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We analyze the properties of asymptotically AdS electrically charged black brane solutions in a consistent
truncation of the N = 4+, D = 5 Romans’ gauged supergravity which contains gravity, SU(2) and U (1)

gauge fields, and a dilaton possessing a nontrivial potential approaching a constant negative value at
infinity. We find that the U (1) × U (1) solutions become unstable to forming non-Abelian hair. These
configurations emerge as zero modes of the Abelian solutions at critical temperature and a critical (non-
vanishing) ratio of the electric charges and can be viewed as holographic p-wave superfluids.
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1. Introduction

Recently, considerable effort has been put into extending
AdS/CFT correspondence beyond high-energy physics by construct-
ing gravity models that are conjectured to be dual to various
condensed matter systems. This has lead to the discovery of holo-
graphic superconductors and holographic superfluids, describing
condensed phases of strongly coupled, planar, gauge theories.
Studying such models involves the construction of electrically
charged black holes in an asymptotically AdS spacetime, which be-
low a critical temperature become unstable to forming hair. That is,
a phase transition occurs to a superconductor/superfluid state, in
which a sufficiently large U (1) charge density triggers the sponta-
neously breaking of the U (1) symmetry. Then an operator charged
under the U (1) acquires a nonzero expectation value (see e.g. [1]
for a review of these aspects).

For p-wave superconducting black holes, the condensing opera-
tor is a vector and hence rotational symmetry is broken. Such black
hole solutions have been constructed using either charged non-
Abelian vector fields [2] or, alternatively, charged two-forms [3].
However, most of the studies in the literature have assumed an
ad hoc construction of the Lagrangian of the gravitational system,
without a clear connection with a given supergravity model, which
makes it rather difficult to describe precisely the application of the
AdS/CFT dictionary.

At the same time, the gauged supergravity models generi-
cally contain non-Abelian vector fields, which may suggest the

* Corresponding author.
E-mail address: Yves.Brihaye@umh.ac.be (Y. Brihaye).
0370-2693/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physletb.2013.02.006
existence of p-wave superconducting black hole solutions. The case
of N = 8, D = 5 gauged supergravity [4,5] is of particular inter-
est, given its connection with N = 4 U (N) super-Yang–Mills theory
in 3 + 1 dimensions. The bosonic sector of this theory consists of
the metric, twenty scalars and fifteen SO(6) Yang–Mills (YM) gauge
fields.1 Solutions of N = 8, D = 5 model have been considered by
several authors for various consistent truncations, with subgroups
of SO(6) (see e.g. [6] and the references therein). However, to our
knowledge, to date no attempt has been made to construct non-
Abelian superconducting black hole solutions in this context.

This Letter is aimed as a first step in this direction, by tak-
ing a consistent truncation of the N = 8 model corresponding to
N = 4+ , SU(2) × U (1) Romans’ gauged supergravity, with a sin-
gle scalar field φ possessing a potential V (φ) which is the sum
of two Liouville terms. The scalar φ approaches asymptotically a
constant value φ0 corresponding to an extremum of the poten-
tial, dV /dφ|φ0 = 0, which yields an effective cosmological constant
Λeff = 2V (φ0) < 0. It turns out that the basic properties of the
N = 4+ solutions with non-Abelian fields are rather similar to
those found for pure D = 5 Einstein–YM-Λ system [8,9]. In par-
ticular, we find evidence for the existence, at low temperatures, of
a superfluid state with a normalizable non-Abelian condensate.

Since Romans’ theory arises as a consistent Kaluza–Klein trun-
cation of the type IIB supergravity on an S5 [10] and as a con-
sistent compactification of D = 11 supergravity [11], this shows
the existence of holographic superfluids in D = 10,11 supergravi-
ties.

1 Note that the field content of the full N = 8, D = 5 gauged supergravity is
richer. However, a number of bosonic fields can be consistently set to zero [5].
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2. The N = 4+, D = 5 Romans’ gauged supergravity

The bosonic sector of the N = 4, D = 5 Romans’ gauged super-
gravity [7] consists of gravity, a scalar φ, an SU(2) YM potential
A(I)

μ (with field strength F (I)
μν = ∂μ A(I)

ν − ∂ν A(I)
μ + gY Mε I J K A( J )

μ A(K )
ν

and gY M the SU(2) gauge coupling constant), an Abelian potential
Bμ ( fμν = ∂μBν − ∂ν Bμ being the corresponding field strength),
and a pair of two-form fields. These two-form fields can consis-
tently be set to zero, which yields the bosonic part of the action

Ibulk = 1

4π

∫
M

d5x
√−g

(
1

4
R − 1

2
∂μφ∂μφ

− 1

4
e2aφ F (I)

μν F (I)μν − 1

4
e−4aφ fμν f μν

− 1

4
√−g

εμνρστ F (I)
μν F (I)

σ τ Bτ − V (φ)

)
, (2.1)

where a =
√

2
3 . Here V (φ) = − 1

8 g2
Y M(e−2aφ + 2

√
2 gM

gY M
eaφ) is the

dilaton potential, gM being the U (1) gauge coupling constant.
As discussed in [7], this theory has three canonical forms, cor-

responding to different choices of the gauge coupling constant gM .
The case of interest here corresponds to the N = 4+ version, in
which gM = gY M/

√
2 and thus the dilaton potential is

V (φ) = −1

8
g2

Y M

(
e−2aφ + 2eaφ

)
. (2.2)

The field equations are obtained by varying the action (2.1) with
respect to the field variables gμν, A(I)

μ , Bμ and φ

Rμν − 1

2
gμν R = 2Tμν,

∇2φ − a

2
e2aφ F (I)

μν F (I)μν + ae−4aφ fμν f μν − ∂V

∂φ
= 0,

∂ν

(
e−4aφ f μν

) − 1

4
√−g

εμνρστ F (I)
νρ F (I)

σ τ = 0,

Dν

(
e2aφ F (I)μν

) − 1

2
√−g

εμνρστ F (I)
νρ fστ = 0, (2.3)

where the energy–momentum tensor is defined by

Tμν = ∂μφ∂νφ − 1

2
gμν∂σ φ∂σ φ − gμν V (φ)

+ e2aφ

(
F (I)
μρ F (I)

νσ gρσ − 1

4
gμν F (I)

ρσ F (I)ρσ

)

+ e−4aφ

(
fμρ fνσ gρσ − 1

4
gμν fρσ f ρσ

)
. (2.4)

The scalar potential has exactly one extremum at φ = 0, cor-
responding to the effective cosmological constant Λeff = − 6

�2 =
2V (0) = − 3

4 g2
Y M . Then the effective AdS length scale is fixed by

the non-Abelian gauge coupling constant, � = 2
√

2/gY M .
As usual, one supplements (2.1) with a boundary term

Ibound = − 1

8π

∫
∂M

d4x
√

−hK

− 1

8π

∫
∂M

d4x
√

−h

(
1

�
W (φ) + �

4
R

)
, (2.5)

where apart from the Hawking–Gibbons surface term we include
also a counterterm part which is required to regularize the total
action and the global charges. In the above relation, R is the Ricci
scalar for the induced metric h of the boundary, K is the trace of
the extrinsic curvature, while W (φ) = e2aφ +2e−aφ (this expression
of the counterterm was derived in [12], in a more general context).

Then, as in the well known pure-AdS case [13], one can con-
struct a divergence-free boundary stress tensor Ti j from the total
action I=Ibulk+Ibound by defining

Ti j = 2√−h

δ I

δhij
= 1

8π

(
Kij − Khij − 1

�
hij W (φ) + �

2
Eij

)
, (2.6)

where Eij is the Einstein tensor of the boundary metric, Kij =
−1/2(∇in j +∇ jni) is the extrinsic curvature, with ni being an out-
ward pointing normal vector to the boundary.

Thus, a conserved charge

Qξ =
∮
Σ

d3 Sa ξbTab (2.7)

can be associated with a surface Σ (with normal na), provided the
boundary geometry has an isometry generated by a Killing vec-
tor ξa . For example, if ξ = ∂/∂t is a timelike Killing vector, then
Qξ is the conserved mass M.

3. The uncondensed phase

3.1. The solutions

We start with a discussion of the basic properties of the Abelian
black brane solutions of the N = 4+ Romans’ model. They can
be found as a particular limit of the black holes obtained in [14]
in the so-called STU model. In the general case these black holes
possess three different U (1) charges and two independent scalars.
After setting one scalar to zero and taking two gauge fields to be
equal, one finds after a suitable field redefinition, the following
black brane solution of Eqs. (2.3)–(2.4):

ds2 = H(r)1/3
(

dr2

f (r)
+ r2(dx2 + dy2 + dz2))

−H(r)−2/3 f (r)dt2, (3.8)

with

H(r) = H2(r)K (r), H(r) = 1 + 2Q 2

Mr2
,

K (r) = 1 + 4q2

Mr2
, f (r) = − M

r2
+ 1

8
g2

Y Mr2H(r) (3.9)

and the matter fields

φ(r) = 1√
6

log

(
H(r)

K (r)

)
, B = Bt(r)dt, A(I) = At(r)δ

I3 dt,

with Bt(r) = Φa − Mq

4q2 + Mr2
, At(r) = Φ A − M Q

2Q 2 + Mr2
.

(3.10)

This solution is written in terms of three parameters (M, Q ,q),
corresponding (up to some factors) to the global mass and two
electric charges.

In what follows, to avoid cluttering our expressions with com-
plicated factors of gY M , we use the observation that the above
solution is left invariant by the transformation r → λr, gY M →
gY M/λ, (q, Q ) → λ(q, Q ) and (x, y, z) → λ(x, y, z), and we set
gY M = 1 without any loss of generality.

The horizon is located r = rH , with rH the largest positive root

of the equation f (r) = 0, which reduces to r6
H + 4(

q2+Q 2

M )r4
H +

4
2 (Q 4 + 4q2 Q 2 − 2M3)r2 + 16q2 Q 4

3 = 0. Although one can write

M H M
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Fig. 1. The entropy and free energy of the Abelian black brane solutions is shown for several values of the electric charges.
an expression for rH (M,q, Q ), it turns out to be more convenient
to express q in terms of rH , Q , M:

q = rH

2
√

M

√
8M3

(2Q 2 + Mr2
H )2

− 1. (3.11)

As usual, the constants Φ A,Φa in the expressions of At(r), Bt(r)
are found by imposing the regularity of the one-forms A, B on the
horizon, which implies

Φ A = M Q

2Q 2 + Mr2
H

, Φa = Mq

4q2 + Mr2
H

. (3.12)

Thus, physically they correspond to the two chemical potentials
associated with the system.

A straightforward computation leads to the following expres-
sions for the mass M, electric charges QA and Qa for the SU(2)

and U (1) fields, entropy S and Hawking temperature T H :

M = 3M

16π
V, QA = 1

2π
Q V,

Qa = 1

2π
qV, S = 1

2

√
2MrHV,

T H = 1

32
√

2π

8Q 6+8M4r2
H +12M Q 4r2

H +6M2 Q 2r4
H +M3(−16Q 2+r6

H )

M5/2rH (2Q 2+Mr2
H )

,

with V = ∫
d3x; however, for the rest of this work, to simplify the

expressions, we set V = 1, i.e. we shall work with mass, entropy
and electric charge densities.

A straightforward computation shows that the solutions satisfy
the first law of thermodynamics, dM= T H dS +Φ A dQA +Φa dQa ,
and the Smarr law, M= 3

4 (T H S + Φ AQA + ΦaQa).

3.2. Thermodynamic properties

These U (1) × U (1) solutions possess a relatively complicated
thermodynamics. Restricting for simplicity to a canonical ensem-
ble, we study black branes holding the temperature T H , and the
charges QA,Qa fixed. The associated thermodynamic potential is
the Helmholz free energy F [T H ;QA,Qa] = M − T H S . Thermody-
namic stability requires the positivity of the specific heat at con-
stant electric charges, C = T H (∂ S/∂T H ). A useful relation here is

T H = 1
π217/3

S6+(Q 2+q2)S4−Q 4q2

S5/3((Q 2+S2)2(2q2+S2))2/3 , which defines S(T H ;QA,Qa),

although an explicit formula cannot be written in the general case.
Analytic results are found only when discussing the limiting
cases with a vanishing Q or q. The properties of the solutions with
Q = 0 (i.e. a consistent truncation of the model with a U (1) field
only, F (I)

μν = 0) are discussed at length in [3]. No extremal config-
urations are found in this case, since the temperature is bounded
from below, T (min)

H > 0. For any given T H > T (min)
H , there are two

branches of solutions, one of them being thermally stable.
By contrast, the solutions with q = 0 (SU(2) gauge fields only,

fμν = 0), admit an extremal limit which is approached for M =
Q 4/3/21/3. The entropy of the extremal solutions vanishes, a num-
ber of invariant quantities diverging in that limit. For non-extremal
configurations one finds a single branch of solutions, with

S = 4π T H Q 2/3
[

32π2T 2
H

3Q 2/3

+
(

1 + 32768π6T 6
H

27Q 2
−

√
1 + 65536π6T 6

H

27Q 2

)1/3

+
(

1 + 32768π6T 6
H

27Q 2
+

√
1 + 65536π6T 6

H

27Q 2

)1/3]
,

which possesses a positive specific heat.
The solutions with two U (1) charges exhibit a complicated pic-

ture, which is governed by the value of the relative ratio q/Q . The
picture in Fig. 1 appears to be generic: for any Q �= 0, the solutions
with small enough q are thermally stable, the entropy increasing
with the temperature (note that S(T H = 0) �= 0, the geometry re-
maining regular in this limit).

However, when increasing q we notice the occurrence of three
branches of solutions for some intermediate range of T H . The
physically relevant branch (which has less free energy) is the third
one, which continues to T H → ∞ (the large temperature behaviour
is S = 128π3T 3

H + O (T H )). Also, the second branch is unstable
since it possesses a negative specific heat.

For a more systematic discussion of the properties of the
generic Abelian solutions, it turns out convenient to work with the
following scaled quantities2

qA = c1
QA

M3/4
, qa = c4

Qa

M3/4
, s = c2

S
M3/4

,

2 The U (1) × U (1) exact solution has an extra scaling symmetry M → λ4M,

Qk → λ3Qk , T H → λT H , S → λ3 S and Φk → λΦk , with k = (a, A) and λ > 0 an
arbitrary constant. The quantities in (3.13) are left invariant by this transformation.
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tH = c3
T H

M1/4
, ϕ A = c5

Φ A

M1/4
, ϕa = c6

Φa

M1/4
, (3.13)

with c1 = 33/4

4 ( π
2 )1/4, c2 = 1

213/4 ( 3
π )3/4, c3 = 4 × 61/4π3/4, c4 =

33/4

2
√

2
( π

2 )1/4, c5 = ( 6
π )1/4, and c6 = 23/4( 3

π )1/4 being constant fac-

tors which have been chosen such that the expressions below take
a simpler form.

All the relevant quantities can then be expressed in terms of qA

and s only:

tH = (q2
A + s2)3 + s2 − q2

A

s(q2
A + s2)

, qa = s

√
1

(q2
A + s2)2

− 1,

ϕ A = qA

q2
A + s2

, ϕa = (q2
A + s2)2

s

√
1

(q2
A + s2)2

− 1. (3.14)

It is clear that all solutions satisfy the condition

s2 � 1 − q2
A,

the upper bound being approached for solutions with SU(2) fields
only. Moreover, the condition tH � 0 imposes a lower bound for
the reduced entropy:

s2 � U (qA) − q2
A, (3.15)

where

U (qA) =
(√

1

27
+ q4

A + q2
A

)1/3

−
(√

1

27
+ q4

A − q2
A

)1/3

. (3.16)

One can also show that the scaled U (1) charge qa has a finite
range, with

0 � q2
a � (1 − U 2(qA))2

2U (qA)
. (3.17)

Solutions with a maximal value of qa correspond to extremal black
holes, with tH = 0 and s2 = U (qA) − q2

A . From (3.14), the reduced
entropy of the extremal solutions can also be written as

s2 = 1

4

(
−q2

a + qa

√
q2

a + 8q2
A

)
, (3.18)

which is a non-vanishing quantity for qA �= 0.

4. The superfluid phase

It is clear that the U (1) × U (1) solutions should possess non-
Abelian generalizations. These configurations are found when en-
larging the SU(2) ansatz to include a nonzero magnetic potential
such that the gauge potential A(I) = At(r)δ I3 dt is approached only
asymptotically.

Following previous works [8,9] on pure Einstein–Yang–Mills
(EYM) solutions with vector hair, we choose an SU(2) gauge fields
ansatz possessing both electric and magnetic potentials, while the
U (1) ansatz is still purely electric:

A(I) = w(r)δ I1 dx + At(r)δ
I3 dt, B = Bt(r)dt. (4.19)

Also, as before, the dilaton field will depend on the r-coordinate
only. This leads to a diagonal energy–momentum tensor and thus
it is consistent to choose a diagonal metric ansatz.
4.1. Zero modes for the U (1) × U (1) black brane

Before discussing the general solutions, it is instructive to con-
sider the perturbative limit of the problem. Then w(r) is treated
as a small perturbation around the U (1) × U (1) solutions, w(r) =
εW (r). After substituting into the linearized YM equations, one
finds that W (r) solves

W ′′ +
(

1

r
− K ′

K
+ f ′

f

)
W ′ + A2

t H2 K

f
W = 0. (4.20)

For Q = 0 one finds the following exact solution of the above
equation

W (r) = c0 + c1

(
log

(
1 −

(
rH

r

)2)

− r8
H

64M2
log

(
1 + 8M

r2
H r2

))
(4.21)

(where c0, c1 are arbitrary constants). As one can see, this solution
possesses an essential logarithmic singularity at the horizon and
thus cannot be treated as a perturbation. Thus we conclude that
only solutions which are charged with respect to the SU(2) fields
may posses an instability.

Although for Q �= 0 Eq. (4.20) does not appear to be solvable
in terms of known functions, one can construct approximate so-
lutions near the horizon and at infinity. As r → rH , the function
W (r) behaves as W (r) = b + O (r − rH )2, while, for large r, the ap-
proximate form of W (r) is W (r) = J/r2 + O (1/r4), with b and J
free parameters. Solutions interpolating between these asymptotics
are constructed numerically.3

The mechanism triggering the instability is similar to the pure
EYM-Λ case [2], the magnetic gauge potential acquiring a tachy-
onic mass term near the horizon. Interestingly, the picture found
for q = 0 is rather similar to that valid for Q = 0 since in this case
too no solutions of (4.20) with correct asymptotics are found. We
conclude that, somehow unexpectedly, both electric charges (asso-
ciated with the SU(2) and U (1) fields) should be non-vanishing for
the existence of a normalizable zero mode.

Some results of the numerical integration are shown in Fig. 2.
There, the part of the parameter space above the curves corre-
sponds to the unbroken phase, where only Abelian solutions exist.
In Fig. 2 (left) we show the critical curve in the (qA,qa) plane
corresponding to configurations unstable with respect to the non-
Abelian perturbations. One can see that the reduced SU(2) charge
qA = c1QA/M3/4 has a finite range, 0 < qA < 0.618, an extremal
configuration (with T (c)

H → 0) being approached for the maximal
value of qA and qa → 0.629 (corresponding to Φa/Φ A 	 0.704). In
Fig. 2 (right) we show the critical temperature T (c)

H as a function
of the U (1) chemical potential Φa (both quantities are normal-
ized w.r.t. the SU(2) chemical potential Φ A ); note that the critical
temperature is monotonically decreasing as we increase the ratio
Φa/Φ A .

4.2. Black holes with non-Abelian hair

4.2.1. The equations and global charges
The instability of the U (1) × U (1) solution pointed out in the

previous section can be viewed as an indication of the existence of
a branch of non-Abelian solutions with nontrivial magnetic non-
Abelian fields outside the horizon.

3 In this work we restrict our study to solutions with a monotonic behaviour of
W (r).
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Fig. 2. Critical curves in the parameter space where static linear normalizable non-Abelian perturbations arise.
In the numerical construction of these solutions, we adopt the
following metric ansatz,4 which was first proposed in [8] for the
case of the pure EYM-Λ system:

ds2 = dr2

N(r)
+ r2

(
dx2

f 4(r)
+ f 2(r)

(
dy2 + dz2)) − N(r)σ 2(r)dt2,

with N(r) = −4m(r)

3r2
+ r2

�2
. (4.22)

Plugging (4.22) and (4.19) into (2.3)–(2.4) results in the equations
of motion5:

m′ = 3r3N f ′2

2 f 2
+ re2aφ

2g2
Y M

(
f 4N w ′2 + r2 A′2

t

σ 2
+ f 4 A2

t w2

Nσ 2

)

+ e−4aφr3 B ′2
t

2σ 2
+ 1

2
r3Nφ′2

+ g2
Y M

8
r3(3g2

Y M − e−2aφ − 2eaφ
)
,

σ ′

σ
= 2r

3

(
3 f ′2

f 2
+ φ′2 + 1

g2
Y M

e2aφ

r2

(
f 4 w ′2 + A2

t w2 f 4

N2σ 2

))
,

(
r3Nσ

f ′

f 2

)′
= 2e2aφ

3g2
Y M

rσ f 3N

(
w ′2 − A2

t w2

N2σ 2

)
− r3Nσ

f ′2

f 3
,

(
r3Nσφ′)′ = arσ

[
e2aφ

g2
Y M

(
f 4N w ′2 − r2 A′2

t

σ 2
− f 4 A2

t w2

Nσ 2

)

+ 2e−4aφ

σ 2
r2 B ′2

t + g2
Y M

8

(
e−2aφ − eaφ

)
r2

]
,

(
e2aφr3 A′

t

σ

)′
= e2aφr f 4

Nσ
w2 At,

(
e−4aφr3 B ′

t

σ

)′
= 0,

(
e2aφ N f 4rσ w ′)′ = −e2aφr f 4

Nσ
A2

t w. (4.23)

These equations possess the following scaling symmetries (invari-
ant functions are not shown)

4 The line element (3.8) of the U (1) × U (1) solution can also be written in the
form (4.22) (with f (r) = 1) by defining a new radial coordinate. However, this re-
sults in rather complicated expressions.

5 One can see that the Chern–Simons term in (2.1) does not contribute to the
equations of motion so that the gauge fields do not interact directly.
(i) σ → λσ , At → λAt, Bt → λBt,

(ii) f → λ f , w → w

λ2
,

(iii) r → λr, gY M → gY M

λ
, At → At

λ
,

(iv) r → λr, m → λ4m,

At → λAt, Bt → λBt, w → λw, (4.24)

with λ > 0 an arbitrary number. The symmetries (i) and (ii) are
used to set σ(∞) = 1, f (∞) = 1, while (iii) is used to set gY M = 1
without any loss of generality, which fixes the AdS length scale,
� = 2

√
2. Note also that the last equation in (4.23) implies the ex-

istence of the first integral

B ′
t = 2e4aφσq

r3
, (4.25)

with q a constant fixing the U (1) electric charge.
We consider again black branes with a horizon at r = rh , where

N(rh) = 0. The non-extremal solutions have the following expan-
sion as r → rH :

m(r) = 3

4

r4
H

�2
+ O (r − rH ), σ (r) = σh + O (r − rH ),

f (r) = fh + O (r − rH )2, φ(r) = φ0 + O (r − rH ),

w(r) = wh + O (r − rH )2, At(r) = V 1(r − rH ) + O (r − rH )2,

Bt(r) = v1(r − rH ) + O (r − rH )2, (4.26)

with the independent parameters {σh, fh, φ0, wh, v1, V 1} which fix
the coefficients of all higher order terms.

We are interested in solutions approaching the U (1) × U (1)

configurations asymptotically. We assume6 that, as r → ∞, w(r)
vanishes and φ(r) decays as 1/r2. A systematic analysis then re-
veals the following expansion of the solutions at large r:

m(r) = M + O
(
1/r2), σ (r) = 1 − 2

3

α2

r2
+ O

(
1/r4),

6 The generic solutions have a more complicated asymptotic behaviour, with

ω(r) = ω0 − �2ω3
0

log r
r2 + · · · , φ(r) = α

r2 + β
log r
r2 + · · · , which implies the existence

of log terms also in the expression of the metric functions, e.g. m(r) = M + 1
16 β(β −

4α) log r − β2

8 log2 r + 3
2 ω4

0 log r + · · · .
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Fig. 3. The profile of a typical non-Abelian solution is shown as a function of the radial coordinate.
φ(r) = D

r2
+ O

(
1/r4), f (r) = 1 + f4

r4
+ O

(
1/r6),

w(r) = J

r2
+ O

(
1/r4), At(r) = Φ A − Q

r2
,

Bt(r) = Φa − q

r2
, (4.27)

with {M, J , Q ,q, D, f4,Φ
A,Φa} arbitrary coefficients.

All physical quantities are fixed by the data at the horizon and
at infinity. As in the Abelian case, the global charges are the mass
and the SU(2) and U (1) electric charges, with7

M = 1

4π

(
M + D2

�2

)
, QA = 1

2π
Q , Qa = 1

2π
q, (4.28)

while Φ A , Φa are chemical potentials associated with the two
gauge fields. The entropy and Hawking temperature of the solu-
tions are given by

S = 1

4
r3

H ,

T H = σh

2π

[
rH

3

(
1

2

(
2eaφ0 + e−2aφ0

) − 2e2aφ0 v2
1

σ 2
h

)
− 8e4aφ0 q2

3r5
h

]
.

(4.29)

For completeness, we mention that the boundary stress-tensor
T j

i as defined by (2.6) is diagonal, with the nonzero components:

Tx
x = 1

8π

2

3�

(
D2 − 12 f4 + M�2),

Ty
y = Tz

z = 1

8π

2

3�

(
D2 + 6 f4 + M�2),

Tt
t = − 1

8π

2

�

(
D2 + M�2), (4.30)

such that Ti
i = 0.

4.2.2. Numerical solutions
Eqs. (4.23) with boundary conditions (4.26) and (4.27), respec-

tively, have been solved numerically using a standard shooting
method. In addition to using this algorithm, some solutions were

7 Note that, different from the pure EYM-Λ case, the total mass is not given by
the asymptotic value of m(r), acquiring a contribution from the scalar field.
also constructed by employing a collocation method for boundary-
value ordinary differential equations equipped with an adaptive
mesh selection procedure. We have confirmed that there is good
agreement between the results obtained with these two different
methods.

As expected, some basic properties of these black branes are
rather similar to those found in [8,9] in the case of the purely
EYM-Λ model. However, the solutions in the present work feature
a second control parameter, which is the U (1) electric charge qa

(or equivalently, the chemical potential Φa).
For all solutions, the functions σ(r) and At(r), Bt(r) always

increase monotonically with growing r. However, m(r), f (r), φ(r)
and w(r) may feature a more complicated behaviour, with lo-
cal extrema. For sufficiently small ωh , all field variables remain
close to their values for the Abelian configuration with the same
(rH , Q ,q). Significant differences occur for large enough values of
ωh and the effect of the magnetic fields on the geometry becomes
increasingly more pronounced. The profiles of a typical solution il-
lustrating these features are presented in Fig. 3.

In the numerical approach, we make use of the existence of the
first integral (4.25) to fix the value of the electric charge associ-
ated with the U (1) field, which implies v1 = 8e4aφh qσh/r3

H in the
near horizon expansion (4.26). The scaling symmetry (iv) in (4.24)
is used to set rH = 1, such that the only remaining control param-
eters are w(rH ) and V 1.

We have studied in a systematic way families of solutions with
fixed values of q between 0.5 and 7, the following picture being
generic. First, the behaviour of solutions for arbitrary data on the
horizon is such that at large r one finds w → w0 �= 0 and φ(r) →
log r/r2 (in which case the total mass as defined according to (2.7)
diverges), or else there is a singularity at finite r. Given (wh,q; rH ),
solutions with the correct asymptotic behaviour8 are found only
for a discrete set of values of (V 1, φ0). Also, all solutions possess a
non-vanishing electric Q A associated with the SU(2) field.

Moreover, for fixed (rH ,q), one finds a branch of non-Abelian
solutions for 0 < wh < wmax

h . Along this branch, the Hawking tem-
perature decreases, an extremal configuration being approached9

for the maximal value of wh . The numerical construction of the

8 These solutions here are also indexed by the node number of the magnetic po-
tential w(r). It turns out that the configurations with nodes represent excited states
whose energy is always greater than the energy of the corresponding nodeless con-
figurations, and are therefore ignored in what follows.

9 Our numerical code usually provided good quality solutions for T H � T (c)
H /10.
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Fig. 4. Various parameters of the non-Abelian solutions are shown for several values of the scale-free ratio γ = Qa/S .
solutions with T H = 0 requires a different metric ansatz than
(4.22) and is beyond the scope of this work. However, based on the
results in the near-extremal case, we expect the extremal solutions
to share the basic properties of their general Abelian counterparts,
possessing a regular horizon with non-vanishing entropy.

Some results of the numerical integration are shown in Fig. 4.
There we employ scale-free quantities defined in (3.13), which are
invariant under the scaling transformation (iv) in (4.24); also, we
have found it convenient to define γ = Qa/S as a second scale-
free control parameter. One can see that, for all cases we con-
sidered, non-Abelian solutions exist only for values of the Hawk-
ing temperature smaller than a critical temperature T (c)

H . This
is the temperature at which the U (1) × U (1) solution admits a
static linearized perturbation, with non-vanishing but infinitesi-
mally small w . Moreover, the dependence of the order parameter
J on the Hawking temperature is similar to that found in the liter-
ature for the γ = 0 case (i.e. an EYM-Λ model). Also, as expected,
we have found that the difference in the free energy density, F , be-
tween a non-Abelian solution and the U (1) × U (1) solution with
the same temperature and electric charges is negative, and thus
the non-Abelian solution is thermodynamically favored.

5. Further remarks

In this Letter we have studied electrically charged black branes
of the N = 4+ SU(2)× U (1) gauged supergravity model with AdS5
asymptotics. Apart from the Abelian U (1) × U (1) configurations,
we have given numerical evidence that this model possesses also
solutions with a non-vanishing magnetic SU(2) fields. Remarkably,
these emerge as perturbations of the Abelian configurations at
some finite temperature depending on the values of the electric
charges, and can be viewed as p-wave superfluids. Moreover, by
using the relations in [10,11], one can uplift these configurations
to ten dimensional type IIB supergravity and D = 11 supergravity.
This provides an explicit stringy construction of holographic super-
fluids.

Our study should be viewed only as a preliminary investiga-
tion of the simplest non-Abelian solutions of the N = 4+ model
featuring superfluid properties. Various properties of these black
branes remain to be investigated. For example, it would be inter-
esting to compute the conductivity of the solutions or to explore
the connection with the unbalanced mixtures discussed recently
in [15].
Moreover, we expect the N = 4+ model to possess a variety
of other electrically charged black brane solutions. They would be
found for a different (and more complicated) matter field ansatz
than (4.19). In particular, the two-form fields which are set to zero
in (2.1) may also be present [3]. Similar to the case in this work,
we expect the more general solutions to emerge typically as zero
modes of the Abelian configurations (3.8)–(3.10), at some critical
temperature.

A particularly interesting class of instabilities of the electrically
charged solutions of the Romans’ model leading to holographic he-
lical p-wave superconductors has been considered in the recent
work [18]. The unstable modes studied in that reference are out-
side the simple ansatz (4.19) (since they possess a dependence of
one of the coordinates x, y or z in (3.8)); however, they are still
within the truncation (2.1) of the N = 4+ model. These instabil-
ities are expected to occur at higher temperature than the zero
modes discussed in Section 4.1. However, it is likely that the non-
Abelian solutions in this work possess as well this kind of spatially
modulated instabilities (although the construction of such solu-
tions beyond the linearized level would be a difficult task).

Therefore we conclude that the question of the ultimate ground
state of the N = 4+ Romans’ theory is rather intricate, with a va-
riety of possible configurations still to be studied.

We close this work with some remarks on a version of the mat-
ter fields Ansatz related to (4.19), which leads to solutions in which
the Chern–Simons term enters the dynamics.10 Interestingly, dif-
ferent from other cases discussed above, these solutions do not
emerge as zero modes of the Abelian configurations. To this end,
we have considered non-Abelian black branes possessing a purely
magnetic SU(2) field, with

A(I) = w(r)
(
δ I1 dx + δ I2 dy + δ I3 dz

)
, (5.31)

and an electric U (1) field, B = Bt(r)dt . This leads to an isotropic
energy–momentum tensor, T x

x = T y
y = T z

z , in which case a suit-
able metric Ansatz is given by (4.22) with f (r) = 1. Then (2.3)–
(2.4) yield five equations of motion for m, σ , w , Bt and φ which
were solved numerically. Our results show that the properties
of these solutions differ substantially from those found in the

10 As seen in the case of the pure EYM-Λ model [17], the properties of the spher-
ically symmetric non-Abelian solutions are very different once one switches on a
Chern–Simons term in the action.
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anisotropic case, discussed in Section 4. First, when treating w(r)
as a perturbation around the Abelian solution (which is (3.8)–
(3.10) with Q = 0), the linearized equation can be solved in closed
form. However, the solution looks very similar to (4.21) (with a
log(r − rH ) term), with the result that no normalizable zero mode
is found. Also, different from the case of anisotropic non-Abelian
black branes, we could not find non-perturbative solutions with
w(r) → 0 as r → ∞. As a result, the mass of the solutions com-
puted according to the counterterm prescription given in Section 2,
diverges.11 We therefore conclude that these isotropic black brane
non-Abelian solutions cannot be interpreted as holographic super-
fluids.

However, the situation is likely to be different for a more gen-
eral case featuring an anisotropic SU(2) field and a purely magnetic
U (1) field (thus beyond the simple Ansatz (4.19)). Superconducting
black brane solutions of this type have been studied recently in a
truncation of N = 4+ Romans’ model with a vanishing dilaton and
an arbitrary Chern–Simons coupling constant [16].

We hope to return elsewhere with a systematic study of these
aspects.
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