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1. Introduction

In the very early developments of quantitative geography, statistical techniques were
invariably applied at a “‘global’ level, where moments or relationships were assumed constant
across the study region (Fotheringham and Brunsdon, 1999). However, the world is not an
“average” space but full of variations and as such, statistical techniques need to account for
different forms of spatial heterogeneity or non-stationarity (Goodchild, 2004). Consequently,
a number of local methods were developed, many of which model non- stationarity
relationships via some regression adaptation. Examples include: the expansion method
(Casetti, 1972), random coefficient modelling (Swamy et al., 1988), multilevel modelling
(Duncan and Jones, 2000) and space varying parameter models (Assungéo, 2003).

One such localised regression, geographically weighted regression (GWR) (Brunsdon et
al., 1996) has become increasingly popular and has been broadly applied in many disciplines
outside of its quantitative geography roots. This includes: regional economics, urban and
regional analysis, sociology and ecology. There are several toolkits available for applying
GWR, such as GWR3.x (Charlton et al., 2007); GWR 4.0 (Nakaya et al., 2009); the GWR
toolkit in ArcGIS (ESRI, 2009); the R packages spgwr (Bivand and Yu, 2006) and gwrr
(Wheeler, 2011); and STIS (Arbor, 2010). Most focus on the fundamental functions of GWR
or some specific issue - for example, gwrr provides tools to diagnose collinearity.

As a major extension, we report in this paper the development an integrated framework for
handling spatially varying structures, via a wide range of geographically weighted (GW)
models, not just GWR. All functions are included in an R package named GWmodel, which
is also mirrored with a set of GW modelling tools for ESRI’s ArcGIS written in Python.

2. The GWmodel package

The GWmodel package is developed under the open source R software coding environment
(R Development Core Team, 2011). The package includes all common GW models as well as
some newly developed ones. Currently, the package consists of the following four core
components:



o GWR and GW Generalized Linear Models (GWGLM)

Functions to implement GWR, including: statistical tests for relationship non-stationarity,
model specification and visualization tools for its results. The interface of the ArcGIS tool,
BasicGWR, is demonstrated in Figure 1, and the other tools are also developed with similar
user-friendly interfaces. Functions are also included to implement GW Poisson regression
(Nakaya et al., 2005) and GW logistic regression (Atkinson et al., 2003). Furthermore, a
selection of newly-developed, locally-compensated GWR models is available to combat
issues of local collinearity (Brunsdon et al., 2012).
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Figure 1 Interface of BasicGWR: the tool for calibrating a basic GWR model
o GW Summary Statistics (GWSS)

Functions to calculate GWSSs (Brunsdon et al., 2002; Harris and Brunsdon, 2010),
including: the GW mean, GW standard deviation, GW skewness and GW correlation.

J GW Principal Components Analysis (GWPCA)

Functions to implement GWPCA (Harris et al., 2011a) for investigating the changing local
structure in multivariate spatial data sets, including: i) automatic bandwidth selection, ii)
randomisation tests for its application and iii) visualisation techniques for its output.

° GW Prediction Models

Functions to implement GWR as a spatial predictor (Harris et al., 2011b)and to also
implement a selection of new hybrids where kriging is combined with some form of GW
approach (Harris et al., 2010a; Harris et al., 2010b; Harris and Juggins, 2011).

As demonstrated in Figure 1, common to all four core components is the ability to choose
from:

i. arange of kernel functions (Gaussian, bi-square, tri-cube and box-car)

ii. fixed and adaptive bandwidths

iii. arange of distance metrics (Lu et al., 2011; Lu et al., 2012)

iv. basic and robust GW model forms. For example, robust GWSS (Brunsdon et al., 2002;
Harris and Brunsdon, 2010); robust GWR (Fotheringham et al., 2002; Ghosh and Manson,
2008; Harris et al., 2010c); and robust GWPCA (Harris et al., 2012).

Only the core functions have been listed. Further GW model functions will be integrated



accordingly.

3. Concluding remarks

This paper will introduce and demonstrate two forms of the GWmodel package, one
developed in R, the other mirrored in python. Each package provides a suite of GW
techniques that are currently not available within one single, GW software product.
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