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Abstract—How hard is it to guess a password? Massey showed
that a simple function of the Shannon entropy of the distribution
from which the password is selected is a lower bound on the
expected number of guesses, but one which is not tight in general.
In a series of subsequent papers under ever less restrictive
stochastic assumptions, an asymptotic relationship as password
length grows between scaled moments of the guesswork and
specific Rényi entropy was identified.

Here we show that, when appropriately scaled, as the password
length grows the logarithm of the guesswork satisfies a Large
Deviation Principle (LDP), providing direct estimates of the
guesswork distribution when passwords are long. The rate func-
tion governing the LDP possesses a specific, restrictive form that
encapsulates underlying structure in the nature of guesswork.
Returning to Massey’s original observation, a corollary to the
LDP shows that expectation of the logarithm of the guesswork is
the specific Shannon entropy of the password selection process.

Index Terms—Guesswork, Rényi Entropy, Shannon Entropy,
Large Deviations

I. INTRODUCTION

There are several distinct, quantitative notions of secrecy.
For example, perfect secrecy, where an adversary cannot
compute anything regarding the secret, has long been studied,
e.g. [11, [2], [3], while weak security is a more recent notion
that places the less stringent requirement of an upper bound on
the rate at which an adversary can glean information, e.g. [4],
[5]. Methodologies based on computationally security, where
discovery is possible but is anticipated to take a long time,
are used extensively in cryptosystems [6] and are particularly
widely deployed. Here we are concerned with a facet of this
latter notion.

Assume a message is hidden within a large collection of
possibilities. If one has a priori knowledge of the likelihood
of each message being the hidden one and one can inquire
about each message in turn, what is the distribution of how
many questions it will take to correctly guess the secret?
The common example that motivates the terminology of this
article is that of a typical password entry system based on
a cryptographic hash function, where an adversary can ask
about the veracity of each potential password in turn. Our
results, however, also have ramifications for the properties of
new secrecy notions [7].

If a password, W, is chosen at random from a finite set
A ={1,...,m}, how hard is it to guess W? If {P(W = w)}
is known, then an optimal strategy is to guess passwords in
decreasing order of probability. Let G(w) denote the number
of attempts required before correctly guessing w € A, called
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w’s guesswork. Massey [8] proved that a simple function of
the Shannon entropy of W is a lower bound on the expected
guesswork, F/(G(W)), and that no general upper bound exists.
This raised serious questions about the appropriateness of
Shannon entropy as a measure of complexity of a distribution
with regards guesswork. As a corollary to stronger results,
in this article we prove a large password relationship, first
suggested in [9] and [10], between the expectation of the
logarithm of the guesswork and specific Shannon entropy.

Arikan [11] introduced an asymptotic regime for studying
this problem by considering a sequence of passwords, {W}},
with W} chosen from A* with i.i.d. letters. Again guessing
potential passwords in decreasing order of probability for
each k, he related the asymptotic fractional moments of the
guesswork to the Rényi entropy of a single letter,

1 1
lim —log E(G(W)) = (1 + «)log E P(W; = w)T+e
koo k wEA

for « > 0, where the right hand side is « times the
Rényi entropy of W; evaluated at 1/(1 + «). This result
was subsequently extended by Malone and Sullivan [12] to
word sequences with letters chosen by a Markov process and,
further still, by Pfister and Sullivan [13] to sofic shifts whose
shift space satisfies an entropy condition and whose marginals
possess a limit property. Recently, using a distinct approach
Hanawal and Sundaresan [14] provided alternate sufficient
conditions for the existence of the limit. In all cases, the limit
is identified in terms of the specific Rényi entropy

1 1 1
kILH;oEIOgE(G(Wk) )= akhm — Ry, <1—|—a> (D

Hook’

where Ry («) is the Rényi entropy of Wy

Ri(a) = log

> P(Wy =w)®

weAk

11—«

Here we shall assume the existence of the limit on the left
hand side of equation (1) for all o > —1, its equality with «
times specific Rényi entropy, its differentiability with respect
to «v in that range and a regularity condition on the probability
of the most-likely word, that limk~!log P(G(W};) = 1)
exists. From this, Theorem 3 deduces that the sequence
{k™'log G(W})} satisfies a Large Deviation Principle (LDP)
(e.g. [15]) with a rate function A* that must possess a specific
form that will have a physical interpretation: A* is continuous
where finite, can be linear on an interval [0,al, for some
a € [0,1og(m)], and then must be strictly convex while finite
on [a,log(m)].

In contrast to earlier results, Corollary 4 to the LDP gives
direct estimates on the guesswork distribution P(G(W}) = n)



for large k, suggesting the approximation
1
P(G(W) =n) ~ - exp(—kA* (k™ logn)). (2)

As this calculation only involves the determination of A*, to
approximately calculate the probability of the n*® most likely
word in words of length k& one does not have to identify
the word itself, which would be computationally cumbersome,
particularly for non-i.i.d. word sources.

Corollary 5 to the LDP recovers a role for Shannon entropy
in the asymptotic analysis of guesswork. It shows that the
scaled expectation of the logarithm of the guesswork converges
to specific Shannon entropy

1 1
klingo %E(log G(Wy)) = klgr;c %H(Wk),

where
H(Wy) ==Y P(W; =w)log P(Wy = w).
weAF
II. A LARGE DEVIATION PRINCIPLE
Consider the  sequence of random  variables

{k7'log G(W))}. Our starting point is the observation
that the left hand side of (1) is the scaled Cumulant
Generating Function (SCGF) of this sequence:

1
Ala) == Jim - log E (ealOgG(Wk)) :

which is shown to exist for « > 0 in [11][12] and for o > —1
in [13] for a broad class of stationary processes.

Assumption 1: For a > —1, the sSCGF A(«) exists, is equal
to « times the specific Rényi entropy, and has a continuous
derivative in that range.

We also assume the following regularity condition on the
probability of the most likely word.

Assumption 2: The limit

1
g1 = lim —log P(G(Wy) = 1) 3)

exists in (—o0, 0].
Assumptions 1 and 2 hold, for example, for all irreducible
Markov chains. In this case, assumption 1 can be established
by straight-forward extension of the range of « in the results in
[12], while Assumption 2 can be shown to hold by elementary
consideration of cycles.

We first show that the sCGF exists everywhere.

Lemma 1 (Existence of the sCGF): Under assumptions 1
and 2, for all o« < —1

Alw) = Jim 2 log P(G(WL) = 1) = i = Jim A(5).

7k~>ook

Proof: Let a < —1 and note that

mk

log P(G(Wy) = 1) <log > P(G(W},) = 1)i®

mk

=logE (eo‘logG(W’“)) <log P(G(Wy)=1)+ logZi“.

i=1

Taking liminf,_.  k~' with the first inequality and
limsupy,_,,, k~! with the second while using the Principle
of the Largest Term [15, Lemma 1.2.15] in conjunction with
usual estimates on the harmonic series if &« = —1 and
boundedness of the sum if o < —1, we have that

1 1
Jim ElogE(ealogG(W*‘)) = lim —log P(G(Wi) = 1)

for all a < —1.
As A is the limit of a sequence of convex functions
and is finite everywhere, it is continuous and therefore

limg,_1 A(B) = A(-1). ]
Thus the sCGF A exists and is finite for all «, with a potential
discontinuity in its derivative at « = —1. This discontinuity,

when it exists, will have a bearing on the nature of the rate
function governing the LDP for {k~!log G(W})}. Indeed, the
following quantity will play a significant r6le in our results:

. d
v = oﬁrill daA(oz). 4)
The derivative on the right hand side of equation (4) has the
interpretation of a tilted measure. As o | —1 this measure
will, in an appropriate sense, converge to the uniform measure
on the set of words with asymptotically maximal probability.
In particular, we will prove that the number of words with
approximately equally highest probability is close to exp(k~y).
In the special case where the {IV;,} are constructed of i.i.d.
letters this is exactly true and the veracity of the following
Lemma can be verified directly.
Lemma 2 (The number of most likely words): If {W},} are
constructed of i.i.d. letters, then

. d 1
v = alirill %alﬁ((l +a)™h)

=log|{w: P(Wy =w) = P(G(Wy) = 1)},

where | - | indicates the number of elements in the set.

This i.i.d. result doesn’t extend directly to the non-i.i.d. case
and in general Lemma 2 can only be used to establish a lower
bound on ~ defined in equation (4):

1 d 1
> limsup — lim —aR 5
T ket da” k<1—|—o¢>’ ©)

e.g [16, Theorem 24.5]. This lower bound can be loose, as can
be seen with the following example. Consider the sequence of
distributions for some ¢ > 0

P(Wkl_){ ifi=1

otherwise.

m=F(1+¢)
m=F(1 —e(mF —1)71))

For each fixed £ there is one most likely word and we have
log(1) = 0 on the right hand side of equation (5) by Lemma
2. The left hand side, however, gives log(m). Regardless,
this intuition guides our understanding of 7, but the formal
statement of it approximately capturing the number of most
likely words will transpire to be

P(Wy = w),

li 11 inf
= lm - 10 mn
9 k—oo k & {w:G(w)<exp(k~v)}

where g; is defined in equation (3).



We define the candidate rate function as the Legendre-
Fenchel transform of the sCGF

A (z) := sup{za — A(a)}

a€R
- —q if x € [0,7]
= {sup,ep{za — A(a)}  if z € (v,log(m)], (6)
+o0 if « ¢ [0,log(m)].

The LDP cannot be proved directly by Baldi’s version of the
Girtner-Ellis theorem [17][15, Theorem 4.5.20] as A* does
not have exposing hyper-planes for 2 € [0, 7]. Instead we use
a combination of that theorem with the methodology described
in detail in [18] where, as our random variables are bounded
0 < k= tlogG(Wy) < log(m), in order to prove the LDP
it suffices to show that the following exist in [0, oco] for all
x € [0,logm] and equals —A*(z):
B, (x))

B@).

lim li f
i ¢

log P <]1€ log(G(Wy)) €

= hm lim sup —
k—oo
where B.(z) = (v — €, + ¢€).

Theorem 3 (The large deviations of guesswork): Under as-
sumptions 1 and 2, the sequence {k~!log G(W})} satisfies a
LDP with rate function A*.

Proof: To establish (7) we have separate arguments
depending on z. We divide [0,log(m)] into two parts:
[0,~] and (v,log(m)]. Baldi’s upper bound holds for any
x € [0,log(m)]. Baldi’s lower bound applies for any = €
(,log(m)] as A* is continuous and, as A(«) has a continuous
derivative for v > —1, it only has a finite number of points
without exposing hyper-planes in that region. For x € [0,7],
however, we need an alternate lower bound.

Consider = € [0,7] and define the sets

p logP <;log(G(Wk)) €

Ky(z,€) :=={w e A" : k' log G(w) € Be(x)},

letting | Kk (x, €)| denote the number of elements in each set.
We have the bound

Ki(z, inf
| Kk (z E)Iweggi(m

< P (osGOT) € ). ®)

P(Wk :w)

As [FE=9 | < |Kp(x,€)| < [eF*+9)], we have that

|
z = lim lim -log |Kk(z, €)]. )
By either the complementary upper bound to equation (8) or
by Baldi’s upper bound, we have that

1
logP <k: log G(Wy) € Be(x)) <z+g.

lim lim sup —
el k—oo

Thus to complete the argument, for the complementary lower
bound it suffices to show that for any z € [0,4]
1
limliminf inf —log P(Wj

=w) > gq.
€l0 k—oo weKy(xz,€) ) =9

If A*(z) < oo for some = > -, then for € > 0 sufficiently
small let z* be such that A*(z*) < oo and z* — € >
max(7y,z + €). Then by Baldi’s lower bound, which applies
as z* € (v,log(m)], we have

— inf

A* < lim inf
et (y) <

k—o00

1 1
Z log P <k: log G(Wy) € Be(x*)> .
Now

P <]1€ log G(W},) € Be(x*)>

< |Kg(z*,¢)] sup P(Wi=w)
weEK, (x*€)

< |Ky(z", inf  P(Wy = w),

< |Ki(x €)|w€;<1;(z’e) (Wi = w)

where in the last line we have used the monotonicity of

guesswork and the fact that ©* — e¢ > x + e. Taking lower

limits and using equation (9) with |Kj(z*,€)|, we have that
1

— inf —log P(Wy, = w)

A* < z* 4 liminf inf
et (y)

k—oo weKy(x,€)
for all such x*,x. Taking limits as € | O and then limits as
x* | v we have

— lim A* <~v+ hm liminf  inf
T* |y ( ) " el0 k—oo weK(z,e€) k

log P(Wy, = w),
but limg« |, A*(2*) = —y — g1 so that
1
limliminf inf - log P(Wy = w) = g1,
R el g 5 s PN Z ) =
as required.

Only one case remains. If A*(z) = oo for all z > +, then
we require an alternative argument to ensure that

li f f 71 PW, =w) >

lkrglor; wEIl(r;i(oc ok ©8 ( b U}) gt
This situation happens if, in the limit, the distribution of
words is near uniform on the set of all words with positive
probability. As A(0) = 0, using equation (6) we have that
g1 = —. Let x < 7y and consider

1
[ = lim sup sup —log P(Wy, = w)

k—oo weK(x+2¢,€)

1
—log P(Wy, = w).

<liminf inf

k—oo weKy(z,e)
We shall assume that [ < g; and show this results in a
contradiction. Let ¢ > 0, then there exists N, such that for
all k > N, P(G(Wy) = i) < exp(k(g1 + ¢€)), for all
i€ {l,...,mk}, P(G (Wk) = 1) < exp(k(l + ¢€)), for all
i € {exp(k (ZE +6),...,mF} and P(G(W}) > exp(k(y +
€) < e ke Let 0 < e < min(gy — I, — z)/2 be given,
then, using a potentially gross overestimate that suffices for
our purposes, we have that

Z ZP (W) = 1)

weAF
< ek(r+e)ek(g1+e) + ek('y—&-e)ek(l-l—e) + e—k/e



for all £ > N, but as | < g3 = —~ this is strictly less than
1 for k sufficiently large and thus [ = g¢;. Finally, for x = ~,
and € > 0, note that we can decompose [0, log(m)] into three
parts, [0,7 — €] U (v — €,7 4+ €) U [y + ¢, log(m)], where the
scaled probability of the guesswork being in either the first or
last set is decaying, but

1
0= hm %logP (k log G(Wy,) € [O,log(m)])
and so the result follows from an application of the principle
of the largest term.
Thus for any z € [0,log(m)],
1
- log P (k log(G(Wy)) € BE(:L‘))

lim lim 1nf

el0 k—oo

= limlim sup —
€l koo

= —A'(a)

and the LDP is proved. ]

In establishing the LDP, we have shown that any rate
function that governs such an LDP must have the form of
a straight line in [0, ] followed by a strictly convex function.
The initial straight line comes from all words that are, in an
asymptotic sense, of greatest likelihood.

While the LDP is for the sequence {k~!log G(W})}, it can
be used to develop the more valuable direct estimate of the
distribution of each G(W},) found in equation (2). The next
corollary provides a rigorous statement, but an intuitive, non-
rigorous argument for understanding the result therein is that
from the LDP we have the approximation that for large %

’ logP (; log(G(Wy)) € Be(x)>

dP <11: log G(Wy,) = x> ~ exp(—kA*(z))dx

As for large k the distribution of k~!logG(W}) and
G (W) /E are ever closer to having densities, using the change
of variables formula gives

ap (;G(Wk) = ;L> = k—lxdp (; log G(Wp,) = ;L>

1 (1
N o eXP <kA <k‘ log(kx)>> dzx.

Finally, the substitution kx = n gives the approximation in
equation (2). To make this heuristic precise requires distinct
means, explained in the following corollary.

Corollary 4 (Direct estimates on guesswork): Recall
definition

Ky(z,€) == {w € A*:

the

k~'log G(w) € Be(z)} .

For any x € [0, log(m)] we have

inf

lim hm mf log
wE Ky (x,€)

el0 k—oo k

P(Wk = w)

1
= lim lim sup — log P(Wy =w)

€l0 koo
—(xz 4+ A*(x)).

Proof: We show how to prove the upper bound as the
lower bound follows using analogous arguments, as do the

sup
we Ky (x,€)

edge cases. Let = € (0,log(m)) and € > 0 be given. Using
the monotonicity of guesswork
log

lim sup — P(Wy, =w)

k—o0

sup
wE Ky (z,€)

1
< likm inf Z log inf P(Wy = w).

we Ky, (x—2¢,€)

Using the estimate found in Theorem 3 and the LDP provides
an upper bound on the latter:

L1 .
(x — 3e) + h,fIEIQf Z log weK,j(r.le—ze,e) PWy =w)
1 1
< liminf —log P | —log(G(Wy)) € Be(x — 2¢)
k—oo k k

1 1
< lim sup Z log P (k log(G(Wy)) € [x — 3¢,z — e])

k—oo
< - inf A (x).
- zG[xige,xfe] (x)
Thus
limsup —log sup P(Wy=w)
k—o0 wE K (x,€)
< —z+3e— inf A" ().

x€[x—3€,x—€]

As A* is convex, it is continuous where finite, and thus the
upper-bound follows taking € | 0. |

Unpeeling limits, this corollary shows that when k£ is large
the probability of the n'" most likely word is approximately
1/nexp(—kA*(k~1logn)), without the need to identify the
word itself. This justifies the approximation in equation (2),
whose complexity of evaluation does not depend on k. We
demonstrate its merit by example in Section III.

Before that, as a corollary to the LDP we find the following
role for the specific Shannon entropy. Thus, although Massey
established that for a given word length a simple function of
the Shannon entropy is only a lower bound on the guesswork,
for growing password length the specific Shannon entropy
determines the linear growth rate of the expectation of the
logarithm of guesswork (c.f [9] and [10]).

Corollary 5 (Shannon entropy and guesswork): Under as-
sumptions 1 and 2,

1 1
klim EE(logG(Wk)) = hm kH(Wk)

the specific Shannon entropy.
Proof: As both A(a) and aRy((1+ «)~!) are finite and
differentiable in a neighborhood of 0, by [16, Theorem 25.7]

1d
lim - -2 1+a)
Jm 2 gq Bk (L4 )

Note that A*(z) = 0 if and only if z = A'(0) =
lim k=1 H(Wj). Thus the weak law then follows by concen-
tration of measure, e.g. [19]. |

1
N(0) = De=o = Jim —H(Wy).
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Fig. 1. Illustration of Corollary 4. Words constructed from i.i.d letters with

P(Wy =1)=04,P(Wy =2) =04,P(W; =3) =0.2. For k =15
comparison of the probability of n* most likely word and the approximation
1/nexp(—kA*(k~1logn)) versus n € {1,...,315}.
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Fig. 2. Illustration of Corollary 4. Words constructed from i.i.d letters with

P(Wy =1) = 04,P(Wy = 2) = 04,P(W1 = 3) = 0.2. For k =
10, 20 and 100, comparison of k~! times the logarithm of the probability of
nt? most likely word versus k—! times the logarithm of n, as well as the
approximation —x — A*(x) versus x.

III. EXAMPLES

Li.d letters.

Assume words are constructed of i.i.d. letters. Let W, take
valuesin A = {1,...,m} and assume P(W; =4) > P(W; =
j) if @ < j. Then from [11], [13] and Lemma 1 we have that

(1+a)log Y P(Wy = w)/0+) if o > —1
weA
log P(W1 =1)

Aa) =
if a < —1.

From Lemma 2 we have that

v = 0}11211 AN (a) € {0,l0g(2),...,log(m)}

and no other values are possible. Unless the distribution of
W1 is uniform, A*(z) does not have a closed form for all
x, but is readily calculated numerically. With |A| = 3 and
k = 15, Figure 1 compares the exact distribution P(W) =
w) versus G(w) with the approximation found in equation
(2). As there are 3'® ~ 1.4 million words, the likelihood of
any one word is tiny, but the quality of the approximation

Fig. 3. [Illustration of rate functions in Theorem 3. Words constructed from
Markov letters on |A| = 2. Three rate functions illustrating only values of
possible, log(1), log(¢) ~ 0.48 and log(2), from Lemma 6.

can clearly be seen. Rescaling the guesswork and probabilities
to make them comparable for distinct %k, Figure 2 illustrates
the quality of the approximation as k grows. By & = 100
there are 3!°° ~ 5.1 times 10*” words and the underlying
combinatorial complexities of the explicit calculation become
immense, yet the complexity of calculating the approximation
has not increased.

Markovian letters.

As an example of words constructed of correlated letters,
consider {W},} where the letters are chosen via a process
a Markov chain with transition matrix P and some initial
distribution on |A| = 2. Define the matrix P, by (P,);; =
p%(p’o‘), then by [12], [13] and Lemma 1 we have that

Ae) (14 a)logp(P,) if o> —1
o) = i
log max(p1,1,p2,2,/P1,2P2,1) if a < -1,

where p is the spectral radius operator. In the two letter
alphabet case, with 3 = 1/(1 + «) we have that p(P(1_g)/3)
equals

P tply 0l pEa) A0 p2)? (1 p11)?
: 2 4 '
2 2

As with the i.i.d. letters example, apart from in special cases
the rate function A* cannot be calculated in closed form,
but is readily evaluated numerically. Regardless, we have the
following, perhaps surprising, result on the exponential rate of
growth of the size of the set of almost most likely words.

Lemma 6 (The Golden Ratio and Markovian letters): For
{Wy} constructed of Markovian letters with |A] = 2,

v = C}ilel A/(Oé) S {0, 10g(¢)7 log(Q)}7

where ¢ = (1 + 1/5)/2 is the Golden Ratio, and no other
values are possible.

This lemma can be proved by directly evaluating the
derivative of A(«) with respect to «. Note that here exp(k~)
definitely only describes the number of words of equal highest
likelihood when k is large as the initial distribution of the
Markov chain plays no role in +’s evaluation.



The case where v = log(2) occurs when pq 1 =p2 o = 1/2.
The most interesting case is when there are approximately
¢* approximately equally most likely words. This occurs if
P11 = /P1,2D2,1 > p2.2. For large k, words of near-maximal
probability have the form of a sequence of 1s, where a 2 can
be inserted anywhere so long as there is a 1 between it and any
other 2s. A further sub-exponential number of aberrations are
allowed in any given sequence and the starting distribution is
ultimately irrelevant. For example, with an equiprobable initial
distribution and k£ = 4 there are 8 most likely words (1111,
1112, 1121, 1211, 1212, 2111, 2121, 2112) and ¢* ~ 6.86.
Note that the golden ratio also appears in the analysis of the
trapdoor channel [20], but there it is directly as a result of the
appearance of the Fibonacci sequence.

Figure 3 gives plots of A*(x) versus z illustrating the full
range of possible shapes that rate functions can take: linear,
linear then strictly convex, or strictly convex, based on the
transition matrices

0.5 0.5 0.6 04 and 0.85 0.15
0.5 05/7\09 0.1 0.15 0.85
respectively.

IV. CONCLUDING REMARKS

Motivated by widely used computationally secure cryp-
tosystems, in this article we consider the problem of guessing
a password given probabilistic knowledge of the underlying
word distribution. Building on earlier work that established
limiting results for the expected fractional moments of guess-
work [11], [12], [13], [14], equation (2) provides a direct
estimate of the guesswork distribution. As password selection
is known to be non-uniform [21], this result can be used
either by an adversary to determine how hard a secret will
be to hack or by a system designer to ensure password
lengths are long enough to provide a probabilistically strong
guarantee of secrecy. These results have ramifications for the
properties of forthcoming proposals of computationally secure
cryptosystems based on list-decoding [7].
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