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[1] A new method (termed Principal Filter Analysis (PFA))
for analysing large time series of luminescence excitation-
emission matrices (EEMs) is proposed, based on the idea of
identifying ‘filters’ that detect time periods where interesting
variations in the EEMs occur. A mathematical exposition of
the technique is supplied, followed by a discusion of how it
may be implemented in practice. The method is applied to
EEMs taken from a stalagmite in Crag Cave, W. Ireland
resulting in three distinct time periods of luminescence
properties being identified. INDEX TERMS: 0649 Electro-
magnetics: Optics; 0644 Electromagnetics: Numerical methods;
3299 Mathematical Geophysics: General or miscellaneous; 1055
Geochemistry: Organic geochemistry. Citation: Brunsdon, C.,
and A. Baker, Principal filter analysis for luminescence excitation-
emission data, Geophys. Res. Lett., 29(24), 2156, doi:10.1029/
2002GL015977, 2002.

1. Introduction

[2] Using luminescence spectrophotometry, it is now
possible to generate large excitation-emission matrices
(EEMs) for hydrological and geological studies Baker et
al. [2000]. A single EEM typically consists of a matrix of
luminescence intensity values arranged in a rectangular
grid-typically containing 10* to 10° values. The rows and
columns of the matrix represent the excitation and emission
wavelengths. Analysis and visualisation of these matrices
can provide geological and hydrological information essen-
tials for a number of applications, including speleothem and
peat derived records of humifcation and the identification of
organic carbon fractions in marine and terrestrial waters and
groundwaters, including sewage and farm wastes del Cas-
tillo et al., [1999]; Jiji et al. [1999]; le Coupannec et al.,
[2000]; Matthews et al. [1996]; Mayer et al. [1999]; Mobed
et al. [1996]; Parlanti et al. [2000]; Wu and Tanoue [2001];
Yan et al., [2000]; Patel-Sorrentino et al., [in press].
However, single EEMs are rarely considered in isolation.
They are most usefully considered as a time series-for
example based on 365 daily hydrological samples, or much
longer series for geological samples Coble [1996]; McGarry
and Baker [2000]; Baker et al., [1998]; Caseldine et al.
[2000]; Newson et al. [2001]; Baker [2001,2002]. To analyze
a series as a whole, we must regard the series of EEMs as a
‘data cube’ with a third time dimension in addition to those of
excitation and emission described above.

[3] A data model of this type presents a number of
problems for visualisation and analysis. Firstly, the data is
essentially four dimensional, as any intensity measure also

Copyright 2002 by the American Geophysical Union.
0094-8276/02/2002GL015977

has associated values of time, excitation and emission
wavelength. Clearly, four-dimensional data may not be
visualised directly. Secondly, there is a large amount of
data. Even in the hydrological case, where the time series
are relatively short, there may be 365 EEMs to consider.
Analysis of EEMs generally consists of identifying ‘fea-
tures’ such as peaks or ridges of intensity which correspond
to the presence of certain substances. Identifying EEMs in
the time series where such features change markedly helps
to identify periods of environmental change. However, with
very large numbers of EEMs the task of finding ‘interesting’
ones is non-trivial. In an earlier paper Baker et al. [2000],
we offered an isoline-based method for viewing the data
cube as a four-dimensional entity. Here, we offer an alter-
native approach, which more directly tackles the problem of
identifying ‘interesting’ points in the EEM time series. This
is achieved using the technique we term Principal Filter
Analysis PFA, which we outline in this paper.

2. Principal Filters: An Outline

[4] For a single point in time we may consider the
luminescence intensity (/) to be a function of the excitation
wavelength v, and the emission wavelength, v,,,. Thus we
write I = I(Vey, Vem). An EEM may therefore be considered as
a set of discretely sampled /-values using regularly spaced
values of v, and v.,,. We may extend this to consider every
point in time ¢ in the continuous period spanning the time
series of EEMs, and write [ = I[(Vey, Vem, £). The time series of
EEMs (the data cube) may then be considered as as a set of
discretely sampled /-values as above, but with an added
dimension of discrete sampling points in time. A further
refinement is to standardise / by subtracting the time aver-
aged value of 7 at each (Vey, Vo) and dividing this quantity by
the time-based RMS value. This has the effect of highlighting
relative changes in the EEM matrix over time, rather than
absolute changes.

[s] Suppose we know that a certain period in time, say
from ¢ to t, is interesting. We could define a measurement
of overall intensity during this period for an excitation-
emission pair (Vey, Vem) as

I*(Vex, Ve ) = /I(vex,vem,t)f(t)dt (1)
Jr
where
1 if Hh<t<t
flo) =
0 Otherwise

and 7 is the entire time span of the EEM time series.
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[6] The function f may be thought of as a filter selecting
out points in time that are interesting in some prescribed
way. The function /*(Vex, Vem) may then be plotted using
contours or three-dimensional surface plots to identify
features of the excitation-emission intensities in the time
range. However, f need not be confined to a binary 0/1
switching function. By allowing f'to vary continuously it is
possible to arrive at a function /¥ which applies relative
weights of importance to different points in time. Further-
more, by allowing fto take negative values for certain time
periods, it is possible to create an /* function which gives
higher values for certain (Vey, Vem) pairs which do not have
high luminescence intensities during these time periods.

[7] In practice we do not have prior knowledge of the
‘interesting’ time periods, and hence ‘interesting’ choices of
/- Here we propose a method for making such choices on the
basis of / = I(Vex, Vem, 1), or more precisely, on the basis of
the data cube as a discrete sample of this function. The
underlying idea is to find f giving the ‘most interesting’ /*
function. We define ‘most interesting’ to mean the /*
exhibiting the most variability, V(/*), over the sampled
ranges of Ve, and v, defined by

V(%) = / /2 (I (e, Vem) — M(I%))? dvesdven (2)

where v? is used as a shorthand to denote the region
spanned by v, and vy, and M(Z¥) is the mean value of the
function /* over this same region, defined by

— j jl* (UEX7 Vem) dUeXdVem
- f j AVexdVem

M(I%)

Thus, the problem of finding a suitable f may be stated as

Find a function /" minimising V(/*)
where
I*(Vexﬂ’em) = fT](Uexa Vem, t)f(t) dt

(3)

[8] Note that multiplying f by a constant, or adding a
constant to f'would allow V(/*) to increase without bound,
so we subject the above problem to the two constraints:
Jof®) di =0 and [ (f@) = 1.

[v] Having found faccording to the conditions above, we
may then plot f against ¢ to identify ‘interesting’ time
periods, and plot the associated 7*(Vex,Vem) to identify
excitation-emission wavelength pairs associated with the
time periods. The f found in this way is referred to as a
Principal Filter.

[10] Suppose we now refer to this function as f;. It is now
possible to consider other ‘interesting’ filters, f, f3 and so
on. Firstly consider f;. To identify different features from f;,
we solve equation 3, imposing a further constraint of
orthogonality-that is

/T [ OB di=0 (4)
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[11] This ensures that f, will identify a different time
pattern from fi-the ‘integrating to zero’ property ensures
that the two filters cannot both have the same sign for very
large time periods in 7. We may then go on to find the
associated /* function-which we will denote by /5.

[12] This process may be continued indefinitely, initially
by finding f; such that it solves equation 3, with the
additional constraints that it is orthogonal to both f; and
f>, and more generally by finding f; such that it is orthogonal

tofl,st .. ﬁc—l'

3. Computational Issues

[13] In practice we do not work with the continuous
function 7, but with the discrete ‘data cube.” Thus, we work
with discrete approximations for all of the functions in the
last section. To do this, we re-arrange the data cube into a
matrix X, whose rows are the layers of the excitation-
emission levels, and whose columns correspond to the time
intervals. That is, if the data cube has / excitation levels, m
emission levels and £ time intervals, the matrix X will have
Im rows and k columns. This being done, the function f'in
equation (1), is recast as a row vector with £ elements, say
a = (ay, ay, ... a;) and the whole expression is recast as a
matrix multiplication x = Xa. The summations in the matrix
multiplication replace the integration in the original expres-
sion, and the result, x, is a column vector with /m elements,
replacing [*(Vex,Vem) in equation (1). Note that we may
work with standardised intensities as suggested in the
previous section. In this case, X is transformed by subtract-
ing the mean from each row and then by dividing each row
by its standard deviation.

[14] Equation (2) is then replaced by the variance of the
vector X, that is:

Ve =2 S -v) (5)

[15] Having translated the expressions in the previous
section into discrete form, the problem stated in (3) can also
be stated in discrete form:

Find a vector a minimising V' (x)
where
x = Xa

(6)

[16] As before we need to add two further constraints,
since adding a constant multiplied by a vector of ones to a,
or multiplying a by a constant allows V(x) to increase
without bounds. The discrete form of these constraints are
Ya; =0 and Ya? = 1. Finally, it is possible to define a series
of a-vectors, say {aj, a,,...} using the orthogonality con-
straint. In discrete form, this constraint is expressed in terms
of the vector dot product:

[17] The utility of re-expressing the problem in discrete
form using matrix algebra is that the the solution to problem
(6) is well known. This is discussed, for example, in Maxwell
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Figure 1. Variance explained by principal filtering.

[1977]. A similar approach was used in Compagnucci et al.
[2001] to investigate evolving spatial patterns in atmospheric
systems. The values of a solving (6) are the eigenvectors of
Xp "Xp, where Xy, denotes the matrix X with the mean value
of each row subtracted from that row. Note that when work-
ing with standardised intensities, X = Xp. Thus, we have an
explicit form for a;, a,. We may then treat a;’s as approximate
solutions for f(¢). Each a; has an associated x-value—call this
X;. As noted earlier, this has /m elements, and is a discrete
approximation of /*(ve, Vem). To interpret this correctly, x;
should be re-shaped into a / by m element rectangular array,
which may be used by a contour-drawing or surface-plotting
package to visualise I*(Vex, Vem)-

[18] Finally, the eigenvalues of X also have an interpreta-
tion. Call these (\;, \,...), sorted in order of magnitude.
Then X; is proportional to the variance of the elements of x,.
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Figure 2. Principal Filter 1.
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Since the a; vectors form an orthogonal set, note that the total
variance of all of the elements of X is proportional to X\,.
Thus, the proportion of the total variance ‘explained’ by x; is
equal to \/X\;. Also, recalling that we order the index i
according to the magnitude of X;, define ¢; = X, N/XN;.
This indicator is useful for determining the success of the first
few (a;, x;) pairs-values of ¢, , and other low-indexed ¢;’s
close to 1 suggest that much of the variability in the whole
data cube is explained by the first few x;’s.

4. An Example

[19] In the following example, data was obtained from a
stalagmite sample from Crag Cave, W. Ireland, that has
already undergone extensive research in the form of isotope
and crystal structure variations Mc Dermott et al. [1999] and
our previous research into visualising luminescence EEMs
Baker et al. [2000]. The luminescence excitation-emission
matrix timeseries comprises 440 data points covering the
period 10,000 years bp to present (giving an effective mean
resolution of 2.5 yrs/EEM). Baker et al. [2000] demonstrate
three periods of distinct luminescence properties: (1) 0—
4,000 BP (0—75 mm from top), (2) 4,000-9,600 BP (75—
420 mm from top), and (3) Before 9,600 BP (420 mm to
base). A principal filter analysis was carried out using
standardised intensities. The values of 1, for i = 1... 10
are plotted in Figure 1. This shows that much of the
variance is explained by the first three principal filters.
Here we consider the first two. PF1 (Figure 2) increases
towards the top of the sample, and exhibits a clear period of
change to high values at 80 mm and a possible transition to
low values at the base of the sample. The former clearly
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identifies the change in luminescence properties identified
in Baker et al. [2000] at about 4000 BP in this sample.
There is a notable shift in the relative distribution of
intensities in the EEMs. This corresponds to a luminescence
shape that has both high and low wavelength luminescence
peaks; a high score occurs only when both peaks are present
and a low score when one or both are absent. The impor-
tance of this factor as the first PF here is that it was not
readily observed visually through individual analysis of
EEMs and thus demonstrates the importance of the PFA
technique as a diagnostic tool. PF2 (Figure 3) identifies
change in luminescence EEM properties at higher wave-
lengths than PF1 and is therefore indicative of increased
humic-like fluorescence. Again, the greatest change is in the
top 80 mm of the stalagmite, and in Baker et al. [2000] an
increase in the fluorescence emission wavelength at this
time is similarly observed. Hence we are confident that PF2
is identifying organic matter preserved in the stalagmite
which is more humic in nature; this includes a weaker
transition to such material in the base of the sample, and
three events between 200 and 300 mm from top which were
also identified by Baker et al. [2000].

5. Conclusion

[20] Luminescence excitation emission wavelength
timeseries can provide high-resolution palaeoclimate,
hydrological and environmental records. However, due to
the vast amount of inter-related data that can be obtained in
four dimensions (luminescence excitation and emission
wavelengths, luminescence intensity, time), interpretation
of these data in terms of climate or environmental change is
not always straightforward. PFA on the luminescence EEM
timeseries from the Crag Cave stalagmite has shown the
utility of this technique.

[21] An important aspect of this technique is an emphasis
on the interaction between the computational and visual
approaches. Clearly producing visual representations of
EEMs is key to interpretation, by a very large number of
images are produced in any given analysis. This technique
uses a computational approach to finding ‘interesting” filters
which highlight a small number of patterns explaining
nearly all of the variability in the EEM data matrix, making
interpretation of the key trends in the data easily identifi-
able. Ongoing research by the authors addresses integrating
PFA with existing visualisation software on order to provide
a customisable user-friendly interface, making the technique
available to a broader range of users. Also, research is
underway to develop statistical tests of whether shifts or
peeks in the PFA curves are due to genuine processes or
artifacts of residual random noise in the data. Recent
developments in fibre-optic probe technology have
decreased spot-size available, and the increasing speed of
spectrophotometers over recent years has greatly increased
the rate at which data may be collected. Therefore increas-
ing quantities of optical data at increasing optical and
temporal/spatial resolution will require increasingly sophis-
ticated statistical and visualisation techniques such as the
PFA methodology outlined here.
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