Using the standard 802.11
back-off mechanism, whereby the window size is doubled at
each of the first m back-off stages and where a total maximum
of R ≥ m retries are permitted, yields

τ(p) =

1−pR

1−p

(1
1−2p

− 2mpm

(1−p)(1−2p) −
2mpR

1−p
)W0

2 − 1−pR

2(1−p) .
(1)

This can be solved for a particular pi and τi by noting that

1− pi = (1− Pack,i)

n
∏

j=1,j 6=i

(1− τj). (2)

Here, Pack,i is the probability that the MAC-level ACK packet
is dropped by our scheme. Then the throughput S can be
calculated using S = E[packet length]/E[slot time], yielding

Si =
Psi

L

δPsl + TfPf +
∑n

i=1 TsPsi

. (3)

with Psi
and Ts being the probability and duration of a

successful transmission, Psl and δ the probability and duration
that no packet is transmitted and Pf and Tf the probability
and duration that a transmission is attempted and fails. The
idle time δ corresponds to one PHY slot. Specifically

Psi
= (1− Pack,i)τi

n
∏

j=1,j 6=i

(1− τj), (4)

Pf = 1− Psl −

n
∑

i=1

Psi
, Psl =

n
∏

i=1

(1− τi). (5)

Fig. 1 compares the throughput predictions from this model
to NS2 simulations. The parameters here are the standard
802.11g values, sending 1000 byte packets. It can be seen
that the throughput predictions from the model and the results
obtained from NS2 are close. This demonstrates that the model
accurately captures the effect of adjusting Pack.

2

 0

 5

 10

 15

 20

 25

 30

 0 0.2 0.4 0.6 0.8 1

T
hr

ou
gh

pu
t (

M
bp

s)

Pack

Model Total
NS2 Total
Model Pack variable
NS2 Pack variable
Model Pack = 0
NS2 Pack = 0

Fig. 1. NS2/model comparison for a WLAN with N1 nodes with Pack = 0
and N2 with nodes with Pack variable. In the figure (N1,N2) = (1, 10)
and we see similar accuracy for other values. The aggregate throughput of
each group of nodes and the network’s total throughput are shown.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2 4 6 8 10 12 14 16 18 20

P
ac

k

Number of competing stations

CWmin=16
TXOP=2

CWmin=16, TXOP=2

Fig. 2. Pack value required to correct for one misbehaving node versus
number of nodes in the WLAN.

III. POLICING NODES

The minimum contention window size, CWmin, and the
TXOP burst size are configurable on most modern WiFi
(802.11e-compliant) cards. For example, consider three easily
implemented cheating strategies/configuration problems: (i)
reducing CWmin by a half (approximately doubling the share
of throughput compared to well-behaved nodes), (ii) setting
TXOP to 2 packets (doubling throughput) and (iii) combining
this TXOP setting with halving CWmin (giving approximately
a four-fold increase). Fig. 2 shows the value of Pack re-
quired to restore fair operation for each of these cheating
strategies. We see that the Pack value is not sensitive to the
number of other nodes using the network. We now consider
a measurement-based policing algorithm for automatically
determining the appropriate value for Pack, using feedback
based on current network conditions and node behaviour.

Feedback Algorithm

The objective of the policing algorithm is to select an
appropriate Pack. As the behaviour of a node can change
over time, we use an online algorithm to respond to observed
behaviour. We want the algorithm to not only enforce a fair
throughput allocation, but also optionally apply a penalty
related to the degree of misbehaviour. We aim to make the
scheme agnostic to the exact details of the misbehaviour.

Algorithm: On step k the AP updates Pack for node i using

P
k+1

ack,i =

[

P
k
ack,i + α

(

Sk
c,i

Sk
f

− (1 − γP
k
ack,i)

)]

0,1−ε

, (6)

where [x]a,b = max(a, min(b, x)). Here, Sk
c,i is the throughput

of client node i and Sk
f is the maximum throughput of a

well-behaved node. The design parameters are α > 0, which
controls the rate of adaptation, γ ∈ [0, 1] which controls the
size of penalty and ε ∈ (0, 1) which limits the maximum
penalty. The AP is in a good position to estimate Sf , as it
is commonly saturated and is subject to the same competition
for transmission opportunities as clients.

Analysis: We first show what action the algorithm takes
when it converges and then give conditions for convergence.
It is useful to consider Ak

c,i := Sk
c,i/(1−P k

ack,i), which is the
attempt rate for transmissions that are successful or discarded
by the AP.

Lemma 1: If P k
ack,i converges to a value in (0, 1− ε) then

Sk
c,i → Sk

f (for γ = 0) or Ak
c,i → Sk

f (for γ = 1); if P k
ack,i → 0

then the limits above hold or Sc,i ≤ Sf at Pack,i = 0; if
P k

ack,i → 1 − ε then the limits above hold or Sc,i ≥ (1 −
γ(1 − ε))Sf at Pack,i = 1 − ε.

Proof: Use Eq. 6 and note that P k
ack,i converges implies

that the difference between successive terms goes to zero.
We conclude that if the algorithm converges then it will
equalise throughout/attempt rate or go to an extremal value
of Pack,i where the node is insufficiently or too aggressive.
Now we consider conditions for convergence. We focus on
γ = 1, but similar results hold for other γ values. We begin
by considering well-behaved nodes, where using [9] we can
bound how nodes backoff as Pack,i increases.

Lemma 2: If Ac,i ≤ Sf (1 − cPack,i) for some c > 0 then
Pack,i converges to 0.

Proof: Using Eq. 6 we can show that P k+1
ack,i ≤ (1 −

αcε)P k+1
ack,i or P k+1

ack,i = 0, which is a fixed point.
Thus the algorithm does not drop packets of well-behaved
nodes. We now turn to misbehaving nodes. Consider nodes
where Ac,i ≥ Sf , as might be the case if backoff was disabled.

Lemma 3: If Ac,i ≥ Sf for all Pack,i ∈ [0, 1 − ε] then
Ak

c,i → Sk
f or Pack,i → 1 − ε.

Proof: If Ac,i ≥ Sf then P k
ack,i is nondecreasing and

bounded above, and so we may apply Lemma 1.
Disabling contention window backoff is a particularly serious
form of misbehaviour as it can lead to network congestion
collapse. The algorithm selects Pack,i = 1 − ε, providing
an implicit way to detect such serious misbehaviour and
additional policing action, such as disassociating the node,
might then be taken.

Now consider a situation where a node seeks to gain
throughput but, for a sufficiently high Pack, its attempt rate
can be reduced to that of a well-behaved node. The following
lemma gives a simple set of sufficient conditions, but these
conditions are not necessary and convergence can be shown
in other situations.

Lemma 4: Let Ac,i/Sf be continuous and strictly decreas-
ing function of Pack,i with Ac,i/Sf > 1 when Pack,i = 0 and
Ac,i/Sf < 1 when Pack,i = 1 − ε. Then P k

ack,i converges to
a ball around a fixed point of Eq. 6. Moreover, if Ac,i/Sf is
Lipschitz with a sufficiently small constant, then P k

ack,i will
converge.

Proof: Our conditions ensure there will be a unique fixed
point, P . Using the Lyapunov function V (k) = (P k

ack,i −P)2

3

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 5 10 15 20

S
c/

S
f

Time (iterations)

CWmin=16
TXOP=2

CWmin=16,TXOP=2
Equal throughput

Fig. 3. Ratio of throughput of misbehaving node with that of a fair node,
WLAN with 2 nodes, α = 0.1, γ = 1.

we can show that

V (k + 1) ≤ V (k) − 2δ(P k
ack,i − P) + δ2, (7)

where δ = α(1−Ak
c,i/Sk

f)(1−P k
ack,i). Note that δ(P k

ack,i−P)

is positive, so P k
ack,i converges to a ball around P . If we have

the Lipschitz condition α|1 − Ac,i/Sf | < 2|Pack,i − P | then
V (k) decreases when Pack,i 6= P and so P k

ack,i converges.
In our tests of various TXOP and CWmin parameters we find
we can approximate the Lipschitz condition by ensuring that
α|1−Ac,i/Sf | < 2 when Pack,i = 0. For example, when γ =
1 and α = 0.1 we find the scheme is stable when Ac,i/Sf <
21, which encompasses many practical situations.

IV. RESULTS

A key benefit of this algorithm is that it is agnostic of the
cheating strategy. Revisiting the strategies from fig. 2, fig. 3
illustrates the operation of the algorithm for α = 0.1, γ = 1
and ε = 0.001. The algorithm reduces the throughput of the
misbehaving node to less than that of a well-behaved node,
as γ = 1. We see that the resulting throughput is lower for
the combined TXOP/CWmin strategy, illustrating that a larger
penalty has been applied to a higher degree of misbehaviour.

Fig. 4 shows results for a node which initially misbehaves
by halving its CWmin, but which modifies its behaviour at
t = 30 to use the correct CWmin value. Results for WLANs
with 1 and 10 fair nodes are shown. Initially, the algorithm
penalises the cheating node, but restores Pack to 0 after
the node becomes well behaved. As γ = 1 the algorithm
aims to equalise the attempt rate for fair nodes and cheating
nodes. Thus the equilibrium throughput of the fair nodes in
the presence of the cheating node is the same regardless of
whether the cheating node has CWmin is 16 or 32.

Fig. 5 shows the effect of a node with CWmax set to
CWmin, effectively disabling back-off. As described above,
the attempt rates cannot be equalised, so the misbehaving
node’s throughput is driven to zero as Pack → 1. This is a
useful feature of the algorithm as we do not have to explicitly
detect if a node is backing off. If Pack = 1, or above some
suitable threshold, the AP can disassociate the offending node.

Also shown in fig. 5 is the impact of the node enabling
back-off, at t = 30. It can be seen that the policing algorithm
responds by decreasing Pack to 0 and the node’s throughput
returns to its fair share.

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

M
bp

s)

Time (iterations)

2 nodes, cheating node
2 nodes, fair node

10 nodes, cheating node
10 nodes, fair node

Fig. 4. One node misbehaves by halving CWmin(=16) restores Cwmin(=32)
at t = 30. WLANs with 1 and 10 fair nodes, α = 0.1, γ = 1.

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60
T

hr
ou

gh
pu

t (
M

bp
s)

Time (iterations)

No Backoff to backoff, Cheat
No Backoff to backoff, Fair

No Backoff Cheat
No backoff Fair

Fig. 5. One node with CWmin=CWmax, impact of back-off versus no back-
off. WLAN with 1 misbehaving and 1 fair node, α = 0.1, γ = 1.

V. CONCLUSIONS
Dropping ACKs to correct for misconfiguration provides an

access-point-only mechanism to penalise nodes, without rely-
ing on either cooperation or changes to the standard behaviour
of the nodes. We propose an online policing algorithm which
has the desirable properties that (1) nodes can be incentivised
to behave fairly and (2) specific forms of misbehaviour do not
have to be identified. Further, misbehaviour which prevents
a node backing off, potentially impacting the stability of the
network, is implicitly detected.

REFERENCES

[1] M. Raya, I. Aad, J.-P. Hubaux, and A. E. Fawal, “DOMINO: Detecting
MAC layer greedy behavior in IEEE 802.11 hotspots,” IEEE Trans. Mob.
Comput., vol. 5, pp. 1691–1705, December 2006.

[2] A. A. Cárdenas, S. Radosavac, and J. S. Baras, “Detection and prevention
of MAC layer misbehavior in ad hoc networks,” in ACM workshop on
Security of ad hoc and sensor networks, 2004, pp. 17–22.

[3] L. Vollero and G. Iannello, “Frame dropping: A QoS mechanism for mul-
timedia communications in WiFi hot spots,” in International Conference
on Parallel Processing Workshops, August 2004, pp. 54–59.

[4] L. Vollero, A. Banchs, and G. Iannello, “ACKS: a technique to reduce
the impact of legacy stations in 802.11e EDCA WLANs,” IEEE Comm
Lett., vol. 9, no. 4, pp. 346–348, April 2005.

[5] T. Murase, Y. Hirano, S. Shioda, and S. Sakata, “Proposal on wireless
LAN MAC frame control in receive opportunity for flow QoS,” in IEEE
Communication Quality and Reliability Workshop, April 2008, pp. 1–6.

[6] H. Kameda, E. Altman, C. Touati, and A. Legrand, “Nash equilibrium
based fairness,” in GameNets, May 2009, pp. 533–539.

[7] A. Kumar, E. Altman, D. Miorandi, and M. Goya, “New insights from a
fixed point analysis of single cell IEEE 802.11 WLANs,” in INFOCOM,
Miami, USA, vol. 3, 2005, pp. 1550–1561.

[8] Q. Ni, T. Li, T. Turletti, and Y. Xiao, “Saturation throughput analysis
of error-prone 802.11 wireless networks,” J. Wireless Mobile Comput.,
vol. 5, pp. 945–956, December 2005.

[9] G. Bianchi, “Performance analysis of IEEE 802.11 distributed coordina-
tion function,” IEEE J. Sel. Areas Commun., vol. 18, no. 3, pp. 535–547,
March 2000.

	www.hamilton.ie
	1stanobck_change-comp.eps

