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Abstract. QCD at high chemical potential has interesting properties such as deconfinement of quarks. Two-color QCD, which
enables numerical simulations on the lattice, constitutes a laboratory to study QCD at high chemical potential. Among the
interesting properties of two-color QCD at high density is the diquark condensation, for which we present recent results
obtained on a finer lattice compared to previous studies. The quark propagator in two-color QCD at non-zero chemical
potential is referred to as the Gor’kov propagator. We express the Gor’kov propagator in terms of form factors and present
recent lattice simulation results.
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INTRODUCTION

At extremely high chemical potential, real QCD (three-color QCD) is expected to exhibit interesting phenomena like
deconfinement of quarks or a QCD-analog of the superconducting phase of QED, and these may exist in compact
stars [1]. It is therefore desirable to investigate QCD in this region. However there is the so-called sign problem for
real QCD which disables the use of Monte-Carlo simulations. At this point two-color QCD (Nc = 2) with an even
number of flavors (N f ) comes to our aid: it turns out that the sign problem disappears for this theory. This means
that we have a tool to attack QCD from first principles at high density, the only problem being that the theory is not
physical. Fortunately, at low baryon density two-color QCD still has the properties such as chiral symmetry breaking
and confinement. A nice review of QCD at high density has been given in [2].

Two-color QCD has been studied by several groups [3, 4, 5, 6, 7, 8, 9, 10, 11], and these studies led to a tentative
phase diagram of the theory. Figure 1 shows a tentative phase diagram of two-color QCD with N f = 2 taken from
[11]. The bare lattice parameters are κ = 0.168 and β = 1.9 corresponding to a lattice spacing of a ≈ 0.18fm. The
corresponding pion-to-rho meson mass ratio is mπ/mρ = 0.8. The green area denotes the crossover region. The area
above the crossover region is a quark-gluon plasma. At low temperature and low chemical potential there is a hadronic
phase. For N f = Nc = 2, the hadrons of the theory are mesons and baryons, which are equivalent. The circles and
diamonds denote pseudocritical points for superfluid to normal and deconfinement transitions, respectively. We see
that the critical temperature for the superfluid to normal transition does not depend on the chemical potential once the
chemical potential is above the onset transition. The same thing is not true for the deconfinement transition, as the blue
curve suggests a decrease in the critical temperature with an increase in the chemical potential.

SIMULATION DETAILS

The action of the theory we consider in this work is

S = ψ1M (µ)ψ1 +ψ2M (µ)ψ2− Jψ1 (Cγ5)τ2ψ
tr
2 + Jψ

tr
2 (Cγ5)τ2ψ1, (1)

where ψ1 and ψ2 denote the two flavor fields, M is the Wilson fermion matrix and C is the charge conjugation operator.
The Wilson fermion matrix in the presence of a chemical potential, µ 6= 0, and in the absence of diquark source, j = 0,
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FIGURE 1. Tentative phase diagram of two-color QCD, taken from [11].

in position space is given by:

M(µ) = δxy−κ ∑
ν

[
(1− γν)eµδν0Uν (x)δy,x+ν̂ +(1+ γν)e−µδν0U†

ν (y)δy,x−ν̂

]
. (2)

Here U (x) is the gauge field, and U (x) 6= 0 means that the fermion matrix expression is for the case when there is
interaction. The Fourier transform of M (µ) gives the Wilson fermion matrix in the momentum space (for U (x) = 1):

M (p) = i
3

∑
j=1

γ jsin(p j)+ iγ4sin(ω)+m0 +
3

∑
j=1

[1− cos(p j)]+ [1− cos(ω)] , (3)

where ω = p4− iµ .
The last two terms in (1) are introduced in order to calculate the diquark condensate, which is explained in Section

3. The factor J includes the diquark source, j, which controls these terms and is sent to zero to obtain the physical
limit. Such a calculation is carried out with the parameters β = 2.1, κ = 0.1577, a ≈ 0.125 fm, and for two different
diquark sources, ja = 0.02 and ja = 0.03 (The corresponding pion-to-rho meson mass ratio is mπ/mρ = 0.8). The
quark number density is also calculated with the same parameters. The simulation parameters used to obtain the results
for the form factors of the Gor’kov propagator, which is explained in Section 4, are β = 1.9, κ = 0.1680, a≈ 0.18 fm
and ja = 0.04.

In the calculation of the form factors of the quark propagator, we have fixed the configurations to Landau gauge.

DIQUARK CONDENSATION IN TWO-COLOR QCD WITH N f = 2

In a theory with Nc = 2, quarks and antiquarks live in equivalent representations of the color group. Baryons of this
theory are diquarks, and at zero chemical potential there is an exact symmetry between the diquarks and mesons. At
zero chemical potential, the pseudo-Goldstone multiplet consists of the pion isotriplet plus a scalar isoscalar diquark
and antidiquark.

When the chemical potential reaches the value of about half the mass of a pion, these diquark baryons are expected
to condense. This is called the diquark condensate, and this condensation gives rise to a superfluid phase. In real QCD,



FIGURE 2. Diquark condensates for ja = 0.02 and ja = 0.03 ( j = 0 extrapolated).

the analog of such a phase is a superconducting phase because these diquarks are not gauge invariant in the world of
three colors.

The order parameter of the transition to this superfluid phase is the diquark condensate:

〈qq〉 ≡
〈
qTCγ5τ2q

〉
, (4)

where C is the charge conjugation operator.
Figure 2 shows a plot of the diquark condensate calculated in this way, with respect to the chemical potential. The

physical curve here is the curve for j = 0, which is linearly extrapolated from the data for ja= 0.02 and ja= 0.03. The
diquark condensation takes place when the chemical potential reaches the value of about half the pion mass, which
means that there is enough energy to excite diquarks and give rise to the superfluid phase.

The parameters of the calculation correspond to a value of mπ a = 0.446(3) for the pion mass. Therefore a transition
at about µa = 0.223 is expected, and the curve for ja = 0 is consistent with this expectation. We note that the
extrapolation to j = 0 is poor in that the curve does not cross zero at µa = 0.2. This is due to the fact that linear
extrapolation was used with diquark condensate values corresponding to only two different diquark sources. We plan
to improve this result by adding diquark condensate values for yet another diquark source, ja = 0.01.

Figure 3 shows the quark number density with respect to chemical potential for ja = 0.02 and ja = 0.03. The curve
for j = 0, is extrapolated using linear extrapolation. The data are normalized by the continuum non-interacting quark
number density, denoted by nSB. We see a clear plateau in the region µa = 0.3− 0.7, which roughly corresponds to
nq/nSB = 1. This indicates that the system behaves like a non-interacting quark gas in this region.

THE GOR’KOV PROPAGATOR AND THE FORM FACTORS

The action (1) can be written in the compact form

S = ΨM Ψ, (5)



FIGURE 3. Quark number density for ja = 0.02 and ja = 0.03 ( j = 0 extrapolated).

where Ψ≡
(

ψ1
C−1τ2ψ

tr
2

)
, and

M =

(
M (µ) − j

2Cγ5τ2
j
2Cγ5τ2 Cτ2M (−µ)Cτ2

)
≡
(

M −A
A M

)
. (6)

M is the Wilson fermion matrix in the presence of a non-zero diquark source and is known as the Gor’kov matrix.
The inverse of the Gor’kov matrix is the Gor’kov propagator:

G = M−1 ≡
(

S T
T S

)
. (7)

The off-diagonal block components T and T are responsible for the anomalous propagation of quarks, which turns
a quark into an antiquark or vice-versa.

The S and T block components of the Gor’kov propagator can each be written in terms of four form factors, which
are useful tools to study the propagators:

S (p) = i 6pSa (p)+Sb (p)+ iωγ4Sc (p)+ 6pγ4Sd (p) , (8)

T (p) = i6pTa (p)+Tb (p)+ iωγ4Tc (p)+ 6pγ4Td (p) . (9)

These expressions are in the continuum and are of the most general form possible which respects all symmetries of
the theory [12]. For the expressions on the lattice we use the lattice momenta, p = sin(pa), see [3].

Real and imaginary parts of the Sa form factor corresponding to the normal propagation at various chemical
potentials are given in Figure 4. The behaviour of both the real and the imaginary parts of the form factor changes as
the chemical potential increases, which we interpret to be due to the normal to superfluid phase transition. Note that
Sa is not defined at ps = 0 according to (8).

Real and imaginary parts of the Sb form factor corresponding to the normal propagation at various chemical
potentials are given in Figure 5. This form factor is related to the dynamical mass and is real. We see that the behavior
of the real part of Sb changes with increasing chemical potential, which is due to the change in the behaviour of the



FIGURE 4. Real and imaginary parts of the form factor Sa.

chiral condensate, hence, the dynamical mass. The imaginary part for high spatial momenta is consistent with zero, as
expected. But there is a deviation from zero for low spatial momenta. According to (3), in the absence of a diquark
source the form factor Sb for free quarks is given by

Sb =
m0 +∑

3
j=1 [1− cos(p j)]+1− cos(ω)

∑
3
j=1 sin2 (p j)+ sin2 (ω)+

{
m0 +∑

3
j=1 [1− cos(p j)]+1− cos(ω)

}2 . (10)

We see that as soon as µ 6= 0 an imaginary part will appear, which explains this deviation.

FIGURE 5. Real and imaginary parts of the form factor Sb.

Real and imaginary parts of the Sc form factor corresponding to the normal propagation at various chemical
potentials are given in Figure 6. For low spatial momenta there is a decrease in the imaginary part with increasing
chemical potential, while for high spatial momenta there is an increase. The location of the zero crossing is an indicator
of a Fermi surface.

Real and imaginary parts of the form factor Sd corresponding to the normal propagation and Ta corresponding to the
anomalous propagation have been found to be consistent with zero. The reason for Sd to be zero is explained in [12].

Real and imaginary parts of the Tb form factor corresponding to the anomalous propagation at various chemical
potentials are given in Figure 7. The imaginary part is consistent with zero while the real part is not. This is the form
factor most directly associated with the diquark gap, which in most model studies is taken to be Dirac scalar.



FIGURE 6. Real and imaginary parts of the form factor Sc.

FIGURE 7. Real and imaginary parts of the form factor Tb.

Real and imaginary parts of the Tc form factor corresponding to the anomalous propagation at various chemical
potentials are given in Figure 8. While both the real and the imaginary parts are consistent with zero at high spatial
momenta, there is a big deviation from zero at low chemical potentials. It might be that even at zero chemical potential,
the nonzero diquark source induces diquark condensate, giving rise to this deviation observed.

Real and imaginary parts of the Td form factor corresponding to the anomalous propagation at various chemical
potentials are given in Figure 9. Unlike the Sd form factor of the normal propagation, the Td form factor of the
anomalous propagation is not consistent with zero. This suggests that the anomalous propagation cannot be modelled
purely a Dirac scalar gap, but may also include a tensor component. Note that the argument in [12] for why Sd = 0
does not hold for the anomalous propagator.



FIGURE 8. Real and imaginary parts of the form factor Tc.

FIGURE 9. Real and imaginary parts of the form factor Td .

SUMMARY AND OUTLOOK

We have briefly discussed a tentative phase diagram of two-color QCD. We presented results for diquark condensate
and found that a transition to a superfluid phase is observed at a chemical potential corresponding to half of the pion
mass. This confirms and improves on previous results on coarser lattices.

The diquark condensation was investigated using the diquark sources ja = 0.02 and ja = 0.03. In the future we
want to do the same work including the data for ja = 0.01.

We expressed the Gor’kov propagator in terms of the form factors and gave recent results from lattice simulations
for them.

The Sd form factor for normal propagation was expected to be consistent with zero according to [12] and we have
indeed observed this. Next we want to investigate analytically if the corresponding form factor for the anomalous
propagator should be consistent with zero and see if our results from the simulation are reasonable. We also plan to
compute the form factors of the inverse Gor’kov propagator.
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