
Circadian control of innate immunity in macrophages
by miR-155 targeting Bmal1
Anne M. Curtisa,1,2, Caio T. Fagundesa,2, Guangrui Yangb,2, Eva M. Palsson-McDermotta, Paulina Wochala,
Anne F. McGettricka, Niamh H. Foleya, James O. Earlya, Lihong Chenb, Hanrui Zhangc, Chenyi Xuec, Sarah S. Geigera,
Karsten Hokampd, Muredach P. Reillyc, Andrew N. Coogane, Elena Vigoritof, Garret A. FitzGeraldb,1,3,
and Luke A. J. O’Neilla,3

aSchool of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; bInstitute for Translational
Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; cThe Cardiovascular Institute, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, PA 19104; dDepartment of Genetics, Trinity College Dublin, Dublin 2, Ireland; eDepartment of
Psychology, National University of Ireland, Maynooth, Ireland; and fLaboratory of Lymphocyte Signaling and Development, Babraham Institute, Babraham
Research Campus, Cambridge, Cambridgeshire, CB22 3AT, United Kingdom

Edited by Joseph S. Takahashi, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, and approved April 28, 2015
(received for review January 21, 2015)

The response to an innate immune challenge is conditioned by the
time of day, but the molecular basis for this remains unclear. In
myeloid cells, there is a temporal regulation to induction by
lipopolysaccharide (LPS) of the proinflammatory microRNA miR-
155 that correlates inversely with levels of BMAL1. BMAL1 in the
myeloid lineage inhibits activation of NF-κB and miR-155 induction
and protects mice from LPS-induced sepsis. Bmal1 has two miR-
155–binding sites in its 3′-UTR, and, in response to LPS, miR-155
binds to these two target sites, leading to suppression of Bmal1
mRNA and protein in mice and humans. miR-155 deletion perturbs
circadian function, gives rise to a shorter circadian day, and ablates
the circadian effect on cytokine responses to LPS. Thus, the molec-
ular clock controls miR-155 induction that can repress BMAL1 di-
rectly. This leads to an innate immune response that is variably
responsive to challenges across the circadian day.
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Cellular molecular clocks entrain the body to deal with peri-
odic daily changes in the environment. They anticipate and

coordinate physiological, behavioral, and biochemical responses.
Clocks influence a myriad of fundamental processes such as
activity, feeding behavior, body temperature, cell cycle regula-
tion, and hormonal secretion and, as such, are central to the
coordination of highly integrated response systems such as me-
tabolism, cardiovascular homeostasis, and immune function (1).
The type and magnitude of the immune response to an inflam-

matory challenge alters significantly throughout the day, probably to
respond optimally at times when the host is most likely to encounter
pathogens or danger signals and to optimize the opportunity for
resolution of inflammation and recovery (2). In mice, death from
sepsis is greatest when the animals begin to transition into the active
phase (3–5), and this correlates with an increase in immune cell
number (6), immune cell trafficking (4, 7), and circadian gated cy-
tokine production from immune cells (6, 8). Chronic disruption of
the molecular clock in mice via jet lag leads to enhanced LPS-
induced sepsis, and peritoneal macrophages harvested from these
mice produce a greater amount of IL6 in response to LPS (9).
However, the molecular basis underlying the circadian control

of innate immunity is still not fully understood. Evidence exists
for circadian oscillations of some Toll-like receptors (TLRs) and
some of their downstream effector genes (6, 10). TLR9, a re-
ceptor for CpG-rich DNA, is controlled by BMAL1 and CLOCK
promoter binding (11). BMAL1 and CLOCK are basic helix–
loop–helix PAS (bHLH/PAS) transcription factors that drive
oscillatory gene expression and lie at the core of molecular clock-
works. BMAL1 has also been shown to attenuate NF-κB activation
by sequestering CLOCK. CLOCK is required for acetylation of
p65, a key event for NF-κB transactivation (12) and downstream
cytokine production. Rhythmic oscillation in the numbers of

Ly6Chi monocytes in circulation and the magnitude of recruitment
of these cells into inflamed tissue is dependent on BMAL1 (4). As
cells lacking BMAL1 lose circadian expression of many clock
components, the effect of BMAL1 on inflammation may be due to
other clock components acting as intermediaries. For example, the
expression of the clock component Rev-Erbα, a nuclear receptor
that functions as a transcriptional repressor, is regulated positively
by BMAL1 (13, 14). REV-ERBα has been shown to act as the
rhythmic repressor of proinflammatory cytokine production, in
particular via repression of IL6 (8). REV-ERBα can repress via
recruitment of the NCoR–HDAC3 complex (14) but also through
inhibition of enhancer-derived RNAs (15).
miRNAs are estimated to control more than 30% of the hu-

man protein-coding genome (16). Evidence that miRNAs can
regulate and be regulated by aspects of the molecular clock exists
in Drosophila (17) and mice (18). Cheng et al. (19) identified
miR-219 and miR-132 as regulated, respectively, by the molec-
ular clock and light impinging on the suprachiasmatic nucleus
(which contains the master clock). miR-219 regulates the length
of the circadian day and miR-132 modulates the phase-shifting
capacity of light. REV-ERBα regulates miR-122 in the liver (20),
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and miR- 142–3p is controlled by the BMAL1:CLOCK hetero-
dimer and, in turn, can target Bmal1 (21).
Here, we provide evidence that miR-155, a proinflammatory

microRNA induced by TLRs (22, 23), controls Bmal1 mRNA
and protein levels in myeloid cells, leading to alterations in clock
function and circadian control of inflammation. In agreement
with a previous study (4), we demonstrate that the time-dependent
variation in the consequences of acute sepsis is reliant on the level
of myeloid BMAL1. The molecular clock attenuates inflammation
via its effects on NF-κB (12) and can suppress proinflammatory
cytokines and miR-155. miR-155 via its effects on BMAL1 can
alter circadian function, including the control of inflammatory
cytokines. We identify miR-155 as a critical posttranscriptional
repressor of Bmal1, providing a direct link between the molec-
ular clock, a microRNA, and immune function in macrophages.

Results
Mice Deficient in Myeloid BMAL1 Have an Increased Risk of LPS-
Induced Sepsis with Heightened Induction of the Proinflammatory
microRNA miR-155 and NF-κB Activity. We and others (4, 8) have
used the Bmal1−/−Lys-MCre mouse—in which BMAL1 is re-
moved from the myeloid lineage (Fig. S1 A and C) and which
causes suppression of the clock components Rev-Erbα and Per2
(Fig. S1C)—to study further the effect of the molecular clock on
LPS challenge. As reported (8), these mice retain normal ac-
tivity rhythms and period lengths and appear grossly normal. In
response to LPS-induced sepsis and consistent with the distri-
bution of lethality in previous reports (4), control animals
(Bmal1+/+Lys-MCre) were protected against LPS-induced sepsis
when mice were injected (25 mg/kg) at zeitgeber time 0 (ZT0)
versus ZT12 (Fig. 1A, P = 0.003). In Bmal1−/−Lys-MCre mice

there was no difference in survival between the ZT0 and ZT12
treated groups (Fig. 1B, P = 0.4). Zeitgeber time is a measure of
time (hours) after lights go on in the mouse facility; therefore, ZT0
corresponds to zeitgeber time 0, lights on, and the beginning of the
rest phase whereas ZT12 corresponds to zeitgeber time 12, lights
off, and the beginning of the activity phase. These are 12 h light–
dark conditions (LD). Coincident with the increase in LPS
lethality in control mice, LPS-dependent elicitation of the proin-
flammatory microRNA miR-155 was greater in peritoneal cells
isolated at ZT12 versus at ZT0 (Fig. 1C). MiR-155 maps within
and is processed from the miR-155 host gene (MiR-155HG), a
noncoding RNA, formerly known as Bic (24), which also showed
heightened induction to LPS at ZT12 (Fig. 1D). In agreement with
Gibbs et al. (8), this correlated with a range of proinflammatory
cytokines. TNFα, IL6, and CXCL1 were induced to a greater extent
with LPS at ZT12 versus at ZT0 (Fig. S1 D–H). The exception was
the anti-inflammatory cytokine IL10, whose induction by LPS in
peritoneal cells at ZT12 was lower than at ZT0 (Fig. S1 I and J).
Coincident with the increase in LPS lethality, there was greater
induction of miR-155 from peritoneal cells lacking BMAL1 (Fig.
1E), and this increase in LPS-induced miR-155 was also apparent
in serum-shocked bone marrow-derived macrophages (BMDMs)
harvested from mice lacking BMAL1 (Fig. 1F). CLOCK acetylates
and thus activates p65 (a subunit of the NF-κB complex), leading
to increased p65 phosphorylation in fibroblasts, and BMAL1 het-
erodimerization with CLOCK suppressed this activity (12). We
assayed phosphorylation of p65 in peritoneal cells lacking BMAL1
versus control. Induction and maintenance of serine phosphory-
lation at position 536 with LPS was greater from peritoneal cells
lacking BMAL1 versus control (Fig. 1G, compare lanes 2 with 7, 3
with 8, and 4 with 9). This heightened proinflammatory phenotype
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Fig. 1. The magnitude of the circadian response to
sepsis and inflammation correlates with induction of
the microRNA miR-155. (A) Bmal1+/+Lys-MCre (n =
12–18) or (B) Bmal1−/−Lys-MCre male mice (n = 12–18)
were injected intraperitoneally with LPS (25 mg/kg)
at ZT0 (blue line) or ZT12 (red line) and monitored
for survival over 7 d. Wild-type peritoneal cells har-
vested at ZT0 and ZT12 and treated immediately ex
vivo with LPS (100 ng/mL) for indicated times and
analyzed for expression of (C) mature miR-155 and
(D) MiR-155HG (n = 3–4). Peritoneal cells harvested
at ZT0 from Bmal1+/+Lys-MCre and Bmal1−/−Lys-
MCre mice and treated immediately ex vivo with LPS
(100 ng/mL) for the indicated time and analyzed for
expression of (E) miR-155 (n = 3–4). (F) Serum-shocked
BMDMs from Bmal1+/+Lys-MCre and Bmal1−/−Lys-
MCre treated with LPS (100 ng/mL) for the indicated
time and analyzed for expression of miR-155 (n = 3).
(G) Peritoneal cells harvested at ZT0 from Bmal1+/+Lys-
MCre and Bmal1−/−Lys-MCre mice, treated immedi-
ately ex vivo with LPS (1 ng/mL) for indicated times,
and analyzed by immunoblot for levels of phos-
phorylated p65 at Serine 536 and total p65. Blot is
representative of n = 6. Values provided are relative
band intensity of phospho/total 65. Peritoneal cells as
in E were analyzed for protein levels of (H) IL10 and
(I) TNFα. *P ≤ 0.05 and ***P ≤ 0.001.
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from peritoneal cells lacking BMAL1 was further confirmed by
decreased IL10 (Fig. 1H) and increased production of TNFα (Fig.
1I), IL6, CXCL1, and MCP1/CCL2 (Fig. S2 A–E). Peritoneal cells
contain a mixture of myeloid cells; therefore, we assayed macro-
phages directly to understand whether they were one of the cell
types contributing to the enhanced proinflammatory phenotype in
the absence of BMAL1. BMDMs from Bmal1−/− mice cultured in
the presence of LPS for 12 h produced greater levels of IL6,
CXCL1, TNFα, and MCP1/CCL2 (Fig. S2 F–I).

Down-Regulation of Bmal1 upon LPS Challenge Is Coincident with
miR-155 Induction in Mice. Peritoneal macrophages harvested at
ZT0 and ZT12 and challenged with LPS resulted in a reduction
in Bmal1 expression at both time points (Fig. 2A). Similarly,
BMDMs treated with LPS had a significant reduction in Bmal1
mRNA (Fig. 2B) and protein (Fig. 2C) over time, correlating
with an increase in miR-155 (Fig. S2J). Among a range of TLR
agonists used at a single concentration, LPS caused significant
repression of Bmal1 (Fig. 2D). Infection of the macrophage cell
line, RAW264.7, with the pathogens Salmonella typhimurium and
Escherichia coli also caused a significant up-regulation of miR-
155 (Fig. 2E) with a corresponding down-regulation of Bmal1
(Fig. 2F). Although REV-ERBα is a potent transcriptional re-
pressor of Bmal1 (13), it was not involved in the down-regulation
of Bmal1 with LPS, as LPS-induced repression of Bmal1 was
equivalent in cells lacking Rev-Erbα versus control (Fig. 2G).
IL10 is known to suppress miR-155 in macrophages (25), and
under steady-state conditions we observed higher levels of miR-
155 in BMDMs cultured from IL10−/− mice (Fig. 2H) and sig-
nificantly lower levels of Bmal1 (Fig. 2I).

Bmal1 in Macrophages Is Targeted and Repressed Directly by the
microRNA miR-155 Binding to Two Sites Within the 3′ UTR of Bmal1.
Using the software TargetScan, two predicted miR-155–binding
sites (GCATTAA) were identified at positions 40 and 235 within
the 3′ UTR of Bmal1 (Fig. 3A). The site at position 40 is specific
to mice and the site at position 235 is conserved between mice
and humans. Transfection of immortalized BMDMs (iBMDMs)
with a miR-155 mimic resulted in a significant reduction in
Bmal1 mRNA (Fig. 3B) and protein (Fig. 3C). Conversely,
transfection of iBMDMs with an antagomir to miR-155 pre-
vented the down-regulation of Bmal1 with LPS (Fig. 3D), and
this corresponded with a reduced induction of the proin-
flammatory cytokine TNFα (Fig. 3E). LPS-driven reductions in
Bmal1 in BMDMs did not occur in the absence of miR-155 (Fig.
3F). Clock, Cry1, and Cry2 mRNA expression were also assessed
in LPS-activated macrophages, but unlike Bmal1 their expression
was unaffected either by LPS or by loss of miR-155 (Fig. S3 A–C).
The magnitude of repression of BMAL1 protein was attenuated
in the absence of miR-155 (Fig. 3 G and H and Fig. S4A).
Consistent with the effect of the miR-155 antagomir on TNFα
(Fig. 3E), lack of miR-155 also suppressed the induction of Tnfα
mRNA from BMDMs (Fig. 3I). Morpholinos against each of the
miR-155 target sites within the Bmal1 3′ UTR [site 1 at position
40 and site 2 at position 235 (Fig. S4B)] were transfected for 24 h
into BMDMs along with the antagomir to miR-155 followed by
LPS treatment for 24 h. When analyzed for Bmal1 expression,
the antagomir and the morpholinos blocked the ability of LPS to
repress Bmal1 (Fig. 3J). The induction of mature miR-155 by
LPS was not significantly affected by transfection of the mor-
pholinos (Fig. 3K). We also cloned the Bmal1 3′ UTR into a
luciferase plasmid and mutated both miR-155–binding sites.
With the wild-type plasmid both LPS and miR-155 overexpression
caused a reduction in luciferase (Fig. 3L, black isobars). When
both sites were mutated, no reduction in luciferase was observed
with either MiR-155 overexpression or LPS stimulation (Fig. 3L,
striped isobars).

LPS-Induced miR-155 Targets BMAL1 in Human Macrophages and
Adipose Tissue. In human macrophages treated with LPS, hBMAL1
mRNA (Fig. 4A) and protein (Fig. 4B, compare lane 7 with lane 8)
were reduced at 4 and 24 h, respectively, along with a progressive
increase in hmiR-155 over time (Fig. 4C). This reduction in human
BMAL1 with LPS was a direct effect of miR-155 as levels of
BMAL1 protein in human peripheral blood mononuclear cells
(hPBMCs) transfected with an antagomir to hmiR-155 were not
suppressed by LPS [Fig. 4D; compare lanes 1–3 (antagomir) to 4–6
(scrambled)]. The hmiR-155 antagomir was also capable of sup-
pressing the induction of phosphorylated p65 in PBMCs [Fig. 4E;
compare lanes 2–4 (scrambled) with 8–10 (antagomir)]. Sub-
cutaneous adipose tissue derived from 14 healthy volunteers was
collected before and after an i.v. bolus of LPS (3 ng/kg) (Table 1).
Gene expression analysis by microarray established that MiR-
155HG was significantly increased on microarray after 4 h of
exposure to LPS together with a significant reduction in BMAL1
(Table 1). An increase in PER2 and a decrease in REV-ERBα was
observed in these human biopsies upon LPS activation with no
change in CLOCK or RORα. Remarkably, the same effects on
those genes were observed in mouse peritoneal cells harvested at
ZT0 and treated with LPS for 4 h (Fig. S3 D–H). As Rev-Erbα was
the only other clock gene analyzed that was repressed by LPS in
humans (Table 1) and mice (Fig. S3F), we assessed whether de-
letion of miR-155 would effect its expression. Basal expression of
Rev-Erbα was higher in peritoneal cells with miR-155 deletion, and
LPS did not cause significant repression in comparison with

B

0.0

0.5

1.0

1.5

2.0
*

*

- + - +

4 Hrs 24 Hrs 

LPS 

R
el

at
iv

e 
B

m
al

1 
m

R
N

A 
le

ve
ls

C

FED

Con
tro

l
LP

S PIC

Pam
3C

SK4

R84
8
CpG

0.0

0.5

1.0

1.5

R
el

at
iv

e 
B

m
al

1 
m

R
N

A 
le

ve
ls

* *

BMAL1

B-Actin

-      +          -       +    LPS

8 Hours         24 Hours

    1     0.67   0.95  0.29    

G

R
el

at
iv

e 
B

m
al

1 
m

R
N

A 
le

ve
ls

R
el

at
iv

e 
m

iR
-1

55
 R

N
A 

le
ve

ls

A

- + - +
0.0

0.5

1.0

1.5

LPS 4 Hrs 
R

el
at

iv
e 

B
m

al
1 

m
R

N
A 

le
ve

ls Control
Rev-Erba -/-

IH

WT IL-10-/-
0

5

10

15

20
*

R
el

at
iv

e 
m

iR
-1

55
 R

N
A 

0

0.5

1.0

1.5

*

WT IL10-/-

R
el

at
iv

e 
B

m
al

1 
m

R
N

A 

Con
tro

l
Sal

E.C
oli

0

5

10

15

**

*

Con
tro

l
Sal

E.C
oli

0.0

0.5

1.0

1.5

* *

0.0
0.2
0.4
0.6
0.8
1.0
1.2 *

- -+ +
ZT0          ZT12

LPS 4HrsR
el

at
iv

e 
B

m
al

1 
m

R
N

A 
le

ve
ls

*

Fig. 2. Activation of macrophages represses the core clock gene Bmal1,
coincident with up-regulation of MiR-155. (A) Wild-type peritoneal cells
harvested at ZT0 and ZT12 and treated immediately ex vivo with LPS (100 ng/mL)
for 4 h and analyzed for Bmal1 (n = 3). (B) BMDMs were exposed to LPS
(100 ng/mL) for the indicated times and analyzed for Bmal1 (n = 4–5).
(C) BMAL1 protein by immunoblot (representative of n = 3). Values provided
are relative band intensity corrected for β-actin. (D) BMDMs were treated
with LPS (100 ng/mL), Poly-I:C (PIC, 100 μg/mL), Pam3CSK4 (100 ng/mL), R848
(1 μg/mL). and CpG (1 μg/mL) for 4 h and analyzed for Bmal1 (n = 3). RAW-
264 cells exposed to E. coli or Salmonella for 24 h and analyzed for ex-
pression of (E) miR-155 and (F) Bmal1 (n = 3). (G) BMDMs from wild-type and
Rev-Erbα −/− mice were treated with LPS (100 ng/mL) for 4 h and analyzed for
Bmal1 (n = 3). BMDMs harvested from control and Il-10−/− mice and analyzed
for expression of (H) miR-155 and (I) Bmal1 (n = 8–10). *P ≤ 0.05 and **P ≤ 0.01.
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control (Fig. S3I). Similarly, Rev-Erbα expression was not reduced
with LPS in miR-155−/− BMDMs (Fig. S3J).

Altered Circadian Function and Clock-Controlled Cytokine Production
in Mice Lacking miR-155. Peritoneal cells were extracted at ZT0
and ZT12 to assay circadian expression under steady-state con-
ditions. miR-155 acts as a repressor of Bmal1 even under steady-
state conditions as its deletion caused higher basal levels of
Bmal1 at ZT0 (Fig. 5A). Given this observation, we assayed a
free-running period in mice lacking miR-155. Over the course of
a 4-wk-free run in constant darkness (DD), the free-running
period was shortened in miR-155−/− mice compared with WT
(t of 23.81 ± 0.02 h in WT compared with 23.66 ± 0.04 h in miR-
155−/− animals; P = 0.013; Fig. 5B and Fig. S5). To examine
whether this difference in τ would persist in constant light, ani-
mals were then transferred into constant light (LL) for 4 wk.
Again, the miR-155−/− animals displayed a significantly shorter

free-running period than the controls (t of 25.42 ± 0.11 h in WT
compared with 24.83 ± 0.17 h in miR-155−/− animals; P = 0.013;
Fig. 5C and Fig. S5).
Consistent with previous results, peritoneal cells from miR-

155−/− mice harvested at ZT0 and ZT12 and treated with LPS
for up to 24 h were unable to repress Bmal1 in comparison with
wild-type cells (Fig. 5D). Strikingly, the circadian effect on TNFα
production (i.e., higher induction from ZT12-treated cells versus
ZT0-treated cells) was lost from cells lacking miR-155, with
similar production of TNFα by LPS at both ZTs (Fig. 5E).

Discussion
Previous reports of a rhythm in the susceptibility of mice to LPS,
Streptococcus pneumoniae, Listeria monocytogenes, and S. typhimu-
rium challenge (3–5, 26) suggest that the molecular clock may play a
fundamental role in controlling the mammalian immune response.
Susceptibility to lethality is greatest when the challenge occurs close
to the transition into the activity phase. Gibbs et al. demonstrated
that this period of susceptibility correlates with a heightened pro-
duction of proinflammatory cytokines with activation of REV-
ERBα, a BMAL1 target, attenuating inflammation, in particular via
repression of IL6 (8). A more recent study reported that Bmal1 in
the myeloid lineage controls the number of circulating Ly6Chi

monocytes (4). When Bmal1 was absent from these cells, their re-
cruitment to the site of infection was amplified as BMAL1 directly
represses Ccl2 transcription. However, identifying the mechanisms
that intersect the immune and clock systems have been challenging.
Here we show that the protection from LPS-induced lethality at

ZT0 in comparison with ZT12 correlates with reduced induction
of the proinflammatory microRNA miR-155, but increased in-
duction of the anti-inflammatory cytokine IL10. The absence of
BMAL1 in the myeloid lineage sensitizes the mice to LPS along
with a corresponding increase in miR-155, but a decreased pro-
duction of IL10. The heightened proinflammatory milieu of my-
eloid cells may in part be responsible for the enhanced lethality
observed in Bmal1-deficient mice. However, as has been reported,
uncontrolled trafficking of monocytes (4) and possibly other my-
eloid populations such as neutrophils, also known to oscillate (7),
may impact on the phenotype in Bmal1-deficient mice.
A number of mechanisms may explain the circadian control on

miR-155 induction by LPS. First, the promoter of theMiR-155HG
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Fig. 3. Bmal1 is repressed by the microRNA MiR-155 under basal and
LPS conditions. (A) Schematic of Bmal1 3′ UTR illustrating position of the
two miR-155–binding sites identified with the software TargetScan.
iBMDMs transfected with a miR-155 mimic and analyzed for expression
of (B) Bmal1 mRNA and (C) protein (n = 3). NC, negative control for mimic; LF,
Lipofectamine; MiR-155O/E, overexpression of MiR-155 mimic. iBMDMs
transfected with either a negative control for antagomir (NC) or an
antagomir (Ant) to miR-155, treated with LPS (100 ng/mL), and analyzed
for expression of (D) Bmal1 and (E ) TNFα levels by ELISA (n = 3). WT or
miR-155−/− BMDMs treated with LPS (100 ng/mL) for the indicated time
and analyzed for expression of (F ) Bmal1 and (G) protein levels by im-
munoblot. (H) Densitometry values of immunoblots from G and Fig. S4
(n = 3–4), and (I) Tnfα mRNA (n = 3). BMDMs transfected with a scrambled
control morpholino (Scr), MiR-155 antagomir (Ant.) morpholino against
the MiR-155 site in Bmal1 at position 40 (site 1), and morpholino against
the MiR-155 site in Bmal1 at position 235 (site 2) were treated with
LPS (100 ng/mL) for 24 h and analyzed for expression of (J) Bmal1 and
(K ) MiR-155. (L) Luciferase reporter activity from Bmal1 3′ UTR construct
with LPS induction (100 ng/mL) or overexpression of MiR-155 mimic with
wild-type luciferase construct or double (Mut. Site 1 + 2) mutations of
miR-155–binding sites (n = 3). C, control; NC, negative control for mimic; 155,
overexpression of miR-155 mimic. *P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001.
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contains an NF-κB site (25, 27), and NF-κB inhibitors attenuate
the induction of MiR-155HG (28). Splenger et al. revealed that in
fibroblasts CLOCK acetylates and thus activates p65 via increased
levels of p65 phosphorylation and that BMAL1 heterodimeriza-
tion with CLOCK suppressed this activity (12). We also confirm
the effect of BMAL1 on NF-κB activity in peritoneal cells, so
BMAL1 could regulate miR-155 and some proinflammatory cy-
tokines including TNFα (29) via its effects on p65. The tran-
scription factor ETS2 is responsible for miR-155 induction in LPS-
activated macrophages, and IL10, via inhibition of ETS2, can
suppress miR-155 induction (25). In addition to our observations
that myeloid cells lacking BMAL1 produce less IL10, we observe
also that IL10−/− BMDMs have high levels of miR-155 and low
levels of Bmal1 under steady-state conditions. Therefore, BMAL1,
through its regulation of IL10, could inhibit miR-155. This could
be controlled either directly by BMAL1 or via another clock
component such as Rev-Erbα. Altogether, our results confirm that
BMAL1 within myeloid cells can attenuate production of miR-155
and proinflammatory cytokines in response to LPS, an effect that
might impact on leukocyte activation and trafficking during sepsis
occurrence.
However, it is important to note that, although BMAL1 can

regulate the p65 subunit of NF-κB, not all LPS-induced NF-κB–
regulated genes have a circadian gating (8). This could be because
there are multiple clock-regulated components that code re-
sponses in a cell-specific manner (including REV-ERBα, which
will repress certain genes) and because p65 is controlled by several
other proteins other than CLOCK. It is also possible that there is
circadian regulation of chromatin architecture, which limits ac-
cessibility for NF-κB. These aspects require further analysis.
Given the importance of BMAL1 in modulating the in-

flammatory response, we next considered the effect of LPS on
Bmal1. We hypothesized that for LPS to elicit its effect on the
inflammatory process it would attenuate BMAL1. LPS and
bacterial infections significantly decreased the levels of Bmal1
mRNA and protein, an event coincident with increased levels
of miR-155. miR-155 was a strong candidate as a regulator of
Bmal1 ab initio, given that it is up-regulated rapidly upon TLR
activation (30) and that its induction is dependent on the level of
BMAL1 in myeloid cells. Indeed, suppression of Bmal1 mRNA
and protein upon LPS activation is lost or attenuated in mac-
rophages lacking miR-155, which also suppresses induction of
Tnfα transcript. This was confirmed further with an antagomir to
miR-155, which protects against suppression of Bmal1 by LPS
while also attenuating TNFα induction. Some repression of
BMAL1 protein to LPS was still detectable in the absence of
miR-155. This suggests that, in addition to the posttranscriptional
control that miR-155 exerts on Bmal1, there may exist post-
translational modifiers acting at the protein level. Morpholinos
generated against the two miR-155–binding sites in the Bmal1
3′ UTR each inhibit the ability of LPS to repress Bmal1 in

BMDMs, confirming further the direct effect of miR-155 on
Bmal1. Therefore, controlled removal of macrophage Bmal1 by
miR-155 is required to mount an acute inflammatory response.
We found that LPS repressed human BMAL1 in macrophages

with a corresponding increase in hMiR-155 when treated in vitro.
The human BMAL1 3′ UTR has only one miR-155–binding site
in comparison with the mouse sequence that has two. However,
we could completely block the repression of human BMAL1 by
LPS using an antagomir to human miR-155. We could also sup-
press the level of p65 phosphorylation using the antagomir to hu-
man miR-155. This confirms further that modulation of the Bmal1/
miR-155 axis can affect the downstream activity of NF-κB and the
inflammatory process. An increase in the hMiR-155HG and a de-
crease in hBMAL1 was also evident in the adipocyte biopsies
obtained from patients treated with low-dose LPS. Indeed, there is
remarkable translational concordance between the effects on
Clock, Period2, Rev-Erbα, and RoRα observed in human adipocytes
with those seen on mouse peritoneal cells treated with LPS. Rev-
Erbα was the only other clock gene analyzed that was repressed by
LPS. The repression of Rev-Erbα by LPS was in part protected
with loss of miR-155, whereby BMAL1 would remain high.
Therefore, some of the proinflammatory effects featured with loss of
BMAL1, such as increased IL6, may be due to loss of REV-ERBα.
Under steady-state conditions, miR-155 also negatively regu-

lates Bmal1 expression at ZT0. This led us to investigate whether
miR-155 would have effects on the central clock. It is intriguing
that miR-155−/− mice display a shorter period length. Although
this observation requires further investigation, it is consistent with
the role of miR-155 as a transcriptional repressor of Bmal1, as mice
lacking Rev-Erbα, a potent transcriptional repressor of Bmal1, have
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Fig. 5. Altered clock function and clock gated cytokine responses in mice
lacking MiR-155. (A) Peritoneal cells harvested from WT and miR-155−/− mice
at ZT0 or ZT12 were immediately lysed and analyzed for Bmal1 (n = 3–4).
Period length of control and miR-155–deficient mice in (B) constant dark
conditions (DD) and (C) constant light conditions (LL) (n = 9–14). (D) Peri-
toneal macrophages harvested from WT and miR-155 mice at ZT0 and at
ZT12 and treated immediately ex vivo with LPS (100 ng/mL) for 4, 8, and 24 h
and analyzed for expression of Bmal1 by area under a curve (AUC).
(E) Peritoneal macrophages were harvested from WT and miR-155−/− mice at
ZT0 and at ZT12 and treated immediately ex vivo with LPS (100 ng/mL) for
24 h, and supernatants were analyzed by ELISA for TNFα (n = 4). (F) Schematic
model to depict the circadian effect on LPS activation via the circadian control
of miR-155 on Bmal1 in myeloid cells. *P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001.

Table 1. Clock gene expression from human endotoxemia study

Gene
Pre-LPS
(mean)† SD

Post-LPS
(mean)† SD

P
value‡ Significance

BMAL1 8.4496 0.71 7.3298 0.84 1.65E-05 ***
CLOCK 7.3852 0.36 7.4554 0.56 0.6640
PER-2 8.3033 0.70 8.8539 0.42 0.0087 **
REV-ERBa 9.2021 0.65 7.9089 0.57 8.11E-09 ***
RORa 7.1705 0.37 7.3213 0.37 0.1308
MiR-155HG 5.6459 1.43 6.8753 1.02 0.0006 ***

**P ≤ 0.01 and ***P ≤ 0.001.
†Pre-LPS and Post-LPS columns show the average expression of indicated
genes across the 14 subjects and are expressed as arbitrary units.
‡A paired t test was performed on pre-LPS and 4-h post-LPS expression val-
ues to determine significance.

Curtis et al. PNAS | June 9, 2015 | vol. 112 | no. 23 | 7235

IM
M
U
N
O
LO

G
Y
A
N
D

IN
FL
A
M
M
A
TI
O
N



a similar, albeit more pronounced, effect on activity (13). In addi-
tion, lack of miR-155 in myeloid cells ablates the circadian effect on
evoked TNFα normally observed between ZT0 and ZT12.
Collectively, these studies identify miR-155 as an important reg-

ulatory component of circadian function and provide a description of
a previously unidentified mechanism by which the circadian clock
controls the innate immune response. miR-155 is believed to po-
tentiate inflammation in macrophages, in part through its effects on
the TLR4 repressors Ship1 and Socs1 (31, 32) and its ability to
stabilize Tnfα (28). miR-155 is controlled by the molecular clock,
leading to its circadian induction. We show also that high levels of
miR-155 and the consequent targeting of BMAL1 might lead to a
proinflammatory state through activation of the NF-κB complex. To
our knowledge, this is the first report of a miRNA, integral to the
immune system, affecting the temporal and inflammatory variability
of the molecular clock. Furthermore, BMAL1 or its targets such as
REV-ERBα negatively regulate innate immunity such that LPS must
repress BMAL1 itself via miR-155 should BMAL1 be present at a
particular time of day. Innate immunity therefore uses the control of
BMAL1 by miR-155 to control the circadian inflammatory response
in myeloid cells. Our findings provide insight into the temporal
control of inflammation, which could have consequences for our
understanding of the pathogenesis of inflammation and infectious
diseases where circadian regulation is known to be important.

Materials and Methods
LPS Survival in Mice. Mice were maintained in a controlled environment for
1 wk before the LPS study. Mice were injected either at ZT0 or ZT12 with LPS
derived from E. coli serotype 055:B5 (Sigma Aldrich) in sterile PBS at 25 mg/kg
by the i.p. route and monitored for 6–8 d. All animal studies were performed
in accordance with the guidelines approved by the Institute for Animal Care
and Use Committee at the University of Pennsylvania and the Animal Research
Ethics Committee at Trinity College Dublin.

Peritoneal Exudate Cells. Mice were euthanized at indicated times and cells
were collected by peritoneal lavage. Cells were seeded at 1 × 106 cells per well
in serum-free media, and after 45 min nonadherent cells were washed out and

attached cells were harvested immediately for RNA and protein analysis, or
LPS was added to the attached cells for specified times and then cells were
harvested for RNA, and protein and supernatants were harvested for ELISAs.

Transfections.Wild-type iBMDMs, a gift from Douglas Golenbock, University of
Massachusetts Medical School, Worchester, MA, were seeded at 1 × 105 cells/
well. On the next day, cells were transfected with 1 μM of miR-155 premiR or
the scrambled oligonucleotide premiR negative control (Ambion) using Lipo-
fectamine 2000 (Invitrogen) for 8 h. Media were replaced with fresh antibiotic-
free media, and cells were harvested 24 h later. For the antagomir studies in
iBMDMs and hPBMCs, 50 nM of the miR-155 antagomir or negative control
(Ambion) was used. For BMDMs, morpholinos against the two miR-155–
binding sites (1 μM) were transfected with the reagent Endo-Porter (33).
Twenty-four hours later, cells were treated to LPS (100 ng/mL) and harvested. For
luciferase reporter studies, the complete 3′ UTR of Bmal1 containing the two
predicted miR-155–binding sites or with the sites mutated was inserted into the
dual luciferase PsiCheck2 reporter vector (Promega). iBMDM cells were
plated in a six-well format and cotransfected using Lipofectamine 2000,
and luciferase activity was measured after 48 h.

Human Subjects Study Protocol. The institutional review board of the Uni-
versity of Pennsylvania approved the protocol and all subjects gave written
informed consent.

Data Analysis. Results are presented as mean ± SEM. Statistical analysis was
performed using Prism 5. Differences were compared by using analysis of
variance followed by Student–Newman–Keuls post hoc analysis and/or
paired or unpaired Student’s t test, as appropriate. Significance values are
indicated as *P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001. For survival data, a log-
rank (Mantel–Cox) test was used.
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