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Abstract

Consider a queue with infinite waiting space at which the mean
arrival-rate is equal to the mean service-rate. We call this system
a balanced queue. Using a mathematical model, this paper proves
that the departure process from such a system can be Long-Range
Dependent (LRD) when the input process is Short-Range Dependent
(SRD). Furthermore, the departure process does not fall within the
class of LRD processes normally considered, and its power-spectrum
is investigated using non-standard techniques.

Simulations and experiments are described which demonstrate that
the induced LRD is not a peculiarity of the model chosen, and can
occur in real networks. In particular, evidence is presented to show
that TCP may itself cause balanced queues. This finding is consis-
tent with the observation that one of the primary goals of TCP is
to obtain maximum network throughput without causing over-load,
thereby leading to balanced queues throughout a network.

1 Introduction

Long-range dependence (LRD) in network traffic has been observed and doc-
umented over the last 10 years (for example, see [1, 2, 3, 4, 5]). Two important
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effects produced by LRD traffic are: (i) less benefits arise from economies
of scale [6]; (ii) the queue-length distribution at a buffered device admitting
such traffic has a thicker tail (for example, see [7, 8, 9, 10, 11]). Models
using SRD traffic-sources have been used to dimension networks. If traffic is
LRD, it is possible these models will result in under-provisioning of network
resources.

The Hurst parameter, introduced originally in hydrology [12], is a com-
mon measure of long-range dependence. For a stochastic process, a Hurst
parameter of greater than 0.5 indicates that its power-spectrum diverges at
the origin, and signals the presence of LRD. We will take power-spectrum
divergence at the origin as our working definition of long-range dependence,
and we will measure it using the wavelet-based LRD estimator of Abry et.
al. [13, 14].

Estimation of the Hurst parameter for network traffic-traces has led to
values greater than 0.5. The range of values determined by these estimations
does not vary greatly, even though the traffic analyzed comes from different
sources over a ten year period. It seems likely that the nature of network
traffic has changed during this period. For example, it is known that http
traffic is the most common on today’s Internet (see [15]), but the World Wide
Web did not exist when the famous BellCore traces, [16], were recorded.

Consistent Hurst parameter estimation across such a large range of traf-
fic suggests a common cause. We will search for a possible explanation by
examining the behavior of queues within real networks. As a model for this
behavior, we consider the departure process from a single device with infi-
nite buffer and constant service-rate, under the assumption that the mean
arrival-rate of traffic is equal to the device’s service-rate. We call this system
a balanced queue. We prove that the departure process from a balanced queue
has LRD, and we compute the strength of this LRD. As a by-product, we
show that the Hurst parameter fails to fully describe the nature of LRD. We
then describe simulations which show how TCP can create these balanced
queues in networks, and consequently how TCP can produce LRD-type be-
havior. Estimations of the strength of this LRD are consistent with the
mathematical results from the balanced queue model.

The first mathematical result concerns the presence of LRD in the depar-
ture process. With a SRD ON/OFF arrival process, Theorem 1 generalizes a
result for simple random walks; it proves that the ON times of the departure
process from a balanced queue are distributed such that P(ON > z) ~ 2709,
This indicates that Pareto =% burst-time distributions with 0 < a < 1
are important in the study of network traffic. Such distributions are more
troublesome that those with 1 < a < 2, as they have infinite mean.

The second mathematical result concerns the strength of LRD processes.



The power-spectrum for an ON/OFF process with ON times distributed as
2~ for 0 < @ < 1 is not defined. We introduce a regularized version of the
power-spectrum and determine its divergence at the origin for such processes;
Theorem 2 relates this divergence to the Hurst parameter. For 1 < a < 2,
the relationship H = (3—«)/2 is deduced in Heath et. al. [17]; for 0 < a < 1,
Theorem 2 proves that H = (14 «)/2. Hence, the Hurst parameter does not
differentiate these processes.

The rest of this paper is organized as follows: in Section 2, balanced
queues are considered and Theorem 1 stated; in Section 3, the power-spectrum
regularization necessary to deal with the departures from a balanced queue
is introduced and Theorem 2 is stated; simulation results verifying the the-
orems are presented in Section 4; experimental results using TCP and UDP
traffic are presented in Section 5; concluding remarks appear in Section 6;
all proofs are presented in Appendix A.

2 Mathematical Model for a Balanced Queue

The balanced queue is analyzed using a continuous-time fluid model. In this
model, a single server is fed by an ON/OFF arrival process that carries traffic
at constant rate, r, during ON periods and at rate 0 during OFF periods.
The durations of ON periods, {A,}, are assumed to be drawn independently
from a distribution with finite mean, E[A], and variance. The durations of
the OFF periods are i.i.d. with exponential distribution of rate .

The server has an infinite buffer and serves at constant rate, s, whenever
its buffer is non-empty. It is assumed that r > s, so that the server is
idle only when both the buffer is empty and the arrival-rate is zero. This
ensures that the departure process forms an alternating sequence of rate-s
ON periods and rate-0 OFF periods. Furthermore, as the OFF periods of
the arrival process are exponentially distributed, the ON and OFF periods
of the departure process are independent and the OFF periods are i.i.d. with
rate A. The goal is to analyse the distribution of the ON periods of this
departure process.

This system has been analyzed in detail by other authors. A thorough
review can be found in Boxma and Dumas [18]. We use results from [18] in
our analysis. They define a parameter, p, called the traffic intensity,

_ T)E[4]
P 5L+ AE[A])’

which is the ratio of the arrival rate of traffic to the maximum possible service
rate. The condition for stability is p < 1. We define the balanced queue by
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the condition p = 1, which is the borderline case for stability.

Theorem 1 is a result regarding the output process from a balanced queue.
It is assumed that the arrival process starts at time ¢ = 0 with an ON period,
hence the departure process is not stationary. Indeed, in some cases the
departure process cannot converge to a stationary distribution.

Theorem 1 Let {By, By, ...} be the sequence of ON period durations of the
departure process from the model described above. Assuming p = 1, the
durations {Bn} are i.i.d. and their distribution, B, satisfies

P(B > z) ~ z7Y/? as x — oQ.

Theorem 1 shows that the output from the balanced queue fed with a
SRD source has heavy-tailed ON periods with exponent 1/2.

3 The regularized power-spectrum

The power-spectrum, S(6), of a wide-sense stationary process, { X ()}, is the
Fourier transform of its autocorrelation function Ry x (t) = E[X (s+1)X (s)];
that is -,

S(0) := / e Rxx(t)dt. (1)
Unless {X(¢)} has mean zero, the expression (1) has an impulse singular-
ity at # = 0. For this reason it is often preferable to work instead with
the Fourier transform of the auto-covariance function Cxx(t) = E[X (s +
t) X (s)] — (E[X])?, which agrees with (1) for # # 0, and is usually continuous
at 6 = 0.

However, if the process {X (¢)} has LRD, then both Rxx(t) and Cxx(t)
are infinite, and (1) cannot be used to compute the power spectrum. In
particular this is the case for the ON/OFF process that describes the output
from the balanced queue in Theorem 1. We resolve this difficulty by defining
a regularized Fourier transform, X,(#), of X(¢t). We use the expectation
of | X.(0)|* as an approximation to the power-spectrum (this is a standard
methodology, for example, see Section 7.1 of [19]). Assuming that X(¢) is
uniformly bounded, the following integral exists for any ¢ > 0:

X.(0) = /0 Tx (1)@=t gt (2)

If X(t) is Wide-Sense Stationary (WSS), then the usual power-spectrum,
S(6) defined in Equation (1), is recovered from (2) by taking the limit

S(6) = lim ¢ E[|X€(0)\2]. (3)

e—0



(Technically, the convergence requires that X (¢) be replaced by X (¢) — E[X],
in which case the right side of (3) converges to the Fourier transform of the
auto-covariance function; as remarked above this distinction is irrelevant for
6 #0).

Theorem 2 shows that Equation (2) enables the definition of a regularized
power-spectrum for a large class of heavy-tailed ON/OFF processes. The idea

is to determine the behavior of E [|X€(0)|Q] , as € = 0, and extract its leading

order part by re-scaling by €” for some v > 0. This leading order part, S™8(0),
is defined to be the regularized power-spectrum of the process for 6 # 0, and
as Equation (3) shows, this procedure yields the correct power-spectrum for
a WSS process (with exponent v = 1).

Theorem 2 applies to ON/OFF processes for which the OFF periods have
finite mean and variance. The ON periods may be heavy-tailed, as occurred
for the output of the balanced queue. The ON/OFF process, X (t), is defined
for ¢ > 0 as follows:

|1 during an ON period;
X() = { 0 during an OFF period. (4)

Without loss of generality, the traffic rate is normalized to be 1 during an
ON period. There is no assumption of stationarity for the process, which
always starts with an ON period at ¢ = 0.

For the purposes of Theorem 2, it is convenient to describe the heavy-
tailed distribution of the ON periods by specifying the asymptotic behavior
of their density function. The duration of an ON period is denoted B and
its density denoted fp. Hence, for example,

P(B>1) = / Fo (). (5)
t
For some o > 0, fp is assumed to satisfy
lim u*tfp(u) =c>0 (6)

or, more compactly, fg(u) ~ u~*"!. Using (5), this implies that P(B > t) ~
t.

For oo > 2, both the mean and variance are finite, thus B is short range.
For 1 < a < 2, the mean is finite but the variance is infinite. For 0 < oo <1
both the mean and variance are infinite.

Theorem 2 Let X(t) be the ON/OFF process defined in (4) and define v
by:
. 1 fora>1;
" la for0<a<l.
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Theoreical Prediction ———

Figure 1: Theoretical prediction for the power-spectrum divergence, 7,
against ON period power-tail strength, a.

Then, for all @ # 0, the following limit exists and is not identically zero:

S8 () = lim ¢ E[|X€(0)\Q]. (7)

e—0

Furthermore, the following asymptotic behavior holds:

S™8(0) ~ 6" asf — 0, (8)
where
0 for a > 2,
7::{04—2 forl<a <2, 9)
—« for0<a < 1.

The exponent, v, describes the long range dependence of {X (¢)}. It is
related to the Hurst parameter by H = (1—+)/2. A graph of v vs. « is shown
in Figure 1. The shape of this graph for o > 1 can be deduced from Theorem
4.3 of [17] and Theorem 1.7.1 of [20]. One of the main contributions of this
paper is to determine the relationship for 0 < a < 1. This demonstrates that
the “same” LRD may arise from different heavy-tailed distributions.

4 Simulation

The purpose of the simulations in this section is to answer the following
question: if the systems described in Theorems 1 and 2 are simulated and
the divergence of the power-spectrum estimated, is there agreement with the
theoretical prediction? As it is the divergence of the power-spectrum that
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Figure 2: Wavelet estimator for 0 < o < 2.

we estimate, we first verify Equation (9) of Theorem 2 in Section 4.1, before
verifying Theorem 1 in Section 4.2.

Many methodologies (see Beran’s book [21]) can be employed to deter-
mine the “strength” of a time-series’ long-range dependence. For a compar-
ison of a selection of those invented prior to 1995, see [22]. One of the most
successful approaches, and the one that we use, is described by Abry and
Veicht [14].

Essentially, it consists of a wavelet-based estimator for the power-spectrum
defined in Equation (1). This enables us to determine the divergence, 7, of
S(6) at the origin by the following procedure: for a range of values of n, plot
log(S(1/2™)) against n; if the graph is of constant slope going to —oo, then
the time-series is constant; if the graph is of positive slope, then the value of
the slope is the estimate of ; if the graph raises steeply and then levels to a
flat line, the time-series is short-range dependent.

4.1 Wavelet Estimates for 0 < o < 2

To test Theorem 2, a variety of ON/OFF sources of the form described
in Equation (4) were simulated. These had exponentially distributed OFF
periods, and ON periods distributed as P(B > z) ~ 22, for a range of
values of a € [0, 2].

Veicht has made available free matlab code for a wavelet-based power-
spectrum estimator, [23]. However, we do not use it in this section as the
infinite expected burst length associated with 0 < o < 1 makes a simple
implementation impractical. Instead, an implementation was designed to
exploit the known response of the wavelet estimator to long, constant bursts.
C-code for the burst-based estimator can be found online [24].

In the simulated source, the probability an OFF period is longer than [
is 21, ON periods last for u=*/%, where u is uniformly distributed in [0, 1].
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Figure 3: Wavelet log-log plots for exponential and uniform i.i.d. arrivals.

Each source comprises 1 000 000 ON/OFF cycles.

The graph on the left of Figure 2 consists of log-log plots produced
by the wavelet estimator, for a range of values of a. As the graphs form
straight lines, the traffic exhibits long-range dependence. The divergence of
the power-spectrum at the origin is measured by the slope of these curves.

The graph on the right of Figure 2 shows least-squares fitted slopes, fit
between octaves 3 and 15, for different values of a. 10 sources with different
seeds are presented for each «. Theorem 2 predicts the hat function, which
is shown for comparison.

4.2 Departures from a balanced queue

To verify Theorem 1, a slotted time queue with i.i.d. arrivals is simulated.
In all experiments, the mean-rate of arrival is 0.5 units per clock-tick. At
each clock-tick, a random amount of work is placed in the queue, taken from
a given distribution. The service-rates considered are: 0.6; 0.55; 0.505 and
0.501. The departing process is analyzed using the standard wavelet-based
power-spectrum estimator.

Log-log plots of the estimated power-spectrum for the queue output are
shown in Figure 3. In the plot on the left, the volume of traffic arriving at
each clock-tick is taken from an exponential distribution. In the plot on the
right, the volume is uniformly distributed. A reference-line with slope 0.5 is
also shown.

When the service-rate is above the mean arrival-rate, the graphs show
initial curvature and then level out, indicating short-range dependence. As
the service-rate moves towards the mean arrival-rate, the queue moves into
balance and the slope of the graphs move towards 0.5, indicating long-range
dependence as predicted in Theorem 1.

The proof of Theorem 1 suggests that finite variance of the arrival process
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Figure 4: Wavelet log-log plots for power-tail i.i.d. arrivals.

may be necessary to deduce v = 0.5 for the departure process. Simulation
of queues fed with power-tail distributed arrivals per clock-tick, shown in
Figure 4, support this notion. In some cases, the departure process does
appear to exhibit long-range dependence, but does so with v # 0.5.

5 Experiments

Sections 2, 3 and 4 demonstrate that in theory and simulation, balanced
queues cause long-range dependent features in the queue’s departure pro-
cess. In this section, experiments are reported that use real TCP and UDP
implementations. In particular, as one of the primary goals of TCP is to ob-
tain maximum network throughput without causing over-load, its feedback
mechanisms may produce a balanced queue at the bottle-neck link along its
path.

5.1 Experimental setup

The setup consists of two computers running FreeBSD, connected with 100Mbps
Ethernet. To introduce a bottle-neck link of variable size and buffer-space
into the system, Rizzo’s dummynet [25] is used. dummynet simulates the ef-
fects of finite queues, bandwidth limitations and communication delays. It
works by intercepting communications via firewall rules that redirect packets
through the simulated system, prior to their transmission on the physical
interface. A minor change to dummynet was made to expand its range of
valid buffer-sizes.

A mix of clients, in proportions similar to that observed in real traffic, is
used. 2 clients produce UDP traffic and 6 produce TCP traffic. All clients
have a mean-rate of 0.5Mbps. UDP clients wait for an exponentially dis-



tributed amount of time (mean 20ms) and then transmit an exponentially
distributed amount of data in UDP datagrams, with a payload of up to 1KB.
Once the data is transfered, the UDP client waits again.

The TCP clients are more complex. At exponentially distributed times
(mean 200ms), a new TCP connection is opened to transfer an exponentially
distributed amount of data. In contrast to the UDP client, new connections
can be opened before the transfer is completed (up to a maximum concur-
rency of 4 per client).

In each experiment, the mean-rate of the traffic is 4Mbps plus protocol
overhead. The traffic is fed through dummynet pipes of bandwidth 2, 3, 3.5,
4, 4.1, 4.2, 4.3, 4.5, 5 and 8Mbps, to gauge behavior when the link is over-
loaded, close to balance and under-loaded.

The use of an infinite buffer in Theorem 1 is fundamental to the proof.
As infinite buffers do not occur in networks, the importance of this approx-
imation is investigated by setting the dummynet packet-buffer to 1000, 100
and 10 packets for each bandwidth. An alteration to dummynet is necessary
to allow large packet buffers. Each configuration was run for 1 hour.

Traffic is recorded with tcpdump after it traverses the dummynet pipe
and 100Mbps Ethernet. Sequences of arrival volumes at 10ms intervals are
recorded for TCP, UDP and their aggregate. These are analyzed with the
standard wavelet estimator described in Section 4.

5.2 Experimental Results

The results for 1000 packet and 100 packet buffers are similar, so only the re-
sults for 1000 and 10 are included. Figure 5 presents power-spectrum graphs
for the departure processes of these experiments. Results for 1000 packet
buffer are described first.

For over-loaded links (2, 3, 3.5Mbps) the TCP and UDP plots are flat,
indicating little long-range correlation. The aggregate plot is diverging to-
ward —oo, indicating a constant departure stream. The TCP plot and UDP
plot show similar power-spectrum structure. Perhaps this is not surprising
as they are two processes that sum to a constant.

For a range of bandwidths around balance (4-4.5), the aggregate traffic
shows a strong linear response in octaves 2 to 13. As the bandwidth increases,
the TCP and UDP plots separate. The UDP plot becomes flat, exhibiting
short-range dependence. The TCP plot, however, shows an increasing linear
section similar to the aggregate trace.

For under-loaded links (5 and 8Mbps) the UDP plots exhibit short-range
dependent characteristics. The linear response seen in both the TCP and
aggregate plots begins to flatten out. At 5Mbps, this occurs by the 10th
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Figure 5: Experimental wavelet log-log plots for a mix of TCP and UDP
traffic. Plots on the left are for a 1000 packet buffer and on the right for a
10 packet buffer.
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Figure 6: Slope estimates against bandwidth for the departures from a 1000
packet buffer.

octave; at 8Mbps, this occurs by the 6th octave. This implies short-range
dependence, but over a longer time-scale than the UDP traffic.

For bandwidths close to balance, Figure 6 shows slope estimates over
octaves 2 to 13 for TCP and the aggregate. The aggregate exhibits values
of v between 0.35 and 0.5, corresponding to values of the Hurst parameter
between 0.675 and 0.75.

With a 10 packet buffer, short-range dependent behavior is observed when
the link is under-loaded. Around balance, the linear response is over a smaller
number of octaves, indicating short-range dependence. The buffer-space is
not large enough to induce long-range correlation structure. As there is little
buffering space, the TCP traffic backs off, so that the departure process is
not constant until the system is totally over-loaded with a 2Mbps pipe.

In summary: for packet buffers of size 100 or 1000, in a queue near
balance, the departure process exhibits long-range dependence; when the
packet buffer is small, no such effect is observed.

6 Conclusions

This paper proves that the departure process from a balanced queue can
exhibit long-range dependence when the queue is fed with short-range de-
pendent traffic. Moreover, the relationship between the divergence of the
power-spectrum for this “new” class of processes is determined and shown
to be indistinguishable from a well known class of processes.

That these effects are not an oddity of the model employed is demon-
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strated through simulation and experiment. In particular, we investigate the
appearance of LRD in queues which are servicing TCP traffic. Our results
are consistent with the notion that TCP traffic is elastic, and tries to make
its bottle-neck link a balanced queue.

Queueing occurs throughout networks: at end-host socket buffers; hard-
ware buffers on network cards; within routers. Packetisation also behaves
like queueing and sequences of packet-sizes have been shown to exhibit long-
range dependence [14]. That long-range dependence arises as a consequence
of queueing within networks may explain the persistent observation of LRD
in traffic-traces, despite changes in technology, protocols and user-behavior.

A Proofs

Proof of Theorem 1: As well as results from [18|, the proof uses the
following Tauberian theorem due to Karamata:

Lemma 1 (Bingham et. al. [20], Theorem 1.7.1) Let F(z) = P(X <
) be the distribution of a positive random variable X , and let ¢(t) = Ele ]
be its Laplace transform. Then each of the following statements implies the
other:

1
1—é(t) ~t' L (;) ast — 0;

1
1—F(z) ~ —2"'L(z) asx — oo;

['(a)

where a > 0 and L(x) is a slowly varying function. That is, a measurable
function with the asymptotic behavior
L(tx)
L(t)

—1 as t— oo, for every fixed x.

Recall that A and B are the durations of ON periods of the arrival and
departure processes respectively. Define their Laplace transforms

v(u) = Ele 4] and 7(u) = E[e “5].

Let 7" = r/s, then the following formula is derived in Theorem 3.6 of [18]
(though in different notation):

7(u) = 'y(r'u + A =1)(1— 7r(u))> (10)
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Its deviation is based on the observation that a busy period, B, of the
output process can be viewed as the following succession of events: first an
ON period, A, during which an amount of traffic « (= rA) arrives; then
an idle period of length, 77 (during which the queue partly empties), at the
end of which there remains an amount, 31, in the queue; then the start of
another arrival period that adds more traffic to the buffer. The total time
until the amount of traffic in the buffer drops again to ; is denoted B;. This
is followed by another period, T3, during which traffic leaves the buffer, until
another arrival period begins, at which point the buffer contains the amount
B2. The time until the buffer again reaches 5 is denoted B;. This continues
until the buffer empties, which signals the end of the busy period B.

This leads to the representation

B=A+T\+B +T,+ By + -+ Tk.

The key observations now are: first, » 7; = a/s = r'A, since this is the
time needed to empty the traffic which arrived during the first ON period,
A; second, each interval, B;, is distributed as an ON period of the departure
process, and these periods are all independent; third, the number of departure
periods, K, has the Poisson distribution with rate A\r'A. Equation (10) now
follows easily.

Defining

. E[A]\/ e

a straightforward calculation using (10) shows that
tim (L) —
u—0+ \/’E

Applying Lemma 1 with a = 1/2 and L = k gives the result:

2K
lim z'/2P(B > z) = —.
dim TP(B > 1) = -2
QED

Proof of Theorem 2: the ON/OFF process is simple enough to allow an
explicit calculation of its regularized Fourier transform defined in Equation
(2). For k = 1,2,..., let By, denote the duration of the k*! busy period.
Suppose that the k" period starts at time o, and ends at time 7,. From the
definition (4), it follows that oy = 0. Defining

z =10 — ¢, (11)

14



it follows that

. 1 &
Xe f) == ( 2Tl __ zak).

(9) ~ E e e
k=1

Hence, the regularized power is computed using

. 1 & - -

20 2T, Zo 2] 20,
B[IX.0)7] = 15 k§l::1E[(e L_dmeEm—en)]. (12)

As busy and idle periods of the process are independent, this expectation

can be computed in terms of the following generating functions for a typical
ON period B and OFF period C-:

¢(w) =E[e""] and t(w)=E["],

where these are well-defined when w has a non-positive real part. Recalling
Equation (11), the result is

¢(2 +7) — ¢(2)
[2[2(1 — ¢(2

() +1
(2+72))
(
(

E||X.(0)] (13)

v
. 6

+Z)Y(z
(0(z) = D(¢(z +2) = ¢(2))¥(2)
[22(1 = ¢(2)9(2))(1 = 6(2 + 2)9(2 + 7))
(8(z) —1)(6(z +7) — $(2))¥(2)
¢

TR0 = 6(2)()) (0 — 60z + 2)0lz +2)°

In order to compute S™8(#), it is necessary to extract the leading order part
from Equation (13) as € — 0. For 6 # 0, the only singularities on the right
side of (13) arise from the term (1 — ¢(z + Z)9(z + Z)) in the denominators,
since z — 16, as € — 0, implies means that z +z — 0.

The behavior of this term depends on the tail behavior of the ON period,
B. If @ > 1 in Equation (6), then E[B] < oo, which implies that

1—¢(z+2)Y(z +2z) ~ 2¢(E[B] + E[C)]).
Therefore, to leading order in this case, (13) behaves as

R[50 ~ spegmamey P00 -0 (9
L (9=i8) ~ 1)(1 — (=i0))(~if)
(1= o0 —if)
(1))
(

(6(i6) — 1)(1 — 6(i6)) (i)
T U= ey (i0) }
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The right side diverges as ¢~ '; this establishes (7) for o > 1.
For a < 1, the mean of B is infinite and more care is needed. Defining g
by
Ele *P] =1 - g(e),

the leading order part of (13) becomes

B[X0F] ~ G [z—qs(z'e)—a—w) (15)
L (6() ~ 1)1~ o(=i)) (i)
(1= o(-B)0(—i8))
6010 —)ot)
A-ot@ui) |

Applying Lemma 1 with o < 1 gives g(€) ~ ¢* as ¢ — 0. Hence, 2¢E[C] +
g(€) ~ €* and, thus, Equation (7) follows for this case.

The behavior of S™8(f) as # — 0 is determined in a similar way. If o > 2,
both the ON and OFF periods have finite mean and variance. Evaluating
the expression (14) at = 0 yields a finite constant, establishing (8) for this
case.

For 1 < a < 2, defining

h(6) := ¢(i0) — 1 — i0E[B] = E[e"? — 1 —i0B],

a similar analysis shows that the leading order part of S™8(f) as § — 0 goes
as Re(h(6))/6?. To determine the asymptotic behavior of h(f) as 6§ — 0,
write

ho) = /Ooo(m | — i0) f(z) da

© [l _ 1 _ 0y N
)

Y e e —1—qu u\ e+l U
=0 / (7%“ ) () 1o (5)

Since, for 1 < a < 2, the function (e — 1 —iu)/u®™! is integrable on [0, c0),
the dominated convergence theorem and (6) imply

. a _ ® (e —1—iu

establishing (8) for 1 < a < 2.
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For the remaining case, 0 < @ < 1, define
q(0) =1—¢(i0), r@)=1—1(0) and k= lin% e “g(e).
€—>

Renormalising and rewriting Equation (15) gives
1

L[ a0
02k r(6) + (1 —r(8))q(h)

as e — 0. (16)

Since, as 6 — 0, g(8) ~ 6* and r(0) ~ 6, it follows that the leading order

part of (16) is
iRe[ _ 7‘(9)2} ,

0%k q(0)
which establishes (8) for 0 < o < 1.
QED
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