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Abstract 

We describe the application of analogical structure matching to the problem of classifying 

objects in structured cartographic data. The reasons for and the requirements of such a 

classification are firstly outlined. The attributes on which the structural matching will 

operate and the representation of this data in Prolog are then described. A brief mention is 

made of the extraction of these attributes from the sample data. Our domain-specific 

Cartographic Structure Matching Algorithm is then introduced and explained. The fusion of 

our algorithm’s results with other classification techniques is mentioned, and some 

examples of the detection of misclassified polygons are provided. We finally provide a 

preliminary evaluation of our classification technique and suggest some future 

developments.  

 

Introduction 

Britain’s national mapping agency, Ordnance Survey, is in the process of re-engineering its 

large-scale cartographic data in to a topologically structured format known as the Digital 

National Framework (DNF) [Ordnance Survey]. At present, this high-resolution map 

data consists of spatially referenced point and line features, and text labelling. Points model 
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real world features that cover a small area, such as post-boxes or telephone poles. Lines 

occasionally represent linear features such as fences, but they usually denote the boundaries 

between discrete areas, such as between a road and footpath. The conversion of these data 

sets to DNF format requires that the enclosed areas between lines be modelled as polygon 

features. Cartographic data containing explicit polygons enables the intelligent analysis of 

important features such as buildings, roads and fields. This richer quality data format is 

easier to update and greatly increases the usefulness of map data. 

 

 Each geographic feature within cartographic data must be classified as being a 

member of a particular class, known as a feature code. Examples of feature codes are 

“phone-box”, “wall of building” and “garden”. While the identification of polygons within 

line data can be automated with little difficulty, the classification of the resulting polygons 

is far from trivial. Some area features can be classified based on the feature codes of the 

lines that define them, but many require laborious manual classification. A sample DNF 

polygon data set, with unclassified polygons highlighted, can be seen in figure 1. As 

Ordnance Survey’s large-scale map database contains millions of polygons, feature-coding 

by hand is a very expensive and time consuming task. Automated classification techniques 

are clearly required. Work is ongoing within our department here at NUI Maynooth on the 

application of computer vision techniques to the polygon classification problem [Keyes, 

Winstanley]. A fusion of the results of three separate shape recognition techniques is 

currently being employed, and a high success rate in classification has been achieved. By 

integrating these results with those from other classification techniques, we hope to develop 

an even more robust polygon feature-coding tool. 

 

Figure 1. A Sample DNF data set. Unclassified polygons are shown in dark grey. 
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The use of analogy has been shown to be central to any systems that can learn and 

solve novel problems. This paper describes our application of analogical reasoning to the 

polygon classification problem. Before we describe the cartographic domain and our 

classification algorithm, we briefly introduce the use of analogy for classification. 

Classifying GIS data closely mimics the geometric analogies made famous by Evans 

ANALOGY program [Evans]. The prime distinction is that attributes play a significant role 

in our system, whereas ANALOGY largely avoided such comparisons. Consider the 

following proportional analogy, of the form A is-to B as C is-to some unknown D. In figure 

2, we can see that the Source domain consists of a "before and after" pair of diagrams. The 

transformation described by this pair of diagrams depicts the transformation of a plain T-

shaped object, to a darkly shaded object of the same shape. The target domain consists of a 

single diagram that must undergo the same transformation [Bohan, O'Donoghue]. 

 

Figure 2. A Geometric Analogy Involving Attributes 

 

In terms of cartographic information, we see the source domain as specifying the 

constraints under which the central (unclassified) object may be classified (or coloured). 

Only if all source domain objects are matched against the given target, and all the matching 

objects have the same colour (i.e. classification) can the central object be coloured 

(classified). In cartographic structure matching, we use a combination of the topology and 

classification of adjacent polygons as the attributes we base our mapping on. Our 

Cartographic Structure Matching Algorithm is similar to Keane & Brayshaw’s Incremental 

Analogy Machine [Keane], but we must deal with some commutative relationships and we 

require a retrieval phase to select a suitable template structure to support inference 

[O’Donoghue, Winstanley]. In the next section, we describe the relationships between a 

polygon and its neighbours. We also discuss the rules that govern our pattern-matching 

process. 
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Polygonal Context 

When considering adjacency between polygons, there are two separate topological 

relationships to be considered. We define these as: 

1. Line Adjacency 

Two polygons are line-adjacent if they share a bordering line. 

2. Point Adjacency 

Two polygons are point-adjacent if they are not line-adjacent but they meet at 1 or 

more points. 

Examples of the two types of adjacency can be seen in figure 3. 

 

Figure 3. The polygons on the left are line-adjacent, while the shaded polygons on the right 

are point-adjacent. 

 

Each polygon (and each point and line) in DNF standard data is given a unique 

identification number, called a toid (TOpograhical IDentifier). Individual polygons are 

identified by their toids during the matching process. In attempting to structurally match the 

contexts of two given polygons A and B, a polygon line-adjacent to A may only be mapped 

to one line-adjacent to B. The same restriction holds for point-adjacent neighbours. The 

matching of polygons is further restricted by their feature codes, so that a “building” 

polygon adjacent to A can only be matched to a polygon adjacent to B if the latter also has 

the “building” feature code. The context of a polygon X is a description of the toids and 

feature codes of the polygons adjacent to X and of the adjacencies between those polygons. 

We now describe our representation of this data. 

 

Modelling Context 
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When designing a framework for analogising we must firstly decide what attributes of 

individual objects we wish to perform matching upon. Initially, we have chosen to model a 

polygon’s context in terms of the adjacencies between it and its neighbours and the 

adjacencies between those neighbours. The context of a given polygon X is described with 

the following information: 

 

 A list of polygons that are line-adjacent to X, specified by their toids and feature codes. 

 A list of polygons that are point-adjacent to X, specified by their toids and feature 

codes. 

 A list of pairs of neighbouring (that is, line-adjacent or point-adjacent to X) polygons 

that are line-adjacent to each other, specified by their toids. 

 A list of pairs of neighbouring polygons that are point-adjacent to each other, specified 

by their toids. 

 

Prolog, with its built-in depth-first search mechanism has been chosen to implement 

structural matching between polygons. All context information listed above is recorded 

within a single predicate. While this introduces some data redundancy, it has the advantage 

of reducing the amount of searching the Prolog interpreter has to do (In contrast, The 

Incremental Analogy Machine [Keane] represents an objects attributes as a hierarchically 

structured collection of predicates). We also include the current feature code of the polygon 

being described within our context predicate, as this attribute is transferred from the source 

to target domain when we perform an inference. In addition, the lengths of the four lists that 

hold the context information are recorded within the predicate. The structure matching 

algorithm uses these numbers to reduce its search space, as two polygons cannot be 

analogous if these lists are not the same length. 

 

The predicate that records a given polygon X’s context has the following structure: 
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context(toid of X, 
        feature code of X, 
        length of 1st list, 
        length of 2nd list, 
        length of 3rd list, 
        length of 4th list, 
        [toid & feature code pairs of line-adjacent 
polygons], 
        [toid & feature code pairs of point-adjacent 
polygons], 
        [pairs of toids of neighbours that are line-adjacent 
to each other], 
        [pairs of toids of neighbours that are point-adjacent 
to each other]). 
 

In the next section, we describe how these context predicates are derived from cartographic 

data. 

 

Context Extraction from Cartographic Data 

The context of individual polygons, as required for structural matching is derived from 

source data using the tool ArcView GIS. ArcView is a program used for the visualisation, 

editing and analysis of spatially referenced data, specifically cartographic data. ArcView’s 

built-in scripting language Avenue is being used in the extraction of the required 

information. The sample data is in ESRI’s Shapefile format, which represents polygons as a 

list of Cartesian co-ordinates. As this format does not provide any explicit links between 

neighbouring polygons, it is necessary to compare each polygon X with every other 

polygon in the data to identify those objects that are adjacent to X. This is accomplished 

using the spatial methods of Avenue’s Polygon class. 

 

Avenue’s polygon intersection methods are used to identify the objects line-

adjacent and point-adjacent to a particular polygon. The same technique is then used to 

identify the adjacency relationships between these neighbouring polygons. This information 

is recorded as a context predicate, as previously described, and saved to a Prolog source 
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file. This file can then be loaded into a Prolog session and analysed by our structure 

matching algorithm. We now provide an example of how our structure matching algorithm 

can classify a polygon through inference. 

 

Walkthrough of Structure Matching Process 

In figure 4 a graphical representation of the full contexts of two polygons with toids 1 and 6 

can be seen. All polygons are colour-coded with their current classification. Polygon 6 is 

currently unclassified. Polygon 1 is classified (as a building), and will be used as a template 

in an attempt to infer the feature code of polygon 6. The context of polygon 1 is our source 

domain, while the context of polygon 6 is our target domain. 

 

Figure 4. An example of a template polygon context and an unclassified polygon context. 

 

 We firstly attempt to uniquely map each polygon that is line-adjacent to 1 to a polygon 

with the same feature code that is line adjacent to 6. We succeed with the mapping 

[[2,10],[3,8]]. 

 Trying to generate a similar mapping for point-adjacent neighbours, we develop the 

mapping [[4,9],[5,7]], which we add to the mapping generated in the previous step to 

get [[2,10],[3,8],[4,9],[5,7]]. 

 We now try to map each pair of 1’s neighbours that are line-adjacent to each other to a 

pair of 6’s neighbours that are line-adjacent to each other, using the list of mappings 

we have developed. We succeed with [2,4]  [10,9], [2,5]  [10,7], [3,4]  [8,9], 

[3,5]  [8,7] and [4,5]  [9,7]. 

 Repeating the above step for point-adjacent neighbour pairs, we succeed with [2,3]  

[10,8]. 
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 We have now generated a mapping from the source domain to the target domain that 

preserves the structure of the source. We can infer that the feature code of the source, 

“building”, is also the feature code of the target. 

 

The Cartographic Structure Matching Algorithm is now described in detail. 

 

The Structure Matching Engine 

Our analogy algorithm takes as arguments two polygon toids and searches for the context 

predicates that describe the topological localities of the polygons those toids reference. If it 

can find a full structural mapping between the two sets of neighbouring objects, the two 

polygons contexts are analogous, and knowledge can be transferred from one domain to the 

other. The algorithm fails if one of the polygons is found to have a neighbour of unknown 

class, as we do not allow inferences to be made on incomplete data. 

 

The Cartographic Structure Matching Algorithm 

 

For any two given polygons A and B whose contexts have been identified: 

 

1. Check that the lengths of the four lists that describe A’s context correspond with 

the lengths of the lists that describe B’s context. 

2. Create an exclusive mapping from a toid in A’s list of line-adjacent neighbours to 

a toid in B’s list of line-adjacent neighbours which has the same feature code. Add 

mapping to a list of mappings. Repeat until all toids in the two lists have been 

mapped. 

3. Create an exclusive mapping from a toid in A’s list of point-adjacent neighbours to 

a toid in B’s list of point-adjacent neighbours which has the same feature code. 
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two lists have been mapped. 

4. Using the list of mappings produced by stages 2 & 3, check that a pair of toids in 

A’s list of line-adjacent neighbours maps to a pair of toids in B’s list of line-

adjacent neighbours. If not, backtrack and generate a different mapping list 

between A and B’s neighbours. Repeat until all pairs of toids in the two lists of 

line-adjacent neighbours can be mapped. 

5. Using the list of mappings produced by stages 2 & 3, check that a pair of toids in 

A’s list of point-adjacent neighbours maps to a pair of toids in B’s list of point-

adjacent neighbours. If not, backtrack and generate a different mapping list 

between A and B’s. Repeat until all pairs of toids in the two lists of point-adjacent 

neighbours can be mapped. At this point, a full structural mapping has been 

established between the contexts of A and B. This established analogy can now 

support inference from one domain to the other. 

 

As mentioned earlier, the first stage of the process prevents unnecessary searching. 

It is included for the sake of efficiency and is not necessary for the functioning of the 

algorithm. Stage 2 tries to generate a mapping from A’s line-adjacent neighbours to B’s 

line-adjacent; stage 3 does likewise for point-adjacent neighbours. The penultimate stage 

checks if these mappings can translate A’s list of pairs of line-adjacent neighbours to B’s 

corresponding. Again, the final stage does likewise for the lists of pairs of point-adjacent 

neighbours. 

 

The mappings that are created in stages 2 and 3 are represented in Prolog as a list 

of two toids. The first toid is that of a polygon adjacent to A and the second is that of a 

polygon adjacent to B. In searching for a structural match between two objects, it must be 

ensured that all mappings from one object’s attributes to the other objects attributes are of a 
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1-to-1 nature. Therefore, when our algorithm creates a mapping between two toids, it 

removes both toids from the corresponding lists of neighbours. 

 

 In applying the established mappings in stages 4 and 5 the commutative nature of 

line-adjacency and point-adjacency must be considered, as the ordering of pairs of adjacent 

neighbours is arbitrary. In checking if [1,2] maps to [3,4], we must check if either 1 maps to 

3 and 2 maps to 4 or if 1 maps to 4 and 2 maps to 3. It should be noted that there may be 

more than one full structural mapping between two particular contexts. In the next section, 

we show some misclassification detection results that have been achieved. 

 

Experimental Results 

In the following 2 cases classification errors have been located in a particular data set 

through the inspection of polygons that are found to have unusual contexts. 

 

Figure 5.1, 5.2. Sample DNF data sets. Buildings are highlighted on the left, roads on the 

right. 

 

 Common sense tells us that one building cannot be contained within another 

building without any space in between. A search for such a context has revealed such a 

misclassification, as seen in figure 5.1. In this case, it appears that the largest highlighted 

polygon in the view has been erroneously classified as a building. Similarly, we can say 

that each section of road must be connected to another stretch of road, hence a road’s 

usefulness. Any road polygon that is not line-adjacent to another road polygon must be 

either misclassified itself or be line-adjacent to one or more road polygons that are in need 

of reclassification. In figure 5.2 we see such an unconnected road polygon that has been 

identified through analogy. 
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Preliminary Evaluation 

The Cartographic Structure Matching Algorithm has been used to generate a set of template 

polygon contexts, which can suggest the most likely classifications for polygons that 

structurally match them. A large data set of high quality (well-classified) polygons was 

used as a “training set” for this task. This consisted of an urban data set of over 46,000 

polygons and a mainly rural data set of over 6,000 polygons. A very small number of these 

polygons were found to be still unclassified, and the contexts of any polygon adjacent to 

these were not considered. As the number of neighbours a polygon has increases, the 

number of possible topological arrangements of these neighbours (as described by the 

adjacencies between them) quickly grows. This causes a corresponding steep increase in 

computational complexity when attempting structural matching on these contexts. To avoid 

this, we arbitrarily excluded polygons with more than 10 neighbours from the training set. 

Many of these contexts would provide poor templates anyway, as their more complex 

topologies are, in general, more unique. 

 

Each time a context was found in the data set that was not isomorphic with an 

existing template context, that context was recorded as a template itself. Associated with 

each template is a record of the number of polygons of each feature code that it structurally 

matched. For any given polygon P (within the training data) whose context matches 

template T, the probability that P is of class X can be calculated as: 

T matching polygons #

T matching  Xclass of polygons #
 Xclass of is P yProbabilit 

 

Obviously, the larger and more representative the training set th

nfident we can be about the results. 

at is used, the more 

 

co
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Figure 6. Chart showing statistical information on all templates generated from training 

data. 

 

 Figure 6 shows a scatter graph of all the templates derived from the training data, 

plotted as the number of matches a particular template achieves against the percentage of 

those matches attributable to the feature code which provides the greatest number of 

matches for that template. The X-axis measures the confidence in the recorded 

classification probabilities. The geometrical patterns evident along this axis are caused by 

the quantization inherent in the fractions being plotted along the Y-axis. It can be seen from 

the graph that the more matches a template achieves, the more likely it is to suggest an 

accurate classification. What this graph does not show is the distribution of the templates. 

There are over 15,000 templates plotted within the graph, but 12,000 of them occur only 

once within the data. These 12,000 points are all plotted at the same co-ordinate, (1, 100). It 

seems that a good proportion of polygons can be precisely classified based on a relatively 

small number of frequently occurring templates. Most templates have had a low number of 

matches, so that large training sets of data will be required to evaluate their usefulness. 

 

Future Work 

Our next task is to evaluate the usefulness of our structure matching technique as a 

classification tool. This involves using a set of templates derived from training data, as 

described in the previous section, to classify objects within test data sets. 

 

A logical extension of the current fine-grained structure matching technique would 

be to investigate a more generalised form of mapping. This might involve allowing matches 

within a certain threshold. Machine learning algorithms could be used to implement a more 

generic classification system. This would allow additional information on the context of an 

object to be used: length of shared borders, area, and distances between centres of polygons 
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could be considered. The neighbours’ neighbours etc. could also be examined. A learning 

algorithm would decide which attributes are more relevant. 

 

Conclusion 

We began by establishing the need for an automated tool for classifying polygons in 

cartographic data, and introduced the notion of using analogy to infer the required 

information. The Cartographic Structure Mapping Algorithm has demonstrated the ability 

to support this transfer of knowledge between domains within a geographical framework. 

Many polygons can be classified based on a small number of common templates, but much 

training data is required to fully evaluate our current model. It is envisaged that broadening 

our representation of context and using machine learning to generate a rule-based expert 

system will produce improved results. Of course, analogy alone cannot be expected to solve 

the classification problem, rather, it will be a classifier playing a part in a robust decision 

making process that models the human mind. 
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