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Abstract

Parking spaces are resources that can be pooled together and shared, especially
when there are complementary day-time and night-time users. We answer two design
questions. First, given a quality of service requirement, how many spaces should be set
aside as contingency during day-time for night-time users? Next, how can we replace
the first-come-first-served access method by one that aims at optimal efficiency while
keeping user preferences private?

1 Introduction

It was recently reported that over one year in a small Los Angeles business district, cars
cruising for parking burned 47,000 gallons of gasoline and produced 730 tons of carbon
dioxide [1]. Meanwhile, the consulting firm McKinsey recently claimed that the average car
owner in Paris spends four years of his or her life searching for a parking space [2]. The
parking assignment problem associated with electric vehicles becomes even more acute. Due
to the limited range of these vehicles, the marginal cost of expending energy to search for
spaces may, in some cities, be prohibitively high. Thus, there is a real and compelling societal
and economic need to revisit parking.

Increases in car ownership, inadequate public and private parking facilities, and syn-
chronised demand, have led to serious temporal mismatches in parking space supply and

∗This work was supported in part by Science Foundation Ireland (SFI) grant 11/PI/1177 and in part by
EU FP7 project INSIGHT under grant 318225.
†W. Griggs and R. Shorten are with the Hamilton Institute, National University of Ireland Maynooth,

Maynooth, Co. Kildare, Ireland. Corresponding author: Wynita Griggs. Phone: +353-(0)1-7086100. Fax:
+353-(0)1-7086269. Email: wynita.griggs@nuim.ie
‡J. Y. Yu and R. Shorten are with IBM Research Ireland, Dublin, Ireland.
§F. Wirth is with the University of Passau, Faculty of Computer Science and Mathematics, Innstrasse

33, 94032 Passau, Germany.
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demand. Finding a parking space at certain times of the day is a non-trivial challenge.
Furthermore, finding spaces is not only costly in terms of wasted time for the driver, but it
also creates congestion and pollution affecting everyone. Thus, improving parking improves
both economic efficiency and environmental quality.

Indeed, already major companies and cities are responding to these challenges. For
example, many city authorities, in order to safeguard resident on-street parking from people
commuting to a city through the day, have initiated schemes such as resident permit parking,
and a number of commercial initiatives have emerged in the parking area. SFpark and
JustPark provide examples of city authorities and companies investing heavily in parking
research and products within a smart cities context.

In this work, our objective is not to revisit prior work on the topic. Rather, we propose
a new solution that is widely applicable in cities. We consider two nearby entities that
have complementary supply and demand, i.e., there is a shortfall of parking space at one
and a surplus at the other. We call the entity with a shortfall of parking a mini-city.
Many examples come to mind: university campuses, technology parks, shopping centers,
and government facilities located in the suburbs. In our work, we use the university campus
as an example.

The second entity is the area surrounding the mini-city. During business hours, while
parking spaces are limited in the mini-city, many nearby residents leave home for work.
Thus, there is an opportunity for the mini-city to use these vacated parking spaces, as well
as from schools, hotels, apartment complexes and so on. Consequently, the mini-city has
access to two classes of parking spaces: premium spaces, e.g., those located on the university
campus; and secondary spaces located nearby and perhaps serviced by a shuttle. Note that
the secondary spaces are not owned by the mini-city but rather are rented from secondary
parties or landlords. Given this basic scheme, we consider two specific design issues. First,
we wish to guarantee a quality of service for the landlords by setting aside reserve spaces
in the mini-city as contingency for events where secondary spaces are suddenly unavailable.
Second, we wish to ensure that the premium spaces are allocated optimally among users
(drivers) while preserving each user’s privacy.

2 Prior Work

Within the research community, questions concerning how to manage parking space supply-
demand mismatch are actively being investigated from a variety of different angles. One
important aspect concerns the delivery of up-to-date, accurate, real-time information to
parking systems in order to achieve greatest system efficiency. A car park monitoring and
vacancy detection system is discussed in [3] and consists of a camera and image analysis
system that reports statistics. The aim for such systems is to provide timely information on
available parking spaces and minimize search time. ParkYa is an early-stage company offering
a service that signposts parking locations and allows users to pay for their parking through
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a smartphone application. Driving directions to the parking spot are additionally available.
In the near future, such services should benefit greatly from incorporating increased amounts
of real-time data, concerning up-to-date details on current parking vacancies, and predicted
travel times given current road conditions. The system of [4] monitors and reports the state
of availability of parking spaces and additionally uses context information generated by the
city and its citizens to provide accurate responses to demand.

A predictive approach is proposed in [8] and further studied in [9]. The authors develop a
method in which car parks are able to count the number of arriving and departing cars, and
report these to participating cars. This allows them to predict the likelihood of a parking
space being available at the estimated time that the car will arrive there. This work uses
ideas from queueing theory to predict the occupancy upon arrival, with car parks being
modelled as single server queues with a Poisson arrival process and exponentially distributed
service times. It should be mentioned that this significant reduction in requirements by
using a stochastic approach comes at the cost of certainty for the customers. The lack of a
reservation system makes it possible that customers arrive to a fully occupied car park. The
main drawback of the approach is, however, that ultimately the customers will want to use
the information to make a decision whether to try their luck and drive to the car park or to
go somewhere else. Accordingly, there is feedback embedded in the system which needs to
be taken into consideration; namely, when users choose to drive to a car park based on the
predictions made, they then affect the arrival process, rendering the model and predictions
no longer valid. This latter issue is addressed in [10], where multiple car park load balancing
is achieved using randomisation based on congestion signals from the participating car parks.
Significant extensions of this work are given in [11].

Certainly, access to real-time information, on its own, is not enough. Given the delay
between an user identifying and driving to a parking space, and the fact that other users
may also compete for the same parking space, a successful parking system would benefit
from either intelligent assignment or reservation capability to reduce localized congestion [5].
The reservation system is championed in [6], where an architecture for an intelligent parking
assistant is proposed as a public car park management solution. In [5], the parking problem is
viewed as a dynamic resource-allocation problem. Similarities to problems in communication
networks are drawn, for which a host of tools and methods have been developed over the last
decades. An online reservation system is proposed, where cars communicate their parking
requirements and are assigned a parking space, which is then reserved and cannot be used by
any other vehicle. A similar approach is proposed in [7], albeit with a different assignment
routine, and also allows the user to specify the price that he is willing to pay. The main
focus of the paper is revenue maximisation, but it is also possible to achieve other goals,
such as reducing traffic levels or ensuring some sort of fairness between users from different
social classes.

In [12], an agent-based simulation model for parking facilities management was devel-
oped, the goal of the tool being to provide better understanding of how complex urban
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traffic systems evolve under different parking pricing strategies and different levels of park-
ing enforcement. Agents included drivers, parking authorities, law enforcement and city
government. Models for cruising-for-parking behaviour were developed in [13]. In [14], the
Quality of Service (QoS) metrics is used to dimension a shared vehicle fleet such that satis-
factory levels of access to the fleet were ensured to its pool of users. While the topic of [14]
was not parking per se, the paper inspires some of the notions of our current work; that is,
we consider the dimensioning of a special subset of parking spaces in our mini-city that we
will call the reserve. We discuss this problem in the following sections of the paper.

3 Setting

Apartment Residents:

M parking spaces

University Campus:

N parking spaces

reserve Q parking 

spaces for residents

Figure 1: The parking scenario: Premium spaces are those on the university campus, whereas
secondary spaces are those belonging to the apartment buildings.

We will consider the following scenario. Imagine a university campus with a total of N
parking spaces, surrounded by a total of M private parking spaces (e.g., from residential
complexes), as illustrated in Figure 1. A typical working day sees the university parking fill
to capacity with vehicles belonging to students and staff, to the extent that the N spaces
cannot meet the demand. Some campus arrivals thus have to search elsewhere. At the same
time, many nearby residents drive to work during the day and vacate their M private parking
spaces. What we have is a wasted resource in one area (i.e., residential parking spaces) and
a stressed resource nearby (i.e., the on-campus parking). We assume that a contract exists
between the university and the landlords or owners of these M private parking spaces. The
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contract stipulates that these landlords lease their driveways to the university during daytime
In the sequel, we will denote the time period in which the extra spaces are leased by [0,W ].
This can be possible because the landlords drive to work during this time period.

In our nomenclature, the premium resources are the on-campus parking spaces, while the
secondary resources are the contracted residential parking spaces. We will now consider how
to design a parking system, bearing in mind the needs of the mini-city community, and the
needs of the landlords. We shall consider the following facets of the design problem:

1. How do we accommodate the needs of parking space owners (landlords) given that
situations may arise when landlords will need to return home during the contracted
interval? An example is scheduling a repairman to visit the home to fix a fitting. (See
Section 4.)

2. How do we accommodate the needs of the landlords given that situations arise when
misbehaving university members will not vacate the parking space outside of the con-
tracted interval? (See Section 4.)

3. How do we allocate efficiently access to the premium spaces to the university commu-
nity in a manner that preserves the privacy of individuals in the community? (See
Section 5.)

As we shall see, we answer these questions in a stochastic framework by developing suit-
able Quality of Service (QoS) metrics to dimension the aforementioned parking system. To
address Items 1 and 2, we shall set aside a subset of Q premium spaces as a reserve. The re-
search question in this latter context then becomes how to use the QoS metrics to dimension
the size of Q. We shall address Item 3 by applying recent ideas from distributed resource
allocation.

Comment: (Generalization) The parking scenario presented in this paper is very
specific, but our method can also be applied in the following general setting. There are two
resources, A and B. These resources are atomic (indivisible), with each atom being allocated
to one user. Each user has a preference over the two resources. Using resources A and B
decreases a certain QoS metric. In the following main sections, we answer two questions:

• Given a QoS requirement, how much of resource A and resource B should we use?

• Given an efficiency metric derived from the user preferences, how do we allocate the
resources optimally among users in a setting where the allocation is repeated over
multiple iterations?

4 Dimensioning and Statistics

In this section, we consider the problem of dimensioning Q ∈ {0, 1, . . . , N} premium spaces
as reserve in order to provide sufficient Quality of Service (QoS) guarantees to the landlords
of the secondary spaces.
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Let 1, . . . ,M index the landlords of the parking spaces. For each such landlord i =
1, . . . ,M , we define a non-negative valued random variable Ti, which denotes the time at
which he or she returns home and needs to get the parking space back. Under normal
circumstances, Ti is greater than W , but on rare occasions a landlord may choose to come
home early.

For simplicity, we assume that each parking space i = 1, . . . ,M has exactly one daytime
user each day. For each parking space i = 1, . . . ,M , we also define a non-negative valued
random variable Ai, which denotes the departure time of the daytime user of the space i.
Under normal circumstances, Ai is less than W , but we assume a small number of miscreants
so that not all spaces are always vacated on time.

For convenience, recall that [0,W ] denotes the nominal rental window for every parking
space. In other words, the landlord of space i agrees to park only outside the interval [0,W ],
whereas the daytime user of space i agrees to park during the interval [0,W ] only.

Definition 1 (Home-early and Overstay). We define the following two events for each sec-
ondary parking space i = 1, . . . ,M :

Ei , {Ti ∈ [0,W ]} ∩ {Ti < Ai},
Oi , {W < Ti} ∩ {Ti < Ai}.

Each of these events represents an outcome where a landlord would like to use the space i,
but cannot do so. The home-early event Ei is due to the landlord needing the space during
the day. The overstay event Oi is due to the fact that the daytime user overstayed.

For easy of presentation, we assume the following properties concerning the above random
variables.

Assumption 1 (For Simplicity). The random variables {T1, . . . , TM} are independent and
identically distributed. Likewise, {A1, . . . , AM} are also i.i.d. Moreover, all these random
variables are mutually independent. Finally, we assume that all the distributions have den-
sities.

4.1 The Dimensioning Formulae

We begin by quantifying the probability of an event Oi in terms of the probability of daytime
users overstaying. Recall that the distribution of the random variable Ai characterises the
probability of the daytime user overstaying in space i. First, observe that

P(Oi) ≤ P(Ai > W ).

Next, we derive an exact expression for P(Oi) using the independence assumption (Assump-
tion 1).
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Lemma 1 (Probability of O1). Let FA denote the probability distribution of A1; and FT

denote the probability distribution of T1. Under Assumption 1, we have

P(O1) =

∫ ∞
a=W

(FT (a)− FT (W ))dFA(a).

Remark 1. We estimate FA from data in the following section.

Proof. Observe that

P(O1) = P (W < T1 < A1)

=

∫ ∞
a=W

P (W < T1 < A1 | A1 = a) dFA(a)

=

∫ ∞
a=W

P (W < T1 < a) dFA(a).

The claim follows by definition of the distribution FT of T1.

Now we derive a formula that we can use to dimension the reserve parking space Q
from the contingent of N premium spaces. Recall that there are Q reserve parking spaces
(the reserve “buffer”) set aside by the university. In this section, we consider the probability
p(M,Q) of the event that more than Q spaces are needed to accommodate landlords needing
the reserve buffer during daytime [0,W ]:

p(M,Q) = P

(
M∑
i=1

1Ei
> Q

)
,

where 1Ei
denotes a Bernoulli random variable taking value 1 when event Ei occurs, and

value 0 otherwise.

First, we characterise the probability of the event E1 in terms of the probability distri-
butions of T1 and A1.

Lemma 2 (Probability of E1). Let FT denote the probability distribution of T1. Let FA

denote the probability distribution of A1. Under Assumption 1, we have

P (E1) =

∫ W

t=0

(FA(W )− FA(t))dFT (t) + FT (W )(1− FA(W )).

Remark 2. FT and FA are estimated from data in the next section.
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Proof. Let φ , P (E1). Observe that

φ = P ({T1 < A1} ∩ {T1 ∈ [0,W ]})
(by non-negativity of T1) = P ({T1 < A1} ∩ {T1 < W})

= P ({T1 < A1} ∩ {T1 < W} | A1 ≤ W )P(A1 ≤ W )

+ P ({T1 < A1} ∩ {T1 < W} | A1 > W )P(A1 > W )

(by Bayes’ Rule) = P (T1 < A1 | A1 ≤ W )P(A1 ≤ W ) + P (T1 < W )P(A1 > W )

= P (T1 < A1 ≤ W ) + P (T1 < W )P(A1 > W )

=

∫ W

t=0

P (t < A1 ≤ W ) dFT (t) + P (T1 < W )P(A1 > W )

=

∫ W

t=0

(FA(W )− FA(t))dFT (t) + FT (W )(1− FA(W )),

which is the claim.

As a corollary, we have the following expression for the probability that setting Q reserve
spaces at the university is not enough.

Corollary 3 (Probability that Q reserve spaces are not enough). Let φ , P (E1). Under
Assumption 1, p(M,Q) is a random variable entirely characterized by φ:

p(M,Q) =
M∑

k=Q

(
M

k

)
φk(1− φ)M−k. (1)

Remark 3. Observe that this probability can be mitigated by increasing the parameter Q.
Given a QoS target p(M,Q) Equation (1) can be used to determine the corresponding value
of Q needed to achieve it. This is illustrated through an example in the next subsection.

4.2 Parking Data and Example

In the previous section we have considered arbitrary probability distributions FT , FA in
the formulae derived. In this section, we give estimates F̂T , F̂A of these distributions using
publicly available data. Given samples Z1, Z2, . . . , Zn from the distribution FT , the corre-
sponding empirical distribution-estimate takes the form

F̂T (z) =
1

n

n∑
i=1

1[Zi≤z].

First, we estimate the distribution FA. Recall that Ai is the random variable denoting
the duration of use of the ith secondary parking space. To derive an estimate, we use data
on parking space utilisation collected in the city of Dublin. Each data point corresponds
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to the time duration of one parking event. The histogram distribution of these durations is
shown in Figure 2. Of course, we can obtain a better estimate of the distribution of parking
usage in a university campus if we have access to more particular data. Based on Figure 2,
in order to simulate the fact that 5% of users of secondary parking spaces overstay, we set
W = 170 for our example.
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Figure 2: Parking data. (Source: Dublin City Council, 21 December 2013.)

Next, we estimate the distribution FT for {Ti}. This distribution accounts for landlords
who do not leave home and who arrive home normally after working hours. There are many
reasons for landlords to return home early, or not leave home at all. For simplicity, we
estimate the frequency of such days with the number of sick days of NHS staff in England
over the period from April 2009 to February 2014. This data is presented in Figure 3. For
simplicity, we use the average sickness absence rate to estimate the probability of Ti = 0,
and assume that Ti = W otherwise (cf. Table 1).

Table 1: Probability distribution function of Ti. For simplicity, we assume that the function
is constructed so that 4.2% of landlords remain at home due to sickness, while the other
95.8% return home exactly at time instant W .

Random variable Ti Probability
Ti = 0 0.042
Ti = W 0.958
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Figure 3: Monthly sickness absence rates. (Source: Health and Social Care Information
Centre.)

Finally, we use Corollary 3 to perform a dimensioning exercise based on our data. Figure
4 illustrates the probability p(M,Q) that Q reserve spaces are insufficient when M secondary
spaces are contracted. The probability p(M,Q) eventually falls exponentially fast versus Q.
The dependence of p(M,Q) on M is more subdued. In other words, for a fixed value of
p(M,Q), a linear increase in the number of secondary spaces only requires a logarithmic
increase in the number of reserve spaces.

5 Efficient Allocation of Premium Spaces

In this section, we consider the point of view of the user (i.e. a staff member or student)
who requires parking at the university. Typically, such a user would purchase a monthly
or yearly parking ticket. This ticket then provides them with the opportunity to compete
for a university parking space. However, such a ticket does not necessarily guarantee them
a parking space on the university grounds. That is, if they arrive to the university “too
late” on any given day, the car parks on-campus may already be full. This is because more
parking tickets are sold than there are actual spaces to park.

Such “first come, first served” systems can be inefficient. Consider the example of a
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Figure 4: Probability p(M,Q) that Q reserve spaces are insufficient when M secondary
spaces are contracted

studying mother or father who, even though they paid the same amount for a monthly or
yearly parking ticket as everyone else, must first always take their children to school in the
morning. They thus always arrive to the campus a little bit later than everyone else and
have a greater chance of missing out on an on-campus parking space. We are interested in a
scheme that offers equality in regards to access to the premium, on-campus parking spaces
for all university users over the long-term period of validity of their parking ticket.

For our scheme, we suppose that the university has been able to obtain enough apartment
building parking spaces such that (N − Q) + M is greater than or equal to the number of
university users requiring a parking space on any given day. The problem then is how to
allocate the premium and secondary parking spaces to users efficiently over time. How do
we ensure that one campus user does not have to park off-campus for the majority of the
time while another user is almost always offered a car space on the university grounds? Our
solution to this problem is motivated by additive-increase/multiplicative-decrease (AIMD)
optimisation algorithms [15].

5.1 Algorithm

We now consider the problem of providing efficient access to the available premium spaces
at the mini-city. These spaces refer to the N −Q spaces available after allocating Q of the
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spaces as reserve according to the previous section. For simplicity of exposition, we shall
assume that Q = 0 in this section, but the results generalize in a straightforward fashion. We
introduce and recall the following notation to describe the problem data and the variables
used in our algorithm.

N : an integer denoting the number of available premium parking spaces.

n : an integer denoting the number of users wishing to avail of premium parking spaces.
We assume that n > N .

k : denotes discrete time, k = 0, 1, 2, 3, .... In our interpretation this corresponds to the
number of days the system is operating. For convenience, we assume spaces are assigned
on a per-day basis, but the general principles of the algorithm do not depend on this
assumption.

Xi(k): This is a state variable associated with the ith user. It takes the value 1 if this user is
given access to a premium parking on the kth day and zero otherwise.

X i(k): This is a average access for the ith user up to the kth day:

X i(k) =
1

k + 1

k∑
j=0

Xi(j) .

It is possible to formulate the premium parking space allocation problem in several ways.
For example, one could require that that the long-term average admission to the premium
parking space is equal for all users, i.e. for all i, j = 1, . . . , n

lim
k→∞

X i(k)−Xj(k) = 0 .

This assumes that all users are equal in the desire to access the premium parking space.
Here we follow a more general approach and assume that each user i has a cost function
fi : [0, 1] → R. For a frequency z ∈ [0, 1] of premium space allocation, the cost fi(z)
represents the monetary inconvenience cost that user i experiences from z. This function
specifies the priority that this user is assigned. It could represent the amount a user is
willing to pay, or it could be related to the number of passengers carried by this users, or the
access that this user has to public transportation (meaning that users with fewer possibilities
for alternative transport should have prioritised access to parking spaces). Given these
individual cost functions, our aim is to design a system that achieves overall minimal cost
for the group. We formulate the optimal allocation of resources as a minimization problem:

minimize
z1,...,zn∈R

∑n
i=1 fi(zi) (2)

subject to
∑n

i=1 zi = N,

zi ≥ 0, i = 1, . . . , n.
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Our proposed simple algorithm for solving the parking allocation problem can be sum-
marized as follows. We assume that every event each user is allocated access to the premium
spaces by tossing a coin. For example, one embodiment of this idea is to use a smart-phone
application. More specifically, each user is assigned a cost function by a government author-
ity. For example, this could be based on vehicle class, disability, need for childcare, etc. On
every subsequent day, the application outputs a variable that determines whether the user is
assigned a premium space. Access to the space is assigned to the ith user with the following
probability:

pi(k) , P(Xi(k) = 1) = Γ(k)
X i(k)

f ′i(X i(k))
. (3)

A central authority that owns the parking spaces, calculates Γ(k) based on past utilization
and broadcasts this scalar to all participating vehicles. The following example illustrates the
performance of this simple algorithm.

We will assume that the functions fi are continuously differentiable and strictly convex;
so that in particular the optimal point z∗ ∈ Rn satisfying the constraints is unique. Further-
more, we introduce an assumption which ensures that the optimal point z∗ has only positive
entries. This assumption also guarantees that the algorithm we will describe is well defined
for every user.

We wish to control the access to the premium space in such a way that the average
utilization for each user approaches the optimal value z∗, i.e. for large k we want to achieve

X i(k) ≈ z∗i .

subject to the (loose) capacity constraint
∑n

i=1 xi ≈ N . That is, all premium spaces are
occupied, on average. Further, we wish to do this in a manner that preserves the privacy of
users. That is, we do not wish to reveal X i and fi to any other users in the course of the
optimization. Finally, the necessary communication between the users should be minimal so
as not to create a communication overhead that would be hard to sustain in an uncertain
environment where users cannot be expected to participate at all times.

In what follows the mechanism for preserving privacy is to develop a distributed al-
gorithm. We loosely follow the ideas in [15], where a distributed stochastic algorithm is
presented which guarantees that the average utilization variables X i(k) converge to the op-
timal points z∗i

1. The algorithm presented here extends the ideas of [15], however, because
we wish to ensure in addition that the instantaneous utilization variables xi(k) sum to N ,
or at least to a value close to it. Moreover, the resource to be allocated in our setting is
atomic, as opposed to arbitrarily divisible. These differences require substantial changes to
the algorithm presented in [15].

1As the algorithm is stochastic the convergence holds with probability 1, which is also called almost sure
convergence in a stochastic context.
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At each time k, each user i determines a probability pi(k) and sets

Xi(k + 1) =

{
1 with probability pi(k),
0 with probability 1− pi(k),

(4)

where we note that all users make this probabilistic choice independently of other users or
previous decisions. The evolution of the probabilities is governed by the equation

pi(k) = Γ(k)
X i(k)

f ′i(X i(k))
(5)

Note that each user i can determine its own probability with the exclusive knowledge of its
own past utilization X i(k) and cost function fi. No information from other users is required.
The scalar Γ(k) is a network wide constant determined by the central agency and broadcast
to all users. Here, Γ(k) is chosen such that pi(k) ∈ (0, 1) for all i = 1, . . . , n and all k ∈ N. It
is determined in a time-varying manner as it also influences the demand for premium spaces.
Specifically, if at a certain time k each pi(k) is fixed then the expected utilization of the
premium spaces is

E

(
n∑

i=1

Xi(k + 1)

)
=

n∑
i=1

pi(k) = Γ(k)
n∑

i=1

X i(k)

f ′i(X i(k))
. (6)

Moreover, the (random) instantaneous utilization
∑n

i=1Xi(k + 1) is concentrated around
the expected utilization by independence and Hoeffding’s Inequality. If we wish to ensure
optimal utilization of the premium spaces and avoid overbooking, the expected utilization
should be below the number of premium parking spaces. For instance, a standard deviation
below this number, depending on the desired quality-of-service metric. Denoting this number
by NE ≤ N , we will therefore adjust Γ(k) so that the expectation in (6) tracks NE. As the
expectation is unknown, we use the observed utilization as an estimator for this. Taking a
simple error regulation approach we thus arrive at

Γ(k + 1) = Γ(k) + α

(
NE −

n∑
i=1

Xi(k)

)
. (7)

The overall system is now prescribed by the dynamics of Xi given by (4), the dynamics
of pi given by (5) and the dynamics of Γ as described in (7).

A proof of the convergence of the algorithm is beyond the scope of this paper. However,
we present below an example to show its efficacy.

5.2 Example

We simulate a population of 900 users competing for 450 premium parking spaces. Each
evening, users are assigned a parking space as described above (with the scalar Γ(k) deter-
mined using a PI control). For simplicity, users have one of three cost functions: f(z) = z4/4,
f(z) = z6/6, and f(z) = z8/8, all of which are strictly convex.
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Figure 5: Instantaneous allocation {Xi(k)} for three users.

Figure 5 shows the average utilisation achieved for each class of vehicle. Figure 6 and 7
shows that the average utilisation of premium spaces is concentrated around the target
utilisation of 450. Figure 8 shows the evolution of the controller gain and Figure 9 shows
that the cost functions derivatives do actually achieve consensus asymptotically.

5.3 Intuition

Here we will briefly comment on the heuristic which suggests that the algorithm works in a
general setting. To this end we have to point out that a number of assumptions are required.

First, in our derivation of the update rule (5) we will rely on an infinitesimal charac-
terization of the optimal point. This requires that the optimal point does not lie on the
boundary of the constraint set. Thus in the following we will assume that the optimal point
z∗ satisfies

z∗i ∈ (0, 1) ∀ i = 1, . . . , n . (8)

Second, the gain parameter α in the feedback scheme (7) needs to be chosen in such a
manner that the system is stable. Noting that by (6) the expectation E (

∑n
i=1Xi(k)) is a

multiple of Γ(k), we choose

α ∈

0,

(
max

x

n∑
i=1

xi
f ′i(xi)

)−1 (9)

where the maximum with respect to x is taken over the constraint set. We then reformulate
(7) to obtain

Γ(k + 1) =

(
1− α

∑n
i=1Xi(k)

Γ(k)

)
Γ(k) + αNE .

In the previous formulation, the bracket giving the factor of Γ(k) needs to be in the interval
(0, 1) sufficiently often to ensure stable behaviour of the system and thus the desired tracking
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Figure 6: Instantaneous premium space occupancy over time.

property. The choice of α in (9) is made to ensure that the desired stability property holds.
This ensures convergence of the sequence Γ(k).

To argue for the convergence of X we follow the heuristic presented in [15]. The opti-
misation problem is a constrained problem for which we have assumed that the boundary
conditions zi ≥ 0 are not active. It is then classical to introduce the Lagrange parameter
µ ∈ R and consider the Lagrangian

H(z1, ..., zn, µ) =
n∑

i=1

fi(zi)− µ

(
n∑

i=1

zi −N

)
. (10)

From the Karush-Kuhn-Tucker (KKT) conditions [16, Section 5.5.3], the following necessary
and sufficient condition for optimality can be obtained by setting all partial derivatives to
zero. In the optimal point z∗ ∈ Rn, µ∗ ∈ R we have

µ∗ =
∂fi
∂zi

(z∗i ) ∀ i = 1, . . . , n. (11)

In other words, the system is at optimality when the derivatives of the cost functions are in
consensus. This observation is at the core of the choice of the probability functions in (5) as
we now explain.

Assuming that the system described by (4), (5), and (7) has an ergodicity property we
obtain the long-term average for the access to the premium car park satisfies (in the limit)

X i = p̂i (12)

where p̂i is the steady state probability that user i has access to the resource. Given this
assumption, we claim that our choice of probability functions pi(k) is such that the equation
for the steady state behaviour of our system is equivalent to the KKT condition (11). By
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Figure 7: Histogram of premium space occupancy over a horizon of 700 iterations.

(5) each user has a probability of access that satisfies

pi(k) ∝ X i(k)

f ′i(X i(k))
, (13)

where the constant of proportionality is the same for all users. Suppose now that after a
transient period we have X i(k) ≈ X̂i, the steady state long-run average which exists under
our ergodicity assumption. Then we can write pi(X i(k)) ≈ p̂i. Thus, in steady state,

pi(k) ≈ Γ

f ′i(X i(k))
pi(k) (14)

and so f ′i(X i(k)) ≈ Γ for all i, j. So in the limit we expect f ′i(X i(k))→ Γ for all i. This means
that in the limit we converge to a situation where the derivatives of the cost functions are in
consensus. As we have seen from the KKT conditions the consensus conditions characterizes
the optimal point of the optimization problem so that we obtain

X i(k)→ z∗i i = 1, . . . , n .

Thus the average utilization converges to the optimal point.

5.4 Comments

Several comments are merited.

(i) This is a private algorithm. Users do not communicate with other users, nor do they
reveal any state information or cost information to the central authority.
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Figure 8: Evolution of Γ(k)

(ii) This is a randomized algorithm. Thus we only have
∑

iXi(k) ≈ N . We argue that
small fluctuations in the occupancy level about the capacity is acceptable since some
users may not use the premium spaces, even if allocated one. Furthermore, in the event
of all users availing of their allocated premium spaces, extra space is always available in
the secondary spaces, and in the reserved spacing. That is, the instantaneous allocation∑

iXi(k) may exceed the capacity N for some time steps k, in which case, some users
will have to be re-routed to the secondary parking spaces.

(iv) The algorithm can be modified such that the parameter Γ does not update at every
iteration, but once in a while (i.e., from day to day).

(v) The proposed allocation scheme can be applied to more general problems of the form
of (2). For example, the same problem arises also in assigning space in overhead bins
on passenger planes, seats in trains, etc. In all of these examples, users pay a fee
to compete for access to a limited resource. However, access to the resource is not
guaranteed and in effect the resource is allocated in a first-come, first-served manner.
From a societal viewpoint, customers with constraints, e.g. dropping children at school,
are almost always disadvantaged by such schemes.

6 Conclusion and Future Work

In this work, we have modeled two aspects of parking system design and proposed two cor-
responding solutions. First, we propose to complement primary or premium parking spaces
with a large number of secondary parking spaces. These spaces are obtained through con-
tracts for shared use that provide probabilistic QoS guarantees at the expense of a relatively
small number of reserve premium spaces. Secondly, we propose a distributed algorithm for
repeated allocation of premium spaces, which guarantees that, over time, the users who ben-
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Figure 9: Convergence to optimality. The marginal utilities of different users converge.

efit most from such spaces obtain them proportionally more frequently. The main feature of
this algorithm is to keep private all information related to the benefit derived by individual
users.

The next step in our research agenda is to deploy the described system on a university
campus. From an algorithmic perspective, it remains an open problem to quantify the rate
of convergence of Xi(k) and to situations where we have dynamic arrivals and departures
throughout each day. Another open problem is to quantify the probability of overshooting
the capacity: i.e., the event

∑
iXi(k) > N . It is also useful to consider a version of the

allocation algorithm for the case where a different subset of users competes in each day.
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