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Abstract

In recent years physicists have become involved in studying the financial market and

the vast data it generates. The constantly-updated streams of information are a perfect

testing ground for the hypothesis that the laws of statistical physics might apply to human

behaviour.

In this thesis, I study two empirical log return time series for the stylised facts of

financial data. I then use Multifractal Detrended Fluctuation Analysis to study the

empirical log returns for multifractal scaling. I find that extreme events are inimical to

the scaling in highly leptokurtic data. I also find that the temporal correlations in the

data are crucial to the scaling whereas the shape of its distribution is not as important.

I then develop my own agent-based model of the market. With just a few different

types of traders operating according to some simple rules, my model generates log returns

with many of the statistical properties found in empirical data. The option for traders

to opt out of trading is the source of the thin-peaked distribution of the simulated log

returns. The distribution of log returns becomes more closely described by a Gaussian at

longer lags. This is a consequence of basing the fundamental value of the stock on geo-

metric Brownian motion. Since transition to Gaussianity at long lags is also a feature of

empirical log returns, this implies that real traders are also influenced by some geometric

Brownian process. Log returns generated by the model also have volatility clustering, are

uncorrelated and asymmetrically distributed.

I test the log returns generated by my model for their scaling properties and find that

they do not have multifractal scaling. This is an interesting result since the simulated log

returns do feature other properties of empirical data. I then extend the model in some

basic ways to include more heterogeneity. Some limited multifractal scaling is found in

the simulated log returns of the extended model. Because the model produces stochastic

output, it is extremely difficult to exactly determine the scaling properties. However the

results hint at the possibility that the multifractality found in empirical log returns is a

consequence of the heterogeneity in both the investment horizons and beliefs of traders

in the market.



When inhomogeneities are considered (if at all) they are treated as unimportant fluc-

tuations amenable to first order variational treatment. Mathematical complexity is cer-

tainly an understandable justification, and economy or simplicity of hypotheses is a valid

principle of scientific methodology; but submission of all assumptions to the test of em-

pirical evidence is an even more compelling law of science.

- Gerard de Vaucouleurs (1970)
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Chapter 1

Modelling the Market:

An Evolution of Understanding

1.1 Introduction

This chapter presents an introduction to the financial market and financial data. It

describes the basic mechanism of the market. It also discusses some points which need to

be considered before we can begin to study the data, such as the units and scales which

will be used. It then develops the history of the modelling of the financial market by

presenting a literature review of some of the most significant models in this field.

1.2 How the Market Works

A market is simply a place where traders can buy and sell products. Each product has a

listed spot price S(t) at time t and this price changes in time in response to the supply

and demand for that product as well as external factors like political decisions, weather

and other news. There are many markets around the world where different products are

available for trade, and some products are listed on more than one market.

A stock market is a market where stocks or shares are traded. A stock or share is a

part-ownership in a company. Dividends are often paid to shareholders out of the profits

the company makes. The price of the shares reflects the supply and demand for the shares

which in turn generally reflects public opinion of the value of the company.

The financial market is more general than the stock market. The financial market

is a market for all sorts of financial products, including stocks and bonds, commodities

like gold and oil, foreign currencies, and financial derivatives. A derivative is a contract

concerned with the trade of an underlying asset. For example, a European call option is

1



a contract giving the holder the right to buy a particular asset at a specific exercise date

and price sometime in the future. The price of the option depends on the price of the

asset as well as on opinion about how that price will change in the future. The option

itself may be traded many times before the exercise date quoted on the contract. There

are many types of derivatives traded on the financial market.

The usual way of trading is through a stock exchange using a stockbroker, often

through a bank or on the Internet. The stock exchange makes some rules and ensures

that traded products are standardised. The stockbroker submits an order to buy or sell

to the exchange. The order may be a limit order or a market order. A limit order includes

a minimum (when selling) or a maximum (when buying) price which will be accepted by

the trader. The trader may have to wait some time before the trade can be exercised

according to his/her specifications. A market order contains just the number of shares

to be traded and will be filled straight away by available orders of the opposite direction

at the best price available.

The exchange keeps a log of all the buy and sell limit orders in a limit order book.

The log consists of the number of shares, the price limit and the time the order was

placed. For any given product, there will be a gap between the highest price someone

is willing to pay (bid) and the lowest price someone is willing to accept (ask) in return

for the product. This gap is called the bid-ask spread. The actual price listed for the

product by the exchange will be somewhere in between these two values.

The exchange normally has a designated market maker to provide liquidity to traders.

Liquidity refers to the ease of turning assets into money. The market maker always has

some of the securities on hand for immediate trade. They list both bid and ask prices so

that under normal circumstances other traders are always able to trade. If there is a sell

order with no matching buy order, the market maker will buy so that the trade is able

to go ahead. The market maker receives some trading privileges from the exchange in

return for their service.

Traders may be anything from large investment banks, insurance companies and pen-

sion funds to small businesses and individuals. The reason most people get involved in

trading on the financial market is of course to make money. Prices can change quickly

and by large amounts, and traders can make huge profits from this if they buy and sell

at the right times. Along with the huge potential for profits comes increased risk. Prices

can move in both directions and so traders can also lose a lot of money. Usually traders

have a certain amount of risk-aversion: an acceptable limit to the amount of risk they

are willing to take on in proportion to the potential profits they can make by getting

involved in a certain market. Those who are completely risk-averse can simply put their

money in the bank to collect the risk-free rate of return.

2



Traders may also be motivated to trade in order to reduce their risks. For example,

a car manufacturer takes on a certain amount of risk because they are only involved in

one industry. If the price of fuel increases or the government increases motor taxes, cars

become less attractive and the industry may take a hit. This company may choose to

own shares in other types of industry whose profits are broadly anticorrelated to theirs,

such as a rail company. Any hits to their industry may also result in profits to the other

industry, so the car manufacturer’s loss will be offset by the increase in value of their

shares in the rail company. Their overall risk is reduced through diversification.

There are thus two main types of trader: those who want to be exposed to risk and

the accompanying increased potential profits are called speculators; those who want to

reduce risk are called hedgers.

An index is a useful way to see how a particular market is doing. An index is a

weighted average of a collection of stock prices. A company’s weight in the index is

usually determined by its current spot price and the number of its shares that have

been traded. Traders can also invest in index funds which track an index’s performance.

The oldest index in the world is the Dow Jones Industrial Average (DJIA), beginning in

1887. It is made up of 30 US-based companies. Other well-known indices include the

NASDAQ-100, an index of the top 101 non-financial companies listed on the American

NASDAQ1 stock exchange, the FTSE 100 maintained by the FTSE Group2, a subsidiary

of the London Stock Exchange, and the S&P500 comprised of 500 companies in the US

chosen by Standard & Poor’s Financial Services LLC. The daily price of the DJIA index

is shown in Figure 1.1 from 1928 to 2012.

1.3 Econophysics

In recent years more and more physicists have become interested in the world of economics

and finance. Many are interested in the market as a complex adaptive system with many

interacting parts. The financial system also produces huge amounts of data in constant

streams and of various frequencies and this provides an interesting subject for research [1–

3].

Physicists are generally concerned with modelling the market and the data it produces.

We want to know, understand and replicate the sort of data generated by the market.

Prediction is obviously the holy grail. Some of the well-known models which have been

developed over the last hundred years or so will be described later in this chapter.

1NASDAQ stands for National Association of Securities Dealers Automated Quotations, but it is
better known by its abbreviation.

2FTSE originally stood for Financial Times Stock Exchange. Now it is simply known as the FTSE
(pronounced “footsie”).
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Figure 1.1: Daily prices of the DJIA index from 1928 to 2012.

Some of the methods from statistical mechanics can be applied to financial data.

The market can be viewed as a complex system exhibiting critical phenomena and phase

transitions. It is a many-body system of interacting parts. The difference between the

market and other many-body systems studied by physicists is that in the market, the

individual parts are traders who have autonomy and can choose how to behave.

The financial market provides a perfect testing ground for the hypothesis that the laws

of statistical physics might apply to human behaviour. Although the participants in a

market can make their own decisions, they operate according to a set of rules determined

by the exchange where they trade which makes these decisions easier to study. There is

also a huge amount of data available for study, which is not the case for other types of

human interactions. A whole new interdisciplinary field of study, econophysics, has been

born. When studying a fluid flow we are more concerned with the overall system than with

the individual position and velocity of each molecule. Similarly econophysics concerns

itself chiefly with the aggregate result of many interacting traders or businesses [4].

Econophysics takes the methods from physics and applies them to the economic sys-

tem. This includes specifically stochastic processes which have been used extensively in

the modelling of prices. The ideas from the study of dynamical systems and especially

nonlinear dynamics have found a new home in the marketplace [3].

4



1.4 Technicalities of studying financial data

1.4.1 Units

An important point to agree on before any analysis can be done is the particular variable

to be studied. Prices are listed in a variety of currencies, but currencies themselves change

in value with respect to each other and so are not a useful unit for reference. Prices can

be at many different levels and can move with disparate variances and so they are not

suitable for comparison of behaviour. A variable less sensitive to scale and which does

well at characterising price movements is needed [3, chapter 5].

For these reasons, it is common in finance to study the log returns Z of the price S:

Z(t,∆t) = lnS(t+ ∆t)− lnS(t)

This is a unitless quantity which makes it appropriate for studying data from around the

world [5]. The terms “log return” and “return” are often used interchangeably in the

finance literature to refer to this quantity.

An obvious choice for a variable to study may be the price increments ∆S(t,∆t) =

S(t + ∆t) − S(t). Since ∆S(t,∆t) is not a unitless quantity, it is not suitable for com-

paring the movements of shares of companies of different sizes. Another option is the

proportional price changes R(t,∆t) = S(t+∆t)−S(t)
S(t)

. The principal reason it is useful to

study log returns rather than R(t,∆t) is that the logarithm is less sensitive to changes

in scale. Especially when studying data over a long time period, the growth or decline in

the economy over that time has an effect on the size of price changes.

Also, when the time scale ∆t is small, the price change ∆S(t,∆t) will also be relatively

small and the following holds:

Z(t,∆t) = lnS(t+ ∆t)− lnS(t)

= ln
S(t+ ∆t)

S(t)

= ln

(
1 +

S(t+ ∆t)− S(t)

S(t)

)
≈ S(t+ ∆t)− S(t)

S(t)

= R(t,∆t)

So for small ∆S(t,∆t), the log return Z(t,∆t) and the proportional price change R(t,∆t)

are nearly equivalent.

Figure 1.2 shows all three unit options for daily data of the DJIA index. The data

5
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Figure 1.2: Price increments ∆S(t,∆t), proportional price changes R(t,∆t) and log
returns Z(t,∆t) of DJIA from 1928 to 2012. ∆t = 1 day.
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begins in 1928 and ends in 2012. The economy has grown a lot over those 84 years and

the corresponding growth in the average size of price increments makes this clear. The

log returns are more consistent over that time and they are useful for this reason.

1.4.2 Scales

The time scales to be used are also an important consideration. Often log returns are

calculated using physical time scales, such as the price per minute, day or year. However,

there are weekends, holidays and nights when no trades are made. These times can be

skipped over and the times when there is active trading can be stitched together as if the

non-trading times simply don’t exist. This is the common way of measuring time in the

financial literature.

Sometimes the overnight or over-weekend log returns are skipped, depending on

whether the scale of interest is daily or intra-daily. These changes are often larger than

the others because more news has time to arrive over the longer interval between trades.

This in turn can result in more drastic changes in the price as traders react to this news

when the market opens. However even over the same time scales, volatility is generally

found to be higher during trading times than at other times. Reasons may include that

news is more likely to arrive during business hours and that informed traders affect prices

by the way they trade [6].

Data can also be examined at event or trading time. Event time counts each trade as

a time step and so does not correspond to real physical time. There are times when there

are many trades per second and others when the trading pace is more sluggish. This sort

of data is less freely available than data listed daily or minutely, in physical time. The

log returns in physical time are the most commonly studied variable of financial data and

this is where the focus will be in my study too.

1.5 It Began with Bachelier

Any discussion of financial modelling begins in 1900 when Louis Bachelier, a student of

Henri Poincaré, finished his dissertation entitled “Théorie de la spéculation” [7]. He is now

considered the father of modern financial mathematics. In his thesis, Bachelier discussed

forward contracts, options and other financial derivatives. His analysis of probability in

the context of the stock exchange led him to propose a Gaussian distribution of stock

price increments. He developed the mathematical framework for the Wiener process and

used this continuous random walk as a model for the evolution of prices. His thesis is the

first known work of mathematics applied to finance [8] and is worthy of consideration.
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1.5.1 The Wiener Process

In the 19th century, Scottish botanist Robert Brown observed pollen grains and other

substances suspended in water under a microscope. He saw how the particles moved

continuously in jagged paths [9]. This sort of continuous random walk came to be known

as Brownian motion (BM) and is mathematically modelled by a Wiener process.

The standard Wiener process Wt on the interval [0, T ] depends continuously on t and

has the following properties:

1. W0 = 0

2. Wt has continuous sample paths

3. The sample paths of Wt have independent increments, that is for 0 ≤ s < t < u <

v ≤ T , Wt −Ws and Wv −Wu are independent.

4. Wt ∼ N(0, t) where N(µ, σ2) is a normal distribution with mean µ and variance σ2.

5. Wt has statistically stationary increments, that is Wt−Ws
d
=Wt−s−W0 = Wt−s for

0 ≤ s < t ≤ T , where
d
= means equal in distribution.

Some sample paths of a Weiner process are shown in Figure 1.3.
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Figure 1.3: Some sample paths of the Wiener process generated in discrete time so that
∆W ∼ ε

√
∆t where ε ∼ N(0, 1) and ∆t = 1/500.

1.5.2 Bachelier’s model

Let S(t) be the price at time t. In Bachelier’s model, the price increments S(t+∆t)−S(t)

are independent and identically distributed (iid) random variables.

S(t+ ∆t) = S(t) + ε
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where ε is taken from some arbitrary stationary distribution with mean µ and finite

variance σ2. Therefore, at time T = n∆t,

∆S(t, T ) = S(t+ T )− S(t) =
n∑
i=1

εi. (1.1)

The price increment is the sum of n iid random variables. The Central Limit Theorem

(CLT) gives us that if n � 1 (T � ∆t), then the distribution of this sum tends to a

Gaussian with mean nµ and variance nσ2.

This leads us to Bachelier’s result, that price changes over different time intervals such

as a week or a month are sums of the changes over shorter time scales and are therefore

Gaussian distributed with mean nµ and standard deviation proportional to the square

root of the elapsed time
√
T . This behaviour is essentially a Wiener process with added

drift if µ 6= 0.

According to Bachelier’s model, the probability distribution of the price St at any

time t can be found from the initial price S0, the drift µ, and the standard deviation σ;

St − S0 = µt+ σdWt. (1.2)

On this foundation, Bachelier goes on to discuss financial derivatives in more detail

and presents some results on the pricing of options.3 He found that the value of an option

must be proportional to the square root of the elapsed time. This conclusion is one of

Bachelier’s main results [7].

The main problem with Bachelier’s model is that it allows negative prices. Another

issue is that, as he admits in his thesis [7], the probability of a particular price change

is independent of the current price level. This is to say that this model predicts the

increment on a stock currently worth e 500 to be the same as the increment on a stock

currently worth e 5. Intuitively, however, we would expect that the change to a e 500

stock would be much greater.

1.6 Geometric Brownian Motion

Geometric Brownian Motion (GBM) was first introduced by the Japanese mathematician

Kiyoshi Itō in 1944 [10, chapter 5]. It was 20 years later that Paul A. Samuelson made

the application to financial mathematics and price modelling [11].

3An option is a contract which gives the holder the right to trade an asset at some point in the future
for a given price. The expected value of the future price of the asset is needed in order to calculate a
fair price for the option. European call options were described briefly in Section 1.2.
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Itō developed a calculus based on stochastic processes. It defines the integration of

a function with respect to the differential dWt of the Wiener process. The result of the

stochastic integral is another stochastic process and so it can be defined in a distributional

sense. The main advantage of the Itō stochastic integral over the alternative definition

of the Stratonovich stochastic integral is that Itō’s integral is a martingale. A discrete

process X is a martingale if and only if E[Xn+1|X0, X1, . . . Xn] = Xn. Given the history

of the process, the next expected value is the same as the current value. Knowledge

of the historical values is not helpful for predicting future values. The increments of a

martingale process are a fair game, expected equal to zero, and so these processes are

used extensively in modelling in the areas of gambling and finance.

As mentioned above, Bachelier assumed that the price increment ∆S(t,∆t) = S(t +

∆t)−S(t) is independent of the price level. It might make more sense if the relative price

change S(t+ ∆t)/S(t) were independent of the price level. We could conjecture that the

random factor λ = S(t+ ∆t)/S(t) by which the stock increases or decreases is expected

to be the same no matter what the current price level. This leads to a multiplicative

(rather than Bachelier’s additive) price process:

S(t+ ∆t) = λS(t) (1.3)

where λ is a random variable drawn from a stationary probability distribution with finite

mean and variance. The price at time T = n∆t is given by

S(t+ T ) = λn . . . λ2λ1S(t). (1.4)

After taking the natural log of the above equation, we come to

lnS(t+ T ) = lnλn + . . . lnλ2 + lnλ1 + lnS(t)

=
n∑
i=1

lnλi + lnS(t) (1.5)

⇒ lnS(t+ T )− lnS(t) =
n∑
i=1

lnλi (1.6)

This difference is the log return Z(t, T ). According to this model, it is a sum of iid

random variables and so will tend to a Gaussian for large T . This multiplicative random

walk model thus predicts that Z(t, T ) is normally distributed. This model also gives that

the log of the price lnS(t) is normally distributed, from which follows that the stock price

itself S(t) has a lognormal distribution.
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To find an iterative model for the price, consider the price difference

S(t+ ∆t)− S(t) = λS(t)− S(t)

∆S(t,∆t) = (λ− 1)S(t).

Consider an approximation by a constant factor λ. Then let λ − 1 = µ∆t for some

constant drift rate µ so that the reliance on the time scale ∆t is explicit. This leads to

∆S(t) = µS(t)∆t.

In the limit as ∆t→ 0,

dS = µSdt

or

dS

S
= µdt.

There must also be some stochastic element to the price difference so that the variance

is nonzero. In keeping with the proposal that the relative price change is independent of

the price level, the standard deviation of the price change should be proportional to the

price level [12]. This leads to the GBM model

dS =µSdt+ σSdWt

or

dS

S
=µdt+ σdWt (1.7)

Wt is the Wiener process described in Section 1.5.1. This is one of the most widely used

models of stock prices [12, chapter 12].

The relevant variable is dS/S which indicates that a solution will likely include loga-

rithms. Using the expansion

df(x) =
∂f

∂x
dx+

1

2

∂2f

∂x2
(dx)2 + . . .

we find

d(log(St)) ≈
dSt
St
− 1

2

1

S2
t

(dSt)
2. (1.8)

Since we are now dealing with a stochastic process, it will be necessary to employ
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some Itō calculus. Itō’s calculus gives the following results in the mean square limit:

dt2 → 0

dtdWt → 0

dW 2
t → dt.

dW 2
t is not negligible in comparison to dWt because the expected value of dW 2

t is dt.

This leads us to

(dSt)
2 = µ2S2

t dt
2 + 2µσS2dtdWt + σ2S2

t dW
2
t

= σ2S2
t dt

in the mean square limit.

So equation 1.8 becomes

d(logSt) =
dSt
St
− 1

2
σ2dt.

Equation 1.7 gives an expression for dS/S, leading to:

d(logSt) =µdt+ σdWt −
1

2
σ2dt

=

(
µ− 1

2
σ2

)
dt+ σdWt.

This leads to the following integral equation which can be solved to give a stochastic

process for the price. ∫ t

0

d(logSs) = (µ− 1/2σ2)

∫ t

0

ds+ σ

∫ t

0

dWs

logSt − logS0
d
= (µ− 1/2σ2)t+ σ(Wt −W0)

ln
St
S0

d
= (µ− 1/2σ2)t+ σWt

St
d
=S0e

(µ−1/2σ2)t+σWt

which is the solution to equation 1.7. The integral of the Wiener process
∫
dWs is defined

stochastically, not pathwise. In general, S0 is also a random variable independent of t.

I refer interested readers to the many books on stochastic integration; see for example

references [10], [13] and [14].

GBM can therefore be seen as the exponential of the Wiener process. This immedi-
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ately solves the problem of negative prices encountered with Bachelier’s model because

the exponential function is nonnegative. GBM also has the property outlined above,

that the prices are lognormally distributed. Equivalently, the log returns are normally

distributed. To see this, examine the log return of a price process which follows GBM:

Z(t, T ) = lnS(t+ T )− lnS(t)

= ln e(µ−1/2σ2)(t+T )+σWt+T − ln e(µ−1/2σ2)t+σWt

=(µ− 1/2σ2)(t+ T ) + σWt+T − ((µ− 1/2σ2)t+ σWt)

=(µ− 1/2σ2)T + σ(Wt+T −Wt)

=(µ− 1/2σ2)T + σ(WT −W0) due to the independent increments of Wt

=(µ− 1/2σ2)T + σε where ε ∼ N(0, T )

∼ N
(
(µ− 1/2σ2)T, σ2T

)
so the log return Z(t, T ) is normally distributed with mean (µ − 1/2σ2)T and variance

σ2T .

1.6.1 Black-Scholes-Merton

The GBM model for stock prices was made particularly famous by the Black-Scholes-

Merton equation introduced in 1973 [15] [16, chapter 6]. This famous equation is used

for calculating a fair price for options and is derived using Itō’s calculus.

The option-pricing formula introduced by Fischer Black and Myron Scholes, and in-

dependently by Robert Merton, was developed under the assumption that prices follow

a lognormal distribution. The expected price at time t is therefore E[St] = S0e
µt. The

writer of the option can then calculate the probable price of the stock in the future and

so find a fair price for the option.

A European call (put) option gives the owner the right to buy (sell) the underlying

stock for the strike price K on the day it matures. The Black-Scholes-Merton formula

for calculating their values results in

c = S0N(d1)−Ke−rTN(d2)

p = Ke−rTN(−d2)− S0N(−d1)

where c is the price of a European call option and p is the price of a European put option.
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S0 is the price at time 0, r is the risk-free rate and T is the time to maturity of the option.

d1 =
ln(S0/K) + (r + σ2/2)T

σ
√
T

d2 = d1 − σ
√
T

N(x) =
1√
2π

∫ x

−∞
e−

z2

2 dz

σ is the standard deviation of the stock’s log returns. N(x) is the cumulative probability

distribution function for a standard normal distribution. See references [12] and [10] for

details of the derivation.

This important formula had massive impact on the trading world at the time and is

still largely employed today with some corrections. It won Myron Scholes and Robert

Merton the Nobel prize in Economics in 1997 [17, 18]. Unfortunately Fischer Black died

before the prize was awarded.

1.7 Stable Paretian Hypothesis

Others also built on the work of Bachelier. As empirical data began to be accumulated

by economists and became available for study, it became evident that the Gaussian

distribution does not give an accurate description of stock prices [19]. Benôıt Mandelbrot

specifically argued that in real data, there are too many log returns which are outliers

from a Gaussian prediction and that the actual distribution of returns must therefore

have fat tails. He felt that these outliers should not be ignored or studied separately [20].

Also, these outliers cause the second moment of sample data to behave erratically. He

found that it did not seem to converge to any limit as the sample size is increased. These

reservations about the Gaussian hypothesis were enough to convince Mandelbrot that

a “radically new approach” to the issue of log return distributions was warranted [21,

22] [23, chapter 1].

The non-normality of the log returns was a central issue to Mandelbrot’s contribution.

If the price St follows Bachelier’s model, then the CLT predicts that price increments will

be normally distributed. Mandelbrot proposed that the increments ε are iid, but that

they have infinite variance. This would explain why the CLT does not apply in this case.

Mandelbrot proposed the alternative Stable Paretian Hypothesis (SPH).
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1.7.1 Stable Paretian Distributions

A stable Paretian distribution4 is a power-law probability distribution. This type of

distribution is desirable in the context of modelling stock prices because it has the features

of power-law asymptotic fat tails and a second moment which does not converge to any

limiting value. These are exactly the features which Mandelbrot identified in empirical

data and wanted to include in his model.

The characteristic function5 of the stable Paretian distributions is

Ψ(t) =

exp
[
iδt− γα|t|α

(
1− iβ t

|t|tanπα
2

)]
α 6= 1

exp
[
iδt− γ|t|

(
1 + iβ 2

π
t
|t| ln|t|

)]
α = 1

(1.9)

There are four parameters which determine the precise form of the distribution: α, β, γ

and δ. There are closed-form expressions for stable Paretian distributions only in a few

specific cases of the parameters.6 The parameters have the following interpretations:

• α is the characteristic exponent, 0 < α ≤ 2. It determines the weight of the

tails. The tails are thinner for larger α. When α = 2, the Gaussian distribution is

recovered.

• β determines the skewness, −1 ≤ β ≤ 1. For β = 0, the distribution is symmetric.

When β < 0, there is more weight in the left tail than the right and vice versa.

• γ is the scale parameter determining the width of the distribution, γ > 0.

• δ is the location parameter. When α > 1, δ is the mean of the distribution. The

mean is not defined for 0 < α ≤ 1.

Stable Paretian distributions are stable under addition. This means that if indepen-

dently distributed stable variables are summed, so long as each has the same values of

α and β, the distribution of the sum will also be stable with the same values of α and

β. This was also considered a desirable characteristic for modelling stock returns as it

means price increments over a time interval will have the same distribution as the price

increments during the interval.

4Stable Paretian distributions are also called Lévy-stable, and a stochastic process whose movement
is generated by such a distribution is often called a Lévy flight. This family of distributions was first
described by Paul Lévy in 1925 [21].

5The characteristic function of a probability density function is its inverse Fourier transform.
6These are the Gaussian distribution (α = 2), the Cauchy distribution (α = 1, β = 0) and the Lévy

distribution (α = 1/2, β = 1, δ = 0, γ = 1) [22].
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The Cauchy distribution is stable Paretian with α = 1, β = 0. Its probability distri-

bution function is [10]

f(x; δ, γ) =
γ

π

1

(x− δ)2 + γ2
.

Figure 1.4 shows a set of sample data from this distribution. The effect of undefined

variance can be seen from the plot of the sample mean as a function of sample size.

For data with a defined mean, the sample mean will settle down to the mean of the

distribution as the sample size is increased. However for this Cauchy data the sample

mean continues to jump erratically even at large sample sizes. This is a symptom of the
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Figure 1.4: (a) Graph of sample data from a Cauchy distribution with γ = 1, δ = 0. (b)
Graph of the sample mean of the Cauchy data as the sample size is increased. For large

sample size, the mean has still not settled down close to a single value. This is a
symptom of the infinite variance of stable Paretian distributions when α < 2.
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fat tails of the Cauchy distribution.

1.7.2 Mandelbrot’s 1963 Model

The SPH model is based on two basic assumptions [22]:

1. The variances of empirically found log return distributions are infinite.

2. The empirical distributions of log returns fit the stable Paretian family of distribu-

tions.

Although the CLT does not apply to such data because it has infinite variance, the

generalised CLT is relevant. The generalised CLT states that if the sum of a number

of iid random variables with infinite variance converges to a distribution, that limiting

distribution must belong to the family of stable Paretian distributions [22, 24, 25].

Mandelbrot made two essential changes to Bachelier’s model [21]. First, he applied

Bachelier’s process to the log returns Z rather than the price increments ∆S. Secondly

he replaced the Gaussian distribution with the stable Paretian family of distributions.

This leads to equation 1.1 being replaced by

Z(t) = lnS(t+ ∆t)− lnS(t) =
t∑
i=1

νi

where random variables νi have infinite variance and satisfy the conditions required7 for

their sums to follow a limiting distribution. This is in contrast to the finite variance

which was the case for Bachelier’s model. The limiting distribution is necessarily stable

Paretian with 0 < α < 2 [22, 21].

The Gaussian distribution belongs to the family of stable Paretian distributions. The

difference between Mandelbrot’s model and Bachelier’s model therefore lies in the value

of the parameter α. The Gaussian hypothesis introduced by Bachelier holds that α = 2,

whereas according to the SPH introduced by Mandelbrot, α < 2. Critically, the variance

of these distributions is finite only when α = 2. When 0 < α < 2, the tails are fatter or

heavier than for a Gaussian and the variance is infinite.

To generate prices with this model from a price S(t) at time t, use S(t+ ∆t) = eνS(t)

where ν is a random number drawn from a stationary distribution having a power law

tail with exponent α + 1, 0 < α < 2, and α is the characteristic exponent of a stable

Paretian distribution given in equation 1.9. According to the generalised CLT, this

7The conditions have to do with the asymptotic shape of the distributions of the random variables
νi [10, chapter 4].
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process will produce log returns Z(t) whose distribution will tend to a stable distribution

with characteristic exponent α.

The fat tails of the Paretian distributions mean that any large price changes in a

stable Paretian market are likely to be caused by a small number of large price moves.

In a Gaussian market, a large price move is caused instead by many small moves in the

same direction. This means the stable Paretian market is more risky than a Gaussian

one. This seems to be a better description of the real market as it could explain investors’

risk aversion being in excess of that warranted by a Gaussian market [22].

Mandelbrot and Fama both examined empirical data to verify the SPH. Famously,

Mandelbrot looked at both daily and monthly log returns of cotton prices [21]. His daily

data covered 1900 - 1905 and 1944 - 1958. He had monthly data spanning 1880 - 1940.

The tails of the distribution were assumed power-law in shape with tail exponent α,

so

P[Z(t) > u] ∼ c(∆t)u−α

P[Z(t) < −u] ∼ c(∆t)u−α

for some constant c(∆t) dependent on the time scale of the log return, ∆t.

P[Z(t) > u] and P[Z(t) < −u] can be plotted versus u on a doubly logarithmic scale.

This gives

log(P[Z(t) > u]) = −α log u+ log c(∆t)

log(P[Z(t) < −u]) = −α log u+ log c(∆t)

so the slope of any linear section on a doubly logarithmic plot gives the exponent α of

the tails of the distribution.

Mandelbrot found for the cotton prices that α ≈ 1.7 for both positive and negative

tails for all the data examined. He found discrepancies in the value of the constant c(∆t)

for different data sets. The various plots appear as horizontal translates of each other.

This indicated that the distribution is unchanged up to scale over the different years

examined.

This gave credence to the hypothesis of stability since the exponent is unchanged for

log returns over different interval lengths (∆t = 1 day or 1 month) and also at different

points in time. The value of α also fitted Mandelbrot’s hypothesis that 0 < α < 2.

Fama analysed daily log returns of all 30 stocks of the DJIA [22, 26]. He found fat tails

in every case, further evidence that the Gaussian distribution is not a suitable description
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of log returns. He also consistently found α < 2 for all 30 stocks. He concluded that the

SPH fits the data better than the Gaussian hypothesis [22, 26].

However, there were also some problems with this theory. One of the key assumptions

of this hypothesis is that log returns are stably distributed. This leads to the conclusion

that returns over longer intervals such as weeks, months or years, have the same distri-

bution as returns per second or per minute. However, it has since been found empirically

that low resolution log returns do not have the same distribution as high resolution log

returns [27, 28].

Also, the assumption that log returns are independent is wrong. It is now well known

that there are slowly decaying autocorrelations in the amplitude of log returns [19]. The

feature of volatility clustering8, a type of nonlinear autocorrelation found in financial log

returns, was in fact noted by Mandelbrot at the same time as presenting the SPH [21].

Other findings contradicted the assumption of infinite variance. It was found that

although the stable distributions provide a reasonable fit to the centre of empirical dis-

tributions, they do not fit the tails well. The tails of empirically found distributions,

although fatter than a Gaussian, are significantly thinner than those of the stable Pare-

tian distributions [28].

Also it has been found that the sample mean is not as erratic as predicted by the

SPH [28]. As an illustration, a simple analysis has been carried out on minutely data

from the Euro Stoxx 50 index. The result in Figure 1.5 shows that as the sample size

is increased, the sample mean does begin to settle down to a constant value, in contrast

to the behaviour of the Cauchy variable shown in Figure 1.4. This is further evidence

against infinite variance.

What about all the empirical evidence supporting the theory? The data sets examined

by Mandelbrot were very short compared to the data that later became available to

researchers. His longest data set only contained about 3,500 points and so was not large

enough to provide good statistics of extreme events contained in the tails. The daily

DJIA data examined by Fama were even shorter time series. Most of his data sets ran

from the end of 1957 to September 1962, containing only about 1,500 observations per

sample [26]. This can be contrasted with data sets examined by researchers today which

can contain hundreds of thousands if not millions of values.

Despite these shortfalls, the SPH constituted significant progress in the modelling of

stock returns. Rather than based on intuition, it was founded on the observance of the

empirical results of trading. Although those observances were later found to be lacking,

this is a scientific approach to the problem.

8Volatility clustering refers to how periods of high and low volatility tend to cluster together; this
phenomenon will be described in detail in Section 2.6.
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Figure 1.5: The sample mean as a function of increasing sample size for minutely data
of the Euro Stoxx 50 index. The data shown is for the first week of May, 2008.

1.8 Mixture of Distributions

Another explanation of the non-Gaussianity of the empirical distribution of log returns

was offered by Clark in 1973 and has since been expanded [29–32]. The SPH was based on

the assumption that the CLT does not apply to price increments due to infinite variance.

Clark proposed that it was another condition of the CLT that was being violated.

According to Clark, the source of the leptokurtic distribution 9 of price increments is

the varying rate of the arrival of news. On different days the price moves at different rates

due to information being available to traders at different rates. This leads to the Mixture

of Distributions Hypothesis (MDH). According to the MDH, the price is a subordinated

stochastic process. Rather than a function of time t, the price is a function of a directing

process T (t); S(T (t)) is subordinate to S(t) [29]. The process T (t) is an indicator of the

speed of trading, or event time.

Instead of each day consisting of the same number of incremental price changes, some

days have more and others have less, following the process T (t) which is related to the

trading volume. The CLT is valid when the number of random variables being summed

is constant at least in probability [29]. This is the condition which is violated by the price

according to the MDH.

By the MDH, the increments of the directing process ∆T (t) are lognormally dis-

tributed and the increments ∆S(t) are normal. This combination leads to high kurtosis

in the price increments ∆S(T (t)). Empirical test results indicate that the reason for the

high kurtosis is that the returns are recorded in physical “clock” time rather than in

9A leptokurtic distribution has a thin peak and fat tails. This property of log returns will be discussed
in detail in Section 2.3.
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event or trading time [29].

1.9 Engle, ARCH, GARCH and more

Although volatility clustering was recognised by Mandelbrot in 1963 [21] and by Fama

in his thesis [26], it did not affect their ideas at the time that log returns follow a basic

random walk model. This is because the log returns remain uncorrelated even if their

amplitudes are not. Engle’s autoregressive conditional heteroscedasticity (ARCH) model

was the first to incorporate this distinctive feature [33]. These models have become so

ubiquitous that the feature of volatility clustering in financial data has come to be known

as the “ARCH effect” among economists.

In the GBM model applied to log returns, Zt = µt + σε where ε ∼ N(0, 1) is a

random number and σ is a constant. Let µ = 0 so that there is no drift. Memory can be

introduced to the volatility of the return process by setting

σ2
t = α0 + α1Z

2
t−1

so that the log return process is now

Zt = εt

√
α0 + α1Z2

t−1

where ε ∼ D(0, 1), D being a distribution that may be normal or leptokurtic.

This is the original ARCH model introduced by Engle in 1982 [33]. One of the main

attractions of this type of model is its ability to reproduce the volatility clustering seen

in financial data. The data produced has no linear autocorrelation but the moduli and

higher order functions of the data are correlated, just like empirical data [34]. The

conditional variance varies in time while the unconditional variance remains constant.

The conditional variance is also called the scedastic function; hence the name ARCH.

The form of the autoregressive variance can easily be extended to have more memory.

An ARCH(q) process has variance of the form

σ2
t = α0 +

q∑
i=1

αiZ
2
t−i

for some unknown vector of parameters α. The terms in α should satisfy α0 > 0, αi ≥
0, i = 1, . . . , q−1 and αq > 0 to ensure that the variance is positive. For large q, volatility

clustering is generated by the ARCH process.

The ARCH model is a major departure from the iid model of returns. Rather than log
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returns being independent, this model gives them an explicit form of condition on their

past. Although log returns themselves remain uncorrelated, their higher-order moments

are now positively correlated for a lag of q, the order of the ARCH process. It was not

the first model to have a non-constant variance, but it was the first model of conditional

heteroscedasticity [35].

There have also been many extensions to this model since it was introduced by Engle.

For example, the generalised ARCH (GARCH) process as introduced by Bollerslev in

1986 [36] allowed for more flexibility in lag structure and a longer memory.

A GARCH(p,q) process due to Bollerslev [36] has variance of the form

σ2
t = α0 +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiσ
2
t−i.

In this model, dependence on past noise and past variance are separated and can have

different lengths and coefficients. When p = 0, the ARCH(q) process is recovered.

The GARCH model has in turn been extended in many directions to allow for more

flexibility [34]. There now exist a plethora of acronyms ending in ARCH, each signify-

ing a different form of the conditional variance and allowing modellers to include more

complexity and specifications in their models; see for example [37, 38].

1.10 Efficient Market Hypothesis

A general theory of how the market works is the Efficient Market Hypothesis (EMH). This

concept was independently proposed by both Fama [26] and Samuelson [39] at around

the same time. In essence, the EMH states that prices are correct, taking into account

all relevant information.

Eugene Fama, in his thesis published as “The Behaviour of Stock Market Prices” in

1965 in The Journal of Business [26], argues for the random walk model of stock prices. He

discusses both the independence of successive price increments and also the distribution

of these increments. Fama admits that it may not be reasonable to expect the factors

which influence stock prices to be independent. For example, traders may imitate the

trading pattern of some influential investors and so uncertainty in expectations are not

independent. Also, the arrival of new information may not always be independent.

However, the theory asserts that if there are superior traders who know the intrinsic

value of the stock, their trading will counteract the herding behaviour of others. Also

skilled chart readers will identify bubbles and crashes which are purely speculative and

similarly counteract them. The dependence based on the arrival of news is also destroyed

by astute traders who correctly anticipate news as well as its effect on the intrinsic value

22



of the stock.

Fama concludes that “the full effects of new information on intrinsic values will be

reflected nearly instantaneously in actual prices” [26], and so the market overall is always

correct in its pricing of stocks, even if no individual trader has perfect knowledge. Or “the

market uses all relevant information and uses this information correctly to determine”

prices [5].

Thus was born the EMH, one of Fama’s conclusions from his research: “a situation

where successive price changes are independent is consistent with the existence of an

“efficient” market for securities, that is, a market where, given the available information,

actual prices at every point in time represent very good estimates of intrinsic values.” [26]

In such an efficient market, any price changes are simply a result of new information

becoming available. There are no bubbles because rational fundamental traders will not

allow them to develop. Any large price moves must be due to sudden, shocking news

reaching the market.

In such a world, it is impossible to make profits in excess of a simple buy-and-hold

strategy by examining past prices. Therefore technical analysis for the purpose of finding

patterns in historical prices to inform investment strategy should be useless [5].

1.10.1 Is the Market really Efficient?

One of the key elements of economic theory is the EMH first devised by Fama [26] and

outlined above. In essence, it states that all important price changes are as a result of new

information arriving to the market. Since this information generally appears randomly,

price changes must follow a random walk. This means that major price changes, such as

the massive drop on “Black Monday”, October 19th 1987, should be the result of some

major new information. In that day the DJIA lost about 23% of its value, the worst

single-day drop in its history. It is clearly visible in Figure 1.6.

Another assumption of mainstream economic theory is that all traders in the market

have access to the same information and act on it in the same rational, or at least quasi

rational, way. This is the theory of Rational Expectations [40]. According to this theory,

if not all traders are rational, at least enough of them are, or on an aggregate level they

act in a rational way, so that they can be modelled by some representative rational agents.

It is assumed that there is a situation of equilibrium in the market. The arrival of news

and the rational behaviour of the traders lead to changes in supply and demand. This in

turn affects the price until balance is restored and a new equilibrium position is achieved.

One of the major benefits of mainstream economics is its support of parsimonious

models. A clear example of this is the Black-Scholes-Merton model for option pricing,

described in Section 1.6.1. This model is based on the random walk, iid price increments,
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Figure 1.6: Graph of the daily log returns of DJIA from 1928 to 2012 in units of
standard deviation, σ. The Black Monday crash was a drop of more than 22σ.

concept. The theory allows analytical treatment of a complex problem. This explains

the longevity of the theory despite the errors in it.

The theory of information randomly arriving to the market may seem reasonable.

However, the assumption that traders are rational agents with equal access to information

is without basis. In reality, there are many different types of traders in the market with

varying access to accurate information. Generally, people are not rational. They succumb

to emotions such as panic and euphoria. Especially in times of high emotion, traders do

not act independently. The market is susceptible to “waves of optimistic and pessimistic

sentiment” [41, chapter 12]. The phenomenon of herding behaviour is not admitted by

the classical theory.

There is also a certain paradox to the idea of efficient markets. If rational traders

make the market efficient, then there is no motive to trade as no excess profit can be

made. Therefore rational traders will leave and the market may revert to an inefficient

state. This self-contradiction was pointed out by Milton Friedman, American economist

and Nobel Memorial Prize winner, as quoted by J. Doyne Farmer [42].10

The main problem with this theory is that it has not withstood empirical testing. For

example, the cause of the Black Monday crash has not been related to any specific news

story [43]. According to the EMH, there should be an obvious major news event behind

10It can be argued that there is a certain level of efficiency in the market. Well informed traders
identify arbitrage opportunities in the market. Arbitrage refers to cases where the same stock is listed
on different stock exchanges at different prices. Traders will quickly buy at the lower price and sell at
the higher price. They will make some profit and also their trades will cause prices to readjust so as to
remove such arbitrage opportunities from the market. The market can thus be called arbitrage-efficient.
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every major price move. The fact that no such news event has been identified casts doubt

on the theory. This crash caused economists to rethink the theory of equilibrium [44].

The fat tails of the distribution of log returns had already been noted [21], but this crash

drove home the point that the efficiency theory really is not good enough. This has been

reinforced by the more recent crash of 2007-2008 [45].

1.11 Agent-Based Modelling - an entirely new ap-

proach

The problems identified with the EMH drove financial modelling forward. It was becom-

ing obvious that empirical evidence-based research was necessary, with a move away from

tidy analytic models an inevitable result. This is when agent-based modelling came to

the fore.

Agent-Based Models (ABMs) are suited to systems made up of many entities inter-

acting with each other and with their environment. ABM does not refer to a specific

technique or method. Rather, labelling a model as an ABM describes the perspective

from which the model was built. An ABM is built from the perspective of the individ-

ual parts rather than the overall process. This is opposite to the aggregate approach of

statistical mechanics mentioned in Section 1.3.

ABMs are models in which individual autonomous decision-making components are

modelled in order to find the aggregate results of their collective behaviour. The rules

governing each agent’s behaviour can be defined and then the system is allowed to run.

This means that an ABM can be expensive computationally, as each individual’s actions

need to be defined. This is one reason why ABMs have only become popular in more

recent years as computational power has become more available to researchers [46].

This bottom-up method is useful for systems with complex phenomena. The individ-

ual actions on a mico level can lead to unexpected behaviour on a macro level. This is

called emergent behaviour as it is a result of the aggregate actions and could not be an-

ticipated from knowledge of the individuals’ rules of behaviour. This refers to situations

where the whole is greater than the sum of the parts because the interactions between

the parts play an important role in the aggregate result. This is one of the major benefits

of ABMs over other models. In this context, major events can occur without an explicit

cause-effect relation with a major news item as called for by the EMH.

Because the ABM approach is from the perspective of the individual, it may be

possible to find the source of emergent phenomena. Rather than tweaking equations

until realistic data is produced, the rules governing agent interactions can be tweaked so
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that they behave like real people. Then any counterintuitive aggregate behaviour can

possibly be traced back to a particular trait of the agents. This means it can be possible

to really understand complex phenomena rather than simply replicate it.

ABMs can also be a natural way to describe a system. When a system is made up of

many people, it is more intuitive to talk about the way people act or move than to talk

about aggregate statistics like density of people in an area or the proportion of buyers in

a market. Agents can be designed to have different reactions to their environment and to

each other and they can also learn and adapt, just like real people. These complexities

are difficult to describe with differential equations.

The flexibility of ABMs also makes them appealing. Once the model is built, it is

easy to adjust the number of agents present, the environment they are in and the rules

which govern their behaviour. This makes them ideal for modelling things like disasters

to help build good contingency plans.

An example of where ABMs have proven useful is in traffic management [47]. A model

can be built of a road network in a major city. Surveys conducted of drivers can inform

the input details for the agents, which in this case is vehicles. Details such as where

people travel to and how long it takes can be obtained. Agents in the model then are

designed to imitate the actions of real drivers. This type of modelling can be especially

useful to the city planners. The road network in the model can be adjusted in various

ways to find the best way to alleviate congestion. The results of the model help planners

make sensible investment in areas that will be of most benefit.

ABMs are an entirely new way of modelling the market. They model real trader

behaviour and strategies. They use the stylised facts of financial data as a fitness test.

This means that they can offer real insight into how the market works. Agent based

modelling will be further explored in Chapter 5 and an entirely new ABM presented in

Chapter 6.

1.12 Chapter Summary

This chapter has presented a literature review of the most influential models of the market

which have been developed over the last century. Over that time, as more information

became available, the understanding of the statistical properties of financial data has

increased dramatically. This has been reflected in the development of financial models.

From the simple random walk model of Bachelier, we are now in the era of the agent-

based model with the emphasis on realistic trading behaviour rather than parsimony.

The next chapter will explore the statistical properties of financial data in detail.
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1.12.1 Outputs of the work

Below is a list of presentations and publications arising from the work described in this

thesis:

• Poster Presentation at the Dynamics Days Europe conference, Centre for Biomed-

ical Technology, Madrid, June 3-7 2013.

Poster title: “Building a triple agent model for financial markets”.

• Conference Presentation at the Irish Society of New Economists conference,

Maynooth University, September 5,6 2013.

Talk title: “Emergent Properties of a Simple ABM”.

• Publication in the European Physical Journal B, 87 (6): 129, 2014.

Paper title: “The origins of multifractality in financial time series and the effect of

extreme events”
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Chapter 2

Stylised Facts of Financial Data

2.1 Introduction

There are certain universal statistical properties of all financial log return data, whether it

comes from the Standard and Poor’s index in America or an individual stock listed on the

Tokyo exchange. These features also transcend all types of commodities and securities,

from pork bellies to foreign exchange prices. These universal qualitative features are

called “stylised facts” by economists.

In this chapter I present an analysis of some empirical financial data. The chapter

describes many of the stlyised facts which are common to financial time series data from

diverse sources. I examine two time series, daily data from the DJIA index and minutely

data from the Euro Stoxx 50 index, for these statistical properties. The fact that these

two data sets are from different parts of the world and have different frequencies goes to

illustrate the universality of the features that will be discussed below.

2.2 Overview of the Data

In this chapter I will examine two sets of empirical log returns for some well-known

stylised facts. The first data examined are the daily log returns of the DJIA from 1928

to 2012 which have already been referred to in the previous chapter. It contains 20,922

points. The DJIA is a weighted average of the prices of 30 companies based in the United

States. The average is weighted to take into account new shares being issued or dividends

being paid by any of the companies so that the index price is consistent. Some of the

companies currently included are McDonald’s Corporation, The Walt Disney Company

and Wal-Mart Stores Inc. The index price and log returns are shown in the top panel of

Figure 2.1. The dramatic downturn of late 2007 and 2008 can be clearly seen towards

the end of the data and the major Black Monday crash of October 19th 1987 is obvious
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Figure 2.1: Top: Daily price and log return data of the Dow Jones Indstrial Average
from 01/10/1928 until 23/01/2012. Bottom: Minutely price and log return data of Euro

Stoxx 50 from 02/05/2008 until 27/04/2009.

at around 1.5 x 104 days.

Data from the Dow Jones Euro Stoxx 50 is also examined. This is an index of 50 blue

chip1 sector leaders from 12 Eurozone countries which was launched in 1998. The price

is recorded each minute and runs for a year, from the start of May 2008 until the end of

April 2009. There are 109,545 data points in this time series, shown in the bottom panel

of Figure 2.1. The period of high volatility in the middle of the data corresponds to the

collapse of Lehman Brothers in September 2008.

The log returns for both DJIA and Euro Stoxx 50 are shown in units of standard

deviation to allow for comparison. Summary statistics for both time series are presented

in Table 2.1. The properties presented in the table will be discussed in the following

sections.

2.3 Leptokurtic Logarithmic Returns

One of the most well-known stylised facts of financial data is that the log returns have

fat or heavy tails, as was emphasised by Mandelbrot [19–21]. This refers to the shape of

1Blue chip refers to being financially sound and reliable.
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data ∆t N min max µ σ skewness kurtosis H
DJIA 1day 20922 −0.2563 0.1427 1.89 · 10−4 0.0117 −0.5931 27.2784 0.5146
Euro Stoxx 50 1min 109545 −0.0935 0.0610 −4.5257 · 10−6 0.0011 −2.1397 1.0335 · 103 0.448

Table 2.1: Summary statistics for the log return data examined in this chapter for the
stylised facts of financial data. N is the sample size of the data, µ is the sample mean

and σ the sample standard deviation. H is the estimated Hurst exponent of the sample.

the empirical distribution. The tails of the distribution look fat because they contain a

lot more extreme events than a Gaussian does.

The shape of the empirical distribution is called leptokurtic, from the Greek lepto

meaning thin or slender, and kurtos, meaning bulging or curvature, referring to the thin-

ness of the centre and the fatness of the tails. Kurtos is also the origin of the word

kurtosis, a measure of the peakedness of a probability distribution. Kurtosis is the fourth

central moment:

κ = E
[

(x− µ)4

σ4

]
where µ is the sample mean and σ the sample standard deviation.

The Gaussian distribution has κ = 3.2 The kurtosis of the DJIA and Euro Stoxx 50

data shown in Figure 2.1 are given in Table 2.1. Both have κ� 3 and the kurtosis for the

Euro Stoxx 50 log returns is extremely high. Log returns in general have high kurtosis.

In Figure 2.2 the distribution is shown for the DJIA daily log returns as well as

minutely log returns for Euro Stoxx 50. Gaussian distributions with the same mean and

standard deviation as the empirical distributions are shown as well for reference. Clearly

the Gaussian distribution is not a good fit in either case. There are too many log returns

close to zero and also too many extreme events compared to a Gaussian random variable.

The fat tails are easily seen on a semi-logarithmic scale in Figures 2.2(b) and 2.2(d).

The slow decay of the tails can be quantified by comparison to a power law or Pareto

distribution. This can be seen in Figure 2.3. Here the inverse cumulative function 1 −
P[|Z| < X] versus X is shown on a doubly logarithmic scale for the DJIA and Euro Stoxx

50 log return time series. The function for the positive and negative tails are also shown

separately on this graph. On the doubly logarithmic scale, the power law y = x−α is

displayed as a straight line and there is reasonable agreement between this and the tails.

For the DJIA data, α = 4 and for Euro Stoxx 50, α = 1.5. The tail index of financial

log return distributions tends to be between 2 and 4, with a lower index indicating fatter

tails [48, 49]. This shows that the Euro Stoxx 50 returns have much fatter tails than the

2Sometimes kurtosis is defined as κ − 3 so that a Gaussian distribution has a kurtosis of 0. The
correct term for this definition is “excess kurtosis” as it is the kurtosis in excess of that of a Gaussian
distribution.
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Figure 2.2: (a), (b) The distribution of log returns for daily DJIA data, 1928-2012.
(c), (d) The distribution of log returns for minutely Euro Stoxx 50 data, May 2008 -

April 2009.

DJIA returns. This was also clear from Figure 2.2. The Gaussian is not a good fit to

the data for either log return time series and it further illustrates that the tails of the

empirical distribution are much fatter than those of a Gaussian.

A leptokurtic distribution is a common characteristic of financial log returns. The

particular shape will vary between time, scale and financial product. But this feature of

a thin-peaked distribution with fat tails is universal [19, 49].

2.4 Asymmetry of Returns

There are more extreme negative log returns than there are positive. This can be seen

when the skewness of the probability distribution is calculated. Skewness is a measure of

the asymmetry of the distribution. It is the third central moment:

γ = E
[

(x− µ)3

σ3

]
.

The Gaussian distribution is symmetric and so all its odd moments are 0. It is

generally a feature of log returns that they have a negative skew [19]. This means that

there are more extreme negative log returns than positive. Figure 2.2 shows that this is
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the case for both the DJIA data and the Euro Stoxx 50 data as in both cases the left tail

extends much further than the right one.

The asymmetry can also be seen from Figure 2.3. The negative tail of the DJIA log

returns is slowest to decay. This causes the negative skewness. Also, the data for the

positive tail finishes before the others because it does not contain events as extreme as

those in the negative tail. The negative tail is longer than the positive one for the Euro

Stoxx 50 data as well. The skewness for both sets of log returns are given in Table 2.1.

This trait is not one of foreign exchange log returns for currencies with similar mone-

tary policy [5]. Since currencies are traded against each other, if one takes a dive it means

that another has jumped in value. This leads to more symmetry in foreign exchange prices

than for equities where prices are not so directly anticorrelated.

2.5 Uncorrelated Returns

Price changes are uncorrelated [19] [3, chapter 7]. The direction of the next log return

cannot be predicted from the price history. This is evidence for the absence of arbitrage,

or the principle of “no free lunch”. Arbitrage refers to the opportunity to make riskless

profit by trading in the market, as mentioned in Section 1.10.1. If there were correlations

in prices this would be possible. However any chance of arbitrage is quickly capitalised on

by traders and prices rebalance so that the directions of future moves are unpredictable.

Figure 2.4 shows evidence that log returns are uncorrelated for the data that I have

examined. The autocorrelation of the log returns Z falls to within noise level at very

short lags. The autocorrelation function (ACF) is calculated by

A(X, τ) =
E[(Xt − µ)(Xt+τ − µ)]

σ2
;

τ is the time lag.

Empirically, existence of autocorrelation in financial log returns at very short time

scales (less than about 20 minutes) has been shown [19, 34]. At these time scales, cor-

relations can be attributed to market microstructure effects. An example of this would

be the “bid-ask bounce” which refers to the trade price bouncing from the bid price to

the ask price or vice versa. This can lead to some negative autocorrelation at very short

time scales [44].

The Dickey-Fuller unit root test [50, 51] is a standard test for correlation in a series.

A unit root process xt is an autoregressive process of the form: xt+1 = xt + εt, where εt

is a noise term with stationary increments. A unit root process is a martingale and is

also a nonstationary process. If the noise terms εt are also iid, then xt is a random walk.
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Figure 2.4: Graph of the autocorrelation functions for both the DJIA and Euro Stoxx
50 log returns.

Thus a unit root price process corresponds to a “no arbitrage” condition as it means the

price history is not helpful for predicting future prices [5].

In the basic version of the test, the data is fitted to the regression model

xt = ρxt−1 + εt

⇔ ∆xt = ηxt−1 + εt

where εt is a noise term with stationary increments and mean 0, η = ρ − 1. ρ is the

autoregressive parameter and η is the mean-reversion parameter.

The Dickey-Fuller test tests the null hypothesis H0 : ρ = 1 (η = 0) against the

alternative H1 : ρ < 1 (η < 0). The augmented Dickey-Fuller (ADF) test tests the

same hypotheses for the regression

xt+1 = ρxt + r1∆xt−1 + · · ·+ rn∆xt−n + εt.

This allows for dependence of the process on values further in the past than the Dickey-

Fuller test.

I have used MatLab’s inbuilt ADF test for both the DJIA and Euro Stoxx 50 price

data. The test uses a significance level of 5%. This means that if the probability of

obtaining a test statistic at least as extreme as the one observed is less than 5% when

H0 is true, then H0 is rejected. In the language of statistics, H0 is rejected if the p-value

is less than 0.05. Results of the test are shown in Table 2.2. In both cases the unit root

hypothesis is not rejected. This shows that both price series have linearly uncorrelated

differences in agreement with expectation.
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price data h p-value
DJIA 0 0.9611
Euro Stoxx 50 0 0.0541

Table 2.2: Table showing the results of the ADF test. The value of h indicates the
result of the test, h ∈ {0, 1}. h=0 means that the null hypothesis of a unit root is not

rejected. The p-value gives the probability of obtaining a test statistic at least as
extreme as the one observed if the null hypothesis is true.

2.6 Volatility Clustering

Volatility is a bit of a slippery word used in the world of economics and finance to describe

the spread of log returns. A time of high volatility is one in which there are many log

returns of large amplitude in both directions. It is difficult to pin down a strict definition

for volatility. Often it is used as a synonym of standard deviation but common measures

for it are the absolute values of log returns, squared log returns or an average of either

of these over an appropriate time window [1, 52] [3, chapter 7].

From Figures 2.1 (b) and (d), it can be seen that there are periods of time when there

are small log returns (volatility is low), and other periods when their magnitudes are large

(volatility is high). It is easier to see this by looking at the absolute log returns which are

shown in Figure 2.5. The different regimes of high and low volatility are persistent. In

1963 Mandelbrot was the first to identify this feature, noting that “large changes tend to

be followed by large changes - of either sign - and small changes tend to be followed by

small changes” [21]. This stylised fact has been called volatility clustering. The amplitude

of the log returns are correlated, even though their signs are not [19, 1, 49] [3, chapter 7].

Volatility clustering can easily be identified by examining the ACF of the absolute

values of the log returns. A comparison between the ACFs of log returns Z and their

magnitudes |Z| is revealing. Figure 2.6 shows the autocorrelation for both Z and |Z|
for DJIA and Euro Stoxx 50. It shows that there is memory in the sizes of log returns

although there is no memory in their signs.

There are obvious oscillations in the ACF for the absolute log returns of the Euro

Stoxx 50 index shown in Figures 2.6(b) and 2.7(b). The peaks occur at intervals of

roughly 480 minutes. There are about 480 minutes in a regular trading day and so these

oscillations are a result of intradaily patterns of a high volume of trading close to opening

and closing times and the slower pace of trading at lunch time [53, 54]. These patterns

do not feature in the daily DJIA data because of its lower resolution.

It is often found empirically that the ACF of absolute log returns has a slow, power-

law decay [19, 44]. In Figure 2.7, this is illustrated for DJIA and Euro Stoxx 50. The
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Figure 2.5: The absolute log returns of DJIA and Euro Stoxx 50. The nonstationary
variance or volatility clustering is clear to see in both cases.

ACF of |Z| versus the lag τ is shown on a doubly logarithmic scale along with a power

law with exponent β = −0.2 in both cases. There is close agreement between the power

law and the ACF for 3 . τ . 300 for DJIA and for 2 . τ . 10000 for Euro Stoxx 50.

The value of the exponent is not universal but generally the power-law decay of the ACF

of absolute log returns is a common feature in financial data. The exponent usually falls

within the range −β ∈ [0.2, 0.4] [19].

Other measures of volatility that are sometimes used are higher powers of the absolute

log returns, that is |Z|p for some p > 1. These also have slowly decaying ACFs compared

to that of Z. However, it has been found that the autocorrelation is slowest to decay for

p = 1 and in fact that the autocorrelation falls almost monotonically as p moves away

from 1 in either direction (so long as p > 0) [34]. This is illustrated for DJIA daily data

in Figure 2.8.
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Figure 2.6: Graphs of the autocorrelation of log returns, A(Z, τ), and of the magnitudes
of log returns, A(|Z|, τ), where τ is the lag.

2.7 Aggregational Gaussianity

The log returns described so far are on a daily scale in the case of the DJIA data, or

minutely in the case of the Euro Stoxx 50 data. It is possible to have log returns calculated

over a huge range of scales, from tick data which is updated at every trade, which can be

up to a few times a second, to data updated only annually or even less often.

The distribution of log returns is not invariant under change of scale [19, 53]. The

leptokurtosis which has been demonstrated for fine time scales in Section 2.3 diminishes at

coarser time scales. This has already been illustrated somewhat by the contrast between

the extremely high kurtosis of the minutely Euro Stoxx 50 log returns and the still high

but more modest kurtosis of the daily DJIA log returns; see Table 2.1.

The distribution approaches normality at longer time scales [27]. That is, over longer

time scales such as annually aggregated data, the distribution of log returns is better
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Figure 2.7: Graphs of log(A(|Z|, τ)) versus log(τ), where τ is the lag, along with a
power-law fit.

described by a Gaussian than it is at shorter time scales. Financial data therefore exhibits

aggregational Gaussianity even though it is non-Gaussian at the microscopic level [49, 53].

The Euro Stoxx 50 data that I have been analysing is only a year long and so cannot

be tested for this stylised fact. The DJIA data is 84 years long and I construct the

probability distribution function for weekly, monthly and annual log returns extracted

from the daily data. They are shown in Figure 2.9 on a semi-logarithmic scale along with

distribution of the daily log returns and a standard normal curve for comparison. The

most extreme events of the daily log returns which were shown in Figure 2.2(a) have been

left out of Figure 2.9 for increased clarity.

The distribution of the annual log returns is more closely described by the Gaussian

than are the distributions at higher resolution. There are only 84 data points for the

annual distribution but it is enough to illustrate the dependence of the shape of the

distribution on the time scale of the log returns.
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Figure 2.9: Graph of the probability distribution function for daily, weekly, monthly
and annual normalised DJIA log returns along with a standard normal distribution for
comparison. It is shown on a semi-log scale so the details of the distributions’ tails are

visible.
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2.8 Chapter Summary

This chapter has presented a detailed overview of many of the accepted stylised facts of

financial data. Daily data from the DJIA and minutely data from the Euro Sotxx 50

index have been examined and shown to display these features. I have shown that the

log returns have fat tails and are uncorrelated. At the same time, the absolute values of

the log returns have an ACF which decays slowly, roughly following a power law. The

DJIA data has also been shown to exhibit aggregational Gaussianity. The next chapter

will introduce another statistical property which is commonly found in financial data:

multifractality.
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Chapter 3

Introduction to Fractals and

Multifractals

3.1 Introduction

Fractal and multifractal structures have been found in many diverse systems. These

include heart rate variability, rare-earth elements, the Internet and art [55–68]. Multi-

fractality has been accepted in recent years as another stylised fact of financial log return

data [49]. This chapter presents an introduction to fractals and multifractals using some

illustrative examples. The partition function and multifractal spectrum are also intro-

duced. These concepts are then applied to financial data. The method of Multifractal

Detrended Fluctuation Analysis which allows for multifractal analysis of time series data

is described in detail. This chapter also reviews some of the literature covering how

multifractals have been used in financial modelling.

3.2 Fractals

The word “fractal” was coined by Benôıt B. Mandelbrot, derived from the Latin fractus

meaning broken or irregular [20, chapter 1]. A fractal is an object which is self-similar

and has fine detail, inadequately described by the smooth shapes of classical geometry.

Being self-similar, these same fine details can be seen on smaller and smaller scales as

you look at higher and higher resolutions of the object. Mandelbrot called it the “science

of roughness” [20, chapter 1].

A common example of a natural fractal is a coastline. A coastline is made up of

many bays and peninsulas, and each of these in turn have their own smaller bays and

peninsulas. Confronted with a map of an unfamiliar coastline, it is difficult to discern
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the scale of the map because there is similar detail at all scales.

A coastline is not perfectly self-similar. Rather, it is a statistical fractal. We say this

because the scaling is not exact. As you look at the coastline at different resolutions you

see similar structure but it will not look exactly the same as the overall coastline. Also,

there is a limit to the scaling. As you continue to zoom in on a section of the coastline,

eventually you see only rocks and sand and then smaller and smaller particles. At the

atomic level for example, the jagged shape of the coastline is no longer discernible. All

fractal objects found in nature have these limiting properties.

Purely mathematical fractals can be constructed without these limitations. Studying

these helps to clarify the important features of fractal shapes. The von Koch curve is a

useful introductory example.

3.2.1 The von Koch curve

Beginning with a straight line of unit length, the von Koch curve can be built iteratively

so that its structure is known exactly. The construction is shown in Figure 3.1.

In the first iteration, the middle third of the line is replaced by two line segments each

of length 1/3 arranged as the sides of an equilateral triangle over the removed section.

In the second iteration, each of these four line segments again have their middle third

replaced by a suitably scaled triangular “hat”. Now there are 16 line segments each of

n = 0 n = 1

n = 2 n = 3

Figure 3.1: The first few iterations of the building of the von Koch curve. The curve at
stage n = 1 is called the generator because the complete curve can be built recursively

from it.
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length 1/9. This process continues so that at iteration n, there are 4n segments each (1/3)n

long.

The von Koch curve is defined in the limit n→∞ and so it has infinite length and is

nowhere differentiable [69, chapter 1] [70, chapter 2]. The length of the curve, normally

a useful descriptor, is not a suitable characterisation of its geometry.

Since the length of the von Koch curve is not well defined, a different description of

its character is required. This is the dimension. The regular concept of dimension in

Euclidean space can be thought of as a scaling exponent. For example, think of covering

a regular two-dimensional square in R2 of side L with Ns smaller squares of side s. As

the size of the covering squares decreases (s → 0), the number Ns of them needed to

cover the large square increases according to the scaling law

Ns ∝
(
L

s

)2

The exponent provides the dimension of the square. This method defines the box-counting

dimension [70, chapter 4] [71, chapter 9] [72, chapter 3]. There are other definitions of

dimension but this one is sufficient for the current discussion1. In general, the box

counting dimension can be found by covering an object of linear extent L with boxes of

length s;

Ns = lim
s→0

(
L

s

)D
(3.1)

=⇒ D = lim
s→0

lnNs

ln L/s

The box-counting dimension is the scaling exponent D. The number of boxes needed to

cover the object increases as the box size s decreases following a power law with exponent

D.

The dimension of the von Koch curve can be found using this method. At the nth

stage of the iteration, 4n line segments of length (1/3)n are needed in order to cover the

curve. So the dimension is

D = lim
n→∞

ln 4n

ln

(
1

1/3

)n =
ln 4

ln 3
≈ 1.2619.

This dimension is non-integer as is often the case for fractal objects. The dimension

1Examples of other dimensions are the Hausdorff dimension, the correlation dimension and the
information dimension. The different definitions of dimension coincide for monofractals such as the von
Koch curve, but may have different values for multifractals, discussed later [69, chapter 6].

43



gives an impression of the size of the fractal. The von Koch curve’s dimension is between

1 and 2, so it is somehow thicker than a line but not as big as a surface. Also it is a

scaling exponent for the fractal, giving some information on the iterative process used

to generate it. As the length s of the measuring tool decreases, the measured length of

the curve l increases as the measurement can take in more of the fine structure of the

curve [73, 74]. The dimension is a measure of the rate of growth of the measured length

of the curve l as the inner length scale s decreases:

l ∼ s1−D

This is reminiscent of the coastline paradox recorded by Lewis Fry Richardson [75].

He noted that the length of a coastline or country border would depend on the length of

the measuring tool and in particular would get longer and longer without converging to

a “true” length as the measuring tool gets shorter.

3.3 Multifractals

A fractal is such due to its shape; it is a purely geometrical property. But there may

be more to an object than its shape. An object can be endowed with some distribution

so that different parts of the object have different weight or measure. Now it is possible

to talk about the support which is the shape of the underlying object, and the measure

which is the weight distributed over the support. The measure is some location dependent

integrable property of the object [74].

It is possible for a measure to have very complex structure and it can be described

as multifractal if different parts of the measure scale with different scaling exponents. A

multifractal cannot be described by one scaling exponent as in the case of (mono)fractals

for which the dimension is an adequate description of scaling. Rather, a whole spectrum

of scaling exponents is needed to characterise a multifractal.

3.3.1 Binomial measure

The Binomial measure is often cited as an introductory example to multifractals [76, 77,

74]. A simple analysis of the Binomial measure can help introduce the main properties

of multifractal measures in general. It can be built in an iterative fashion as was the von

Koch curve. The support of the object is a straight line interval I = [0, 1]. On top of the

line there is a measure µ so that µ(I) = 1, and it is evenly distributed over the whole

interval.
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At the first iteration n = 1, I is divided into two equal intervals. The measure µ is

divided into two pieces; p0µ is placed on (0, 1/2) and p1µ is placed on (1/2, 1), as shown in

Figure 3.2. The proportions are chosen so that p0 + p1 = 1; p0, p1 > 0 and p0 6= p1 so as

not to get a trivial result.

At the next iteration n = 2, the same process is repeated in both of the subintervals.

So p0p0 is placed uniformly on (0, 1/4), p1p0 is placed on (1/4, 1/2), p0p1 on (1/2, 3/4) and p1p1

on (3/4, 1). The process continues to be repeated for each new subinterval. The measure

is defined for n→∞ and so it has an extremely jagged shape as shown in the last panel

of Figure 3.2.

Let s be the width of an individual box which has uniformly distributed measure.

Therefore at the nth iteration, s = (1/2)n. There are different amounts of measure in

different boxes. In the leftmost box at iteration n, for example, µ = pn0 . So for this
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Figure 3.2: The iterative building of the Binomial measure. This construction has
p0 = 0.7. The measure µ of any section of the interval is the area under the curve over

that section. The Binomial measure is defined in the limit n→∞
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leftmost box, as n→∞,

s ∼
(

1

2

)n
µ ∼ pn0

=⇒ lnµ ∼ ln s
ln p0

ln 1/2

=⇒ µ ∼ sα (3.2)

where α =
ln p0

ln 1/2
= − log2 p0.

α is called the Hölder exponent and characterises this part of the measure. However,

a different Hölder exponent can be found in different areas of the measure. For example,

in the rightmost box, µ ∼ pn1 , s ∼ (1/2)n and so α = − log2 p1.

This is why this measure is called a multi fractal, because now many scaling exponents

are required and not just one. In fact there is a whole spectrum of α values which

characterises the measure.

It can be seen from Figure 3.2 that there are different parts of the support which are

covered with the same amount of measure. The number of boxes N(α) with measure

characterised by an exponent in the range [α, α+dα] increases as n→∞ or equivalently

as s→ 0. This number also scales according to the ansatz [78]

N(α) ∼ s−f(α), f(α) > 0 (3.3)

This relation is similar to equation 3.1, the definition of the box-counting dimension.

Appropriately, the subset of segments (which become points as s → 0) in the measure

described by Hölder exponent α is said to have dimension f(α) [78]. The multifractal

measure is made up of many intricately interwoven fractals, each with their own dimension

or scaling exponent α.

Some values of α are more common than others. For example, there will only ever be

one box with the maximum amount of measure, pn0 : the leftmost box. This corresponds

to the minimum value of α. Therefore, from equation 3.3,

N(αmin) = 1⇒ f(αmin) = 0.

Similarly, for the box containing the least measure on the extreme right, f(αmax) =

0. Between these two extremes there are many different Hölder exponents of varying

commonality, so that a multifractal spectrum can be obtained. For the Binomial measure,
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Figure 3.3: The function f(α) versus α for the Binomial measure when p0 = 0.7.
f(αmax) = f(αmin) = 0.

the f(α) spectrum can be found analytically2 to be

f(α) = −
(

αmax − α
αmax − αmin

)
log2

(
αmax − α

αmax − αmin

)
−
(

α− αmin
αmax − αmin

)
log2

(
α− αmin

αmax − αmin

)
. (3.4)

The spectrum is shown in Figure 3.3.

An analytical approach will not work for many multifractals, and numerical techniques

must be called upon. A general numerical method for calculating f(α) is via a partition

function.

3.3.2 The partition function

Not all multifractal objects are as regular as the Binomial measure. With the Binomial

measure it is possible to find how much measure is in each box at any resolution simply

by the box’s location2. However, if such detail is not known, more analysis is required to

find the different amounts of measure on the object and how they scale as the box size s

is decreased.

The general method for numerically finding the multifractal characterisation of an

object X is via a partition function [78, 73][71, chapter 10]. This involves introducing a

new parameter q. First cover the object with a grid of boxes with side s. For a given

mesh size s, the number of boxes needed to cover the object is Ns. The boxes can be

labeled N1, N2, . . . , NNs . Then µ(Ni(s)) is the measure in box Ni of side s, where the

measure µ is normalised so that µ(X) = 1.

2See Appendix A.
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Then the partition function is calculated for a chosen value of q:

χq(s) =
Ns∑
i=1

µq(Ni(s)).

This is repeated for different box sizes s until a graph can be plotted of log(χq(s)) versus

log(s). If an appropriate linear region can be found on this doubly logarithmic plot, its

slope can be determined and is equal to τ(q) = (q − 1)Dq, where Dq is the qth order

generalised dimension [79]. D0 is the dimension of the underlying support.

If the object is a multifractal, repeating for different values of q yields different values

of Dq (for a monofractal, Dq = D0 for all q). Eventually a plot of f(α) versus α can be

obtained by the Legendre transform borrowed from thermodynamics [71, chapter 10]

α(q) =
dτ(q)

dq

f(α(q)) = α(q)q − τ(q).

The partition function χq(s) will be dominated by different parts of the measure

depending on the value of q. For positive q, the boxes with large measure will dominate,

whereas for negative q, the boxes with small measure will dominate. Therefore the

parameter q allows determination of how different parts of the measure scale within X.

If different parts of the measure have different scaling exponents, X is a multifractal.

3.4 Multifractal analysis of time series

Time series data such as the log returns of a stock or index do not lend themselves imme-

diately to multifractal analysis, even via the partition function method. It is necessary

to resort to more involved numerical techniques to compute the multifractal scaling spec-

trum. Critically, for a time series the horizontal and vertical axes do not have equivalent

units, and so the concept of the measure being the area under the curve does not follow

through from the discussion above. The data cannot be considered as a two-dimensional

structure with a possibly multifractal area.

There are a number of methods by which one might examine the fractal proper-

ties of time series data. Common ones include the Wavelet Transform Modulus Max-

ima (WTMM) method [80, 81] and Multifractal Detrended Fluctuation Analysis (MF-

DFA) [82, 64]. It has been shown that for data where the true fractal structure is un-

known, MF-DFA is the recommended method of these two, showing less bias and being

less likely to give a false positive result [83–85]. This is the method which I will use for
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my analysis.

The critical thing is to assign a value F to each part of the data by some function3.

If the assigned value F = 0 at only a negligible proportion of points in the time series,

the support of the multifractal can be considered as simply a line segment (D0 = 1) as

was the case for the Binomial measure [82]. It must then be checked if the assigned value

F scales with the segment size s. If there is scaling over a sufficient range of values of s,

the multifractal spectrum of f(α) versus α can be produced. The details of this method

are given below.

3.4.1 Multifractal Detrended Fluctuation Analysis

MF-DFA is an extension of Detrended Fluctuation Analysis (DFA) [86, 87] which is a

method of revealing long-term correlations in data [88]. By DFA and MF-DFA, the value

F of a section of the data is the variance of the data from a polynomial fit. It is well suited

to time series analysis because it is designed for data of a finite length, without requiring

an N → ∞ approximation for validity [82]. Also this method treats the data simply as

a one-dimensional line and assigns new values to each segment. This deals with the data

having direction-dependent scaling properties and the nonequivalence of the time and

value axes [82]. The assigned values are then assessed for scaling and multifractality.

The details of the method are outlined below. The first few steps describe DFA and

afterward this is extended to the multifractal case via a version of the partition function

described in Section 3.3.2. Begin with a disaggregated time series X such as a set of

financial log returns.

1. Transform X into Y by finding the mean-reduced cumulative sums,

Yj =

j∑
i=1

(
Xi − X̄

)
.

This new data set is aggregated, resembling a random walk rather than a noise

series, and has mean 0.

2. Choose a length s. Starting from the beginning, divide Y into non-overlapping

segments ν of length s. Since s may not divide evenly into N , make another set of

segments starting at the end of the data and coming back so that no data are left

out. This results in 2 [N/s] = 2Ns boxes covering the entire data set.

3I use notation F rather than µ in this context to conform to the literature. Also since the value F
assigned by MF-DFA is not strictly a measure, it is appropriate not to use µ here. The fact that F is
not a measure will be discussed in Section 3.4.2.
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3. Find the least-squares polynomial fit yν of chosen order n to the data in each

segment ν = 1, . . . , 2Ns.

4. Find the root-mean-square error or fluctuation between Y and the fit yν in each

segment ν. This is the value F (ν, s) of segment ν of size s:

F 2(ν, s) =
1

s

s∑
i=1

(Y [(ν − 1)s+ i]− yν [i])2 for ν = 1, . . . , Ns and

F 2(ν, s) =
1

s

s∑
i=1

(Y [N − (ν −Ns)s+ i]− yν [i])2 for ν = Ns + 1, . . . , 2Ns.

5. Next find the variance of F (ν, s) over all segments ν of length s,

F2(s) =

(
1

2Ns

2Ns∑
ν=1

F 2(ν, s)

)1/2

.

6. Repeat steps 2 - 5 for different segment lengths s, finding a new value F2(s) in each

case.

7. Plot log(F2(s)) versus log(s) and find the least-squares linear fit to the curve. If

there is a reasonable linear fit to this data over a sufficient range of s, it indicates

that the data is self-affine. The slope of this line, h(2), is an extension of the Hurst

exponent which can be applied to non-stationary data; F2(s) ∝ sh(2).

The steps above describe DFA. This procedure will only find one scaling exponent

H for the data set and so cannot differentiate between mono- and multifractals.

In a monofractal, there are no periods of extreme high or low volatility, and so

the fluctuation F2 of the data from the polynomial fit y is enough to characterise

the scaling. However, for a multifractal, there are periods of extreme high and low

volatility and so variance is not enough to describe the scaling. Different order

moments should be considered. DFA is expanded to MF-DFA by including the

partition function to take this into account:

8. Introduce a parameter q. Adjust the above procedure simply at step 5. Instead

of finding just the variance F2, find the qth order variance Fq for a range of both

positive and negative q for each segment size s. This corresponds to the partition
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function described in Section 3.3.2.

Fq(s) =

(
1

2Ns

2Ns∑
ν=1

(
F 2(ν, s)

)q/2)1/q

For q = 0, use the quenched average4 F0(s) = exp
(

1
2Ns

∑2Ns

ν=1 ln(F (ν, s))
)

.

Repeat for different values of s as before.

9. For each value of q, plot log(Fq(s)) versus log(s). Find the least-squares linear fit

to each curve. If an appropriate linear region of sufficient length (more than one

order of magnitude of s) is found for each value of q, it can be concluded that there

is scaling in the data.

10. If there is scaling in the data, calculate the slopes h(q) of the linear fits. If h(q)

varies with q, it indicates that X is multifractal. If X is monofractal, the slopes

produced by different values of q will all be the same.

11. In the case of varying h(q), find the multifractal exponent τ(q),

τ(q) = qh(q)− 1− qH ′

where H ′ = h(1) − 1 is the nonconservation parameter5 and proceed to the f(α)

spectrum via the Legendre transforms:

α(q) =
dτ(q)

dq

f(α(q)) = α(q)q − τ(q).

A plot of f(α) versus α is the multifractal spectrum for the time series data X.

3.4.2 Comments on MF-DFA

With this method, the first step is to detrend the data. This removes any drift from the

time series and means that MF-DFA is not sensitive to nonstationarities in the data. It

is known that there are seasonal effects in financial data on different time scales, such as

the “January effect” and the “weekend effect,” and a slump in trading around lunchtime

is commonly noticeable in intra-daily data [5, 89, 54]. Also there may be trends in the

4See Appendix B for details.
5This is an adjustment to the original definition of τ given by Kantelhardt et al [82], τ(q) = qh(q)−1.

It accounts for the fact that F 2(ν, s) is not strictly speaking a measure on the time series Y . This is
discussed below in Section 3.4.2.
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market over longer time scales due to other influences such as a persistent “bear market”

in which prices tend to drop or a “bull market” in which prices rise due to aggregate trader

sentiment. On the time scales of years, prices have generally been found to increase at

an exponential rate [1].

All such trends will be removed by the detrending in Step 1. This leaves just the

fluctuations about the mean which comes from having so many different traders operating

in the market, each with their own strategy. In this study, the focus is on these stochastic,

little understood movements. The order of detrending n allows discrimination in the type

of trends that are removed. The trends themselves could be studied separately.

The parameter q is included as a means of finding the multifractal spectrum. When

q is positive, the variance Fq will be dominated by segments with large value. When q is

negative, it will be dominated by segments with small value F (v, s) < 1. In this way, it

picks out areas of the data with extreme high and low standard deviation. This makes it

possible to differentiate between the scaling behaviour of high and low value areas of the

data. If these scale differently, it means that the time series is a multifractal and a range

of scaling exponents α is needed to characterise the scaling.

When q = 2, the standard DFA procedure is recovered. If the process is stationary,

DFA will lead to the standard Hurst exponent. This is why h(q) can be called a gener-

alisation of the Hurst exponent, as in Step 7 above [82]. If the series is stationary, the

detrending will not alter it as there is no trend.

Generally in standard multifractal analysis, the function F of interest is a measure [78,

73]. A measure µ on a set S has, among others, the following properties:

1. µ : S → [0,∞]

2. µ(A) ≥ 0, for all measurableA ∈ S

3. µ(∅) = 0

4. If
⋃N
i=1Ai = B for disjoint sets Ai, then

∑N
i=1 µ(Ai) = µ(B)

Based on these properties, if A and B are measurable subsets of S and A ⊆ B, then

µ(A) ≤ µ(B). The function F used in MF-DFA does not have this property [90, 91]. It is

possible for the root-mean-square deviation from the fit to decrease as the segment size s

increases so that Fq(ν1, s1) > Fq(ν2, s2) although (ν1, s1) ⊂ (ν2, s2). This accounts for the

need for the correction to the definition of τ(q) noted in Step 11 above. References [90, 91]

contain a derivation of the correction.

The value F could be converted from the definition given in Step 4 into a measure by
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removing the averaging procedure and instead defining

F 2(ν, s) =
s∑
i=1

(Y [(v − 1)s+ i]− yν [i])2 .

This value would necessarily increase with s. However the definition of Step 4 above is

well established and so I will use it with the correction to τ(q).

The generalised dimension Dq does not appear in the MF-DFA method. However Dq

can be found via MF-DFA. The two definitions of τ(q),

τ(q) = (q − 1)Dq from the standard partition function method (Section 3.3.2) and

τ(q) = qh(q)− 1− qH ′ from MF-DFA

are equivalent for a stationary series with compact support [82]. This gives

τ(q) =(q − 1)Dq = qh(q)− 1− qH ′

=⇒ Dq =
qh(q)− 1− qH ′

q − 1

It follows that in the case of the MF-DFA formalism, D0 = Dq|q=0 = 1. D0 is the

dimension of the underlying support. This shows that MF-DFA is suitable only for

multifractals with support of dimension D0 = 1. Time series data without too many

zeroes meets this criterion [82].

3.4.3 Interpretation of the Spectrum

In the case of a perfect mathematical multifractal such as the Binomial measure, the

f(α) spectrum is symmetric and reaches zero at both extremes as shown in Figure 3.3.

The left side of the spectrum represents areas of high measure and the right represents

areas of low measure. The symmetry thus reveals that areas of very high and very low

measure are present in the multifractal in similar proportions.

In the context of the partition function χq, for negative values of q, χq is dominated

by areas of small measure which are then shown on the right of the f(α) spectrum; for

positive values of q, χq is dominated by areas of high measure which are shown on the

left of the f(α) spectrum. In the numerical method of MF-DFA, measure becomes the

value F , the distance of the data from a polynomial fit, and Fq replaces χq.

If a range of scaling exponents are required to describe the scaling of F for a particular

time series X, then X is deemed to be multifractal. This does not necessarily mean that

a complete spectrum of f(α) with f(αmin) = f(αmax) = 0 will be obtainable. It may
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be that scaling is found only for a limited range of q. However, X is multi- rather than

monofractal once more than one scaling exponent is required.

3.5 Application to Finance

The application of multifractals to finance was introduced by the founder of the multi-

fractal framework, Benôıt B. Mandelbrot [20, chapter 1]. He first introduced the idea of

multifractality in 1968 in the context of turbulence, but saw its application to finance

because of its heavy tails and long power-law dependence. These two features are also

argued to be present in financial data [19]. In fact it was the investigation of financial

charts which initiated Mandelbrot’s study of “roughness” [20].

The Multifractal Model of Asset Returns (MMAR) was proposed by Mandelbrot et

al [76, 92] as an alternative to the ARCH models which were introduced by Engle to

produce volatility clustering [33], as described in Section 1.9. The MMAR also generates

log returns with volatility clustering. The motivation for the MMAR was to incorporate

the heavy tails as well as the long-term dependence of financial log returns.

The MMAR employs a similar concept of trading time being distinct from physical

time as used by Clark in the MDH [29], discussed in Section 1.8. It assumes that the

price process is multifractal. The model describes the price as

S(t) = BH (Θ(t)) .

BH is fractional Brownian motion (fBM) with Hurst exponent H. Where BM has Hurst

exponent H = 1/2, fBM has a Hurst exponent 0 < H < 1. When H > 1/2, BH is

persistent, while BH is antipersistent when H < 1/2. fBM thus has long memory and the

process S(t) can reproduce the volatility clustering of financial data.

Θ(t) is the cumulative distribution function of a multifractal measure. The multi-

fractal element Θ(t) deforms BH into a multifractal process and so the resulting price

S(t) has multiscaling properties. The main assumption of the MMAR is that the distinct

trading time Θ(t) warps the financial time series into a multifractal structure. It takes

the multifractality of the financial time series as a given.

The MMAR also allows for “outliers,” large deviations which make up the fat tails of

the return distribution and which had often previously been considered anomalies rather

than a feature of financial time series. The authors insist that even the most extreme

events should be accounted for by an appropriate model [20, 88].

The MMAR has been adapted to form the Poisson Multifractal Model (PMM) [93].

The difference between the PMM and the MMAR is the form of the multifractal mea-
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sure. In the PMM, the multifractal measure whose cumulative distribution function gives

the trading time Θ(t) is a Poisson multifractal. The multipliers used to form the multi-

plicative cascade6 in a Poisson multifractal change at random rather than predetermined

points in time. This means that the resulting process Θ(t) is “grid-free”. Another im-

portant property of the PMM is its Markov structure which is a result of the Poisson

multifractal [93]. The PMM also shares the desirable traits of the MMAR in that it

has a similar autocorrelation structure and produces fat-tailed log returns. The PMM in

turn influenced the development of the Markov Switching Multifractal (MSM) [94]. The

volatility in the MSM is stochastic, a product of a finite number of Markov components.

Another family of multifractal models is based on the multifractal random walk

(MRW) [95, 96]. The MRW features stochastic volatility with a correlation function

which decays slowly with logarithmic behaviour. The probability distribution of the in-

crements of the walk has fat tails and also features a transition to a Gaussian distribution

for large time scales. The increments themselves are uncorrelated while the volatility has

correlations with power-law decay.

The MRW has been extended to account for the negative skew which is found for

the distribution of log returns [19, 97]. It is also the basis for the Quasi-Multifractal

model [98] and the Self-Excited Multifractal (SEMF) model [99]. The innovation of the

SEMF model lies in the fact that values of the process depend on the past and there is

no dependence on exogenous shocks to produce the stylised facts. This makes it suitable

for modelling stylised facts which are believed to arise endogenously within the system.

It appears to be a well-established fact that financial data in general has multifractal

structure [49]. It is therefore important that any model of the financial process take

this into account. As has been shown in this section, much progress has been made in

incorporating multifractality into financial modelling in recent years.

3.6 Chapter Summary

This chapter presented a general introduction to fractals and multifractals using the ex-

amples of the von Koch curve and the Binomial measure. It also included an explanation

of the partition function, the general numerical method for extracting the multifractal

spectrum for a multifractal measure. This concept was expanded into MF-DFA to allow

for the multifractal analysis of time series data. This method of analysis was described in

detail. I then reviewed some of the literature which shows how multifractality has been

incorporated into some financial models. In the next chapter, a detailed multifractal

analysis of empirical financial data from the DJIA and Euro Stoxx 50 will be carried

6The multiplicative cascade is a generalization of the Binomial measure described in Section 3.3.1.
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out. This will clarify what it means for a time series to have a multifractal structure and

motivate the consideration of multifractality in the context of financial modelling.
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Chapter 4

Testing Financial Data for

Multifractality

4.1 Introduction

Many studies have found multifractal scaling in financial data [100–106]. Multifractal

analysis increases our understanding of the financial system and helps to characterise it.

An understanding of the multifractal nature of financial data can enable deeper insight

into the dynamics of financial products. It provides an additional benchmark by which

to measure the fitness of financial models. This in turn can help in the design of well

performing portfolios and in risk management [102].

The purpose of this chapter is to examine the DJIA and Euro Stoxx 50 log returns

for multifractality. I apply MF-DFA to both empirical financial time series. Where

multifractal scaling is found, the spectrum of scaling exponents is calculated via MF-

DFA. Further investigations are made to identify the origin of the multifractality in the

time series. Multifractality in time series might be predominantly due to the distribution

of the data or the temporal correlations [82], and so both of these origins are investigated

for the time series analysed in this chapter.

4.2 Parameter Selection

I have applied MF-DFA, described in detail in Section 3.4.1, to the disaggregated time

series of the log returns of both DJIA and Euro Stoxx 50. Any non-trading periods such

as nighttime and weekends are not included in the data. For the intradaily data, there

is no time gap between the closing price on one day and the opening price on the next

trading day; these prices are viewed as consecutive. The exclusion of overnight log returns
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from the minutely time series made no difference to the results of the analysis and so

they have been retained.

The length scales s used have a minimum of 10 and a maximum of [N/4], where N is

the length of the time series. This is the rule of thumb suggested by Kantelhardt [82].

At the maximum scale there are therefore 8 boxes since there are 2Ns boxes for each s.

The increments ∆s are uniform on a logarithmic scale. In selecting the detrending order

n for the analysis, it is important to consider the possibility of overfitting the data. Since

the smallest segment size is 10, n = 1 − 3 should be sufficient [64]. I found that n = 1

led to scaling results comparable if not better than those achieved by n = 2, 3 and so the

data is detrended by order n = 1 polynomials.

A wide range of 1001 values of the parameter q are chosen, with q ∈ [−50, 50]. This is

a very wide range in comparison with other studies [103, 64, 82, 77] where it is standard

to use q ∈ [−5, 5]. However, for smaller ranges of q, less of the multifractal spectrum is

revealed. I have found that f(α) ≈ 0 for the examined data as q → ±50, and this captures

the full spectrum [88]. The fact that the spectrum reaches zero at both ends means that

for any resolution at which we choose to examine the data, there is only ever one segment

which has the maximum value Fmax and only one which has the minimum value Fmin as

was the case for the Binomial measure discussed in Section 3.3.1. If f(α∗) = 0 for some

value α = α∗, then N(α∗) ∼ s0 = 1. So there is only one segment which has F scaling

with this particular value of α.

Multifractality has been reported in cases where there is only the spurious scaling

which can arise in non- or monofractal time series [107–109, 85, 110], and so caution is

required. It is critically important to check the linearity of the log-log plots as described

in Step 9 of the method outlined in Section 3.4.1.

It can be difficult to identify a linear region from the log-log plots alone. Plotting

the slope of the line over a moving window should reveal roughly constant slope over

the length of the line before linearity is accepted. These plots of the local slope make it

clear if there is any curvature in the lines. For perfect mathematical multifractals, these

local slopes would be exactly straight. Some oscillation away from a straight line can be

expected for statistical multifractals as we are dealing with here. However, if there are

any sustained curves revealed by considering the local slopes, any further multifractal

analysis must be abandoned. If there is no significant linear region revealed by the local

slopes, we cannot conclude that there is multifractal scaling in the data. The local slopes

of the log-log plots shown in this chapter are calculated for a moving window of points

which allows for some smoothing of the results while still being detailed enough to reveal

any nonlinearities.

The analysis was carried out in MatLab. The code provided by Ihlen [64] which was
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applied to physiological data proved useful. I made some adjustments and additions to

the code so that it exactly carries out the steps outlined in Section 3.4.1.

4.3 Results from MF-DFA

4.3.1 Log-log plots and f(α) spectra

The doubly logarithmic plots of Fq(s) versus s for the DJIA data for different values of

q are shown in Figure 4.1(a). The size of the segments s ranges from 10 to 5230. By

checking the local slopes of the log-log plots in Figure 4.1(b) it is possible to identify a

scaling region over two orders of magnitude from s = 10 to s = 2, 000. Although the

slopes are not constant, they oscillate around a constant within this region. This region of

scaling was then used to proceed to create the multifractal spectrum shown in Figure 4.2.

The f(α) spectrum constructed for the DJIA data is the classic shape of an inverted

parabola as was found for the Binomial measure displayed in Figure 3.3. It has its

maximum at f(α) = 1. This value gives the dimension of the underlying support of

the data which is assumed to be a straight line by MF-DFA. We see that f(α) ≈ 0 as

q → ±50. This shows that this range of q is appropriate to use. It also shows that

the DJIA log returns have scaling in areas of very high and very low volatility, since the

scaling of Fq continues to depend on q even for |q| � 0.

The results of the scaling check for the Euro Stoxx 50 data are shown in Figure 4.3.

In Figure 4.3(a), as s decreases there is a sudden drop in the value of log(Fq(s)) for q < 0

at s ≈ 65. This is not a numerical issue but a genuine feature of the data. Since F is a

measure of the distance of the data in any segment from a degree one polynomial fit, low

values of Fq(s) indicates that a segment of size s is very well fitted by a straight line.

The abrupt change in Fq(s) can be explained by the presence of a section of 59

consecutive zeroes in the log returns [88]. When the data X is zero, its cumulative sum

Y is a constant value. When a segment ν of Y with length s is within an interval of

constant value, that segment can be exactly fitted by a horizontal line. This means that

F (ν, s) will be close to zero. The smallest F dominates in Fq when q < 0 which explains

why the drop in log(Fq) as s decreases below the length of the interval of zeroes only

occurs for q < 0. Any scaling there may be in the data does not survive to scales smaller

than s ≈ 65.

It is not clear from Figure 4.3 if there is scaling in the data or not, even for s > 65.

The multifractality is less certain than for the DJIA case. The linearity is not of the

same quality as that observed for the DJIA data shown in Figure 4.1. It could be argued

that the local slopes in Figure 4.3(b) are not constant over a sufficient range of s and
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Figure 4.1: Graphs of the log-log plots and local slopes of the scaling function log(Fq)
versus log(s) for the daily DJIA data for selected values of q. The local slopes are

calculated over a moving window of 15 points. The slopes remain reasonably constant
for s ∈ [10, 2000].

so indicate a lack of scaling in the Euro Stoxx 50 data. In this case, this data could be

presented as a counterexample to the stylised fact of the multifractality of financial log

return data [49].

It could also be argued that scaling is present over more than two orders of magnitude;

for 65 . s ≤ 10000 [88]. The multifractal spectrum for the range 65 . s ≤ 10000 is shown

in Figure 4.4. The left side of the spectrum is stretched out and f(α) < 0 for α . 0.63.
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Figure 4.2: The multifractal spectrum for DJIA over the length scales s ∈ [10, 2000].

The left side represents the areas of high Fq. These are the areas of the data which are

badly fitted by a straight line or alternatively where individual points are far from the

mean trend.

If the data follows the scaling law of equation 3.3, the number of segments of data

N(α) whose value F (ν, s) has characteristic exponent in the range [α, α + dα] scales as

N(α) ∼
( s
N

)−f(α)

.

where N is the length of the time series. In this case, f(α) < 0 would mean that N(α)

decreases as s → 0. Since this does not make sense, the negative f(α) for α . 0.63

in the case of the Euro Stoxx 50 data shows that the extreme events do not follow this

scaling law. The region of the spectrum where f(α) < 0 and α > 0 is called the latent

part [111, 112]. The existence of a latent part is evidence of poor scaling, and possibly

even a breakdown in scaling, of the most volatile segments. This will be discussed further

in Section 4.3.2.

The fact that Figure 4.3 may indicate a lack of scaling and yet the spectrum in

Figure 4.4 can still be produced shows that real caution is required when conducting

multifractal analysis. A wide smooth spectrum does not imply that the data actually has

multifractal scaling.

The presence of an interval of 59 consecutive zeroes in the Euro Stoxx 50 data con-

stituting an hour of a completely stagnant price seems suspicious. There is also a section

of 19 consecutive zeroes, one of 15 as well as some shorter intervals of zeroes throughout

the data. To better understand their effect on the scaling, the three longest intervals are
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Figure 4.3: Graphs of the log-log plots and local slopes of the scaling function log(Fq)
versus log(s) for the Euro Stoxx 50 minutely log returns for selected values of q. It is
obvious that there is no consistent scaling for s < 65. The local slopes are calculated

over a moving window of 15 points.

removed so that the smallest segment size s = 10 is longer than the longest interval of

zeroes left in the data. The scaling check is then performed on the modified data and the

results displayed in Figure 4.5. In the log-log plots for the modified Euro Stoxx 50 data

there is no longer the sharp drop in Fq(s), as can be seen by comparing Figure 4.5(a)

and Figure 4.3(a). These results confirm that the sections of zeroes are to blame for

the sharp decrease in Fq(s) in Figure 4.3(a). However the local slopes do not appear to
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Figure 4.4: The multifractal spectrum for Euro Stoxx 50 over the length scales
s ∈ [65, 10, 000].

Data f(−50) α(−50) f(0) α(0) f(50) α(50) ∆α
DJIA 0.049882 1.2124 1 1.0126 0.058373 0.78155 0.43087
Euro Stoxx 50 −0.023382 1.2437 1 1.0184 −0.0981 0.6226 0.62162
Euro Stoxx 50, zeroes removed 0.0361 1.2606 1 1.0226 −0.00038 0.55587 0.70495

Table 4.1: Summary of the main results of MF-DFA on the daily DJIA and minutely
Euro Stoxx 50 log returns for a range of values of q ∈ [−50, 50]. Here ∆α = αmax−αmin.

be oscillating about constants and so I conclude that this modified data does not have

scaling.

The spectra in this chapter are shifted to the right in comparison to those in the

literature [103, 106, 77]. This can be accounted for by the updated definition of τ(q)

in Step 11 in Section 3.4.1. A summary of the results of MF-DFA for both data sets is

contained in Table 4.1.

4.3.2 The source of multifractality

It is generally accepted that there are two possible sources of multifractal scaling in time

series data [82]. It could be predominantly due to (1) the data being drawn from a broad

probability distribution or (2) long-term correlations of small and large fluctuations. Both

of these influences can individually be removed from the data to reveal the impact they

have on the multifractality of the time series.
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Figure 4.5: Graphs of the results of MF-DFA analysis on Euro Stoxx 50 minutely log
returns which have had three intervals of zeroes removed. Plots are shown for selected

values of q. The local slopes are calculated over a moving window of 15 points.

Source of Scaling - Distribution

The distributions of both the daily DJIA and the minutely Euro Stoxx 50 log returns

are extremely leptokurtic. The log returns are very wild at times, as can be seen in

Figures 2.1(b) and 2.1(d). The most extreme event for DJIA is Black Monday, 19th

October 1987. It constituted a drop of over 22σ for this index. The Euro Stoxx 50 data

contains even more extreme events.

Both distributions have been normalised and are shown along with the Standard

Normal curve for comparison on a semi-logarithmic scale in Figure 4.6. The Euro Stoxx

50 data is not shown completely; a negative log return of −86σ and some positive log
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Figure 4.6: Graph of the normalised empirically found distribution of the DJIA (red
squares) and Euro Stoxx 50 (blue circles) data along with the Standard Normal curve

for comparison. It is shown on a semi-logarithmic scale to make the fat tails clear.

returns of approximately 60σ are excluded to make the graph clearer.

The effect of the distribution on the scaling in the time series can be revealed in

a number of ways [103]. One method involves truncating the tails of the distribution.

If large positive and negative log returns are reduced, the data will retain its temporal

correlations while the fat tails of the distribution will be removed. This truncated data

can then be tested for multifractality to reveal what influence the distribution of log

returns has on the f(α) spectrum.

Any log returns z in the data which satisfy |z| > cσ are replaced by sgn(z)cσ where σ

is the standard deviation of the original data and c is the chosen truncation point. Then

the usual analysis can be conducted on this new data set to find the scaling properties.

I have done this for both DJIA and Euro Stoxx 50. The truncation point c varies

from 1 to 10 for DJIA and 1 to 15 for Euro Stoxx 50. The number of points which have

been truncated for each value of c are shown in Table 4.2.

The local slopes of the plots of log(Fq) versus log(s) for q = 25 are shown in Figure 4.7.

Since the truncation reduces the volatility of the data set, the areas of high F are affected.

It therefore is reasonable to only examine the graph of Fq|q>0 as these are the ones

dominated by large F . Fq|q<0 are unaltered by the truncation procedure.

The oscillations of the local slopes of F25 for the truncated DJIA data shown in

Figure 4.7(a) become more severe for more severe truncation. However the scaling is

preserved for most values of c. Extreme events are evidently not imperative to the

multifractal scaling in this time series.

65



c: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
DJIA 3875 957 362 162 75 45 27 13 10 5 4 3 1 1 1
Euro Stoxx 50 14166 2516 671 299 206 161 128 109 90 79 68 57 53 45 42

Table 4.2: The inverse cumulative frequency table showing the number of log returns
whose absolute value in units of standard deviation is larger than the given truncation

point c for both the DJIA and Euro Stoxx 50 time series.
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Figure 4.7: Graph of the local slopes calculated over 15 points of log(F25) versus log(s)
for DJIA and Euro Stoxx 50 log returns for a range of truncation points cσ. The colour

of the lines becomes lighter as c increases from the minimum value to the maximum
value indicated on the graph. The slope for the original data in both cases is the red

line.
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The local slopes of F25 for the truncated Euro Stoxx 50 data in Figure 4.7(b) are

closer to constant than that of the original data. The scaling is actually improved by

modest truncation. Apart from the most severe cases of c = 1 and c = 2, the slopes are

reasonably constant. The severe leptokurtosis of the Euro Stoxx 50 log returns is shown

to be a hindrance to the scaling. This was initially indicated by the stretched left-hand

side of its f(α) plot shown in Figure 4.4 in Section 4.3.1. This can be contrasted with the

much more symmetric f(α) plot for the Euro Stoxx 50 data truncated at c = 15 shown

in Figure 4.8.
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Figure 4.8: Graph of the multifractal spectrum, f(α) versus α, for the Euro Stoxx 50
data after it has been truncated so that any log returns |z| > 15σ have been replaced

with z = sgn(z)15σ. It has been constructed for s ∈ [65, 10000].

As can be seen from Figure 4.6 and Table 4.2, the vast majority of log returns for

both DJIA and Euro Stoxx 50 are close to zero, within a couple of standard deviations

of the mean. However the few extreme events do have a significant effect since the shape

of the f(α) spectrum for Euro Stoxx 50 changes dramatically with the reduction of only

42 points from the data (less than 0.04% of the points).

The spectrum for the truncated data, shown in Figure 4.8, is narrower than that of

the original Euro Stoxx 50 data (∆α = 0.48 here compared to 0.62 for the original, see

Table 4.3). This result is consistent with others which have found that the multifractal

spectrum narrows when extreme events are truncated [103, 113]. This is to be expected as

the narrower range of α reflects the reduced heterogeneity in the data when extreme events

have been tamed. However, where others [103, 109, 113–116] have used the spectrum

width ∆α as a metric of the level of multifractality, I have conducted a more detailed

analysis. The plots of log(Fq), their local slopes, and the resulting f(α) spectrum are all

inspected, giving more insight into the effect of the extreme events. The extreme events
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Data f(−50) α(−50) f(0) α(0) f(50) α(50) ∆α
DJIA 0.049882 1.2124 1 1.0126 0.058373 0.78155 0.43087
Euro Stoxx 50 −0.023382 1.2437 1 1.0184 −0.0981 0.6226 0.62162
Euro Stoxx 50, zeroes removed 0.0361 1.2606 1 1.0226 −0.00038 0.55587 0.70495
truncated Euro Stoxx 50, c = 15 −0.021838 1.265 1 1.0169 0.017184 0.78068 0.48431

Table 4.3: Summary of the main results of MF-DFA on the daily DJIA and minutely
Euro Stoxx 50 log returns for a range of values of q ∈ [−50, 50]. These values are also
reported in Table 4.1. The truncated Euro Stoxx 50 data has extreme events replaced

with smaller ones. Here ∆α = αmax − αmin.

cause the spectrum to become asymmetric. The left side of the spectrum in Figure 4.4

is stretched due to poor statistics in those extreme areas of the time series. Therefore

the spectrum width ∆α alone is unreliable in this case to base conclusions on about the

strength of multifractal scaling [88].

Some studies have found that extreme events cannot simply be thought of as scaled-up

versions of smaller events [117–119]. Extreme events appear to be drawn from a different

distribution. The results of the analysis of Euro Stoxx 50 lend some support to this

idea. While the scaling in the complete data set is uncertain, the scaling improves when

large positive and negative returns are reduced. This indicates that they may belong to

a separate scaling regime or they may not scale at all. However the number of extreme

events is too small to test them separately for scaling.

Source of Scaling - Correlations

Temporal correlations may also be responsible for the multifractal structure [82, 103].

A way to check if correlation in the data is responsible for the scaling is to shuffle the

data as suggested by Kantelhardt et al [82]. Shuffling removes time correlations and any

scaling that remains must be due to the probability distribution from which the data is

drawn. The distribution of values is not affected by reordering the series.

Any individual shuffle may still contain some correlations, so to be sure to completely

rid the data of all correlations, both the DJIA and the Euro Stoxx 50 log returns were

shuffled 100 times, each random permutation beginning with a new random number

generator seed in MatLab. The function Fq was found for each of the shuffled data sets.

These were then averaged to find Fq(s) = 1
100

∑100
i=1 Fq,i(s), where the index i identifies the

shuffled data sequence. I then checked the plots of log(Fq(s)) versus log(s) for different

values of q for linearity. The results are shown in Figures 4.9 and 4.10. The same analysis

was conducted with the quenched average, log(Fq(s)), with indistinguishable results [88].

For the averaged shuffled data, the log-log plots are smooth as is to be expected since
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Figure 4.9: Shuffled DJIA data: (a) Graph of the log of the averaged scaling function,
log(Fq), versus the log of the scale, log(s), for selected values of q as shown on the

graph. (b) Graph of the local slopes of the lines in (a) calculated over 15 points for the
same values of q.

it is averaged over so many shuffles. However, there is no evidence of scaling here. The

log-log plots in both cases initially may appear linear but a linear region can only be

identified with certainty by checking if the local slopes of the log-log plots are constant.

It is clear from Figure 4.9(b) that there is no scaling in the shuffled DJIA data. The

slopes consistently decrease with s for q < 0 and increase with s for q > 0. For s > 300 the

slopes are fairly constant but this linear region is too small to proceed to the multifractal

spectrum. Thus we do not have the rationale to proceed to calculate h(q) and must
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Figure 4.10: Shuffled Euro Stoxx 50 data: (a) Graph of the log of the average scaling
function, log(Fq), versus the log of the scale, log(s), for selected values of q as shown on
the graph. (b) Graph of the local slopes of the lines in (a) calculated over 15 points for

the same values of q.

instead conclude that multifractal scaling is absent in this shuffled data set.

For Euro Stoxx 50, whose scaling results are shown in Figure 4.10, there is arguably

a section of linearity from 100 < s < 10000 for q ≤ 0, while this scaling is not present for

q > 0. As is common for financial log returns, there are many values close to zero and

few far from zero. In the context of MF-DFA, this translates into many areas of small

F and few areas of very high F . When it comes to conducting MF-DFA on the shuffled

log returns, it is therefore expected that scaling may be revealed by negative q (small F ,

right side of the spectrum), while there may not be sufficient extreme log returns to see
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scaling for positive q (high F , left side of spectrum).

The f(α) spectrum has been constructed for 100 < s < 10000 for five separate shuffles

of the Euro Stoxx 50 log returns which are shown together in Figure 4.11. The right side

of the spectrum contains a lot of points and is well defined in each case. However the

left side of the spectrum is poorly defined. This is because areas of very high F are rare

in the data and so good scaling statistics are not possible. It can therefore be concluded

that the shuffled Euro Stoxx 50 log returns have reduced multifractality. In this case the

spectrum width ∆α is clearly useless as a measure of the level of multifractality in the

time series.

Other studies [101, 103, 105, 120, 114] have found multifractal scaling in shuffled

financial data. However, as no explicit investigation of the logarithmic plots and their

local slopes was conducted, the conclusion that multifractal scaling is present is not

justified.

The order of detrending may have some influence on the results. It is well known

that the linear correlations in financial data are very short-lived whereas there are long-

term non-linear correlations [19] so it may be argued that nonlinear detrending should be

performed. The detrending carried out in the study presented in this chapter is linear,

but I found similar results for higher order detrending, n = 2, 31. This shows that the

lack of scaling is a real characteristic of the shuffled data and not a symptom of a poor

choice of the detrending order.

I also employed different strengths of shuffling. Rather than reordering every point

in the data, it is possible to divide the data into intervals of length l [85]. Then keep

1See Appendix C for results found using higher order detrending.
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each set of l adjoining points together in the same order while shuffling the order of the

intervals. This can show how robust the scaling is to the long-term temporal correlations.

I conducted this analysis on the DJIA log returns. Intervals of lengths l = 10, 50, 100,

500, 1000, and 5000 were kept intact and the order of the intervals was shuffled randomly

100 times. Then the plots of log(Fq) versus log(s) were found. Figure 4.12 shows the

slopes of the log-log plots for q = 25. As it is not practical to show the local slopes for

the full range of q values, I chose to display results for q = 25.
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Figure 4.12: For various interval lengths l, the local slopes of log(Fq) versus log(s) is
shown for q = 25 for the DJIA data. The slope for the original data is the black line,

being the same as the corresponding line in Figure 4.1(b).

The scaling is worst for the shortest interval length, l = 10. The local slope of the

scaling function increases steeply with the box size. For l = 10, any temporal correlations

longer than 10 days have been destroyed by the shuffling. For longer intervals, more

memory of the data is preserved and correspondingly the scaling improves.

For the data shuffled with l = 500, the scaling is preserved. At this length and

for longer intervals, the slopes are oscillating about a constant and don’t show sustained

curvature in a single direction. This value of l gives an indication of the length of temporal

correlations that are significant to the multifractal scaling in the data. It is possible

to infer that the data has memory to the order of 100’s of days. Although the scaling

survives some modest shuffling, more extreme reordering is detrimental to the multifractal

structure. The scaling is not robust against a substantial change in the ordering of the

log returns.

The results presented in this section provide evidence that long-term correlations,

which are removed by the shuffling procedure, are a major source of the multifractality

in both the DJIA daily data and the Euro Stoxx 50 minutely data [88].
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4.4 Conclusions

I have carried out a systematic study of the multifractal properties of two financial time

series: daily DJIA log returns from 1928 to 2012 and minutely Euro Stoxx 50 log re-

turns from 2008 to 2009. Careful attention was paid to finding an appropriate linear

region in the logarithmic plots of the scaling function Fq versus the segment size s before

concluding that multifractal scaling is present and proceeding to the plot of f(α) ver-

sus α. This examination makes this study more comprehensive than many others which

have investigated financial data for multifractality. I have found that the metric ∆α is

not sufficent for measuring the level of multifractality in the data. Rather, the log-log

plots, local slopes and the multifractal spectrum should all be examined carefully before

drawing such conclusions.

The scaling is open to interpretation for the Euro Stoxx 50 time series. The uncer-

tainty illustrates the need for caution and for further analysis techniques to be developed

in this area. A set tolerance of linearity of the log(Fq) versus log(s) plots is required

within which multifractality can be accepted.

In the case of the DJIA daily data, the multifractal spectrum is nearly perfectly

symmetric. The one for the minutely Euro Stoxx 50 data, on the other hand, is stretched

on the left and f(α) < 0 for α . 0.63. The shape of its asymmetric f(α) plot reveals

that the extremely volatile areas of the data scale differently from the rest of the data

or perhaps do not scale at all. The number of extreme events is too small to test them

separately for scaling.

Adjustments were made to the distribution of the log returns to reveal its effect on

the scaling. The results indicate that the extreme events do not conform to the scaling

law which is followed by the smaller log returns. In the case of Euro Stoxx 50, the scaling

is improved when the most extreme events are removed. This is consistent with the

asymmetric shape of its multifractal spectrum. It can be concluded that the extreme

events are actually inimical to the multifractal scaling found in the Euro Stoxx 50 log

returns.

The results of this analysis on these two time series lead me to the conjecture that

the resolution of the time series has an impact on the results of MF-DFA. At small

resolutions (e.g. minute) where log returns are more highly leptokurtic, the extreme

events can distort the scaling, while such distortion is absent at larger resolutions (such

as days). The 42 most extreme points reduced in the Euro Stoxx 50 time series by the

truncation have a major impact on the scaling results. The data appear to be made up

of a multifractal subset and these outliers.

The temporal correlations in both data sets have been shown to be a significant source
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of the multifractal scaling. The scaling does not survive at all in the DJIA time series

and is much reduced in the Euro Stoxx 50 time series when the data is reordered, which

removes correlations.

In general there is no consensus in the published literature as to whether it is the fat

tails of the distribution or the temporal correlations which contribute most to the multi-

fractal scaling in financial data. It has been found that the distribution contributes more

to the multifractal scaling than do the temporal correlations in some daily data [105, 103].

Others have shown evidence of the opposite [121] or that both sources are significantly

present [114]. Work on higher-frequency data [106, 115] has found that the correlations

are the most likely cause of multifractality. Mixed results have been found for foreign

exchange rates [116, 122, 123]. These varied results imply that the main source of mul-

tifractality is dependent on the particulars of each specific data set and that there is no

universal law applying to all financial data.

4.5 Future Work - Proposal for tightening multifrac-

tality

I have found the task of judging whether or not a time series has a multifractal scaling

structure to be a difficult one. Examining the plots of log(Fq) versus log(s) is the starting

point, and finding the local slopes of those plots and examining those too is very impor-

tant. However even at that stage it is not necessarily obvious whether the data should

be accepted as having scaling or not.

In the case of the DJIA data, the fact that multifractal scaling is present was shown to

be reasonably clear. However, as was discussed briefly in Section 4.3.1, the multifractality

of the Euro Stoxx 50 minutely data is not certain. It could be argued that the plots shown

in Figure 4.3 show that the data does not have multifractal scaling. Deciding whether or

not there is multifractality in the data calls for some subjective reasoning. I believe that

there should be some more statistical analysis tools to help.

It is necessary to impose an objective measure so that multifractality can be deter-

mined without relying solely on visual inspection of the log-log plots and their local

slopes. The linearity of the log-log plots really lies at the crux of the issue. If the local

slopes of the log-log plots are roughly constant or oscillate around a constant value for a

sufficient range of the segment size s, the data can be interpreted as having multifractal

scaling. If there is sustained curvature in the local slopes, however, the data should not

be classified as multifractal. A basic visual inspection definitely has its merits but I think

that some statistical tool would be a helpful addition to this process.
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A simple approach would be to find the distance of the local slope m(s) from the

mean m at each point for increasing s;

K =
smax∑
s=smin

(m(s)−m). (4.1)

We are happy for the slope to oscillate about its mean, and could accept multifractality

for |K| < Kmax for some tolerance level Kmax. However, large |K| would indicate that

that the slope spends much more time above the mean than below it or vice versa. In

that case, we could reject the hypothesis of multifractal scaling being present in the data

at our chosen tolerance level.

This analysis could not be at the expense of visual inspection of the plots of the

local slopes of log(Fq) against log(s). Otherwise, this toleration level method may permit

acceptance of data as multifractal when in fact the local slopes consistently either increase

or decrease for increasing s rather than oscillate about the mean.

Figure 4.13 illustrates this idea of measuring the linearity of the plots of log(Fq) vs

log(s) by summing the difference of the slope from its mean at each point. This is a very

simple proposition which could be expanded into a useful tool for multifractal analysis.
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Figure 4.13: Graph of a local slope of log(Fq) versus log(s) for one value of q.

4.6 Chapter Summary

This chapter has presented a comprehensive study of the multifractal properties of two

financial time series via Multifractal Detrended Fluctuation Analysis. The multifractal

spectra for the DJIA and Euro Stoxx 50 data were found. Further investigations identified

the temporal correlations as the predominant source of the multifractal scaling in both
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cases. The chapter makes a new contribution to the literature in carrying out this analysis

and in finding that extreme events in the Euro Stoxx 50 time series are inimical to the

scaling. I have also argued that further statistical tools are required in order to carry out

multifractal analysis objectively and made a proposal as to how that might be achieved.
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Chapter 5

Agent-Based Modelling

5.1 Introduction

I now turn back to the issue of modelling the market. This chapter contains a literature

review of some influential ABMs in the area of financial modelling. This will serve as

an introduction to this type of modelling for in the next chapter I will develop my own

ABM of the financial market.

ABMs are suited for systems made up of many interacting parts or individuals, called

agents. Section 1.11 contained a brief introduction to the concept of ABMs. The classi-

fication of ABM does not refer to a particular technique. Rather a model is agent-based

if it is built from the perspective of the interacting parts instead of from the perspective

of the aggregate system [46].

This type of model is especially useful for systems which exhibit emergent behaviour.

By their construction, ABMs can be helpful in discovering what type of behaviour leads

to the stylised facts common in financial data, which are really emergent phenomena

originating from agent interactions and market microstructure. Because they are built

from the viewpoint of individual traders, they can show how different types of trading

practices affect the log returns. With them it may be possible to peek inside the black

box of the market.

As with any type of model, ABMs must be kept simple if they are going to have any

explanatory power [124, 125]. As a model gets more complicated, it is difficult to uncover

which components of the model are behind the different features of the results [126].

When this happens, the agent-based models are no more helpful in explaining market

dynamics than are other more traditional approaches. There have been many attempts

to obtain a useful ABM of financial markets which balances realism with tractability [44].
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5.2 The Literature

There have been many ABMs built for financial markets in recent years. Each model has

a specific purpose and so will include only details relevant to the question it is attempting

to answer. There are some useful reports [44, 127, 128] which provide overviews of many

models in this field. A selection of the most well-known ABMs are described in this

section.

5.2.1 The Game of Life

One of the earliest models in which agents interact with each other and develop over time

was John Conway’s Game of Life [46, 129]. The game has a basic set-up of a number of

counters in an arbitrary pattern on a 2-dimensional grid like a chess board. Each counter

has eight neigbouring spaces on the grid, four side-on and four diagonally, which may or

may not be occupied by other counters. At each iteration, each counter may survive, die

or be born onto an empty cell on the grid according to these rules:

• A counter survives to the next generation if it has two or three neighbours.

• A counter dies and is removed if it has either more than three neighbours (over-

population) or else less than two neighbours (isolation).

• A new counter is born on an empty cell which has exactly three neighbours.

The patterns in Conway’s Game of Life can evolve in interesting and surprising ways.

There are certain patterns which remain unchanged as the game progresses (“still-life”

figures) and others which oscillate between some number of patters (Conway called period

2 oscillating figures “blinkers”). There are others which move across the grid. Some

release “gliders,” patterns which become detached from the central pattern and move

away from it [129].

Some patterns can lead to complex phenomena and cascades, emergent behaviour

which could not be anticipated from the original pattern of the counters on the grid and

the rules of play alone. This game has become very popular and there are many websites

dedicated to finding new patterns which lead to interesting behaviour [130–132].

5.2.2 Kim and Markowitz

One of the first modern ABMs applied to financial markets was built by Kim and

Markowitz [44, 128]. They built their model in 1989 in an attempt to understand the

major crash of Black Monday, October 19th 1987. The model focused on particular trad-

ing strategies and the impact they had on the volatility of the market. They had to use
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simulation techniques because they were trying to reproduce many features of real-life

trading. This problem could not be approached analytically.

Their model contains two different types of agent, rebalancers and portfolio insurers,

each with finite wealth. There are two assets available for trade: a risk-free asset with

zero interest rate, essentially cash, and a risky one whose price may go up or down. The

two types of agent decide how to distribute their wealth between the two assets.

The rebalancers keep the proportion of their wealth in each asset constant. This means

that if the risky asset goes up in value, they will sell some to keep the same proportion

of their wealth in cash. These agents stabilise the market.

The portfolio insurers instead keep a constant proportion of a section of their wealth

in the risky asset. This section of wealth is their total wealth less a floor value, the floor

being a lower bound they tolerate for their wealth. This means that they only invest in

the risky asset as much as they are willing to lose. If the risky asset goes up in value,

their wealth also increases and so they increase their exposure to the risky asset. These

agents can destabilise the market.

Kim and Markowitz found that the more portfolio insurers there are in the market,

the more instability there is in prices. This lent some credence to the claims that Black

Monday was caused by these types of trading strategies [128].

5.2.3 The El Farol Bar problem and Minority Games

William Brian Arthur noted that the classical theory of perfectly rational agents in the

market is not realistic [133, 40]. As a situation gets more complicated, people are no longer

capable of deducing perfectly logical conclusions. However the problem economists faced

was to find something to replace the perfect rationality of the traders in their models.

Arthur proposed that the perfectly rational agents with deductive reasoning should be

replaced by agents who reason inductively from the information currently available to

them [133].

People do not have access to perfect or complete information and neither do they

have the capacity for perfect reasoning. However, Arthur argues, we are notoriously good

at pattern recognition [133]. We tend to fill in gaps in our understanding with simple

models that fit the pattern. We readjust our hypotheses as more information becomes

available, perhaps discarding old theories and forming new ones. This is what Arthur has

called inductive reasoning.

The El Farol bar problem offers an illustration of inductive reasoning. The problem

was devised in response to a bar in Santa Fe, New Mexico, which offers Irish music on

Thursday nights [133, 134]. The space is limited in the bar and the evening is only

enjoyable if it is not too crowded.
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The problem is formulated in this way. Say there are 100 people who might attend

the bar. It is only worth going if there are less than 60 people there. Each person forms

an independent expectation of the attendance that week. They will go if they expect

less than 60 to be there, and they will stay at home if they expect more than 60 to be

there. They do not communicate with each other. The only information they have is the

previous attendance figures.

The potential attendees reason inductively. They each have an assigned subset of

predictors to choose from out of an overall pool of predictors. A predictor of this week’s

attendance might be for example “The same as last week” or “The average of the last

three weeks’ attendance.” Each agent will use their predictor which has proven to be the

most accurate in the past. An agent will go if the predictor says that there will be less

than 60 there and stay home otherwise. Then this weeks’ attendance figure is released

and each predictor’s accuracy score is updated [134].

Common beliefs are self-invalidating. If everyone believes that attendance will be low,

they will all go to the bar and show that expectation to be wrong. If they all expect

attendance to be high, they will all stay at home and so invalidate that expectation. This

means that different agents must have access to different subsets of predictors. If they

all can use the same predictors, the attendance will simply bounce between zero and 100.

This was the insight of Arthur, that different people have access to different information

and may process it in different ways. Heterogeneous expectations are necessary for any

interesting dynamics to occur.

One result of computer experiments with this model is that the attendance figure

converges to 60. The agents’ inductive reasoning leads them to this outcome as they

learn which of their predictors are most accurate [133].

The Minority Game [135, 136] was an extension to the El Farol Bar problem more

suited to economic modelling. Suppose there is a population of N people. At each time

step, everybody must choose a side, A or B. Those who turn out to be on the side of the

minority win. Of course N should be odd so that there will always be a winning side.

In trading also it is generally those in the minority who win. The minority notice a

new trend and buy into it before the majority catch on. The minority profit by leaving

the market ahead of the majority by correctly predicting the end of the trend. There

are many different strategies in the market; similarly the Minority Game discourages

conformity.

The N agents in the Minority Game have predictors which make their decisions,

similar to the El Farol Bar problem. The strategies’ accuracy scores are updated after

each time step. The agents have limited memory; they can only use the last M results to

inform their choice. Also the agents have limited information, only learning which side
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won at each time and not the actual number of winners in the group.

The results show that the attendance for a given side fluctuates around the 50% mark

of the total population. The shorter the memory of the players is, the more fluctuation

there is in attendance figures. Large fluctuations are wasteful because when there is a

low attendance on the winning side, more could have won without harming the other

players. Small fluctuations represent efficient use of resources. Although players have no

affiliation to each other and are not considerate of others, the game evolves into a state

of sharing so that the most can benefit.

Other variations of the game can be experimented with. Challet [135] describes ver-

sions of the model where agents with different memory lengths are present, where agent

strategies can adapt in time and where the amount won is dependent on the number of

winners. These different versions of the game lead to interesting results. The original

game does not deal explicitly with the stylised facts of financial data but there are many

extensions to this game which do [136–142].

5.2.4 The Santa Fe Artificial Stock Market

A famous early ABM of which there have been many versions developed is the Santa

Fe artificial stock market [44, 127, 143]. This model is focused on how agents learn and

adapt. The real difference between this and a standard rational-expectations agent model

is that the agents have heterogeneous expectations and have no way of knowing other

agents’ expectations. This is a feature shared with the agents in the El Farol Bar problem

described above.

It is also reminiscent of Keyne’s beauty contest [41, chapter 12]. Say you are a judge

in a beauty contest. You are asked to pick the contestant that will be most popular

among all the other judges, and you win if you do so correctly. Instead of choosing the

one you like the best, you have to anticipate the average opinion. If each judge does the

same, to win you must devote yourself to“anticipating what average opinion expects the

average opinion to be” [41, chapter 12]. Similarly in finance, the trader who correctly

anticipates the crowd’s action before other members of the crowd wins.

In this environment, it is impossible to form a perfect expectation of future prices

and dividends. Each agent in the Santa Fe model has a set of predictors for the market.

These predictors are more complex than the ones used by the agents in the El Farol

Bar problem or the Minority Game [133, 135]. The predictors are in essence “if-then”

statements. Each predictor is a set of market conditions as well as a forecast of the next

period’s price and dividend. If a predictor’s set of market conditions are satisfied, it

comes into play. The predictor whose conditions are satisfied and which also has proved

the most successful in the past will be used by the agent [143].
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Agents in this market learn and adapt in time. Predictors which are rarely used

because they are valid for uncommon market conditions or have been shown to be in-

accurate are removed from an agent’s set of strategies. Those that are used a lot are

adapted by mutation (some conditions are changed randomly and others kept the same)

and crossover (some conditions are replaced by corresponding conditions in another suc-

cessful predictor), two methods of genetic evolution.

The real success of this model has been that it can produce many of the stylised facts

of real financial data [44, 143]. It can also keep track of the sort of market conditions

that are informative to agents. When agents learn slowly, the market evolves toward a

rational regime where trading volume is low, there are no bubbles or crashes and technical

indicators from the market are useless to the agents. This corresponds to a world where

the EMH described in Section 1.10 is true and classical economical theory is valid.

On the other hand, when agents adapt and learn more quickly, technical trading

strategies come into use and there are bubbles and crashes, volatility clustering and high

trading volume. This matches the real world in which we live where all of these features

exist [19].

5.2.5 The Lux and Marchesi model

The ABM by Lux and Marchesi [48, 44] was built with the purpose of explaining stylised

facts of financial data, specifically volatility clustering. The model contains two types of

trader: chartists and fundamentalists. Among the chartists there are “optimists” who

always buy and “pessimists” who always sell. Traders can switch between strategies if the

alternate strategy seems more profitable. The probability of switching from chartist to

fundamentalist and vice versa depends on how many agents are using the other strategy.

This mechanism introduces herding behaviour which means traders are influenced by

their neighbours and not just by information about the market. The more agents using

a certain strategy, the more likely others are to join them.

Price changes in this model are set by a market maker. The price can either go up or

down by a set amount according to certain probabilities. The prices are not insensitive

to the level of excess demand however, as a large excess demand will lead to a number of

price changes in the same direction until equilibrium is restored.

Volatility clustering is found in the results produced by simulations of this model.

These are seen as an “on-off intermittency” in the proportion of chartists present in the

market [48]. As long as this fraction is far from the bifurcation point, the log returns

fluctuate around zero. However when the fraction of chartists reaches the bifurcation

point, the log returns become wild and the system becomes unstable. After some time,

the fundamentalists again dominate and the log returns settle to calmer dynamics. This
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interaction between fundamentalist and chartist traders and herding behaviour has also

been explored by other models [44, 144, 145].

5.2.6 The Minimal Model

Another interesting and more recent ABM is the Minimal Model built by V. Alfi et al [144,

125]. This contains what its authors believe are the four minimal essential ingredients of

a useful model of the market:

1. It includes chartist traders who base their trades on technical analysis.

2. It has fundamentalist traders who know the fundamental value of the stock and

trade accordingly.

3. It has an allowance of herding behaviour by which agents can switch between strate-

gies if they perceive that the alternate strategy seems to be working better than

their own and there are many agents using the alternate strategy.

4. Each agent looks at the price from their own perspective and derives a trade signal

(buy, sell or hold) from it.

The authors claim that these four aspects are irreducible and should be included in every

ABM [144].

This model is based on the one by Lux and Marchesi [48, 44] described above. In that

model there are also fundamentalists who have a stabilising effect on prices and chartists

who cause bubbles and crashes. There are also dynamics between the classes of trader as

agents can switch between strategies. As in the Lux and Marchesi model, the probability

of a trader switching strategy depends both on the perceived profitability of the alternate

strategy as well as the number of agents subscribing to that strategy.

The model is built for the purpose of reproducing the stylised facts of uncorrelated,

leptokurtically distributed log returns with volatility clustering. These stylised facts are

found in the log returns generated by this model [144].

Specifically, the authors see these stylised facts as the result of self-organisation of the

market. Through the herding behaviour, traders can switch strategy from fundamentalist

to chartist and vice versa and so the market can self-organise. The state of the market is

characterised by the proportion of chartists at any time. When the proportion of chartists

changes at an appropriate rate, the stylised facts become evident in the results.
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In AMBs of the market, stylised facts are usually only present in the results for a

limited region of the parameter space [144]. Alfi et al find that the presence of stylised

facts is crucially dependent on the overall number of traders in the market. However in

the real market place these stylised facts are universal, found in the data produced by

the trading of thousands of products in many countries around the world [19]. The real

market seems to organise itself into this state. This leads to the natural question of ‘Why

does the market naturally evolve to a state which produces these stylised facts?’

Alfi et al [144] attempt to answer this question by allowing the agents in the model

to opt out of or into trading so that the number of agents actively trading can fluctuate.

Agents will trade if their personal trade signal is above a minimum threshold. The

number of active agents is found to spontaneously evolve toward the specific number

which produces the stylised facts. It looks like self-organised criticality, but a critical

state is reached in the thermodynamic limit of large number of particles and large time.

Here however, these features are found only when there is a limited number of agents

in the market. They can therefore be interpreted as finite size effects and the authors

describe the market as being in a state of self-organised intermittency, similar to the

on-off intermittency described by Lux and Marchesi [48].

5.3 Models’ explanations for the stylised facts

There is no clear consensus in the literature on the reasons for the leptokurtic log returns

and volatility clustering which are found in financial data. Many models have focused on

reproducing the stylised facts rather than explaining their origin.

The MDH [29] was introduced originally to explain leptokurtic log returns. This was

described in Section 1.8. Its focus was on the difference between trading time and clock

time, and how this could lead to leptokurtic log returns. The MDH has also been used in

the context of explaining volatility as a result of the aggregate impact of heterogeneous

information arrival to the market [146].

The ARCH models [33] and the MMAR [76], described in Sections 1.9 and 3.5, can

produce volatility clustering and fat tails. However these models do not explain these

features in terms of trader activity or market structure [146, 53].

The origins of stylised facts have mainly been dealt with from the ABM perspec-

tive [53, 136, 147, 148]. The Santa Fe artificial stock market study concludes that volatil-

ity clustering is due to the rate at which agents learn and adapt and use technical trading

strategies [143]. A similar ABM by Grannan and Swindle [134] is also built on the foun-

dation of the El Farol Bar problem [133] described in Section 5.2.3. It adds contrarian

agents who act against their predictor and also removes traders who perform poorly.
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Those authors attribute the volatility clustering to these actions.

The model of Giardina et al [147] attribute the stylised facts to the performance rating

of trading strategies (similar to the Santa Fe model), heterogeneous time scales used by

traders and the changing activity levels by traders as a response to the price level relative

to the fundamental value. This and other models [140–142] have also found that the

option to opt out of trading is crucial to the presence of volatility clusters.

An ABM by Cont and Bouchaud [149] in which agents form clusters attributes heavy

tails to these clusters which simulate herding behaviour. The model has a random-

graph structure and members form independent binary links between each other with a

given probability. The communication between agents who then agree on which direction

to trade is responsible for log returns with heavy tails and finite variance as found in

empirical data.

A proposed reason for the high volatility and fat tails of exchange rate log returns

is “overshooting” [5]. This theory is that commodity prices can be slow to change but

exchange rates are more flexible. Since these prices move more quickly, the rate can

overreact in response to some news and overshoot its new level. This however does not

help to explain the fat tails which are also found for equities.

The model by Thurner et al [44, 150] was presented to explain how fat tails and

volatility clustering can be caused by leverage and margin calls. Long memory can also

be considered a consequence of different traders having access to different information

and processing it differently [52]. If news arrives to the market, it is not assimilated into

prices immediately as different traders respond at different paces.

In the next chapters I contribute to this body of work as I construct a new ABM and

explore the reasons for the stylised facts which are found in the log returns it produces.

5.4 Chapter Summary

This chapter has provided an introduction to the concept of ABMs in finance and a

review of the relevant literature in this area. These types of models have become popular

as more computing power is now available to researchers. ABMs tackle problems which

cannot be approached with analytical methods. The reasons for the stylized facts can

potentially be understood as the effects of certain trader behaviour when these types of

models are used.
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Chapter 6

A new Agent Based Model

6.1 Introduction

This chapter outlines the construction of a new ABM. The motivation for this new model

is to add to the understanding of the reasons for some of the stylised facts of financial

data. It is built in the same vein as the minimal model by Alfi et al [144]. The goal is

to reproduce the key features of financial data with an even simpler model. Although

Alfi et al claim that their model is “minimal”, new models can continue to add to our

understanding of the features of financial data.

Many of the stylised facts of financial data were described in Chapter 2. The ones

of principal interest in the context of this chapter are those of leptokurtic log returns

and volatility clustering, described in Sections 2.3 and 2.6. I feel that these are the most

distinctive features of log returns and they are the ones I am interested in explaining. I

hope to achieve further understanding of the origins of these features by means of my

ABM presented here. I find that the trading rules of the agents in this model result in

some interesting properties of the simulated log returns.

6.2 Building the model

Where some models may investigate the effect of market microstructure on the price

or log return process, my ABM is chiefly focused on trader behaviour. It is concerned

with the stylised facts of financial data and explaining them from a trader-behaviour

perspective. The ABM does not attempt to create a realistic market microstructure and

therefore it may miss out on some explanatory factors of the stylised facts. The agents

in the model are built in a way that attempts to mimic realistic features in an extremely

simplified fashion.

In my model, as in the minimal model by Alfi et al [144] and in the Lux and Marchesi
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model [48], there is just one asset available for trade. Each trader may only buy or sell

one unit of the asset at a time, and trading takes place at discrete points in time. At

each time step, each trader can buy, sell, or stay inactive. The price is calculated from

this information and all trades are executed at this price. The agents do not learn or

adapt their strategies during the simulation.

The price update mechanism is multiplicative. After agents express their trade deci-

sion, the excess demand Dt is calculated. Dt is defined as the number of buyers minus

the number of sellers at time t; Dt = Nbuy,t −Nsell,t.

Following other models [135, 136, 144, 147], the price St at time t is then generated

as a function of the excess demand Dt:

St+1 =

(
1 +m

Dt

N

)
St (6.1)

where m is a parameter limiting the largest proportional change in the price in one

iteration of the model and N is the total number of traders which is fixed for the entire

simulation. The factor
(
1 +mDt

N

)
will cause the same proportional change in the price

whether Dt is positive or negative, so that there is symmetry in the price movements.

One of the parameters that the model is most sensitive to is m. It measures the impact

of trading on the price. Since Dt/N is the proportion of traders with the majority opinion

(either buy or sell, −1 ≤ Dt/N ≤ 1), m controls how much influence this majority has.

When m < 0, the price moves in the opposite direction to that indicated by the demand

of the agents. When m = 0, the price is completely static. When m > 1, negative prices

would be allowed when all traders want to sell (Dt/N = −1). These considerations lead

me to constrain 0 < m < 1.

The wealth of each trader is not recorded. It is assumed they all have infinite wealth

and so can always afford to buy shares. They are also given enough shares so that they

always own some and therefore always have the option to sell. There is no market-maker

and so if there are Nbuy buyers and Nsell sellers at some time t and Nbuy > Nsell, only Nsell

of the buyers get to carry out their trade and vice versa. Which traders in the majority

group get to trade is decided randomly.

In the sections to follow, the traders in the model are described. It begins very simply

and gradually more features are added to find what combination of agent behaviour is

necessary to produce the stylised facts of financial data that we are interested in. It

eventually has three different types of traders operating in the market. These are noise

traders who decide randomly whether to buy or sell with probability based on a certain

memory of past price changes, technical traders who analyse historical prices to inform

their trades, and fundamental traders who know the “fundamental value” of the stock and
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trade accordingly. In the completed model, there are N1 noise traders with a knowledge

of just the most recent price change, N5 with a memory of the last 5 price changes and

N21 with a memory of the last 21 price changes. There are NT technical traders and NF

fundamental traders. There are a total of N = N1 + N5 + N21 + NT + NF agents in the

model.

Whether it is realistic to classify all traders as belonging to one of some set of pre-

defined types may seem unlikely due to our experience of a very heterogeneous world.

However, a recent paper by Tumminello et al. [151] goes some way to justify this classifi-

cation by the finding that traders do tend to form discrete clusters which perform trades

synchronised in both direction and time.

6.2.1 Noise Traders

The model begins with one type of agent. These are myopic noise traders who base

their trading decisions only on the current state of the market and so produce a Markov

process. They do not take into account any historical prices.

At each iteration of the model each agent must make two decisions. Each agent first

decides whether or not to get involved in trading. As described in Section 5.3, allowing

agents to be inactive is critical to the presence of the stylised facts. For example, in the

model of Alfi et al [144] described in Section 5.2.6, in an attempt to explain the self-

organisation of markets into the intermittent state which produces stylised facts, agents

only trade if their personal price signal is greater than a minimum threshold.

The opt-out-of-trading feature is included in my model in the following way. If there

was a large price move in either direction in the previous trading period, more agents

will get involved in trading in this period, according to a function Ωt = Ω(Rt). Ωt is

the proportion of agents that want to trade after observing the latest proportional price

change Rt;

Rt =
St − St−1

St−1

(6.2)

The number that trade at time t is therefore [N1Ω(Rt)] where N1 is the total number

of traders with single-period memory and [·] denotes the nearest integer function. Ωt is

given by

Ωt = d+
1− d

1 + e−a(|Rt−c|−b)
=

1 + de−a(|Rt−c|−b)

1 + e−a(|Rt−c|−b)
. (6.3)

a, b, c and d are constants. Thus in my model it is a collective decision about the

proportion of traders who trade rather than a personal decision by each trader based

on a personal idiosyncratic signal. Figure 6.1 shows a graph of this function for a few

different parameter selections.
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Figure 6.1: Graph of Ω, equation 6.3, the proportion of active traders as a function of
the latest proportional price change, shown for various parameter values as indicated on

the graph.

The number of agents active in the model is dynamic but is bounded above by the

total number of traders N1 and below by
[

1+dea(b−c)

1+ea(b−c) N1

]
≈ [dN1] for the parameter values

I will be using. The parameter d, 0 < d < 1, controls the minimum proportion of agents

who are active at any time. Since the number of active traders is rounded to the nearest

whole number, it may be 0 if d is small.

The steepness of the function is controlled by a. For higher values of a, Ωt is more

sensitive to the value of Rt. For high a (black line in Figure 6.1), after a large range of

the proportional price changes it is either all or a minimum number of the traders who

want to trade. For lower a, there is more scope for variations in the number of active

traders.

The parameter b controls the width of the interval of values of Rt for which the

minimum number of agents trade. For small values of b (dotted blue line in Figure 6.1),

there is a very small range of return values for which the minimum number are trading.

The width of this range grows with b.

The parameter c gives the location of the minimum of the function. For the simulations

it can be set c > 0 so that the minimum is located slightly to the right of zero. This

means that noise traders are more reactive to small negative price changes than small

positive price changes. This seems to be a realistic characteristic but it turns out that the

model is not very sensitive to the value of c so long as it is kept within sensible limits.1

The minimum number of actively trading noise agents is controlled by d. d = 1 =⇒
1“Sensible limits” means that c should not be so large that the interval of R values for which Ω is

a minimum does not contain R = 0. If this was the case, many agents would trade when the previous
return was 0 but only the minimum would trade after some other nonzero return value.
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Ω = 1 for all values of Rt and the number of active noise traders is constant. Since the

number of agents trading must be a whole number, the actual number of active traders

will be the value [N1Ω]. This means that if the number of noise traders is small, the

minimum number of active traders may be zero at times even though d > 0. This has

certain consequences which are discussed in more detail in the next chapter.

For the traders now committed to trade, the next decision is whether to buy or sell.

Only one share can be traded by each agent at each time step. The decision to buy or sell

is made randomly according to a probability distribution based on the previous period’s

proportional price change. It is a logistic function. Call it Pt. It is the same for each

noise trader.

Pt = P[T = 1|Rt] =
1

1 + e−uRt
(6.4)

T is the trading direction, T ∈ {−1, 1} respectively referring to sell and buy.

P[T = −1|Rt] = 1− Pt.

For the simulations, this random choice is made by drawing a random number x with

uniform distribution, x ∈ [0, 1], for each trader. This number is then compared with the

relevant probability level. If x is less than Pt, the agent will buy. Otherwise he will sell.

Pt is shown in Figure 6.2 for various values of the parameter u.
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Figure 6.2: Graph of Pt, equation 6.4, the probability of buying.

As can be seen from Figure 6.2, u controls the steepness of the function. It can

be interpreted as a “herding strength” parameter. When u is small, Pt is quite flat.

This means that the probability of buying will be at its extremes 0 and 1 for only very

extreme Rt. This allows for heterogeneity among the noise traders when making their

trading choices, so the herding strength is low. When u is large, Pt is steep and so it
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reaches its extremes of 0 and 1 for more modest Rt. This means that there is more

agreement in the market, or that there is strong herding among the noise traders. This

causes high volatility as everyone is trading in the same direction which leads to large

jumps in the price.

Having u < 0 leads to the counterintuitive situation where noise traders are more

likely to buy after observing a negative price move than a positive one. This would

amount to having contrarian traders. This could be an interesting option to explore in

the future.

If u = 0, Pt = 1/2 for all values of Rt which makes the noise traders completely

ignorant, choosing the direction of their trades by simply tossing a coin. For dynamics

which are dependent on the price moves, I set u > 0. For small u, the model is more

sensitively dependent on the number of each type of trader present. For high u, the price

is unstable and leads to an error in MatLab when it reaches very high values. Also when

u is large, the generated log returns are strongly correlated. This is because most noise

traders in this case agree on which direction to trade, so they will trade in a way which

extends the trend and there will be many consecutive log returns of the same sign. This

is a state to be avoided as it is not a feature of empirical log returns.

The expected number of agents who want to buy at a time t+ 1, conditional on Rt, is

Et[Nbuy,t+1] = N1ΩtPt. (6.5)

Ωt is the proportion of active traders at time t, defined in equation 6.3, and Et[·] is the

expected value evaluated at time t. Et[·] is conditioned on the information available at

time t, which for these forgetful traders is just Rt. Similarly, the conditional expected

number of sellers at time t+ 1 is

Et[Nsell,t+1] = N1Ωt(1− Pt). (6.6)

The excess demand is Dt = Nbuy,t −Nsell,t and its conditional expected value is

Et[Dt+1] = N1Ωt (Pt − (1− Pt))

= N1Ωt

(
1− e−uRt

1 + e−uRt

)
Now the excess demand Dt gives the next price St+1 by equation 6.1, and so the

conditional expected price is:

Et[St+1] =

(
1 +mΩt

(
1− e−uRt

1 + e−uRt

))
St. (6.7)
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Now we have an expression for the next expected price completely in terms of the previous

two prices. Et[St+1] = f(St, St−1) for a function f since Rt = Rt(St, St−1). For the sake

of brevity, let

Ct =
1− e−uRt

1 + e−uRt
.

so that equation 6.7 becomes

Et[St+1] = (1 +mΩtCt)St. (6.8)

Also,

Rt+1 =
St+1 − St

St

=⇒ Et[Rt+1] =
(1 +mΩtCt)St − St

St

= mΩtCt. (6.9)

Note that the above expressions for expected St+1 and Rt+1 are independent of N1;

in fact the dynamics in the relevant limit of large N are completely described by equa-

tion 6.9. These results represent only expected values for the price and proportional price

changes. If N1 is large enough so that the probability P[T = 1] could be interpreted as

the proportion of traders who choose to buy, then these analytical results would be an

accurate description of the simulation results.

Equation 6.8 can be examined to find behaviour for different values of Rt in this large

N1 case. During a bubble period, Rt is large and positive, so Ω ≈ C ≈ 1. Therefore,

St+1 = (1 +m)St.

The price increases by a factor m, which was defined as the largest possible factor change

in the price, as expected.

During a crash period, Rt is large and negative. Ω ≈ 1 in this case also, so all agents

are getting involved in trading. However, Ct ≈ −1 for large negative Rt, so

St+1 = (1−m)St.

and so the price changes by the maximal negative amount allowed as expected.

The dynamics of equation 6.9 can be further simplified by making the approximation
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that, for values of Rt close to zero,2

Ct =
1− e−uRt

1 + e−uRt
≈ uRt

2− uRt

≈ uRt

2
.

Then equation 6.9 becomes

Et[Rt+1] =
uRt

2
mΩt. (6.10)

Fixed points of the dynamics can be found by setting Rt+1 = Rt = R∗. A trivial fixed

point is R∗ = 0. Other fixed points can be found, first assuming R∗ > 0 (separate values

are found for R∗ < 0 and R∗ > 0 due to the |Rt| term in Ω, equation 6.3):

Rt = Rt+1 = R∗ = mCtΩt

≈ muRt

2

(
d+

1− d
1 + e−a(Rt−b)

)
when Rt is close to 0

=⇒ 2

mu
− d =

1− d
1 + e−a(Rt−b)

=⇒ (1− d)mu

2− dmu
− 1 = e−a(Rt−b)

=⇒ ln

(
mu− 2

2− dmu

)
= −a(Rt − b)

=⇒ R∗ = −1

a

(
ln

(
mu− 2

2− dmu

))
+ b (6.11)

where c = 0 in Ω for further simplification3.

Similarly if R∗ < 0, it can be found that a fixed point exists at

R∗ =
1

a

(
ln

(
mu− 2

2− dmu

))
− b. (6.12)

Stability of a fixed point x∗ of a function f can be determined mathematically by

finding the slope of f around the fixed point. If the slope f ′ satisfies |f ′(x∗)| < 1, x∗ is a

stable fixed point. If |f ′(x∗)| > 1, the point is unstable. Here we have Rt as a function

of Rt−1 = R∗. The derivative is discontinuous due to the presence of the absolute value

in Ωt.

2ex ≈ 1 + x if x� 1.
3The parameter c was introduced as it appealed to the intuition that traders are more inclined to

react to a negative return than to a positive one of the same size. However, c is small and has no
noticeable effect on the results.
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It is possible to find the slope using:

d

dx
|x| =

sgn(x), x 6= 0

undefined, x = 0

Assuming Rt 6= 0 allows the following derivation, still using the |Rt| � 1 approxima-

tion so that Ct ≈ uRt

2
:

Rt+1 =
muRt

2

(
d+

1− d
1 + e−a(Rt−b)

)
dRt+1

dRt

=
mu

2

(
d+

1− d
1 + e−a(|Rt|−b)

)
+ . . .

· · ·+ muRt

2

(
− (1− d)

(
1 + e−a(|Rt|−b)

)−2 (−a sgn(Rt)e
−a(|Rt|−b)

))
=
mu

2

(
1 + e−a(|Rt|−b)

(
1 + d(1 + e−a(|Rt|−b)) + (1− d)Rta sgn(Rt)

)
(1 + e−a(|Rt|−b))2

)

Inserting the value for the fixed point R∗ > 0, equation 6.11, after some manipulation

leads to

dRt+1

dRt

∣∣∣∣∣
R∗

=
(mu− 2)2

2mu(1− d)2
+

(mu− 2)(2− dmu)

2mu(1− d)

(
(1 + d)mu− 2

mu− 2
+ ln

(
mu− 2

2− dmu

)
+ b

)
(6.13)

This derivation reveals mu as an important variable. If mu = 2 this equation vanishes,

meaning that this fixed point R∗ is super stable. However, if mu = 2, the fixed points

R∗ of equations 6.11 and 6.12 are located at ±∞. I later discover that mu = 2 gives the

most realistic results in the simulated model. The results are reasonably consistent for a

range of m and u values, so long as the product mu remains constant.

Adding Memory

Traders who base their decisions on different amounts of historical data are thought to

be responsible for some of the stylised facts of empirical data [53]. A first addition to the

model is therefore to give some of the traders memory of different lengths. These agents

use an average over the last five or 21 steps. Rather than basing their decision on the

proportional price change Rt, they use an exponential moving average (EMA)

Rt,n = w(n)Rt + (1− w(n))Rt−1,n. (6.14)
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The weight w(n) = 2
n+1

where n is the number of trading periods they remember. These

new traders who have some memory are called week and month traders to distinguish

them from the original day traders.

week traders: n = 5

month traders: n = 21

This value Rt,n is then used by them in place of Rt in their decisions of whether or

not to trade (Ωt, equation 6.3) and in which direction to trade (Pt, equation 6.4).

I don’t expect these noise traders to cause volatility clustering in the log returns

resulting from their trades. They are more likely to cause clustering in the direction

of trade since a positive price change increases the probability of buying which leads to

another positive price change.

So far, the market is populated with unintelligent agents who just trade randomly

according to some basic behavioural rules. In the next addition to the model, and fol-

lowing standard practice in many other agent-based models [44, 48, 144], new types of

traders are introduced. These are technical traders and fundamental traders. Technical

traders or chartists analyse the price history looking for trends while fundamental traders

are more concerned with the fundamental profit-generating potential of the company in

which they are investing [16, chapter 2].

6.2.2 Technical traders

Technical traders inform their trading choices by indicators from past prices such as

moving averages. They use these indicators or signals to attempt to predict future price

moves. For example on a price chart, if the moving average of the price crosses over the

price it shows that there has been a change in the trend. Technical traders use signals

like this as a basis for their trading decisions.

The chartists in the model by Lux and Marchesi [48] are divided into optimists and

pessimists. The optimists always buy and the pessimists always sell. They do not analyse

historical prices at all. In the Minimal Model by Alfi et al [144], the chartists use a basic

moving average of historical prices compared to the current price to identify trends.

The technical traders in my model use a slightly more involved technical analysis of

trends in the price in order to make their decisions as this was found to lead to more

realistic results. They calculate the Moving Average Convergence Divergence (MACD).

Although the aim of this model is to be as simple as possible, the rationale for using this

more complicated technique lies in its realism. It also leads to richer dynamics in the

results as the traders have a fuller picture of price trends than that afforded by the basic
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moving average. Unlike the original noise traders, the technical traders’ trading decisions

are completely deterministic given the price history.

The MACD technique involves taking two EMAs of the price, A and B, of different

lengths lA and lB. They then find the difference Mt between these two moving averages.

This difference is called the MACD. Then they calculate an EMA of the MACD, st, of

length l. These steps are described by the following equations:

At =w(lA)St + (1− w(lA))At−1

Bt =w(lB)St + (1− w(lB))Bt−1

Mt =At −Bt

st =w(l)Mt + (1− w(l)) st−1 (6.15)

The weight w depends on the length; w(x) = 2
x+1

. A comparison between the MACD

Mt and its EMA st indicates trends in the price. If Mt > st, the price is on an upward

trend. If Mt < st, the price is on a downward trend. If there is a positive trend the

technical traders will buy. If there is a negative trend they will sell. These traders

amplify any trends they detect.

More explicitly,

At −Bt − st > 0 → buy

At −Bt − st < 0 → sell

At −Bt − st = 0 → hold

The technical traders’ decision is completely determined by the price history.

This leads to the excess demand by the technical traders:

Dt =Nbuy −Nsell

=NT sgn(At −Bt + st)

where NT is the total number of technical traders and sgn(x) is the sign function given

by

sgn(x) :=


1, x > 0

0, x = 0

−1, x < 0.

Therefore, when there are only technical traders operating in the model, the price is
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updated according to:

St+1 =

(
1 +m

Dt

N

)
St

= (1 +m · sgn(At −Bt + st))St

There is a problem with having technical traders in the model. The amplification of

trends leads the price to either grow to infinity or drop to zero very quickly. All traders

also have unlimited buying power and so extremely large prices are a common occurrence.

The price can also drop to extremely small values. Because the price update mechanism

in this model is multiplicative, there can be no recovery from a zero price. The issue of

choosing between a linear and multiplicative price update mechanism is discussed by Alfi

et al [125] in the context of their ABM, and it is generally accepted that a multiplicative

price is more realistic despite these issues.

Another type of trader is necessary to keep the market reasonably stable. Fundamen-

tal traders will fill this role.

6.2.3 Fundamental traders

In order to have fundamental traders in the model, there must first of all be a defined

“fundamental value” for the traded asset. In a real trading environment, the fundamen-

tal value of a stock can be estimated as the current value of expected future dividend

payments. This sort of calculation clearly cannot be performed within this model. Other

models which have fundamental traders often set the fundamental value to some con-

stant level for the duration of the simulation [48, 144]. Allowing the fundamental value

to vary or giving fundamental traders heterogeneous beliefs may allow for more interesting

dynamics [125, 137].

In my model, I let all the fundamental traders agree with each other on what the

fundamental value is at any moment. There are two options for the fundamental value,

f . It may be fixed to a constant level or it may be set to follow a random walk which is

the discrete Euler approximation to GBM:

ft = ft−1 (1 + µf∆t+ σfεt) (6.16)

This is a basic approximation which ignores Itō’s calculus. µf and σf are the mean and

variance, and εt is a random number taken from a standard normal distribution. These

are the iterates of a Wiener process. I also set the time steps to ∆t = 1.

The fundamental traders know the fundamental value of the asset. At time t, they

compare the price St to ft and decide if the asset represents good value. They will buy
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if the price is below the fundamental value and sell if it is above. Their trading strategy

pulls the price back towards the fundamental value. They have the opposite effect on

prices to the technical traders, and so help to stabilise the market. Like the technical

traders, their decisions are deterministic once ft is known and St is revealed. All of the

fundamental traders trade in the same direction.

These traders act in response to the relationship between the fundamental value ft

and the price St at time t.

ft >St → buy

ft <St → sell

ft =St → hold

The demand of the fundamental traders at time t is therefore given by

Dt = NF sgn(ft − St)

where NF is the total number of fundamental traders in the model.

If these are the only traders in the market, then the new price is

St+1 =

(
1 +m

Dt

NF

)
St

= (1 +m · sgn(ft − St))St

6.2.4 The Complete Model

We now have enough information to put together a system of equations for the model

when there are some of each type of agent trading. This will include N1 noise traders (each

with just one-period memory for simplicity), NT technical traders and NF fundamental

traders. The total number of traders is N , N = N1 +NT +NF . The model can be written
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as an iterative map with the following coupled equations:

St+1 =

(
1 +m

Dt

N

)
St

Noise Traders



Rt+1 =
St+1 − St

St

Ωt+1 =
1 + de−a(|Rt−c|−b)

1 + e−a(|Rt−c|−b)

Pt =
1

1 + e−uRt

E[DN,t+1] = N1Ωt+1(2Pt − 1)

Technical Traders



At+1 = 2
lA+1

St +
(

1− 2
lA+1

)
At

Bt+1 = 2
lB+1

St +
(

1− 2
lB+1

)
Bt

st+1 = 2
l+1

(At+1 −Bt+1) +
(
1− 1

l+1

)
st

DT,t+1 = NT sgn(At+1 −Bt+1 + st+1)

Fundamental Traders

ft+1 = ft(1 + µf + σfεt)

DF,t+1 = NF sgn(ft − St)

E[Dt+1] =E[DN,t+1] +DT,t+1 +DF,t+1 (6.17)

This system of equations does not contain any mention of shares or of the personal

wealth of the agents. All traders always have the option to both buy and sell, or can

be considered infinite in both shareholdings and wealth. Also, in this description of the

model, the noise traders all have only a one-period memory (they are all day traders).

The equation Rt can be adjusted to Rt,n by equation 6.14 to allow for noise traders with

longer memory. This map is probabilistic due to the uncertainties coming from the noise

traders’ probability of buying, Pt, and from the random factor ε in the fundamental value

ft.

6.3 Chapter Summary

In this chapter, my new ABM has been developed. The motivation behind this new

ABM was to find a very simple model which can reproduce some of the stylised facts

of empirical financial time series. This will aid the understanding of the origin of the
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stylised facts in empirical data. My ABM is very basic and focuses on trader behaviour

rather than market microstructure. So far I have outlined the working elements of the

ABM. In the next chapter, the log returns generated by the ABM will be tested for the

stylised facts which were found present in the empirical DJIA and Euro Stoxx 50 data

which were studied in Chapter 2. I find that the ABM does indeed produce some of the

most defining features of financial log return data.
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Chapter 7

Results from the Agent Based Model

7.1 Introduction

This chapter contains a discussion of the results obtained from simulating the ABM intro-

duced in the previous chapter. I will first discuss the specifications of the ABM, reviewing

the chosen parameter values. The chapter then describes the features of the time series

produced by the ABM. Some emergent properties are identified and discussed. The fea-

tures of leptokurtosis and volatility clustering are especially highlighted and studied in

detail. Three ingredients are found to be essential for the production of these stylised

facts: the memory of noise traders who make biased random trade decisions, the inclusion

of technical traders that trade in line with trends in the price, and the inclusion of fun-

damental traders who know the “fundamental value” of the stock and trade accordingly.

When these three basic types of traders are included, log returns are produced with a

leptokurtic distribution and volatility clustering as well as some other statistical features

of empirical data.

7.2 Computing Details

The analysis outlined in this chapter involved a lot of computation. I coded my ABM in

MatLab. The computer I used for all simulations has the following specification:

• Dell Precision M4600

• Intel(R) Core (TM) i7-2720QM CPU

• 8 GB RAM

• 64-bit operating system

The computation was carried out in MatLab, version R2013a 8.1.0.604 64-bit.
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7.3 Model Specifications

The model contains quite a few parameters whose values need to be specified before

simulations can begin. The parameter values for each of the defining functions of the

ABM are given in Table 7.1. The parameters that the ABM is the most sensitive to are

the numbers of the different types of traders who are present in the ABM. Results are

presented below for different set-ups of the ABM for which all parameter values are kept

constant except for the number of different types of traders. The numbers of each type

of trader for the different set-ups are given in Table 7.2.

The parameter m is contained in the price function:

St+1 =

(
1 +m

Dt

N

)
St

When m is small, there is little price movement. If fundamental traders are present, the

price fluctuates around the fundamental value f . The number of noise traders who get

involved in trading is small because the small price movements discourage them from

trading through the function Ω. For large m, the price fluctuates wildly and induces an

error in MatLab as it approaches numbers too large for the computer. In the mid-range,

some more interesting dynamics can occur.

Another influential parameter is u, appearing in the probability of buying, Pt,

Pt = P[T = 1|Rt] =
1

1 + e−uRt
.

As was noted in Section 6.2.1, the product mu is more relevant to the dynamics than

either m or u alone. I have found that mu = 2 leads to the best results.

For a fixed value of m and a varying u, the volatility of the generated log returns

increases with u. For higher u, more of the noise traders agree on which direction to

trade given the previous price move and so create a large excess demand leading to a

large log return.

S P Ω MACD f
m u a b c d lA lB l µf σf
0.4 5 4000 0.02 0.002 0.05 12 26 9 3 · 10−4 0.025

Table 7.1: The parameters used for the ABM
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model set-up N1 N5 N21 NT NF

Trader Set A 4 4 8 2 2
Trader Set B 0 0 16 2 2
Trader Set C 100 0 0 0 0
Trader Set D 100 100 100 60 60

Table 7.2: The number of the different types of traders in the ABM for the results
presented below. N1, N5 and N21 are noise traders with memories of 1, 5, and 21 times

steps respectively.

The proportion of noise traders active at any time is given by Ω,

Ωt = d+
1− d

1 + e−a(|Rt−c|−b)
.

With the parameters used in the simulation given in Table 7.1, Ω is as shown in Figure 7.1

and looks like a step function;

Ωstep =

1, |Rt − c| > b

d, |Rt − c| ≤ b.

There is a sharp transition between proportional price changes after which the minimum

number of agents trade and those after which all agents trade.

When the total number of noise traders in the ABM is very small, there is not much

scope for different numbers of agents to be active in trading, and so the step function
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Figure 7.1: Graph of Ω, equation 6.3; a = 4000, b = 0.02, c = 0.002, d = 0.05. This is the
version of Ω used in simulations of the ABM.
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might be sufficient in that case. The form of Ω is important when there are more noise

traders in the market, and so the full version of Ω is used in the simulations rather than

this basic step function approximation.

The week and month traders use an exponentially weighted moving average of the

previous five and 21 trading time periods respectively to inform their trades. A plain

unweighted moving average could also be used. The type of moving average employed by

the week and month traders has no noticeable effect on the results.

The technical traders employ MACD analysis as described by equations 6.15 given in

the previous chapter. They use the lengths lA, lB and l given in Table 7.1. These are the

standard lengths for this analysis technique.

The fundamental traders know the fundamental value f of the stock. For most of

the results presented here this has been set to follow the discrete Euler approximation to

GBM and so it takes the form

ft+1 = ft(1 + µf + σfεt).

The noise terms have a standard normal distribution; εt ∼ N(0, 1). The drift µf and

standard deviation σf of the fundamental value are given in Table 7.1. These are values

used in another model [152] and they have been found to be appropriate here.

A summary of some of the statistical results described below is shown in Table 7.3.

Table 7.4 reports the same statistics for computer-generated BM and GBM as well as em-

pirical data from Allied Irish Banks (AIB), DJIA and Exxon Mobil Corporation (XOM)

for comparison. The AIB and DJIA data are daily log returns while the XOM log returns

are retrieved from the Trades and Quotes (TAQ) database. TAQ is updated with every

trade and is extremely high-frequency, often with many prices quoted per second.

Trader Set A Trader Set B Trader Set C Trader Set D
µ 1.94 · 10−4 ± 1.97 · 10−4 −9.88 · 10−6 ± 2.286 · 10−4 −0.0074± 0.0052 1.78 · 10−5 ± 2.36 · 10−4

σ 0.0469± 0.0167 0.082± 0.0026 0.0833± 0.0031 0.0782± 0.0013
γ −1.47± 0.897 −0.5385± 0.0663 −0.4566± 0.0862 −0.4187± 0.0277
κ 31.44± 35.28 4.6948± 0.2507 4.5168± 0.2821 4.43± 0.120

H(Z) 0.365± 0.097 0.476± 0.0398 0.7544± 0.0227 0.3195± 0.0279
H(|Z|) 0.917± 0.023 0.7244± 0.0233 0.7312± 0.0305 0.5871± 0.0292

Table 7.3: Descriptive statistics of the log returns produced by the ABM. The values
are reported as µ± σ, where µ is the sample mean and σ is the sample standard

deviation. The reported statistics are the mean value µ, the standard deviation σ, the
skewness γ, the kurtosis κ, and the Hurst exponent H of both the log returns and their
magnitudes. Trader Sets are given in Table 7.2. The results obtained are from 20 runs

of the ABM, each of length T=10,000.
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BM GBM AIB DJIA XOM
µ 4.421 · 10−6 ± 1.95 · 10−4 −2.987 · 10−4 ± 2.36 · 10−4 −5.14 · 10−4 1.90 · 10−4 −1.317 · 10−8

σ 0.025± 1.7 · 10−4 0.025± 1.87 · 10−4 0.0368 0.0117 5.295 · 10−5

γ −0.002± 0.021 −0.076± 0.25 −3.8101 −0.5931 5.7149
κ 2.99± 0.038 3.021± 0.063 119.7169 27.2784 1.6892 · 104

H(Z) 0.482± 0.028 0.49± 0.038 0.6142 0.5146 0.4517
H(|Z|) 0.494± 0.032 0.485± 0.038 0.8890 0.8679 0.8950

Table 7.4: Descriptive statistics of computer-generated and empirical data for
comparison with the data generated by the ABM shown in Table 7.3. The statistics for
BM and GBM are obtained from 20 samples each of length T=10,000, mean zero and

standard deviation 0.025 and are reported as µ± σ, where µ is the sample mean and σ
is the sample standard deviation. The statistics have been calculated for the differences
of the BM data (due to the presence of negative values) and for the log returns of the
GBM and empirical data. The AIB data is daily, 1990-2011. The DJIA data is daily,

1928-2012. The XOM data is TAQ and is for May 2010. The reported statistics are the
mean value µ, the standard deviation σ, the skewness γ, the kurtosis κ, and the Hurst

exponent H of both the log returns and their magnitudes.

Although the price in the ABM is updated with every trading period, there are dif-

ferent numbers of trades in each period depending on how many active traders there are.

This means that the time series produced by the ABM should be comparable to empirical

records in physical time (such as AIB and DJIA) rather than trade time (such as XOM).

7.4 Price

Most of the price series produced by the ABM look unrealistic. Examples of generated

price time series for different trader sets are depicted in Figure 7.2. I have not found a set

of parameter values which produce a realistic price. This is likely due to the unlimited

wealth of the traders which is clearly an unrealistic characteristic of the ABM.

The price is bounded below by 0 but is not bounded above. Since the price is mul-

tiplicative, when it is on a downward trend it takes smaller negative steps as it gets

smaller. When it is on an upward trend, it takes bigger and bigger positive steps until

the randomness of the noise traders brings the trend to an end. Setting a limit on wealth

would restrict these spikes and may lead to a more realistic price. However, since the

ABM is concerned with the features of the log returns rather than the price, this is not

a problem.
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Figure 7.2: Examples of the price S and fundamental value f generated by the ABM
when different numbers of traders are present.

7.5 The Distribution of log returns

Examples of log return time series generated by my model are shown in Figure 7.3. They

have been normalised so they have zero mean and unit standard deviation. Figure 7.4

shows the corresponding normalised distributions along with the standard normal for

comparison.

The log returns Z produced by the ABM in many different scenarios have been found

to be leptokurtically distributed. The model was run many times with different combi-

nations of noise traders without technical or fundamental traders. Different numbers and

memory lengths were tested. In each case, the log returns produced had a leptokurtic

shape and the Shapiro-Francia test1 rejected normality at a significance level of 0.1%.

The log returns produced by the ABM when it also includes technical and fundamental

traders are also leptokurtic. The distribution of log returns produced in every case is taller

and thinner than a Gaussian distribution.

Kurtosis is a measure of how peaked the distribution is. It was defined in Section 2.3

as

κ = E
[

(x− µ)4

σ4

]
. (7.1)

1This test is suitable for leptokurtic log returns. It sorts the data into ascending order and finds
the correlation between this ordered data and the expected order statistics for data from a normal
distribution [153].
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Figure 7.3: Examples of the log returns produced by the ABM when different numbers
of traders are present. They are normalised so are in units of standard deviation.
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Figure 7.4: Examples of the distribution of the normalised log returns produced by the
ABM when different numbers of traders are present. Each also shows a Gaussian fit for

comparison.
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For a Gaussian distribution, κ = 3. The kurtosis of the log returns generated by the

ABM are shown in Table 7.3. The kurtosis for all trader combinations is higher than for

a Gaussian, but most significantly for Trader Set A. This is due to the many zero log

returns produced by this set up of the ABM. These will be discussed below.

The essential feature of the ABM which produces this stylised fact is the function Ω,

defined in equation 6.3, and restated again here:

Ω(Rt) = d+
1− d

1 + e−a(|Rt−c|−b)
.

This function adjusts the number of active noise traders according to the previous price

change. The value of d is critical. If d = 1, Ω = 1 and the number of noise traders active

in the ABM is constant. Keeping the number of active noise traders at a constant level

results in log returns which have a Gaussian distribution. This is the case even when

technical and fundamental traders, who are not influenced by Ω, are also present in the

ABM. However when the number of active noise traders varies according to Ω with d < 1,

the log returns have a leptokurtic distribution.

The function Ω mimics realistic trading patterns. In real trading if there is a large

price move, perhaps as a result of some news arriving to the market, traders who are

normally not very active may be motivated to review their portfolio and make some

trades. This leads to more log returns close to zero when these more casual investors are

not trading and extreme log returns when everybody wants to trade because they have

seen a large price move.

This finding is consistent with other studies which have related the leptokutric distri-

bution of log returns to the varying rate of trading [29, 154–158]. High volatility is related

to periods of high trading volume. Since within the ABM each trader can only trade one

share at a time, the number of active traders [ΩNN ] + NT + NF is a proxy for volume.

The relationship between volume and volatility is discussed in detail in Section 7.8.

Although the ABM produces log returns with a thin-peaked distribution, it does not

have the fat tails of empirical data. There are no particularly extreme events. In the

examples shown in Figure 7.4, there is no log return further than 6σ from the mean for

any of the four time series, each 5000 iterations long. This is less than what is found

for empirical data; see for example Table 4.2 which reports on the frequency of different

sized log returns in the DJIA and Euro Stoxx 50 data.

Figure 7.5 shows an example of the inverse cumulative distribution for the absolute

log returns produced by the ABM. The ones shown are for Trader Set B. Similar results

were found for other trader sets. Empirically, as discussed in Section 2.3, log returns are

found to have an inverse cumulative distribution whose tail decay can be approximated
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Figure 7.5: Example of the inverse cumulative distribution of the absolute normalised
log returns produced by Trader Set B. There is also shown a Gaussian decay and power

law lines for comparison.

by a power law with exponent α, 2 < α < 4 [48]. Power laws with these exponents are

shown on the graph along with a Gaussian for comparison. The graph shows that the log

returns produced by the ABM do roughly follow a power-law decay for a time but have

an abrupt truncation with no extreme events. This can be compared with Figure 2.3

which shows the tail decay for the DJIA and Euro Stoxx 50 data.

The maximum and minimum values of the log returns are limited by the parameter

m. However in the simulations, the extreme values set by m are very rarely reached so

this limit does not have an undue influence on the truncation of the tails. There is likely

not enough heterogeneity amongst the traders in the ABM to allow for extreme events.

There are also no information shocks arriving to the market. These are possible areas for

extension of the ABM.

The bimodal shape of the distribution for Trader Set B, Figure 7.4(b), is unusual.

There are less zero log returns than there are log returns just larger than and smaller

than zero. The minimum number of noise traders is responsible for this phenomenon.

The minimum number of active noise traders with memory j is very close to [dNj]. For

Trader Set B,

[dNj] = [dN21] = [0.05 · 16] = [0.8] = 1.

Thus when the minimum number is trading, there is an odd number of traders (5 in

this case; one noise trader and two each of the technical and fundamental traders). This

means that there will always be a nonzero excess demand and a nonzero log return as a

consequence.
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This is in contrast to Trader Set A where the minimum number of active noise traders

is zero which leads to a zero log return when the technical and fundamental traders are

trading in opposite directions and so cancel out each other’s demand. This also explains

the extended periods of zero log returns seen in Figure 7.3(a) for Trader Set A. When

there are no noise traders active, there are just the fundamental and technical traders

trading. They usually trade in opposite directions. There are equal numbers of technical

and fundamental traders and so the excess demand D = 0 which in turn means that the

price doesn’t change and there is a zero log return.

If the fundamental value follows the approximate GBM process, it continues to fluc-

tuate which will change the trading decision of fundamental traders when it crosses over

the price. When this happens, it causes a price change which in turn motivates some

more of the noise traders to begin trading again. This is what causes the period of zero

log returns caused by Trader Set A to come to an end. If instead the fundamental value

is maintained at a constant value, the period of zero log returns will continue to the end

of the simulation.

7.6 Uncorrelated log returns

As has been shown before in Section 2.5, empirical financial log returns are not linearly

correlated [19, 144] [3, chapter 7]. The price is like a random walk in that the direction

of the next price move is not predictable given the price history. The simulation results

can be tested for this property.

Figure 7.6 shows that the autocorrelation of the log returns drops close to zero very

quickly. The ACF of the log returns for Trader Set A fluctuates away from zero more

than for Trader Set B. The prolonged periods of zero log returns which are discussed

above in Section 7.5 can be blamed for this fluctuation.

The absolute values of log returns produced by Trader Sets A and B have a much more

slowly decaying ACF. This will be discussed in Section 7.7. The log returns themselves

will be examined in more detail here.

The ADF test was described in Section 2.5. It tests the hypothesis that a data set is

a unit root process. I use it here on the generated price data. Table 7.5 reports on the

rejection rate of the unit root null hypothesis H0 for some time series produced by model

simulations with different numbers of traders. For each case the ABM was run twice for

a length of 20,000 iterations and the price data divided into sections of length 500 which

were all tested separately resulting in 80 tests for each model set-up reported.

The percentage of rejections of H0 is small for Trader Sets A and B. Trader Sets C

and D have bigger rejection rates. The rejection rate is especially high for Trader Set
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Figure 7.6: Examples of the ACF of the log returns and their absolute values produced
with different numbers of traders in the ABM.

model set-up St ln(St) Zt
Trader Set A 3.75% 10% 76%
Trader Set B 3.75% 1.25% 100%
Trader Set C 23.75% 27.5% 100%
Trader Set D 6.25% 2.5% 100%
100 Month Traders only 2.5% 1.25% 100%
20 Technical and 20 Fundamental only 2.5% 6.25 100%

Table 7.5: Out of 80 tests done on price time series of length T=500, this table reports
the percentage of the time series produced by different set-ups of the ABM which were

rejected as having a unit root by the ADF test. All other parameters for these
simulations are as given in Table 7.1.

C. The price generated by Trader Set C is thus shown to be trend-reverting rather than

an unpredictable random walk. Trader Set A and Trader Set B have the unit root in

the price process which confirms that the log returns are uncorrelated, as are empirical

data [48, 19, 126].

The log returns Zt are expected to be stationary and this is also proved to be true

for the results of the ABM by the ADF test. The only log return time series which is

not completely rejected as having a unit root is that produced by Trader Set A. This is

due to the fact that these log returns have some prolonged periods of Zt = 0. A constant
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time series trivially has a unit root since xt+1 = xt means ρ = 1 in the regression series

described in Section 2.5.

Despite the hopeful results reported for Trader Sets A and B, the unit root hypothesis

is rejected a lot more often for longer price series. The ADF test rejects the unit root null

hypothesis for longer price data at very small p-values. This means that there is mean-

reversion in the simulated data, unlike empirical data. On visual inspection of Figure 7.2

the mean-reversion in the price is obvious. There are sudden huge spikes before the price

drops back down. When the price is divided into smaller sections, these spikes do not

affect the results so much because there are less of them per tested section.

7.7 Volatility Clustering

With only the original noisy day traders in the ABM, there is no volatility clustering in

the simulated log returns. An example is shown in Figure 7.3(c) and the corresponding

autocorrelation in Figure 7.6(c). When week and month noisy traders are added, the

ACF of the log returns decays more slowly. There is similar decay in the ACF of both

the log returns and their magnitudes due to the increased memory of the agents.

Giving some noise traders an even longer memory of 126 time steps (six months’ worth

of trading days) does not result in volatility clustering either. The memory of the noise

traders causes the produced log returns to be correlated. Since log returns in empirical

data are uncorrelated [19, 126, 147] as described above, the noise traders alone are found

not to produce realistic time series. Many combinations of different numbers and types of

noise traders were experimented with. In each case, the log returns produced had some

leptokurtosis but no evidence of volatility clusters.

Volatility clustering occurs in the log returns only when technical and fundamental

traders are added to the market. Clusters can be identified by eye in Figures 7.3(a)

and (b). The volatility clusters produced by the ABM with Trader Set A shown in

Figure 7.3(a) are very severe compared with the volatility clusters for empirical data,

having prolonged periods of zero log returns. The reason for this was explained above in

Section 7.5.

More realistic results are obtained if all of the original noise traders have a month’s

memory and there are also some technical and fundamental traders operating in the

market. This is the case with Trader Set B. Examples of the ACF are shown in Figure 7.6.

The magnitudes of log returns generated by Trader Sets A and B are long-term correlated.

A slow decay in the ACF of absolute values of log returns is a signature of the volatility

clustering that can be seen in Figure 7.3(a) and (b).

The ACF of empirical absolute log returns decays roughly as a power law [44, 147].
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Figure 7.7 shows the decay of the autocorrelation for data generated by Trader Sets A and

B along with pure power laws for two different set ups of the ABM on doubly logarithmic

scales. In both cases, a power law provides a reasonable fit, comparable if not better

than the fit to empirical data. Figure 7.7 can be compared with Figure 2.7 which shows

the decay for the DJIA and Euro Stoxx 50 log returns. Also see for example Figure 6 in

ref. [44].
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Figure 7.7: Graphs of the autocorrelation of the absolute log returns generated by the
ABM on doubly logarithmic scales. Both are shown with a pure power law for

comparison. The power law provides a good fit in both cases.

The technical traders bring memory to the system. However, once there are technical

traders, the fundamental traders are an essential addition to keep the ABM stable, so

these two factors are impossible to separate. It is reasonable that fundamental traders

are necessary to bring an end to the trends instigated by technical traders in a world
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where they never believe that a bubble will burst.

The fundamental value crossing over the price triggers the bursts of high volatility. At

these moments, the technical and fundamental traders agree with each other and trade

in the same direction. There are plenty of noise traders also in the ABM and more of

them will get involved in trading after seeing a large price move. This gives the volatility

burst some longevity even after the fundamental value has crossed back over the price so

that the fundamental and technical traders begin trading in opposite directions again.

If the noise traders are removed from the ABM, the volatility clustering disappears.

The interaction between technical and fundamental traders is not enough on its own to

create this phenomenon. In the minimal model by Alfi et al [144], volatility clusters are

produced by just technical and fundamental traders. In that model agents can switch

between trading strategies but that is not possible in my model. The presence of noise

traders in my model has a similar effect on the results as the strategy-switching in theirs.

The volatility clustering also disappears for the limit of a large number of agents, and

so can be viewed as finite-size effects as in the ABM by Alfi et al [144].

The method of analysis employed by the technical traders also has an impact on the

results. If they use a simple moving average of the historical price to compare to the

current price as done in the Minimal Model by Alfi et al [144], the volatility clusters do

not appear. This confirms that the technical trading strategies are also an essential factor

for the creation of volatility clusters in this model.

7.8 The volume-volatility relationship

As mentioned in Section 7.5 in the context of fat tails, it is empirically found that trading

volume and volatility are positively correlated [155–158, 147]. The long memory in the

volatility of the ABM suggests there may be a similar memory in the volume. In the

context of the ABM, the number of active traders at each time t, Nactive,t = [ΩtNN ] +

NT +NF can be considered a proxy for volume. I have found that the variable [ΩtNN ] also

has a slowly decaying ACF. An example of the sample ACF is shown in Figure 7.8(a).

This graph shows the sample autocorrelation for the total number of active traders Nactive.

Ωt is the only variable, all other values are fixed for the duration of the simulation.

The long memory in Ω is expected since for day traders it is a function of the absolute

value of the proportional price change |Rt| =
∣∣∣St−St−1

St−1

∣∣∣ which is closely related to the log

return Zt. Ω has even more memory than |Zt| because for week and month traders it is

a function not only of |Rt| but of Rt,n, a moving average of past values of Rt.

Another possible proxy for the volume is the minimum of the number of buyers and

sellers at each iteration of the ABM. Gt=min(NBuy,t, NSell,t) is the number of traders who
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Figure 7.8: Examples of the graph of the ACF of two proxies for volume for Trader Sets
A and B.

actually buy and sell and so this is the number of shares which changes hands during one

time step. It also has a long memory as is shown in Figure 7.8(b). Since the price is a

function of the excess demand D and not of G, it is expected that the volatility will be

less closely related to G than it is to Nactive. Only Trader Sets A and B are considered

here because they produce long correlations in |Z|.
Table 7.6 shows the correlation coefficient ρ between the number of active traders

Nactive and the absolute log returns and between the number of trades G and the absolute

log returns. ρ(|Z|, Nactive) is quite high for Trader Set A but smaller for Trader Set B.

This can be understood by the absence of day traders from Trader Set B. The month

traders in Trader Set B are influenced by a moving average of the previous 21 values of

Rt which is less directly related to Zt than Rt itself which is the only input value for

Trader Set A. The table also shows that ρ(|Z|, G) is lower than ρ(|Z|, Nactive).

Correlation coefficient values are also shown for Trader Sets C and D but since these
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correlation ρ Trader Set A Trader Set B Trader Set C Trader Set D
ρ(|Z|, Nactive) 0.7759± 0.04 0.4338± 0.0166 0.719± 0.0154 0.3924± 0.0101
ρ(|Z|, G) 0.6459± 0.0529 0.3270± 0.0196 0.5277± 0.0199 −0.1402± 0.0306

Table 7.6: The correlation between Nactive and |Z| and between G and |Z| for 20 runs of
the ABM each with T=10,000. The values are reported as µ± σ, where µ is the sample

mean and σ is the sample standard deviation.

sets don’t produce other stylised facts, they are not examined in detail.

Figure 7.9 shows both Nactive and G each plotted against the normalised log returns

for examples of simulations with Trader Sets A and B. Table 7.6 shows that the volatility

is more closely correlated with Nactive than with G, but Figure 7.9 gives some insight into

the nature of the relationships. These figures show that the relationship is not a simple

linear one.

When |Z| < 2σ, Nactive appears to take on any permitted value without bias. The

same is true of G when |Z| < 5σ. For larger |Z|, Nactive is on average larger whereas G

is on average smaller. The statistics are very small for large |Z| and so it is not possible

to infer any conclusions from this result. However similar figures to these resulted from

many different simulations and so the results appear to be robust.

These relationships between |Z|, Nactive and G can be understood as follows. If there

is a large |Zt|, Nactive,t is expected to be large as it depends on |Rt| ≈ |Zt|. However, in

this case the number of traders with the majority opinion is quite large which necessarily

means that G = min(NBuy, NSell) is small, and so |Z| and G appear to be weakly inversely

correlated for large |Z|.
This simple analysis confirms Nactive as a reasonable proxy for trade volume in this

model. Its positive correlation with volatility agrees with empirical results for real finan-

cial data.

7.9 Hurst Exponent

The Hurst exponent H is a useful measure of the persistence of a time series. 0 < H < 1/2

indicates that the time series is anti-persistent, so positive values will likely be followed

by negative values and vice versa. A Hurst exponent of 1/2 < H < 1 indicates persistent

behaviour, or positive correlation in the time series. If H = 1/2, there is no correlation in

the data [159].

The average Hurst exponents of the time series produced by the ABM in different

set-ups are shown in Table 7.3. For data generated by Trader Sets A and B, the absolute
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Figure 7.9: Graphs of the number of active traders Nactive and the number of trades G
against the normalised absolute log returns for Trader Sets A and B for a sample data

set generated by the ABM.

value of the log returns |Z| have H > 1/2 and the log returns Z have H ≈ 1/2. This is

a further indication of volatility clustering as it shows that there is persistence in the

magnitudes of log returns whereas the log returns themselves are uncorrelated. It is also

consistent with results found for empirical data [160].
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7.10 Asymmetry of log returns

Skewness is a measure of the asymmetry of a probability distribution. It is the third

central moment of the data, as was defined in Section 2.4:

γ = E
[

(x− µ)3

σ3

]
. (7.2)

The skewness of the log returns produced by the ABM is shown in Table 7.3. The

log returns are negatively skewed in all set-ups of the ABM which have been tested and

so cannot be ascribed to a particular trading strategy. This is also the case when the

parameter c controlling the asymmetry in Ω is set to c = 0 and even when c < 0 which

biases noise traders to be more reactive to positive price moves. For most time series

produced by the ABM it is found that the skewness of the price increments ∆S is also

negative.

The underlying reason for this negative skew in both the log returns and the price

increments remains unclear. It is present for a number of configurations of the initial

conditions of the price and fundamental value. Initial conditions have been blamed for

skewness in the results of another model [137].

7.11 Aggregational Gaussianity

Another recognised feature of financial data is that as the time lag is increased, the

distribution of the log returns begins to more closely resemble a Gaussian [19, 53, 27].

Specifically at long time scales such as annual log returns, the empirical distribution is

reasonably fitted by a Gaussian.

Let

Zt,∆ = log(St+∆)− log(St).

So far, the log returns of successive prices (∆ = 1) generated by the ABM have been

examined. In order to look for a scale-dependent distribution, log returns at different

time scales ∆ must be found. If ∆ is allowed to increase, the shape of the distribution

does indeed change, as is shown in Figure 7.10.

The leptokurtic distribution begins to break down for large ∆. At ∆ = 10, 000, there

is a reasonable fit to a Gaussian distribution within 3σ of the mean, but beyond this

the tails are much too fat to be explained by a Gaussian. However, at ∆ = 100, 000,

all values of Zt,∆ fall roughly on the Gaussian distribution. The results are shown on a

semi-log scale to allow for greater visibility of the tails.

The reason for the aggregational Gaussianity lies with the fundamental value f . f
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Figure 7.10: Graph of the distribution of normalised log returns Zt,∆ calculated over
different lags ∆ for a long simulation (T = 5 · 107) with Trader Set B and varying f . The
solid black line shows a standard normal distribution. The vertical scale is logarithmic.

follows a discrete Euler approximation to GBM;

ft = ft−1(1 + µf + σfεt).

Its log returns therefore have a normal distribution. At large ∆, large events become rare

and the consistent Gaussian influence of f on the fundamental traders dominates Zt,∆.

At large lags, any short term trends instigated by technical traders are not felt and the

shape of the distribution is influenced principally by the fundamental traders.

To confirm that this is the reason for the aggregational Gaussianity, I have carried

out the same analysis on log returns generated by the ABM with f set to a constant

value for the entire simulation. Figure 7.11 shows the result. Even at large ∆, there

is no agreement with a Gaussian distribution in this case. This is because there is no

Gaussian influence on any traders and the log returns retain their fat tails. These results

are similar to those found by Alfi et al in the analysis of their model [125].

This transition to Gaussianity is in line with what is found in empirical data, and

this may indicate that there is some normally distributed variable influencing traders in

the market. Many traders use models based on the Gaussian distribution such as the

GBM model of stock prices which is the basis for the Black-Scholes-Merton equation

discussed in Section 1.6.1. This in turn influences how they trade. There are many other

influences on how people trade, such as the arrival of news, which may also produce a

Gaussian distribution at large lags. This influence becomes dominant when looking at
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Figure 7.11: Graph of the distribution of normalised log returns Zt,∆ calculated over
different lags ∆ for a long simulation (T = 5 · 107) with Trader Set B and constant f .

The solid black line shows a standard normal distribution. The vertical scale is
logarithmic.

the distribution of log returns at lower resolution.

7.12 Chapter Summary

This chapter has outlined the main results obtained from the simple agent based model

described in Chapter 6. As is the case with many ABMs, useful results are only obtained

from this model in a limited area of the parameter space [44, 128]. Specifically, the

number of traders is critical. The volatility clustering and non-Gaussian distribution do

not feature in the generated log returns when there is a large number of traders. This

indicates that these phenomena may be finite size effects. These stylised facts have been

attributed to finite size effects in other ABMs [125, 161, 144].

Leptokurtic log returns are generated by the noise traders in the ABM. It has been

shown that the varying number of active traders is the source of this feature in the results.

This mimics the behaviour of real traders and offers an explanation for the leptokurtosis

of empirical log returns.

Volatility clusters come from having some memory in the noise traders along with

technical traders who analyse historical prices looking for patterns. Technical traders

bring memory to the system as they detect trends and amplify them. If the long-memory

noise traders are taken out of the ABM, the volatility clustering also disappears. Neither

the technical traders alone nor the memory alone is enough to produce this feature. Both

120



of these are necessary, and the presence of technical traders necessitates the presence

of fundamental traders to keep the price reasonably stable. It is also the fundamental

traders who trigger the bursts of high volatility. Three essential ingredients have thus

been identified for this model to produce this stylised fact of financial data. The memory

of the noise traders, the inclusion of technical traders who trade in line with trends in

the price, and the inclusion of fundamental traders who know the “fundamental value”

of the stock and trade accordingly are all necessary components.

Transition of the distribution of the log returns to a Gaussian has also been identified

as a statistical property of the log returns generated by the ABM. This is caused by the

fundamental value and indicates that many real traders may also be under the influence

of a GBM process.

Some of the most distinctive stylised facts of financial data have been produced by

this model with just a few simple elements, not considering a limit order book or liquidity

issues. However I have not yet examined the ABM’s generated log returns for multifractal

scaling properties. This will be pursued in the next chapter.
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Chapter 8

Multifractality in the Model and

some Extensions

8.1 Introduction

My motivation to build a new model of the market was to aid understanding of the

stylised facts of financial data. I wanted to use the stylised facts as a benchmark for the

fitness of the model. An examination of the model outputs for multifractality is therefore

warranted.

In this chapter, I examine the log returns produced by my ABM for multifractality.

First of all, some ABMs from the literature which have been shown to generate multi-

fractal log returns are reviewed. Log returns generated by my new ABM are then tested

for multifractality via MF-DFA. A couple of extensions to the model are also explored.

This work can help to uncover the origin of multifractality in empirical data from the

perspective of trader behaviour.

8.2 The Literature

I have found that not many agent-based models have had their generated log returns

analysed for multifractality. However some have been found to produce time series with

multifractal properties. A few of them are briefly reviewed here.

The ABM by Zhou and Sornette [162] based on the Ising model has been shown to

produce multifractal time series. Each agent is connected to a number of others and

these connections change in time to mimic human learning. Each agent makes trade

decisions based on their expectation of their neighbours’ decisions, external news and a

random personal preference which changes in time. The price does not impact on traders’
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decisions at all.

The model has two regimes. In the “boundedly rational” regime, agents become less

likely to imitate others if they see that the news has been a good predictor and will instead

trust the news and vice versa. In the “irrational” regime, the opposite is the case. Agents

become more likely to imitate others when the news has been a good predictor. Agents

trust that the crowd will come up with the best strategy.

The authors find that only the irrational regime produces the stylised facts of fat tails,

aggregational Gaussianity and long memory in the absolute values of log returns [162].

They also find hallmarks of multiscaling in the relaxation of volatility in the log returns

from a local peak, but do not discuss their origins.

Multifractality is also found in a version of the Cont-Bouchaud percolation model [149,

163, 128]. This model consists of an L×L lattice. Each site is occupied with probability

p. For p > pc for some critical value pc, infinite clusters of occupied sites appear which

span the full width of the lattice. Sites are viewed as individual traders and clusters as

groups of traders who all trade in the same direction. In this market a single asset is

available for trade. At each time step, a cluster can buy with probability a, sell with

probability a or stay inactive with probability 1 − 2a. For 1/L2 � a � 1/2, the model is

found to produce multifractal results.

This lattice model is not particularly helpful in identifying the source of multifractality

in the real trade environment. It is difficult to identify the value of the parameter a with

anything measurable in the actual marketplace. It could perhaps be related to traders’

risk-aversion.

In the ABM by Thompson [77], agents submit either limit or market buy or sell orders

to a continuous double auction order book1. Market orders are filled immediately at the

best available price. Limit orders are queued and filled in the order of best-price-first.

The price p of new limit orders are decided randomly according to

sell: p = b(t) + |ε|

buy: p = a(t)− |ε|

where b(t) is the highest bid price at time t and a(t) is the lowest ask price at time

t. The distribution of the random factor ε determines the multifractal properties of

the resulting time series. When ε has heavy tails the price varies more wildly, there is

volatility clustering in the log returns and a multifractal spectrum is found.

Thompson [77] concludes that the multifractality is a result of the double auction

1It is a double auction because buyers bid for the stock and sellers submit ask prices for the stock
at the same time.
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order book structure combined with informed agents who make decisions based on pub-

licly available information. He also finds that the different strategies of technical and

fundamental traders substantially affect the multifractal properties of the results.

The model by Thompson [77] is probably the most helpful of the three described here

in explaining the origin of multifractality in empirical log returns. The double auction

order book and public information are both realistic features of his model. The real world

is of course much more complex and much work is still to be done in this area.

8.3 Multifractality in the ABM

The new ABM presented in Chapter 6 contains only a few different types of trader

trading shares in a single asset and yet is capable of producing log returns with some

realistic characteristics such as leptokurtosis and volatility clustering with a certain set of

parameter values. Now I will examine the outputs of this model for signs of multifractal

scaling. Some sample generated log returns are tested for multifractality via the method

of MF-DFA. I will also examine log returns produced by the ABM with two different

extensions.

8.3.1 The Original Model

The Trader Sets used in the model are restated in Table 8.1. When the model is simulated

with Trader Set A, there are too many zeroes in the generated log return data to perform

the MF-DFA analysis. The same problem arises as was encountered with the Euro Stoxx

50 data explained in Section 4.3.1. The MF-DFA procedure divides the data into segments

ν of size s for varying s. When a segment ν is small enough to lie within an interval of

constant value, the value F (ν) assigned by MF-DFA to that box is very small. Since the

intervals of consecutive zeroes are even longer in the log returns produced by Trader Set

A than in the Euro Stoxx 50 case, MF-DFA cannot be used. For a typical simulation

with Trader Set A, the range of admissible segment sizes s covers less than one order

of magnitude and so cannot give reliable information about any scaling which may be

present.

MF-DFA can be used on the log returns generated by Trader Set B. Figure 8.1 shows

the plots log(Fq) against log(s) along with their respective local slopes for a sample of

log returns generated by Trader Set B. The time series used for this analysis have length

10000. For all values of q except q = −10, the slopes consistently decrease with increasing

segment size s. Because the slopes decrease rather than oscillate about a constant value,

we can conclude that multifractal scaling is not present in this data.
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The analysis for a sample set of log return data generated by the ABM with Trader

Set C is shown in Figure 8.2. There is no multifractal structure in the sample log returns

examined here either. The slopes shown are all consistently decreasing except that for

q = −10 which first increases and then decreases with s. The curvature in the local slopes

shown in Figure 8.2(b) betray a lack of scaling.

The results of MF-DFA on a sample simulation of the ABM with Trader Set D are

shown in Figure 8.3. This figure may reveal some scaling within the region 100 ≤ s ≤ 1000

for q < 10. In this region, the slopes show little dependence on q, meaning that any scaling

here may be mono- rather than multifractal. The multifractal spectrum for data produced

by the ABM with Trader Set D often has a twist at the top, revealing non-monotonic

dependence of the slope h(q) on q. A twist in the top of the spectrum has previously

been related to abrupt events in the data [101]. However the data produced by Trader

Set D does not have any abrupt or extreme events. The twist may be connected to the

monofractality (rather than multifractality) of the data. For exactly monofractal data,

h(q) is independent of q. In random data like those we’re dealing with here, there may

be some slight q dependence even for monofractal time series [82].

It is difficult to confirm the scaling properties since each simulation of the ABM gives

a different result. The value F (ν, s) assigned by MF-DFA to each portion of the data

is now a random variable, changing with each new simulation of the model. This also

means that we cannot discount the possibility that the ABM may generate log returns

with multifractal scaling during some simulation. However I have found that the model

outputs are generally not multifractal.

For some random fractals, it may be reasonable to take an average of many realisations

in order to unveil the scaling properties of the generating process [74]. However, for the

structures under consideration here, the multifractality may well be due to temporal

correlations. Averaging would destroy the correlations present in each separate model

output. The averaging technique is therefore not suitable for studying the scaling of time

series whose multifractal structure is due to correlations.

The result for Trader Set B is especially interesting. These log returns have been

model set-up N1 N5 N21 NT NF

Trader Set A 4 4 8 2 2
Trader Set B 0 0 16 2 2
Trader Set C 100 0 0 0 0
Trader Set D 100 100 100 60 60

Table 8.1: The numbers of the different types of trader used in the model.
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(b) Graph of the local slopes of log(Fq) calculated over a moving window of 15 points.

Figure 8.1: Results of the MF-DFA analysis carried out on data generated by the
original ABM with Trader Set B. This data does not have any scaling.

shown to be characterised by fat tails, very short autocorrelation decay time as well as long

memory in their volatility. As discussed in Section 4.3.2, a fat-tailed distribution and long

memory are considered to be the two sources of multifractality in time series [82, 103, 88].

Despite these hallmarks being present, these log returns do not have multifractal scaling.

It was shown in Section 7.5 that the distribution of log returns generated by Trader Set B

have a rather abrupt truncation, unlike empirical data whose distribution has very long

tails. It could be that although the log returns have a thin-peaked distribution, there are

not enough extreme events to admit the property of multifractal scaling.
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Figure 8.2: Results of the MF-DFA analysis carried out on data generated by the
original ABM with Trader Set C. This data does not have any scaling.

In light of the fact that the original ABM as described in Chapter 6 does not generate

time series with multifractal scaling, it seems reasonable to discuss next some options for

extension of the model which may potentially lead to multifractal log return time series.
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Figure 8.3: Results of the MF-DFA analysis carried out on data generated by the
original ABM with Trader Set D.
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8.3.2 First extension - heterogeneous investment horizons

One of the possible shortfalls of the ABM is that there is very little heterogeneity in the

investment horizons of the traders. In the ABM, most traders trade on every iteration.

Although some noise traders may not trade in a given time step, they can potentially

all trade at the same time. And for the technical and fundamental traders the option to

opt out of trading is very restricted. The technical traders don’t trade if the MACD and

its moving average are equal. The fundamental traders don’t trade if the price and the

fundamental value are equal. In the reality of the simulation, neither of these events ever

happen and so all technical and fundamental traders are active in every time step.

We know that the reality of trading is very different. As emphasised by the Fractal

Market Hypothesis [164], traders have a large number of different investment horizons and

information has different effects on traders depending on each one’s investment horizon.

For example, the announcement of a new product by a company may be very significant

to a short-term technical trader but is of little consequence to a long-term fundamental

trader. Heterogeneous trading times are thought responsible for stylised facts of empirical

data [53].

A basic way to bring this concept into the model is to give each type of agent a

different time scale on which they are allowed to trade. The ABM can be adjusted so

that the day traders trade on every iteration of the model, week traders every 5 iterations

and month traders every 21 iterations (count each iteration as a day and there are no

weekends or holidays in the model). Technical traders are generally short-term traders

and so they will continue to trade on every iteration. Fundamental traders should have

a longer investment horizon and so I allow them to trade only once every 100 iterations.

The results produced by the ABM with this change to trading horizons are shown in

Figures 8.4 and 8.5 for Trader Sets A and B. In both cases the volatility clustering is

lost. The spikes in the ACF for Trader Set B shown in Figure 8.5(b) occur every 21 steps

because the month traders are trading only once every 21 days and they are dominant in

this set. The log returns might look more realistic if each month trader picked a different

day of the month on which to trade.

When these log return data are analysed with MF-DFA, the plots of log(Fq) versus

log(s) seem to indicate some scaling for the region 100 ≤ s ≤ 1000. The scaling results

for Trader Set A are shown in Figure 8.6. The results for Trader Set B are in Figure 8.7.

For both sets of these simulated log returns we encounter intervals of constant log returns

with lengths up to 100. This explains the drop in log(Fq) for q < 0 at s ≈ 100.

It is possible to produce part of the multifractal spectrum for the scaling region

100 ≤ s ≤ 1000 for simulation results with both Trader Set A and B. These are shown in

Figure 8.8 for 10 separate simulation results of the ABM for both Trader Set A and B.
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Figure 8.4: (a) Log returns and (b) autocorrelation function generated by the ABM
with heterogeneous trading times; Trader Set A.

There is a lack of extreme events in this data, meaning that the areas of high F , revealed

by q > 0, are rare. This means that only the right side of the spectra could be generated

with any accuracy. Those shown in Figure 8.8 for both Trader Set A and B are for q < 0

only. The right side is generated by q < 0 and reveals the scaling exponents for areas of

small F , or log returns relatively close to the average, which are plentiful in these time

series. Though the scaling is not found in the areas of large F , these log return time series

can be described as multifractal. This type of situation was referred to in Section 3.4.3.

For each set of log returns generated by the model for both Trader Set A and B, the

right side of the multifractal spectra are well-behaved. As prescribed by the MF-DFA

method, the spectra all have their maxima at f(α(0)) = 1. This value is the dimension

of the underlying support of the multifractals, which are assumed to be straight lines by

MF-DFA.
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Figure 8.5: (a) Log returns and (b) autocorrelation function generated by the ABM
with heterogeneous trading times; Trader Set B.

Most of the spectra shown in Figure 8.8 have significant areas of f(α) < 0 for large α.

This is called the latent part and was also found in the spectrum for the Euro Stoxx 50

data in Section 4.3.1. This has been noted as a potential feature of random multifractals

which is not found for deterministic multifractals [165]. The existence of a latent part

betrays a breakdown in the scaling for areas of very small F which are revealed by q � 0.

The very negative f(α) can be traced back to how the generalised Hurst exponent

h(q) varies with q. From the equations in Step 11 in Section 3.4.1, I find that

f(α) = q2dh(q)

dq
+ 1.

f(α) < 0 therefore implies that
dh(q)

dq
< − 1

q2
. (8.1)

131



q = 10

q = 1

q = 0

q = -1

q = -10

2

0

-2

-4

-6

-8

-10

-12

-14
10 100 1000

lo
g(

F q
)

s

(a) Graph of log(Fq) versus s for the values of q given on the graph.

4

3.5

3

2.5

2

1.5

1

0.5

0
25 100 630

lo
ca

l s
lo

pe
s 

of
 lo

g(
F q

)

s

q = 10

q = 1

q = 0

q = -1

q = -10

(b) Graph of the local slopes of log(Fq) calculated over a moving window of 15 points.

Figure 8.6: Results of the MF-DFA analysis carried out on data generated by the ABM
with heterogeneous trading times; Trader Set A.

I have found that for the log returns produced by the ABM, the slopes h(q) change much

more sharply with q than for the empirical data examined in Chapter 4. It is intuitive for

h(q) to be sensitively dependent on q for small |q| and much less so for large |q|. There is

no point in using values of q for which dh(q)
dq
≈ 0, as all the scaling is revealed by values of

q closer to 0 for which dh(q)
dq

� 0 . For the data generated by this version of the ABM, the

inequality 8.1 holds for large negative q. Since for these time series only the right sides of

the spectra are meaningful, I have not checked if the inequality holds for large positive q.

The shapes of the (right sides of the) spectra for this version of the ABM produced

by Trader Set A more closely resemble those of the empirical DJIA and Euro Stoxx 50
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Figure 8.7: Results of the MF-DFA analysis carried out on data generated by the ABM
with heterogeneous trading times; Trader Set B.

time series examined in Chapter 4 than those produced by Trader Set B. In the case

with Trader Set A shown in Figure 8.8(a), αmax ≈ 1.3. (Here I have defined αmax by

f(αmax) = 0 where f(α) is decreasing.) This value is just slightly larger than the value of

αmax found for DJIA and Euro Stoxx 50; see Table 4.1. However, for Trader Set B shown

in Figure 8.8(b), the value is much larger; αmax ≈ 2.2. This larger value of αmax means

that there is more variation in the slopes h(q) of the log(Fq) versus log(s) plots which in

turn is due to wide variation in the log returns. The log returns produced by this version

of the ABM with Trader Set B have much higher kurtosis (κ ≈ 21) than those produced

by Trader Set A (κ ≈ 3). This could explain the larger αmax. However this does not
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Figure 8.8: The right side of the multifractal spectra for 10 separate simulations of the
ABM with heterogeneous trading times. There is some limited multifractal scaling in

the log returns produced by this version of the model. The scaling does not follow
through to areas of high F which are revealed by q > 0.

explain why αmax in this case is so much larger than αmax for the DJIA case which has

similar kurtosis; see Table 2.1.

It is very interesting that this data displays some level of multifractal scaling. These

log returns have been shown to be lacking other stylised facts of financial data such

as fat tails and volatility clustering. It may be tempting to conclude from this result
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that the generally accepted causes of multifractality in time series data of a fat-tailed

distribution and temporal correlations [82] are not necessary for multifractal scaling to

be present. However there may be some temporal correlations in these log returns which

are not obviously apparent in the way volatility clustering is. The data would need further

testing by means of shuffling as was done in Section 4.3.2 before any such conclusion could

be drawn.

8.3.3 Second extension - heterogeneous beliefs

Another possible area for increased heterogeneity in the ABM involves the fundamental

value. As it stands, the fundamental traders all agree on what the fundamental value of

the stock is and so they all trade in the same direction at each iteration of the model.

They sell if the price is higher than the fundamental value and buy if it is less.

Intuitively, it seems more realistic that different fundamental traders who analyse

available information about a company and combine it with what they know about the

economy in general may arrive at different conclusions about the correct fundamental

value of the stock. There is a version of the Grand Canonical Minority Game in which

each fundamental trader is given a different fundamental value with which to compare

the price in order to make their trade decision [137]. This makes the stylised facts in that

model more robust to any parameter changes.

Although those authors do not examine the output of their model for multifractality,

this form of heterogeneity can be added to my ABM and its effect examined. Because

this extension only affects the fundamental traders, results are shown in Figure 8.9 of

a simulation run with Trader Set D in which there are many of this trader type. The

price oscillates as the number of fundamental traders agreeing to buy or sell fluctuates.

Volatility clustering and a leptokurtic distribution are not characteristics of these log

returns.

The results of the MF-DFA analysis are shown in Figure 8.10 for various values of q.

These plots reveal that there is scaling over one order of magnitude, 100 ≤ s ≤ 1000.

There is also some evidence of a crossover in this data. A crossover is a point where

the slopes change on the graph of log(Fq) versus log(s). It can be seen in Figure 8.10

that the slopes of log(Fq) appear constant (except for q = −10) for s < 100 although

different from the slopes for s > 100. This indicates a potential crossover point at

s = 100. Multiscaling Multifractal Analysis [166], an extension to the MF-DFA method,

has recently been recommended as a way to pick up information from any crossovers that

might be in the data. However in this chapter I only consider the scaling for s > 100.

As is shown in Figure 8.9, there are very few log returns close to zero produced by

this version of the ABM. Areas assigned a small value of F by MF-DFA will therefore
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Figure 8.9: An example of the time series generated by the model when each
fundamental trader has his own fundamental value with which to compare the price;

Trader Set D.

be rare in this data. It can therefore be expected that the right side of the multifractal

spectrum may be poorly defined as this is the side which shows the scaling exponents

for areas of small F in the time series. The spectra for 10 separate simulation results

are shown in Figure 8.11. As predicted, the left side of the spectra are quite well defined

whereas the right side is more likely to be stretched out. The stretch is due to the rarity

of areas of small F in the time series. This is opposite to the situation encountered for

all other spectra presented in this thesis where the lack of extreme events has led to an

ill-defined left side.

Again as expected, all the spectra coincide at the point f(α(0)) = 1. They have on

average αmin ≈ 0.9 which is larger than the corresponding value for the empirical DJIA

and Euro Stoxx 50 data reported in Table 4.1. (I define αmin by f(αmin) = 0 where f(α)

is increasing.) The value for αmax cannot be reliably calculated in this case.

Further analysis of the simulation results of my ABM and employing longer simulation

lengths leads to an average f(α) spectrum as shown with error bars in Figure 8.12. This

graph shows an f(α) which is the average of 20 f(α) spectra constructed for 20 separate

simulations of the ABM. Each simulation had length 20,000. The error bars show the

standard deviation in α and f(α) over those 20 separate results of the MF-DFA analysis.

As expected, the right side of the spectrum (q < 0) is stretched out and the deviations
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Figure 8.10: Results of the MF-DFA analysis carried out on data generated by the
ABM with heterogeneous fundamental values; Trader Set D.

on that side are much larger than on the left. Even when averaging over more and longer

simulations, the spectra show no evidence of converging. The areas of small F are too

rare in the data for any scaling laws to become apparent among them. The twist in the

top of the average f(α) spectrum comes from averaging over many spectra, some of which

have unusual behaviour such as f(α) > 1 for q < 0. This shows that the right sides of

these spectra are completely unreliable to base any conclusions on about scaling in the

small F areas of the log return data generated by this version of the ABM.
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8.4 Conclusions

In this chapter I have encountered some difficulty in unraveling the fractal structure of

the log returns produced by the ABM. It is worth noting that statistical fractals such as

these are notoriously difficult to work with. Diffusion Limited Aggregation [70, chapter

9] has been the paradigm problem for random fractals and much work has been done

in this context [60, 74, 57, 56, 167, 168]. The study of random fractals is still lacking a

rigorous mathematical basis.

The fact that the log returns produced by the original ABM are generally not mul-

tifractal shows that a leptokurtic distribution and volatility clusters are not enough to

guarantee this type of scaling structure. Although multifractality in time series is as-

cribed to a combination of the distribution and the correlations [82], the leptokurtic

distribution and nonlinear correlations in the outputs of the original ABM do not result

in multifractality.

This analysis was conducted as an attempt to find the root cause of the multifractality

which has been found in financial log returns. The two extensions to the ABM proposed in

this chapter both offer more heterogeneity to how the traders behave. In both cases, we see

some multifractal scaling in the resulting log returns. This allows us the conjecture that

the multifractality found in empirical log returns is a consequence of the heterogeneity in

the investment horizons and/or beliefs of traders in the market.

The log returns produced by both alternative versions of the ABM lack the essential

traits of a leptokurtic distribution and volatility clustering. It can therefore be concluded

that these traits are not necessary for multifractal scaling to be present. In fact these

traits are neither necessary nor sufficient for multifractality.

8.5 Future Work

A smoothing technique such as grid-shifting [74] has the potential to allow for more

conclusive results when working with statistical multifractals. MF-DFA divides the data

into 2Ns segments to ensure all the data is included in at least one box. Grid-shifting

involves dividing the data into as many as sNs segments at each scale s. The segments

all have different placements within the data and the variance Fq(ν, s) is found over all

these segments at each scale s. This results in significant smoothing of the data and

is helpful for dealing with random nature of statistical fractals. It may help with the

specific problem of negative f(α) which has been encountered in this chapter. However

that work is beyond the scope of this thesis.

There is also potential for future work in the extension of the ABM. A possible area
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for extension lies with the technical traders. Heterogeneity could be introduced to their

trading strategies. All of the technical traders in the current ABM use the MACD

technical analysis. There must be many other types of strategies which are used in real

trading. Giving some technical traders different types of analysis is an option for further

investigation.

Another area where heterogeneity could be included in the ABM is in the the proba-

bility of buying for the noise traders, Pt. It may be enlightening to allow the parameter u

to vary during the simulation. u controls the steepness of Pt. As was described in Chap-

ter 7, u can be thought of as the herding strength between the noise traders. When u is

low, the function Pt is quite flat and there is room for disagreement on which direction to

trade. When it is higher, Pt changes more steeply and so for a given proportional price

change Rt, the noise traders are more likely to agree on how to respond. Larger values

lead to high correlation in the log returns because everyone agrees on which direction to

trade. However allowing u to vary while maintaining u− < u < u+ for suitable upper and

lower limits u+ and u− might give interesting results. For u < 0, the noise traders would

become contrarians, selling after a positive price move and buying after a negative price

move.

8.6 Chapter Summary

This chapter first gave a brief overview of some ABMs which have been found to produce

log returns with multifractal properties. I then used MF-DFA to analyse the log returns

generated by my ABM. I found that the log returns generally do not have multifractal

scaling. This is interesting since the log returns do display other features of empirical data

such as a leptokurtic distribution and volatility clustering. I then explored a couple of

extensions to the model which bring more heterogeneity to the traders. Some multifractal

scaling has been found in the log returns produced by these versions of the ABM which

feature heterogeneous trading time horizons or heterogeneous fundamental values. This

is surprising since the log returns produced by these alternative versions of the ABM do

not display the classical stylised facts of volatility clustering and fat tails. This chapter

has shown than leptokurtosis and volatility clustering are neither necessary nor sufficient

for the presence of a multifractal structure. The results of the analysis conducted in this

chapter also leads me to suggest that it is the heterogeneity in the trading horizons and

beliefs of traders which leads to the multifractality found in empirical log returns.
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Chapter 9

Summary and Conclusions

9.1 Summary of Work

This thesis has been concerned with the properties of financial log returns. In the first

chapter, the basic mechanism of the financial market was described. I then discussed the

study of financial data. It is important to select appropriate units when studying any

type of time series. Log returns are the focus of the financial literature. They are studied

because they are insensitive to the changes in scale which occur over time.

Chapter 1 also outlined a literature review of some of the most influential models

which have been used to describe financial data over the last century, beginning with

Bachelier’s random walk model of 1900 [7]. Being the first known work of mathematics

to be applied to finance, his thesis can be viewed as the genesis of financial mathematics.

This new field of financial mathematics laid mostly dormant until the 1960’s when the

concept of Brownian motion was developed into geometric Brownian motion. This in turn

led to the famous Black-Scholes-Merton option-pricing formulae published in 1973 [15].

Myron Scholes and Robert Merton directly accredited Bachelier for his role in the research

of option pricing in their Nobel prize acceptance speech [17, 18].

The Gaussian models were later found to be inadequate because they are not able

to reproduce the statistical properties of empirical data which came to be discovered.

This finding motivated the development of the Stable Paretian Hypothesis [21, 22] which

asserted that the price changes were in fact Lévy-distributed rather than Gaussian-

distributed. This could account for the fat tails of the distribution of log returns.

Another groundbreaking work came in 1982 with Engle [33] and the introduction of

the ARCH models. For the first time, a financial model could reproduce the volatility

clusters which had been identified by Mandelbrot back in 1963.

The Efficient Market Hypothesis [26, 39] was then described. It states that in an

efficient market, prices perfectly reflect all available information. This has been the
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subject of much debate and further research over the years [169].

In Chapter 2, the stylised facts of financial data were described and illustrated. Em-

pirical log returns are universally found to be linearly uncorrelated, to have a leptokurtic

distribution with negative skew, and to feature volatility clustering. Also as the lag of

the log returns increases, their distribution is better fit by a Gaussian. This phenomenon

is known as aggregational Gaussianity. Samples of empirical daily log returns from the

DJIA and minutely log returns from the Euro Stoxx 50 were examined in detail and

shown to display these features.

The concept of multifractality was introduced in Chapter 3. The classical examples of

a fractal and multifractal, the von Koch curve and the Binomial measure, were described.

The relation between multifractality and finance was also developed. It was explained

that much financial data has been found to have a multifractal structure and the method

of MF-DFA was outlined. Some financial models which have incorporated multifractality

were reviewed. Mandelbrot’s MMAR [76] was the first of these.

Chapter 4 went on to present a comprehensive study of the two empirical data sets,

DJIA and Euro Stoxx 50 log returns, using MF-DFA. The results show that the temporal

correlations are the dominant source of the multifractal scaling in both data sets. I also

showed that the extreme events in the Euro Stoxx 50 minutely data seem to belong to a

separate scaling regime or may not scale at all. They are inimical to the scaling of the

full time series. This chapter also highlighted the need for more statistical tools to make

the task of judging whether or not a time series has multifractal scaling more objective

and standardised.

A new approach to financial modelling was then expounded in Chapter 5. This was

Agent-Based Modelling. Where other models have been concerned with the reproduction

of time series with characteristics similar to those of empirical data, ABMs are principally

used to explain the sources of these characteristics or of noteworthy events in the financial

world such as Black Monday. This chapter contained a literature review of some of the

most influential ABMs in the field of finance.

Chapter 6 then went on to present a new ABM. This new model was motivated by

the desire to have a model as simple as possible which also could produce the crucial

stylised facts of empirical data. With a simple model it should be possible to determine

the source of the stylised facts. The main features of this new model are the noise traders

who are more likely to trade after there has been a large price move, the technical traders

who use MACD analysis to inform their trades and the fundamental traders who know

the fundamental value of the stock. This ABM can also be viewed as an iterative map of

coupled equations and these are also given at the end of Chapter 6.

The properties of the model outputs were then outlined in Chapter 7. With the
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appropriate number of each type of trader active in the ABM, it was found to produce

time series which have fat tails, volatility clustering and aggregational Gaussianity as well

as other interesting features. This has been helpful in identifying some of the reasons for

these stylised facts which are seen in empirical financial log returns.

Since ABMs have the mandate to identify the sources of the stylised facts, it was

then appropriate to test my model of Chapter 6 for multifractality. This was done in

Chapter 8. Since no multifractality was found in the outputs of the ABM, two alterations

to the model were proposed. With extra heterogeneity incorporated into the agents’

trading time horizon, the resulting log returns have some limited multifractal scaling.

Heterogeneity in the fundamental values produces log returns without fat tails or volatility

clustering but also leads to some limited multifractal scaling. This shows that a thin-

peaked distribution and volatility clusters are neither necessary nor sufficient for the

property of multifractality. This work also suggests that increased heterogeneity in trader

beliefs and investment horizons leads to the multifractality found in empirical data.

9.2 Main Contributions of the Thesis to Research

Chapter 4 contains a number of contributions to research in the area of multifractals.

First, MF-DFA was carried out on two data sets which have not previously been studied

in this way to my knowledge. The result of MF-DFA on the Euro Stoxx 50 data is an

important addition to the literature as it shows that the presence of multifractal scaling

in financial data must not be assumed. The linearity of the plots of the log of the scaling

function log(Fq(s)) against log(s) is not certain. This alerts us to the need for stricter

testing of data before it is accepted as having multifractal scaling. The metric ∆α is

not comprehensive enough as a measure of the level of multifractal scaling. The linearity

of the log-log plots is crucial and further testing methods are required to remove the

subjectivity from this judgment.

This is also related to the results found for the shuffled data sets. Where other

researchers have found multifractal scaling in shuffled time series, the more comprehensive

analysis which I have carried out shows that there is no multifractal scaling in the shuffled

DJIA log returns. The multifractal scaling in the shuffled Euro Stoxx 50 log returns is

greatly reduced. This result comes directly from the careful examination of the log-log

plots and their local slopes.

The most significant result is the finding of the negative effect of the most extreme

events on the scaling in the Euro Stoxx 50 minutely data. The reduction of just 42 points

in the data has a major impact on the scaling results and the shape of the f(α) spectrum.

A major contribution to research by this thesis is the new ABM described in Chapter 6.
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The noise traders in this ABM are unique in their trading rules as far as I am aware.

Some of the model concepts, such as the inclusion of technical and fundamental traders,

are based on other ABMs [144, 48, 44].

The results of the model outlined in Chapter 7 show that the trading mechanism of the

noise traders is responsible for the leptokurtic log returns which are generated. The fact

that more of them trade after a large price move and less trade following a small price move

is crucial to the emergence of this stylised fact. The bursts of high volatility are triggered

by the fundamental value crossing over the price, affecting the way that fundamental

traders trade. The distribution of log returns becomes more Gaussian at longer time

scales as a result of the fundamental value following a discrete Euler approximation to a

GBM process.

Chapter 8 has shown that the log returns produced by the ABM are not multifractal.

This shows that nonlinear correlations and a leptokurtic distribution are not a sufficient

guarantee of the presence of multifractal scaling. However introducing heterogeneity to

the trading horizons or to the fundamental values used by the traders leads to some

limited multifractal scaling. Since the log returns produced by these versions of the

model do not have fat tails or volatility clustering, this shows that these stylised facts are

not necessary for such scaling to occur either.

9.3 Conclusions

Some of the main conclusions of the research presented in this thesis are encapsulated in

the following points:

• The daily DJIA and minutely Euro Stoxx 50 log returns which I have examined in

Chapter 2 have the expected statistical properties of financial data such as fat tails,

volatility clustering, asymmetry and lack of linear correlation.

• The DJIA log returns studied in Chapter 2 display aggregational Gaussianity.

• Multifractality is not necessarily a feature of financial data, as has been shown for

the Euro Stoxx 50 log returns examined in Chapter 4.

• Extreme events are inimical to the multifractal scaling (if it is accepted that such

scaling is present) in the Euro Stoxx 50 minutely log returns examined in Chapter 4.

• The spectrum width ∆α is not a suitable indicator of the multifractality of a time

series.
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• There is a need for more rigorous tests to remove any subjectivity from the assertion

of multifractality in time series, as outlined in Chapter 4.

• The new ABM presented in Chapter 6 indicates that the fluctuation of the number

of active traders in response to the size of the previous price change leads to log

returns which are distributed leptokurtically.

• Noise traders whose activity level fluctuates and who have some memory, technical

traders and fundamental traders are all necessary to generate volatility clusters in

the log returns of this ABM.

• Traders influenced by a GBM process result in a transition to Gaussianity of the

log returns at long time scales in this ABM.

• Time series with fat tails and volatility clustering (such as those generated by this

ABM) may not be multifractal, as shown in Chapter 8.

• Time series without fat tails or volatility clustering (such as those produced by a

version of this ABM with heterogeneous investment times or heterogeneous funda-

mental values, presented in Chapter 8) may have some multifractal scaling.

• The multifractality of log returns produced by versions of the ABM with heteroge-

neous investment times and beliefs hint that these may be the cause of multifrac-

taltiy in empirical data.

The study of the financial market will never be complete. It is an evolving adaptive

system which changes as more financial products are added to the market, technology

advances, trading methods are updated and the rules which govern financial institutions

are adjusted. Also, as soon as practitioners get their hands on the most recent research,

they immediately begin to exploit whatever new information they have. This may give a

short-term advantage but this quickly diminishes as others in the market catch up with

the new developments. The value of the short-term advantage gained may be tremendous

in financial terms and this will continue to propagate the demand for new models.
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Appendix A

Derivation of f (α) for the Binomial

Measure

Let us examine the Binomial measure for some stage of iteration n assuming without

loss of generality that p0 > p1. As has already been shown, in the leftmost box µ ∼ sα,

where α = − log2 p0. A similar scaling ansatz can be defined in all parts of the measure.

In general, if Bs(x) is a ball of radius s centred at x, then the measure contained in this

ball, µ(Bs(x)), scales as

µ(Bs(x))
s→0
∼ sα. (A.1)

And so the local Hölder exponent α is defined

α(x) = lim
s→0

log(µ(Bs(x)))

log(s)
. (A.2)

If the limit is removed, this becomes the coarse Hölder exponent which applies to a

particular stage of iteration n. At this stage, the leftmost segment has measure pn0 and

the rightmost section has measure pn1 . The sections in between have varying amounts of

measure.

The measure in any box can be found if its location is known. If the number of boxes

to the left of any box are counted and this number is converted to binary form, this gives

a binary location code of length n for the box [74]. The number of 0’s and 1’s in the

location code correspond to the number of p′0s and p1’s which make up the measure of

that box. Any other box with the same number of 0’s and 1’s in its location code will

also have the same amount of measure. So the measure µ(d1d2...dn), di ∈ {0, 1}, can be

completely determined by the binary representation d1d2...dn:

µ(d1d2...dn) = pn0
0 p

n1
1
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where n0 and n1 are respectively the number of 0’s and 1’s in the binary location code.

For the coarse exponent,

α =
log µ(Bs(x))

log s

=
log pn0

0 p
n1
1

log 1/2n

=
n0

n
a0 +

n1

n
a1

where a0 = − log2 p0, a1 = − log2 p1. n0

n
is simply the proportion of 0’s in the binary

location code for the particular box we’re interested in, so this can be slightly simplified

to

α =
n0

n
(a0 − a1) + a1

It is easy to see that a0 and a1 are respectively the maximum and minimum possible

values for α when p0 > p1 as we have assumed. We rename them αmax and αmin. Letting

z = n0

n
, we obtain

α = z(αmax − αmin) + αmin. (A.3)

This relates the Hölder exponent α of a box simply to the proportion of 0’s in its binary

location code.

The number of boxes N(α) sharing the same α value will increase as s → 0. At

resolution s = 2−n, N(α) =
(
n
zn

)
.

Proceeding via Sterling’s approximation for large n, n! ≈
(
n
e

)n√
2πn,

N(α) =
n!

zn!(n− zn)!

n→∞≈
√
n

√
zzn
√

2π(n− zn)
(
n−zn
e

)n−zn
=

√
2πn

(
n
e

)n
√

2πzn
(
zn
e

)zn√
n− zn

(
n−nz
e

)n−zn
≈

√
nnn√

zn(zn)zn
√
n− zn(n− zn)n−zn

(A.4)

=

(
zz+

1
2n (1− z)1−z

)−n
nn−z(n+1)√

n(1− z)

≈ (zz(1− z)1−z)
−n√

n(1− z)
(A.5)

where A.4 is obtained by approximating 2π ≈ e ≈ 1 compared to n as n → ∞ and A.5
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is from the approximation
√
z ≈ 1 [74].

The expression A.5 can be written as

N(α) ≈ lim
s→0

(2−n)−f(z) ∼ s−f(z) (A.6)

where f(z) = − log2(zz(1 − z)1−z). This function can be expressed in terms of α via

equation A.3 as

f(α) = −
(

αmax − α
αmax − αmin

)
log2

(
αmax − α

αmax − αmin

)
−
(

α− αmin
αmax − αmin

)
log2

(
α− αmin

αmax − αmin

)
. (A.7)
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Appendix B

Finding the quenched average, F0

To find F0, it is necessary to take the limit of Fq as q → 0 [74]. Let us represent F (v, s)

by F for brevity.

F0 = lim
q→0

(
1

2Ns

2Ns∑
v=1

(F 2)
q/2

) 1
q

ln(F0) = lim
q→0

1

q
ln

(
1

2Ns

2Ns∑
v=1

F q

)

Let

f(q) = ln

(
1

2Ns

2Ns∑
v=1

F q

)
=⇒ f ′(q) =

1∑2Ns

v=1 F
q

2Ns∑
v=1

(F q lnF )

g(q) = q =⇒ g′(q) = 1

Proceeding by l’Hôpitals’ Rule yields

ln(F0) = lim
q→0

∑2Ns

v=1 F
q lnF∑2Ns

v=1 F
q

=

∑2Ns

v=1 lnF

2Ns

⇒ F0 = exp

[
1

2Ns

2Ns∑
v=1

lnF

]
.
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Appendix C

MF-DFA of data with various

detrending orders

This appendix reports on results for performing MF-DFA on DJIA and Euro Stoxx 50

data for different detrending orders n = 2, 3. The graphs shown here can be compared

with Figures 4.1 and 4.3, which are found using order 1 polynomials. I have concluded

that using order 1 polynomials leads to the best results.
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Figure C.1: DJIA data; MF-DFA carried out using order 2 polynomials:
(a) Graph of the log of the average scaling function, log(Fq), versus the log of the scale,

log(s), for selected values of q as shown on the graph.
(b) Graph of the local slopes of the lines in (a) calculated over 15 points for the same

values of q.
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Figure C.2: DJIA data; MF-DFA carried out using order 3 polynomials:
(a) Graph of the log of the average scaling function, log(Fq), versus the log of the scale,

log(s), for selected values of q as shown on the graph.
(b) Graph of the local slopes of the lines in (a) calculated over 15 points for the same

values of q.
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Figure C.3: Euro Stoxx 50 data; MF-DFA carried out using order 2 polynomials:
(a) Graph of the log of the average scaling function, log(Fq), versus the log of the scale,

log(s), for selected values of q as shown on the graph.
(b) Graph of the local slopes of the lines in (a) calculated over 15 points for the same

values of q.
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Figure C.4: Euro Stoxx 50 data; MF-DFA carried out using order 3 polynomials:
(a) Graph of the log of the average scaling function, log(Fq), versus the log of the scale,

log(s), for selected values of q as shown on the graph.
(b) Graph of the local slopes of the lines in (a) calculated over 15 points for the same

values of q.
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Appendix D

Higher order detrending for the

shuffled data

I have found that using higher oder detrending n = 2, 3 does not affect the results for the

shuffled DJIA and Euro Stoxx 50 data. Here I report results of the analysis conducted

with detrending orders 2 and 3 for comparison with those conduced with order 1 as shown

in the main text in Figures 4.9 and 4.10.
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Figure D.1: Shuffled DJIA data; MF-DFA carried out using order 2 polynomials:
(a) Graph of the log of the average scaling function, log(Fq), versus the log of the scale,

log(s), for selected values of q as shown on the graph.
(b) Graph of the local slopes of the lines in (a) calculated over 15 points for the same

values of q.

153



-0.5

-1

-1.5

-2

-2.5

-3

-3.5
10 100 1000

q = -50

lo
g(

F̅
q)

s

q = 50

q = 5

q = 0

q = -5

(a) Plots of log(Fq) versus log(s).

lo
ca

l s
lo

pe
s 

of
 lo

g(
F̅

q)

1

0.8

0.6

0.4

0.2

0
10 100 1000s

(b) Local slopes of log(Fq).

Figure D.2: Shuffled DJIA data; MF-DFA carried out using order 3 polynomials:
(a) Graph of the log of the average scaling function, log(Fq), versus the log of the scale,

log(s), for selected values of q as shown on the graph.
(b) Graph of the local slopes of the lines in (a) calculated over 15 points for the same

values of q.
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Figure D.3: Shuffled Euro Stoxx 50 data; MF-DFA carried out using order 2
polynomials:

(a) Graph of the log of the average scaling function, log(Fq), versus the log of the scale,
log(s), for selected values of q as shown on the graph.

(b) Graph of the local slopes of the lines in (a) calculated over 15 points for the same
values of q.
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Figure D.4: Shuffled Euro Stoxx 50 data; MF-DFA carried out using order 3
polynomials:

(a) Graph of the log of the average scaling function, log(Fq), versus the log of the scale,
log(s), for selected values of q as shown on the graph.

(b) Graph of the local slopes of the lines in (a) calculated over 15 points for the same
values of q.
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[20] Benôıt B. Mandelbrot. Selected topics in mathematics, physics, and finance orig-

inating in fractal geometry. In Miroslav M. Novak, editor, Thinking in Patterns:

Fractals and Related Phenomena in Nature. World Scientific, 2004.
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[61] Benôıt B. Mandelbrot. Intermittent turbulence in self-similar cascades: divergence

of high moments and dimension of the carrier. Journal of Fluid Mechanics, 62:331–

358, 1974.

160
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