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1. Introduction

The class of P-matrices has been extensively studied due to its importance in fields such as statistics,
optimisation and dynamical systems [2-5]. A matrix A € R"*" is a P-matrix if all of its principal
minors are positive [6]. The relevance of such matrices to the linear complementarity problem is
well documented and details can be found in [2]. P-matrices are also intimately connected with the
stability theory of positive linear systems and with the long-term behaviour of Lotka-Volterra systems
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in ecological modelling [3]. Yet another context in which P-matrices play arole is in the study of globally
univalent functions, motivated by applications in Economics and Biology [4,5].

The results to be presented here relate most directly to characterizations of P-matrices within the
class of so-called Z-matrices. Recall that a Z-matrix A is one for which a;; < 0 for i # j. For a Z-matrix
A, the following conditions are equivalent [7,8]:

(i) Aisa P-matrix;

(ii) Ais positive-stable;
(iii) for every non-zero x € R" there is some i with x;(Ax); > 0;
(iv) every principal submatrix of A is positive-stable;

(v) there exists some v > 0 with Av > 0.

Property (v) above is usually referred to as the S-property [6].

The authors of [1] investigated extending the P-property of a single matrix to sets of matrices;
specifically, they introduced the row-P-property for a set of matrices and demonstrated that property
(iii) above holds uniformly for all matrices in a set if and only if the set possesses the row-P-property.
Furthermore, they also showed that the row-P-property was equivalent to the S-property for a compact
set of Z-matrices.

We shall be concerned with extending results such as those described above concerning
P-properties of single matrices and sets of matrices to the setting of the max algebra. In keeping
with [9], we define the max algebra to consist of the nonnegative real numbers equipped with the
two operations a @ b = max(a, b) and a ® b = ab. These operations extend to nonnegative matrices
and vectors in the standard way. We shall explore the connection between matrix stability in the max
algebra and concepts analogous to P-matrices in this setting. The specific notion of matrix stability
considered here is that explored in [10] for a single matrix and corresponds to asymptotic stability of
the discrete-time system

x(k+1)=AQ x(k).

In Section 3, we introduce the concept of a P}, ,,-matrix and show that equivalences analogous to
(i)-(v) given above also hold in the max algebra. In Section 4, in analogy with the work of [1], we
introduce the row—Prlnax-property and the Sp,qy-property for sets of matrices. We show that the results
of [1] extend naturally to this setting and relate the Sp,qx-property for a set of matrices to the stability
of its max-convex hull.

Moreover, we study difference equations and inclusions with delay over the max algebra and investi-
gate therole played by the Pgmx—property in the stability of these. In particular, we show in Section 3 that
the result of [ 11] on harmless off-diagonal delays also holds for difference equations in the max algebra.

In Section 4, we present a further extension of this result to difference inclusions over the max algebra.

2. Preliminaries and notation

The set of all nonnegative real numbers is denoted by R ; the set of all n-tuples of nonnegative real

numbers is denoted by R’} and the set of all n x n matrices with nonnegative real entries is denoted

by R".Forv € R, and 1 < i < n,v; denotes the ith component of v.ForA € R}"and 1 <i,j < n,

ajj refers to the (i, j)th entry of A. For 1 < j < n, AY denotes the jth row of A. The matrix A = [ai]
is nonnegative (positive) if aj > 0 (a; > 0)for 1 < i,j < n. This is denoted by A € R*" (A > 0).
Similarly, for v € IR", we say v is nonnegative (positive) and write v € Rl orv>=0(v>0)ifv; >0
(vi >0)for1 <i<n.

The weighted directed graph of A is denoted by D(A). It is an ordered pair (V, E) where V is a finite
set of vertices {1, 2, ..., n} and E is a set of directed edges, with an edge (i, j) from i toj if and only if
aj > 0. Awalk is a sequence of vertices i = iy, iy, ..., iy = j between any two vertices i, j in D(A),
where (ip, ip41) isan edge forp = 1, ..., k — 1. The weight of the walk iy, iy, . .., iy of length k — 1
is given by aj, i, i,i; - - - Gj,_,i,- A path is a walk all of whose vertices are distinct.
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A cycle T of length k is a closed path of the form iy, i3, . . ., iy, i where iy, iy, ..., iy are in V and
distinct. We use the notation 77 (I') = a;,;,0j,i; - - - @i, for the weightand I(T") for the length of the cycle
I". The kth root of its weight is called its cycle geometric mean. For a matrix A € R'*", the maximal
cycle geometric mean over all possible cycles in D(A) is denoted by 4 (A). A cycle with maximum cycle
geometric mean is called a critical cycle. Vertices that lie on some critical cycle are known as critical
vertices. The critical matrix of A [12-14], A, is formed from the submatrix of A consisting of the rows
and columns corresponding to critical vertices as follows. Set ag = q; if (i, j) lies on a critical cycle

and ag = 0 otherwise.

As previously mentioned, the max algebra consists of the set of nonnegative numbers together with
two binary operations: a @ b = max(a, b),a ® b = ab where a, b € R ; these operations extend to
nonnegative matrices and vectors in the obvious fashion. Standard references on the properties of the
max (and max-plus) algebra include [15-17]. We denote by Ak = é RA ®: e ® z%the kth power of

k times
A in the max algebra.
A € R is said to be a max eigenvalue of A if there is some v € R’} with

A®V); = max qjvj=Av;, i=1,2,...,n.
1<j<n

v is then said to be a max eigenvector. The maximum cycle geometric mean in D(A), i (A) (if D(A) is
acyclic then we define ;£ (A) = 0), can be characterised in the following equivalent ways:

(i) max{A € Ry : dv € R", v # Osuch that A ® v = Av} [10].
i) lim p(ak)t [12].
(ii) k_llgoll( )k [12]

IfA € R*"isanirreducible matrix, then 1 (A) is the unique max eigenvalue of A and there is a positive
max eigenvector v > 0 corresponding to it [9,15].

In keeping with [10] the matrix A is said to be asymptotically stable if limy_ o A(’é = 0. As shown
in [10, Theorem 2, 18], this is equivalent to ;(A) < 1.

In the conventional algebra, a matrix is a P-matrix if all of its principal submatrices have pos-
itive determinant [6]. In defining the notion of P}, -matrices in the next section, we shall make
use of a definition of matrix permanent in the max algebra [19,20]. Formally, the max permanent is

given by

(n
permax(A) = max a4 (1)
oES, i=1

where S, denotes the set of all permutations of the numbers 1, 2, ..., n.

3. P,‘nax-matrices and asymptotic stability
In this section, we define the class of P}, -matrices. Further, we demonstrate the relationship

between these matrices and the stability properties of matrices and difference equations in the max

algebra. The results presented here echo similar facts established for the conventional algebra.
Formally, A € R'*" is said to be a P}, -matrix if permax (B) < 1 for all principal submatrices B of

A. The following theorem presents some equivalent conditions for A € R}*" to be a P}, ,, -matrix.
Theorem 3.1. Let A € R'*". Then the following are equivalent:
(i) Ais a P}, -matrix;

(ii) Ais asymptotically stable, that is, n(A) < 1[10];
(i) for eachx # 0inR", there existsani € {1, 2, ..., n} such that (A ® x); < x;;
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(iv) for all principal submatrices B of A, u(B) < 1;
(v) there exists a vector v > 0 such thatA ® v < v.

Proof. (i) <= (ii) Assume that we have permax(B) < 1 for all principal submatrices B of A. Let

(i1, 12, ..., iy, i1) be a critical cycle in D(A). (If there is no cycle in D(A) then @(A) = 0 and we are
done.) Further, let B R’fk be the principal submatrix of A corresponding to i, i3, . . ., ix. Then we
have

i,y Ainiy * * - Aigiy = b1,0(1)D2,02) - * bk, (k) < PTmax(B)

for some permutation o € Sy. It follows immediately that u(A) < 1.

For the converse, assume (A) < 1. So, all cycle products of any length in D(A) are less than 1.
Let a principal submatrix B € R’fﬁk of A be given with permax(B) equal to by o (1)b2,5(2) - * - bk,o (k)
Since o € Sy is a permutation and can be written as a product of cyclic permutations, it follows that
permax (B) can be decomposed into cycle products. It is immediate that perpmax(B) < 1.

(i) <= (iii) Let ;1(A) < 1. Suppose that there exists x # 0 in R, such that (A ® x); > x; for
eachi € {1,2,...,n}.Then A ® x > x. This implies that/‘\’gD ® x > x for some x # 0in R’Jr.Thus, as
k — oo, the kth power of A does not converge to zero which contradicts u(A) < 1.

Conversely, assume (iii) and let iy, iy, . . ., ik, ik41 = i1 be a cycle of length k with the cycle product
i,y Qiniy  * + Ay in D(A) foriy, i, ..., ik € {1,2, ..., n}. (If D(A) contains no cycles, then 1 (A) =0
and we are done.) Define x € R”+ as follows:

Xi, = 1
Xi:
lj—1 .
Xl] - L) J = 35 ) k
ij 1
Xiy
X, =
iiy

xp=oa p;é{i'lvlé?‘-'aik}‘

By assumption there exists some index i with (A ® x); < x;. Clearly i must be in {i, i, ..., ix}.
Consider the following two cases.

. . : Xj . .
® i =iy = G X, D Gj,i,Xi, D - D ag Xy, < Xj,.Since x;, = a,ki.] # 0, it easily follows from the
second term in the left side that a;,;,x;, < X;,. Hence,
Xiy Xi,
QiyipXiy < = = Ay iiy * - Wiy < 1.
Qi iy iy iz Aigiy * * * Aigiy

o i=i(l1<j=<k = iy Xiy D ajjipXiy D - - - D aii Xy, < xi;. Similarly, it follows from the (+ Dth
term that

Xi;
Qijig 1 Xip < Xij = iy . <x;=1<1
Liti+1

The second condition is not possible. As a result, we have aj, ;,aj,i, - - - Gj,i; < 1. As this is true for any
cycle in D(A), it follows that £ (A) < 1.

(il) <= (iv) First, let u(A) < 1.Then, all cycle products in D(A) are less than one. Let a principal
submatrix B* of A be given and let I' be a critical cycle in D(B*). Since I" also defines a cycle in D(A),
(') < 1.As I" was arbitrary, £ (B*) < 1. The converse is immediate.

(il) <= (v) First, suppose ((A) < 1.Let1, € ]R”+ denote the vector of all ones. We can choose

€ > 0so that u(A + 61,115) < 1.Since A + elnlg is an irreducible matrix, it follows from the
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Perron-Frobenius theorem for the max algebra [9] that there is some v > 0 with (A + elnl,f) RV =
WA+ €1,11)v < v. It follows immediately that

O O
ARV < A+€1n1;l.; RV < V.

For the converse, assume that there exists v > 0 satisfying A ® v < v. As above, choose € > 0 so

that . .

A—i—elnlg Qv <.

As (A + 61,115) is irreducible, A + 61,,15 has a positive left max eigenvector w > 0 [9]. Multiplying
both sides of the above equation with w’ from the left, we see that

w' ® A—i—elnlg Qv<w @v.

Since w is the left max eigenvector of A + 1,17 it follows that 1 (A + elnIE)WT Qv<w @
But wI ® v > 0 which implies directly that
\ \

w@A) <pu A+el1l <1,
This completes the proof. [J

The final result of this section is concerned with the relation of the P,lnax—property to the stability
of delayed difference equations over the max algebra. In [11], it was shown for conventional algebra
that off-diagonal delays had no effect on the stability of a differential equation if and only if —A is a
P-matrix where A is the system matrix. We shall prove a corresponding fact for difference equations
in the max algebra without restricting diagonal delays to be zero.

Consider the delayed system of difference equations given by

L
xi(k+1) = ajxj(k — i), i=1,2,...,n (2)
i=1

where A € R'*" and 7;; > 0 are nonnegative integers forall 1 <1i,j < n.

Theorem 3.2. Consider the system of delayed difference equations (2) where tj > 0 for all i, j. The
following are equivalent:

(i) Ais a P} -matrix;
(ii) (2) is asymptotically stable for all T; > 0;

(iii) (2) is asymptotically stable for some tj; = 0.

Proof. We shall prove that (i) implies (ii) and that (iii) implies (i). The implication (ii) = (iii) is trivial.

Assume that Ais a Pl -matrix and let 7; > 0 be any set of nonnegative integer delays. Define the
state vector by x(k) = (x1(k), x2(k), ..., x, (k)T € R’jr and suppose that the delays T;; take values in
theset {0, 1, ..., Tmax} forall 1 <i,j < n, where tnx = rr}a}x Tjj.

As all delays are nonnegative integers less than or equal to Ty, We can write the delayed system
in (2) in the following form

x(k+1)=AcQx(k) DA @x(k—1) D --- D A, @ x(k — Tmax) (3)

where Ay (w = 0, 1, ..., Tmax) in R7*" are defined as follows. The (i, j)th entry of A, is equal to a;;
if 7; = w and all other entries of A, are zero. Note that
A=A DA @ DA,

By setting X(k) = (x(k — Tmax), X(k— Tmax + 1), . . ., x(k)T € R"Jr(tm‘“‘ﬂ), we see that the stability
of (2) is equivalent to the stability of
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[ | [ [
x(k — tmax + 1) 0 I 0 ...00 x(k — Tmax)
x(k — Tmax + 2) 0O O I ...00 x(k— Tmax + 1)
: =l o R :
x(k) 0 ......... 0 I x(k—1)
x(k+1) Y A1 Ay x(k)
o M 0 o T2 0 o [ 0
R(k+1) ¢ (k)
where C € R"JF(T’"”H)X"(TF"“H) is the companion matrix associated to (2).

It follows from Theorem 3.1 that A is a P,Lax—matrix if and only if ;£ (A) < 1.Since A = Ag ® A1 D
-+ - @ Aqg,,,. it follows from Theorem 5.1 in [21] that 1 (C) < 1. Thus, the system (2) is asymptotically
stable.

Now assume that for some integer values of 7;; > 0, the system (2) is asymptotically stable. Then
we can proceed as above to write the system in the form (3). By assumption the companion matrix C
associated with the system will have ;£ (C) < 1.1t then follows from Theorem 5.1 in [21] that £ (A) < 1
and hence that A is a P}, ,,-matrix by Theorem 3.1.

This completes the proof. [J

4. The row- Pr}mx-property and S, ., -property for sets of matrices and generalised spectral radius

In this section, in the spirit of [1] we extend the P,lmx—property to sets of matrices and derive
analogous results to the equivalence of (i), (ii), (iii) and (v) established in Theorem 3.1. Further, we are
concerned with the relation between the row-Pgmx-property for sets of matrices, the Spqx-property
and the stability of discrete inclusions in the max algebra.

Throughout this section, ¥ C R'_’ﬁ(" denotes a finite set of n x n nonnegative matrices:
W= (A, Ay, ..., Ay :p > 0}. (4)
We define the row representative set of W as follows
0 . N
R = MeR":for1<j < nthereexists A; € ¥ with MY = Ai(j’) . (5)

Briefly, the matrices M € R are formed by choosing corresponding rows from some A;; € W where
1 < ij < p. The following two definitions play a central role in what follows and are inspired by the
work of [1] for the conventional algebra.
(i) W has the row-P} . -property if every matrix M € R is a P}, -matrix.
(ii) W has the Sy,qx-property if there isv > O such that A; ® v < vforalli € {1,2, ..., p}.

Note that if W has the row-P} . -property, then each A; € Wisalsoa P},
Pl -matrix set over the max algebra.

Given the set W, we define the matrix S € R*" by
S=AI®AD - ®A. (6)

-matrix. Hence, W is called a

4.1. Max-convex hull

The max-convex hull of W is given by
P
COmaX(\I’)ZI aiAi A€V, > 0,1 <i<pand OtiZ]J . (7)
i=1 i

COmax (W) is said to be asymptotically stable if £ (A) < 1forallA € COpmax (V).
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4.2. Generalised spectral radius

In our main result, Theorem 4.1 below, we shall present some facts relating P},,-matrix sets and
the stability of discrete inclusions in the max algebra. We first recall the definition of the generalised
spectral radius for the max algebra, which will play a key role in what follows.

Formally, we consider the inclusion:

x(k+1) €Ay, ®x(k), we{l,2,...,p} (8)

associated with the set of matrices W. We say that (8) is asymptotically stable if all solutions x(k)
converge to zero as k tends to co.

As with discrete linear inclusions in the conventional algebra, the generalised spectral radius is
intimately related to the asymptotic stability of (8). The max-algebraic version of this concept was
introduced in [22] and a version of the so- called Generalised Spectral Radius Theorem was presented
there. Subsequent work showing the connection between the max version of the generalised spectral
radius and the conventional spectral radius of Hadamard powers was presented in [23].

Before proceeding, we need to introduce some notation. For the set W, let ‘Jlg denote the set of all
products of matrices from W of length m > 1 in the max algebra

Vg ={A; @ - ®A, : 1 <ji<pforl <i<mj. (9)

The max version of the generalised spectral radius, (V) is defined by
(W) = lim sup( max e(v)) . (10)
m—oo Yevy

As shown in [22], u(¥) < 1 is equivalent to the asymptotic stability of (8).

The next result is the main contribution of this section. In it, we show the relationship between the
row-P}nax—property, the Spax-property and the stability of discrete inclusions with delay for the max
algebra.

In statement (v) of the theorem, forw € {1, 2, ..., p} the notation a}?’ denotes the (i, j)th entry of
the matrix A,, € W.

Theorem 4.1. Let W be a set of n X n nonnegative matrices given by (4). Then the following are all
equivalent:

(i) W has the row-P}. . -property;
(ii) the generalised spectral radius (V) < 1;
(iii) W has the Spax-property;
(iv) COmax (W) is asymptotically stable;
(v) the delayed difference inclusion given by

o
xi(k+1) e a;:/’ij(k—Tij), i=1,2,....,n,we{l,2,...,p} (11)
j=1

is asymptotically stable for all Tjj > 0,1 <i,j < n.

Before proving this result, we shall state two key propositions. First, we relate the stability of the
matrix S given by (6) to the S;,qx-property of the setR.

Proposition 4.1. Let S be the matrix given by (6) and v > 0 be given. Then, S ® v < v is equivalent to
M®v <vforallM €R.

Proof. Letv > Obegivenand let M beamatrixinR .Fromthe dgﬁnition ofR,foreachj € {1,2, ..., n}
there exists some A;; € W with1 < §j < p such that MO = Aé_'). It is explicit that for all j, if S® v < v,
then
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MO)®V=A3)®V<SO)®V<VJ‘.

Hence, M ® v < vforall M € R. For the converse, if M ® v < vforallM € R,A; ® v < v for all
A; € W since every matrix is also a row representative of itself. Thus, we observe that

P P
ARV < v=>S®v<v., O
i=1 i=1

The next proposition is a restatement of a result of [25] for the max-plus algebra, which was phrased
in the language of discrete event systems. In the interests of clarity and completeness we provide a
direct max-algebraic proof here.

Proposition 4.2. Let W be a set of n X n nonnegative matrices given by (4). Let S be the matrix given by
(6). Then, ju(S) = pu(W).

Proof. We shall first show that (W) < w(S). Consider some ¥ € Wg. It is explicit that ¢y < Sg.
Then, we have u (V) < M(Sg). Since this is true for any 1, we can write
0o 0O
max <u SZ .
Jmas, n) < p Sg

Taking mth root and lim sup,;,_, . of both sides, we obtain

1
g RS oo

m 1
limsup max wu(y¥) <limsupu Sg " = u(S),
m—oo  Yevg m— 00

where the final equality follows from the remarks in Section 4 of [12]. Thus, we have (%) < u(S).

To complete the proof, we show that ©(S) < w(W¥). Let I' be a critical cycle of length k in D(S)
with product 77 (I') = $;,i,Siyi * = - Sigiy (1,12, ...,k €{1,2,...,n}).SinceS =A; @A, ®--- DA,
it follows that there are indices jq, jo, ..., jk € {1, 2, ..., p} such that

,u(S)k = JT(F) = a{':izazzig o az:h = (AJI ®A12 - ®A]'k)ilil'
Write M = A, ® Aj, ® - - - ® Aj,. Then,M € W& Forallr > 1,
Mi)iyiy = 1(S)".

Note that Mg, € \J/g and the above relation implies that max,, ¢yl M(w)ﬁ > w(S). If we take
lim sup,,_, o, of both sides, we obtain

lim sup( max_uu(y))m > u(S).
m—oo Yevy

Thus, we have 1 (S) < u(W).
So, u(S) = (W) as claimed. O

Proof of Theorem 4.1. We will show that each of the conditions from (i) to (v) is equivalent to . (S) < 1.

(i): First, denote the multigraph associated with the set ¥ by D(W). This consists of the vertices
{1,2, ..., n} with an edge of weight aj; from i to j for every A, € W with 1 < k < p for which af > 0.
With analogous definitions to the case of a simple graph, (D) denotes the maximal cycle geometric
mean of D(\W).

Now, assume that W has the row—P,%ax—property. Then, u(M) < 1 forall M € R. This implies that
all cycle products in D(W) are less than one. It follows from Lemma 5.1 in [21] that (D) = u(S). So,
we obtain that u(S) < 1.
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For the converse, assume /4(S) < 1. Then, from Theorem 3.1 there exists a vector v > 0 such that
S®v < v.Itautomatically follows from Proposition 4.1 that £ (M) < 1forallM € R.So,everyM € R
isa P! -matrix. Thus, W has the row-P}, . -property.

(ii): It is immediate from Proposition 4.2 that (W) < 1if and only if u(S) < 1.

(iii): First, assume W has the Sp,qx-property. Then, there exists a vector v > 0 such thgt ARV <V

fjor 1 < i < p.Asinthe proof of Proposition 4.1 if we add both sides from 1 to p such that le AiQv <

P, v,weobtainS ® v < v. Thus, u(S) < 1.

The converse is trivial.

(iv): Let COmax (W) be asymptotically stable. Notice that S € COpax(¥). We immediately see that
n(s) < 1.

Now, let £ (S) < 1.Since A < Sforall A € COmax (V), COmax (W) is asymptotically stable.

(v): Following the same procedure as in Theorem 3.2, we can define T, = max;; g, X(k) =

(x(k — Tmax), X(k — Tmax + 1), . . ., x(k))T and companion matrices Cy, G, . . ., Cp where
[ 0 I 0...00 ]
0o 0 I . 0 0
Cw =
0 ......... 0 I
o e e BY By

0
for1 < w < p.Note thatA,, = ™ BY.

i=

1
Then the inclusion (11) is equivalent to the inclusion
xk+1) €eC®x(k),w=1,2,...,p. (12)

By Proposition 4.2, (12) is asymptotically stable if and only if u(C; @ G @ --- ® () < 1.
DefineC = C; @ G, ® - - - @ Cp and write

[ |
0o I 0 ...
0 0 I 0
C=
0 ......... 0 I
Broye v o een Bi Bo
_ 0 _
Thenfori =0, ..., Tmax, Bi = ﬁ,:1 B.1t follows from Theorem 5.1 in [21] that ;.(C) < 1ifand
only if
( )
Trax _
i=0
However
Tmax _ Tmax [P P Tmax P
B; = B = B = Ay =S.
i=0 i=0 w=1 w=1 i=0 w=1

Thus we have shown that (12) is asymptotically stable if and only if ;£ (S) < 1.This completes the proof.

Comments on Theorem 4.1. The above result establishes that ¥ has the Spq-property if and only
if wu(M) < 1 for all M in R. This echoes Theorem 11 of [1] and the result of [24] on linear copositive
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Lyapunov functions in the conventional algebra. Note that as in Theorem 3.2, point (v) above is also
equivalent to the asymptotic stability of (12) for some 7;; > 0.

Finally, we present the following result, which is a max-algebra version of Theorem 2 in [1]. As
before, the notation a}}v is used to denote the (i, j) entry of the matrix A, while AD is used to denote
the jth row of A.

Proposition 4.3. Let W be a set of n X n nonnegative matrices given by (4). ¥ has the row-P,lnax-property
if and only if for any x # 0 in R"_, there exists an index k(1 < k < n) such that (A; ® X)x < X for every
matrix A; € W (1 <i <p).

Proof. Let W have the row—P,lnax—property. Assume that there exists anx* # 0in Ri such that forevery
index j with 1 <j < nthereis A; € W satisfying (A; ® x*); > xjfk. It is obvious that (S ® x*); > x;‘.

. . . . 1j
For each j, there exists an index k € {1, 2, ..., n} such that sjkx,’f > x;". Since sj, = aj’k for some

ije{1,2,...,p}, wehave A,-j(,") R x* > x;". We can then construct M € R by setting M¥) = Aij(_j) and it

is clear that M ® x* > x*. This contradicts the assumption that every matrix in R is a P}, -matrix.

Conversely, let M € R be given and let x # 0 be in R} . Then, there is some k such that (4; ® x) <

Xk, Vi € {1,2,...,p}. Since it is true for all A; € W, we also have (S ® x), < xi. It implies that
(M ® x)k < xi. Hence, M is a P! -matrix. Thus, W has the row-PL, . -property. This completes the

proof. OJ

5. Conclusions

We have defined P, -matrices over the max algebra and shown how some basic properties of P-

matrices extend to this class. Further, the relation between the P;mx—property, the Syax-property and
stability of delayed difference equations has been described. In the spirit of [ 1] we have also extended

the P1 -property to sets of matrices and shown that the relation between P-matrix sets and the S-

property for Z-matrices in the conventional algebra extends to this new setting. The implications of the
row-P}nax-property for the stability of max-convex hulls, as well as delayed and undelayed difference
inclusions have also been explored.
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