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Abstract. We extend the definition of the topological charge pertaining to the CP1 (i.e. O(3))
Skyrme-Fadde’ev Hopfion on IR3, to candidates for topological charges of CPn sigma models
on IR2n+1, for all n. For this, the Abelian composite connections of the CPn sigma models are
employed. In higher dimensions (n ≥ 1) it turns out that such charges, described by the non-
Abelian composite connections of suitable Grassmannian sigma models, can also be constructed.
A concrete discussion of the non-Abelian case for n = 2 is presented.

1. Introduction
Hopfions are static “soliton like” solutions to the field equations of nonlinear sigma models. With
the usual solitons namely instantons of the Yang-Mills (YM) systems in all even dimensions and
of Skyrmions of nonlinear sigma models in all dimensions, monopoles of YM-Higgs (YMH)
systems in all dimensions three and higher, and vortices of YMH and gauged sigma models
systems in two dimensions Manton & Sutcliffe (2004), have finite energy and are topologically
stable. Likewise, Hopfions have finite energy and are topologically stable. To date, the only
example are the solutions Faddeev & Niemi (1996) and Battye & Sutcliffe (1998) to the Skyrme-
Fadde’ev O(3) sigma model on IR3. For a review see Manton & Sutcliffe (2004), Radu & Volkov
(2008).

The salient qualitative difference between the afore mentioned solitons and the Hopfion is
this. The topological charge densities of the former are by construction total divergence. For
Yang-Mills (YM) and complex sigma models, and YMH models, they are Chern− Pontryagin
densities or their decendants, respectively. For the nonlinear sigma models with real sphere-
valued fields they are “essentially total divergence”. Such densities are not explicitly total
diveregence. But when they are subjected to the variational princliple, with the sigma model
constraint taken account of by a Lagrange multiplier term, they yield no nontrivial Euler-
Lagrange equations. They share this property with total divergence densities. In the case of
the Hopfion, the topological charge density is instead the Chern− Simons (CS) density, which
is not total divergence. It follows that Hopfions can exist only in odd space dimensions, where
CS densities are defined.

The Chern-Simons density pertaining to Hopfions, which is defined in terms of the gauge
connection and curvature, depends on the scalar sigma model fields. These connections and
curvatures are the composite quantities constructed from the sigma model fields appropriate
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to any given example. The most transparent way of doing this is to employ a “complex sigma
model” (e.g. complex projective, quaternionic, Grassmannian, etc.) enabling the definitions of
the composite connection and curvature necessary for the definition of the CS density.

Given that the topological charge of the Hopfion is the volume integral of the Chern-Simons
density, the lower bound on the energy of the Skyrme-Fadde’ev Hopfion on IR3 was established
in Vakulenko & Kapitansky (1979), using a method that employs Sobolev space norms. Note
that the analysis of Vakulenko & Kapitansky (1979) is not a proof of existence, and that this
Hopfion is constructed numerically Faddeev & Niemi (1996); Battye & Sutcliffe (1998). A
proof of existence can be found in Lin & Yang (2004).

To qualify as a topological charge density, this Chern-Simons density must become a total
divergence which it is not a priori. This can be achieved by subjecting it to suitable symmetries
which render it total divergence. This is perhaps the most striking difference between the usual
solitons and Hopfions. The topological charges of the former exist subject to no symmetries,
while that of the Hopfions exist only for systems constrained by the appropriate symmetry. Our
aim in the present talk is strictly restricted to this task, namely to find suitable symmetries
which render the Chern-Simons density in the given (odd) dimension, a total divergence.

To this end, our prescription here to achieve this aim is the imposition of multi-azimuthal
symmetries. Specifically, it is the imposition of azimuthal symmetry in each of the n, 2-planes in
IR2n+1. (This is the case with the familiar Skyrme-Fadde’ev Hopfion on IR3 with axial symmetry
imposed in the x−y plane.) Multi-azimuthal symmetry in IR2n+1 eliminates n azimuthal angles,
each in one of the n, 2-dimensional subspaces (planes), resulting in (n+1)-dimensional residual
subsystems.

Our prescription hinges on positing an adequate Ansatz that results in the residual Chern-
Simons density in a (n + 1)-dimensional space being parametrised by (n + 1) independant
functions of the (n+1) residual ’coordinates’. The equality of the number independant functions
in the residial system, and the number of the residual ’coordinates’ can result in the residual CS
being total divergence.

Finally, it should be noted that this aim of rendering the residual Chern-Simons density a total
divergence can be achieved only when the sigma model constraint is satisfied. This is automatic
if the Ansatz in question is parametrised in terms of functions that satisfy this constraint. Often
however it is convenient to use more relaxed parametrisations, in which case the corresponding
criterion is to show that the residual CS density is “essentially total divergence”, subjecting this
density to the variational principle taking account of the (residual) constraint via a Lagrange
multiplier term, results in trivial Euler-Lagrange equations.

The above account of topological charges of Hopfions relies entirely on the existence of suitable
composite connections and curvatures of the nonlinear sigma model in question. In this sense,
both Abelian and non-Abelian systems can be considered. It is this context that we have used
the nomenclature of Abelian and non-Abelian Hopfions in the title. The talk consists of two main
sections, 2 and 3, describing our prescriptions for Abelian and non-Abelian Hopfions respectively.
Each of these sections is subdivided in a subsection defining the appropriate nonlinear sigma
model, followed by the imposition of symmetries yielding the desired toplogical charge densities.
Section 4 gives a brief summary.

2. Abelian Hopfions on IR2n+1

The description of the arbitrary n case in the Abelian case is much more transparent than the
non-Abelian case that follows. We describe the three cases n = 1, 2, 3, which point to the generic
case readily.
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2.1. CPn models on IR2n+1

We start with the generic structure of models that can support Abelian Hopfion on IR2n+1.
These are the CPn sigma models on IR2n+1 described by complex n−tuplets

Z =

⎡
⎢⎢⎢⎢⎣

z1
z2
..
..

zn+1

⎤
⎥⎥⎥⎥⎦ ≡ za ; Z̄ =

⎡
⎢⎢⎢⎢⎣

z̄1

z̄2

..

..
z̄n+1

⎤
⎥⎥⎥⎥⎦ ≡ z̄a, with a = 1, 2, ..., n+ 1 , (1)

subject to the constraint
Z† Z ≡ z̄a za = 1 , (2)

taking their values in U(n+1)
U(n)×U(1) , such they are described by 2n real parameters that parametrise

Z on IR2n+1. In (1), z̄a is the complex conjugate of za, transforming with an index that is
contravariant to the covariant index of za, and Z† in (2) is the transpose of Z̄. This leads to
the definition of the projection operator

P =
(
1I− Z Z†

)
≡

(
δa

b − za z̄
b
)
. (3)

The most interesting feature of these models is that when the field Z is subjected to a local U(1)
gauge transformation g = eiΛ(x), the constraint (2) is invariant under

Z → Z g . (4)

As a consequence the quantity defined as

Bi = i Z†∂iZ , i = 1, 2, ..., 2n+ 1 (5)

transforms like an Abelian composite connection under g(Λ),

Bi → Bi ± ∂iΛ ,

which lead to the definitions of the covariant derivative of Z and and the Abelian curvature of
this connection,

DiZ = ∂i Z +Bi Z , (6)

Gij = ∂iBj − ∂j Bi , (7)

with DiZ transforming covariantly under the action of g, and Gij invariantly.
The Abelian Chern-Simons (CS) density on IR2n+1 is then readily defined in terms of the

quantities (7) and (6).

ΩCS � εi1i2...i2n+1 Bi2n+1 Gi1i2 Gi3i4 . . . Gi2n−1i2n . (8)

It is these densities, subject to the appropriate symmetries, that play the role of topological
charges stabilising Hopfions. That ΩCS is not a total divergence is clear.

Subjecting the density
ΩCS + λ (1− Z† Z)

to arbitrary variations of Z† (or Z), where the Lagrange multiplier term accounts for the costraint
(2), one has

εi1i2...i2n+1 Di2n+1Z Gi1i2 Gi3i4 . . . Gi2n−1i2n = 0 . (9)

Eqn. (9) trivialises only under the appropriate symmetries, i.e. (8) becomes a density that is
“essentially total divergence”, as required of a topological charge density.
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2.2. Residual Abelian CS density subject to n-fold azimuthal symmetry
We treat the three cases n = 1, 2, 3 below by positing an Ansatz which imposes the appropriate
symmetries that renders (8) a total divergence.

In the n = 1 case, the field (1) is subjected to axial symmetry in the (x1, x2) plane of IR3,

Z =

[
a+ ib
c einϕ

]
≡

[
sin f

2 e
iα

cos f
2 e

inϕ

]
(10)

where the functions a, b, c, f and α all depend on both ρ =
√|xα|2 and z ≡ x3, α = 1, 2.

Substituting the azimuthally symmetric Ansatz (10) in the Abelian Chern–Simons density
on IR3

Ω
(3)
CS = εmij BmGij . (11)

yields the simple expression

Ω
(3)
CS = −4

n

ρ
c · det

∣∣∣∣∣∣
a b c
a,ρ b,ρ c,ρ
a,z b,z c,z

∣∣∣∣∣∣ . (12)

The usual notation a,ρ = ∂ρ a, etc. is used here. It is easy to verify that this quantity is
”essentially total divergence” when varied subject to the constraint a2 + b2 + c2 = 1. Further,
using the polar parametrisation in (10), it becomes a total divergence, since the constraint is
automatically satified in that case.

Requiring the field configurations in question have the asymptotic values

lim
r→∞ f(r, θ) = 0 , lim

r→∞α(r, θ) = mπ , (13)

one finds the topological charge

Q =
8

3
i nmπ2 . (14)

In the n = 2 case, the field Z on IR5 is subjected to the bi-azimuthal symmetry

Z =

⎡
⎣ a+ ib

c1 e
in1ϕ

c2 e
in2χ

⎤
⎦ ≡

⎡
⎣ sin 1

2f eiα

cos 1
2f sin g ein1ϕ

cos 1
2f cos g ein2χ

⎤
⎦ (15)

where ρ =
√|xα|2, σ =

√|xA|2 with α = 1, 2, A = 3, 4 and z ≡ x5. ϕ and χ are the
azimuthal angles in the (x1, x2) and (x3, x4) planes respectively, (n1, n2) being the winding
(vortex) numbers of these planes respectively. All functions (a, b, c, d) or (f, , g, α) in (15) depend
on (ρ, σ, z).

Substitution of the bi-azimuthally symmetric Ansatz (15) in the Abelian Chern–Simons
density on IR5

Ω
(5)
CS = εmijkl BmGij Gkl (16)

yields the simple expression

Ω
(5)
CS = 32

n1n2

ρσ
c1 c2 · det

∣∣∣∣∣∣∣∣

a b c1 c2
a,ρ b,ρ c1,ρ c2,ρ
a,σ b,σ c1,σ c2,σ
a,z b,z c1,z c2,z

∣∣∣∣∣∣∣∣
. (17)
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which when varied subject to the constraint a2+b2+c21+c22 = 1 turns out to be ”essentially total
divergence”. Again, using the polar parametrisation in (15), this becomes a total divergence.

Requiring the field configurations in question have the asymptotic values

lim
r→∞ f = 0 , lim

r→∞ g = θ , lim
r→∞α = mπ , (18)

where 0 ≤ θ ≤ π
2 is the polar angle in the (ρ, σ) quarterplane, one finds the topological charge

Q
(5)
CS = −12n1 n2mπ3 . (19)

Finally, in the n = 3 case, one subjects the field Z on IR7 is to the tri-azimuthal symmetry

Z =

⎡
⎢⎢⎣

a+ ib
c1 e

in1ϕ

c2 e
in2χ

c3 e
in3ξ

⎤
⎥⎥⎦ ≡

⎡
⎢⎢⎣

sin 1
2f eiα

cos 1
2f sin g cosh ein1ϕ

cos 1
2f sin g sinh ein2χ

cos 1
2f cos g ein3lξ

⎤
⎥⎥⎦ (20)

in terms of the variables ρ =
√|xα|2, σ =

√|xA|2, τ =
√|xa|2 with α = 1, 2, A = 3, 4, a = 5, 6

and z ≡ x7. ϕ, χ and ξ are the azimutal angles in the (x1, x2), (x3, x4) and (x5, x6) planes
respectively, (n1, n2, n3) being the winding (vortex) numbers of each plane respectively. All
functions (a, b, c, d, e) or (f, , g, h, α) in (20) depend on (ρ, σ, τ, z).

Substitution of the tri-azimuthally symmetric Ansatz (20) in the Abelian Chern–Simons
density on IR7

Ω
(7)
CS = εpijklmnBpGij Gkl Gmn (21)

yields the simple expression

Ω
(7)
CS = 96

n1 n2 n3

ρστ
c1 c2 c3 · det

∣∣∣∣∣∣∣∣∣∣

a b c1 c2 c3
a,ρ b,ρ c1,ρ c2,ρ c3,ρ
a,σ b,σ c1,σ c2,σ c3,σ
a,τ b,τ c1,τ c2,τ c3,τ
a,z b,z c1,z c2,z c3,z

∣∣∣∣∣∣∣∣∣∣
. (22)

which when varied subject to the constraint a2 + b2 + c21 + c22 + c23 = 1 turns out to be
”essentially total divergence”. Again, using the polar parametrisation in (20), this becomes
a total divergence.

Requiring the field configurations in question have the asymptotic values

lim
r→∞ g = θ1 , lim

r→∞h = θ2 , lim
r→∞α = mπ , (23)

where 0 ≤ θ1 ≤ π
2 and 0 ≤ θ2 ≤ π

2 are the polar angles of the octant sphere (ρ, σ, τ), one finds
the topological charge

Q
(7)
CS = 60 i n1 n2 n3mπ4 . (24)

From the results (12), (17) and (22) for n = 1, n = 2 and n = 3, the form of the corresponding
result for arbitary n follows by induction. The appropriate imposition of symmetry is the
application of azimuthal symmetry in each of the n planes in IR2n+1. The resulting reduced
subsystem will now be an n+ 1 dimensional system of PDE’s, parametrised by n+ 2 functions

a , b , c1 , c2 , . . . , cn
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only n+ 1 of which are independent, subject to the sigma model constraint

a2 + b2 + c21 + c22 + · · ·+ c2n−1 + c2n = 1 . (25)

The reduced Chern-Simons density will then take the form

Ω
(2n+1)
CS � n1 n2 . . . nn

ρ1ρ2 . . . ρn
c1 c2 . . . cn · det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a b c1 c2 . . cn
a,ρ1 b,ρ1 c1,ρ1 c2,ρ1 . . cn,ρ1
a,ρ2 b,ρ2 c1,ρ2 c2,ρ2 . . cn,ρ2
. . . . . . .
. . . . . . .
a,ρn b,ρn c1,ρn c2,ρn . . cn,ρn

a,z b,z c1,z c2,z . . c,z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (26)

where of course z = xn+1.
Again by induction, it follows that the charges (14), (19) and (24) for n = 1, n = 2 and

n = 3, that

Q
(2n+1)
CS � i(2n+1) n1 n2 . . . nnm πn+1 , (27)

where n1 , n2, . . . , nn are the vorticities in the n, 2-planes in IR2n+1.

3. non-Abelian Hopfions on IR2n+1

The description of the arbitrary n case in the non-Abelian case is much less transparent than
the Abelian case that preceded. We describe the two cases n = 1, 2 in detail, demonstrating
that the Chern-Simons densities become “essentially total divergence” when subjected to the
appropriate symmetries. But our discussion of the n = 3 case is less detailed and is aimed at
giving a convincing demonstration of this property, only qualitatively.

What is more, is we shall see (in detail) that the non-Abelian n = 1 case reduces to the
corresponding Abelian case.

3.1. 2n+1 × 2n Grassmannian models on IR2n+1

Here, we start with the definition of models that may support non-Abelian Hopfions on IR2n+1.
These are Grassmannian sigma models on IR2n+1 described by 2n+1 × 2n scalar fields with
complex entries

Z =

[
z1
z2

]
(28)

where z1 and z2 are complex 2n × 2n matrices subject to the constraint

Z† Z = 1I2n×2n . (29)

and the 2n+1 × 2n+1 quantity

Π =
(
1I− Z Z†

)
(30)

is a projection operator.
This constraint is invariant under the action of the local unitary non-Abelian gauge

transformation g acting on Z
Z → Z g , Z† → g† Z† . (31)

Here, the unitary matrix g is chosen to be an element of SO(2n+2) in the 2n × 2n chiral Dirac
matrix representation.
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The invariance (31) of the constraint (29) leads to the definition of the non-Abelian (anti-
Hermitian) composite connection

Bi = Z†∂iZ . (32)

transforming like
Bi → g−1Bi g + g−1∂i g .

There follow the definitions of the covariant derivative of Z and the (composite) non-Abelian
curvature

DiZ = ∂iZ − Z Bi (33)

Gij = ∂[iBj] + [Bi, Bj ] (34)

which under the action of g transform covariantly as

DiZ → DiZ g , (35)

Gij → g−1Gij g . (36)

Unlike in the Abelian case where the Chern-Simons density (8) can be defined compactly for
all 2n + 1 dimensions, in the non-Abelian case the expression for arbitrary n is rather formal
and less transparent. For this reason we list here the non-Abelian Chern-Simons densities on
IR2n+1, up to n = 3.

These are, for (n = 1 , D = 3) and (n = 2 , D = 5)

Ω
(1)
CS = εijkTrBk

(
Gij − 2

3
BiBj

)
, (37)

and

Ω
(2)
CS = εijklmTrBm

(
GijGkl −GijBkBl +

2

5
BiBjBkBl

)
, (38)

respectively. For n ≥ 3 there are multiple distinct definitions for the CS density, each
characterised by the number of traces in its definition. For (n = 3 , D = 7), there are two
possibilities; one definition with a single trace and another one with double trace. These are

Ω
(3)
CS = εijklmnpTrBp

(
GijGklGmn − 4

5
GijGklBmBn − 2

5
GijBkGlmBn

+
4

5
GijBkBlBmBn − 8

35
BiBjBkBlBmBn

)
, (39)

Ω̃
(3)
CS = εijklmnpTrBp

(
Gmn − 2

3
BmBn

)
· (TrGijGkl) . (40)

Subjecting these densities to variations of Z† (or Z)

Ω
(n)
CS + Λ(1I− Z† Z)

Λ being the (now matrix valued) Lagrange multiplier, the resulting nontrivial gauge covariant
equations in the above examples are

εijk DkZ Gij = 0 (41)

εijklmDmZ Gij Gkl = 0 (42)

εijklmnpDpZ Gij Gkl Gmn = 0 (43)

εijklmnp (TrGijGkl) ·DpZ Gmn = 0 (44)

which trivialise only under the appropriate symmetries, i.e. Ω
(n)
CS become “essentially total

divergence”, whence they qualify as candidates for topological charge densities.
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3.2. Residual non-Abelian CS densities subject to n-fold azimuthal symmetry
As in the Abelian case, we treat the three cases n = 1, 2, 3 below by positing suitable Ansätze
that impose the appropriate symmetries that qualify the densities (37), (38) and (39)-(40) as
topological charge densities. We also use the same notation for the residual coordinates as in
the Abelian case.

The n = 1 case is special in the sense that the topological charge density in that case trivialises
to the corresponding Abelian one.

Before examining each n example in detail, we define the spin matrices employed in stating
the respective Ansätze. As in the Abelian case presented above, the symmetries imposed will
be the azimuthal symmetries in each of the n planes in IR2n+1.

The chiral Dirac representations of the SO(2n+ 2) algebra are

Σ
(+)
ij = −1

4
Σ[iΣ̃j] or Σ

(−)
ij = −1

4
Σ̃[iΣj] (45)

in terms of the spin matrices

Σi =
1I + Γ2n+3

2
Γi and Σ̃i =

1I + Γ2n+3

2
Γi ,

Γ2n+3 being the chiral matrix in 2n+ 2 dimensions.
In the n = 1 case, the field (28) is subjected to axial symmetry in the (x1, x2) plane of IR3,

Z =

[
z1
z2

]
=

[
a 1I + 2 bΣ34

c nα Σ̃α

]
, (46)

the functions (a, b, c) depending on (ρ, z) as in the Abelian case and with the unit vector nα

nα =

(
cos nϕ
sin nϕ

)
(47)

n being the winding (vortex) number in the (x1, x2) plane.
It turns out that the Ansatz (46) leads to an Abelian composite connection Bi = (Bα, Bz),

so our prescription cannot supply a non-Abelian Hopfion in three dimensions.

Bα = 2

[
(a b,ρ − b a,ρ) x̂α +

n

ρ
c2 (x̂ε)α

]
Σ12 ,

Bz = 2 (a b,z − b a,z) Σ12 ,

whose commutators
[Bi, Bj ] = [Bi, Bz] = 0.

The composite curvature Gij is then Abelian, and coincides with the previously constructed
Abelian case.

In the n = 2 case, the field (28) is subjected to azimuthal symmetry in the (x1, x2) and
(x3, x4) planes of IR

5,

Z =

[
z1
z2

]
=

[
a 1I + 2 bΣ56

c1 n
α
1 Σ̃α + c2 n

A
2 Σ̃A

]
, (48)

the functions (a, b, c1, c2) depending on (ρ, σ, z) as in the corresponding Abelian case, with
α = 1, 2, A = 3, 4 and z ≡ x5. ϕ and χ are the azimuthal angles in the (x1, x2) and (x3, x4)
planes respectively, such that the unit vectors nα and nA

2 are parametrised as

nα
1 =

(
cos n1 ϕ
sin n1 ϕ

)
nA
2 =

(
cos n2 χ
sin n2 χ

)
, (49)
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(n1, n2) being the winding (vortex) numbers in each of the two planes respectively.
Substitution of (48) in the CS density (38) yields

Ω
(5)
CS = 96 i

n1n2

ρσ
c1 c2 [−4 + 3(c21 + c22)] · det

∣∣∣∣∣∣∣∣

a b c1 c2
a,ρ b,ρ c1,ρ c2,ρ
a,σ b,σ c1,σ c2,σ
a,z b,z c1,z c2,z

∣∣∣∣∣∣∣∣
. (50)

Note that this non-Abelian density (50) differs qualitatively from the corresponding Abelian one
(17) due to the appearance of the prefactor

[−4 + 3(c21 + c22)] .

When (50) is varied subject to the constraint a2+ b2+ c21+ c22 = 1, it turns out to be ”essentially
total divergence”. using the polar parametrisation in (15), this becomes a total divergence.

Again, requiring the field configurations in question have the asymptotic values (18) as in the
Abelian case, one finds the topological charge

Q
(5)
CS = −12n1 n2mπ3 .

4. Summary
The scope of this talk is restricted to the consideration of the topological charges of possible
Hopfions in 2n+1 dimensions. Since the topological charges are the volume integrals of Chern-
Simons densities in the appropriate dimension. The latter however are not total divergence, and
to qualify as topological charge densities they must be subjected to the appropriate symmetries
that render them total divergences. This is the main technical task carried out.

The prescription used to achieve this is the imposition of azimuthal (axial) symmetry in each
of the n, 2-dimensional planes inside IR2n+1.

The Chern-Simons densities in question are defined my means of the composite connections
of the complex sigma model appropriate to the dimension. Composite connections can be
both Abelian and non-Abelian, depending on the choice of sigma model. Here, the Abelian
connections employed in 2n+1 dimensions are those of the CPn models, while the non-Abelian
ones pertain to 2n+1 × 2n (complex) Grassmannian sigma models. We have hence used the
nomenclature of Abelian and non-Abelian Hopfions in the title.

In the Abelian case, it has been possible to carry out this task for the case of arbitrary n, by
induction. In the non-Abelian case, our consideration here have been restricted to n = 2, i.e.
IR5, due to technical complexity. It turns out also, that n = 2, i.e. 5, is the lowest dimension
that can admit a non-Abelian Hopfion topological charge.

Post Script The above invoked criterion, namely that the Chern-Simons density reduces to total
divergence, eliminates the possibility of U(1) gauging of the CP1 Hopfion on IR3.

The Covariant derivative of the U(1) gauged CP1 field is

DiZ = ∂iZ + i(Bi1I +Aiσ
3)Z

where Ai is the Maxwell connection, and Bi the composite connection (5). This extended
connection and its curvature are

Bi1I +Aiσ
3

Gij1I + Fijσ
3 , Fij = ∂[iAj] .
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The resulting Chern-Simons density is

Ω̃CS = Ω
(3)
CS[Bi] + εijk Ai Fij , (51)

where Ω
(3)
CS is the CS density for the composite connection Bi, (11).

While Ω
(3)
CS in (51) reduces to a total divergence when subjected to symmetry, the second

term in (51) is does not. Consequently, the CS density of the U(1) gauged CP1 model does not
qualify as a topological charge density of that (putative) Hopfion.
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