
White-Box Coverage Criteria for Model
Transformations

Jacqueline A. McQuillan and James F. Power

Department of Computer Science,
National University of Ireland, Maynooth,

Co. Kildare, Ireland
{jpower@cs.nuim.ie}

http://www.cs.nuim.ie/research/pop/

Abstract. Model transformations are core to MDE, and one of the key
aspects for all model transformations is that they are validated. In this
paper we develop an approach to testing model transformations based
on white-box coverage measures of the transformations. To demonstrate
the use of this approach we apply it to some examples from the ATL
metamodel zoo.

Keywords ATL, model transformations, software testing, coverage criteria,
metamodels.

1 Introduction

Modelling is concerned with the construction and maintenance of models, but
also the transformation from one model to another in the context of Model
Driven Engineering (MDE). Model transformations are core to MDE and, sim-
ilar to conventional software, it is vital to validate the transformations and en-
sure they are correct. One possible validation method is to systematically test
the transformation. While much research has been conducted into transforma-
tion languages and tool support for conducting transformations, relatively little
attention has focused on testing the model transformations.

In this paper we address the problem of testing model transformations by
examining white-box coverage measures for model transformations. We report
on some initial experiments of applying this approach to some transformations
from the ATL transformation zoo.

The remainder of this paper is organised as follows. Section 2 outlines some of
the background information related to testing model transformations. In Section
3 we consider what kind of white-box coverage measures can be derived from ATL
transformations. In Sections 4 and 5 we illustrate the use of our test criteria using
two model transformation. Finally, Section 6 concludes the paper and discusses
future work.



Fig. 1. Coverage measures for model transformations might be derived from metamodel
coverage measures, or from research on grammar coverage, or by analogy with code
coverage.

2 Background and Related Work

Research relevant to testing model transformations, particularly from a coverage
perspective, may be divided into three main strands, as shown in Figure 1 and
discussed in the following subsections.

2.1 Coverage of the input metamodel

The most obvious source for coverage data is gained from considering the degree
to which the model transformations cover the input metamodel. In standard
testing terminology this corresponds to testing using different inputs, most typ-
ically characterised as black box testing since it does not presuppose access to
the transformation source code.

A range of coverage criteria have been suggested for the various UML di-
agrams [1]. Since a metamodel can be described using a UML class diagram,
coverage criteria for class diagrams provide a basis for developing similar crite-
ria for metamodels. For example, Andrews et al. define a number of coverage
measures for class diagrams [2]. A parallel stream of research investigates the
generation of test instances of models and metamodels. For example, Gogolla et
al. [3] describe an approach to automatically generating model instances (snap-
shots) from UML class diagrams. Another approach is that of Ehrig et al. [4]
which involves the automatic creation of an instance-generating graph grammar
for the given metamodel. However, this work does not consider how to evaluate
the adequacy of these test cases during the testing process.

The most important work related to coverage analyses of model transforma-
tions is that of Fleurey et al. [5–7]. Starting with the model coverage measures



of Andrews et al., they extend these to the source metamodel for model trans-
formations. They also use these coverage criteria to generate test cases for model
transformation testing. Since they focus on generating inputs for the transfor-
mation, this approach may be characterised as black-box testing.

An important contribution of the work by Fleurey et al. is the identification
of the effective metamodel. This is the section of the source metamodel, often a
proper subset, that is relevant to the transformation. Clearly it is important that
coverage data be calculated in terms of this effective metamodel, rather than the
whole input metamodel, so as not to underestimate the level of coverage.

2.2 Grammar coverage

The use of measures based on input models relies on generating a test suite
that adequately covers the input domain of a transformation, as defined by the
input metamodel, or a relevant subset. However, there is little work on directly
considering the coverage of the transformations themselves. One related area is
that of grammar testing, since the process of transforming an input language
using a grammar (or a generated parser) is analogous to a model transforma-
tion. Various coverage criteria have been proposed, the most simple being rule
coverage, which requires that each rule in the grammar be used during testing,
although there are many more complex variations [8, 9].

A model transformation consists of more than just rules to match the input,
and so any consideration of coverage should also deal with model generation and
any internal operations. To date there has been relatively little work on linking
coverage of the “front end”, as defined by a grammar or the input metamodel,
with coverage of the “back end” as defined by transformation internals and
generation code. Hennessy and Power show that applying test suite reduction
using only grammar coverage as a criteria yielded poor results for the internals
of a C++ parser [10], and thus would suggest that coverage of transformation
internals should be considered further.

2.3 Code coverage

One of the standard ways of determining the adequacy of a test suite is to
determine the degree to which the test suite exercises the system under test using
a coverage analysis [11]. For conventional programming languages the degree of
coverage of elements such as statements, decisions, paths, functions etc. can
be calculated for a test suite, with the goal of achieving 100% coverage of the
chosen element. Given the widespread use and acceptance of such measures in
the programming domain, it is natural to consider their use for modelling and
model transformation.

Since metamodels can be implemented in program code, often automatically,
applying coverage measures to this generated code provides one means of mea-
suring metamodel coverage. This approach was taken in our earlier work on the
measurement metamodel where line and branch coverage were used to evaluate
coverage for an implementation generated by the Octopus tool [12]. While this



approach has the advantage of simplicity, it is rather indirect, and depends to
some degree on decisions taken by the code generator.

3 White-Box Coverage Measures for Model
Transformations

In order to calculate the coverage of the ATL rules during the transformation it is
necessary to profile the operation of each ATL rule as the transformation takes
place. Fortunately the design of the ATL system provides two useful features
that facilitate this. First, the compiled ATL rules are actually executed on top
of a special-purpose virtual machine [13]. Second, it is possible to run the ATL
system in debug mode which prints out the step-by-step execution of instructions
on this virtual machine.

The ATL virtual machine is similar in concept to the Java Virtual Machine
(JVM) which greatly eases comprehension. It has instructions to access and
create model elements, to manipulate data on the stack, and control instructions
for selection, iteration and method calls.

3.1 Implementation

Thus, to measure coverage of ATL transformations we implemented a program
that works in two phases:

1. First, we process the file of compiled ATL instructions (conveniently repre-
sented in XML format) to extract information about the operations, instruc-
tions and branch locations and targets.

2. Second, we run the transformation and process the resulting log file to record
the actual coverage data for that transformation.

3.2 Relevant structures in the compiled ATL file

We can partition the code generated by the ATL compiler into three main cat-
egories:

1. Scaffolding code, such as internal routines to initiate the matching process
and help with resolving references. This includes generated functions such
as main, matcher , exec , resolve and resolveTemp.

2. Code corresponding to the rules, which is broken into two separate func-
tions in the assembled code. For any user-defined rule R, the ATL compiler
will generate a function matchR to handle the filtering of model elements,
and a function applyR to handle the instantiation of the target elements,
assuming a successful match.



3. Code corresponding to helpers, which can be further subdivided into
code for attribute helper initialisation, and code for operation helpers. At-
tribute helper initialisers will always be invoked by the internal ATL routines
but, since they may contain conditional expressions, there is still possibility
that they will not be fully covered for a test case. Operation helpers on the
other hand must be invoked by the user’s code, and thus there is a possibility
that they may not be used at all for a given test case.

Since scaffolding code functions are largely transparent to the user, we do
not consider them further in this study.

3.3 Possible coverage measures

Based on the structure of the compiled ATL file, we can immediately identify
three kinds of coverage measures:

Rule Coverage is analogous to rule coverage in a grammar: it is simply the
percentage of rules that were executed at least once during a transformation.
Since each rule is represented as an operation on the ATL virtual machine,
implementing rule coverage involves tracking and recording the calls to the
operation corresponding to each rule.

Instruction Coverage is analogous to code coverage in a high-level language,
with the additional benefit that formatting and layout do not effect the to-
tals. The instruction coverage for a set of transformations is the percentage
of instructions that were executed at least once during the transformation.
The debug trace for the ATL virtual machine lists each instruction as it is
executed, so it is relatively straightforward to measure this coverage.

Decision Coverage measures, for each decision in a program, whether the true
and false paths were taken. In ATL transformations, branches are repre-
sented by if instructions, and whether they evaluated to true or false can be
determined from the trace file.

While instruction coverage corresponds to the most common kind of code
coverage, it is not obvious that such a low-level measure is useful in the context
of ATL transformation. First, it has the disadvantage of being linked directly
to the ATL compiler and low-level VM implementation. Second, it is a measure
more suited to an “imperative” style of programming, and can be difficult to
relate back to ATL source code, which often contains large nested expressions.

In the remainder of this paper we focus on decision coverage, since this is
relatively easy to relate to the ATL source code, and is not so directly tied to the
underlying implementation. Since ATL transformation rules are implemented as
functions in the compiled code, decision coverage will effectively subsume rule
coverage which becomes a special case.



<Family lastName="March">

<father firstName="Jim"/>

</Family>

<Family lastName="March">

<father firstName="Jim"/>

<mother firstName="Cindy"/>

</Family>

(a) (b)

<Family lastName="March">

<father firstName="Jim"/>

<mother firstName="Cindy"/>

<daughters firstName="Brenda"/>

</Family>

<Family lastName="March">

<father firstName="Jim"/>

<mother firstName="Cindy"/>

<sons firstName="Brandon"/>

<daughters firstName="Brenda"/>

</Family>

(c) (d)

Fig. 2. Four simple possible input models, in increasing order of size, for the Fami-
lies2Persons transformation given in Figure 3. These examples are based on the ex-
ample distributed with the Families2Persons transformation.

4 A Simple Example: The Families2Persons
transformation

As an example, consider the Families2Persons ATL transformation shown in
Figure 3 at the end of this paper, taken directly from the ATL examples [14].

As well as the scaffolding code, the ATL compiler will generate the following
methods:

Code for attribute helpers: The generated function initfamilyName ini-
tialises the attribute helper familyName (lines 3-15)

Code for function helpers: isFemale is generated corresponding to the func-
tion helper of the same name (lines 16-25)

Code for Member2Male: Two functions called matchMember2Male and apply-

Member2Male are generated and correspond to lines 28 and 30-32 respectively
of the rule Member2Male

Code for Member2Female: Again, two generated functions matchMember2-

Female and applyMember2Female corresponding to lines 36 and 38-19 re-
spectively of the rule Member2Female

4.1 Deriving coverage data

Even with this simple example, it quickly becomes apparent that it is not trivial
to define undisputed coverage measures. The logical place to seek a definition
of the effective metamodel is in the two transformation rules, and this would
appear to indicate that the source model element Families!Member should be
covered. Thus a rather naive attempt might be the minimal family shown in
Figure 2(a).



No. of Calls

Family: Fig 2(a) Fig 2(b) Fig 2(c) Fig 2(d)

initfamilyName 1 2 3 4
isFemale 2 4 6 8

matchMember2Male 1 1 1 1
applyMember2Male 1 1 1 2

matchMember2Female 1 1 1 1
applyMember2Female 0 1 2 2

Table 1. The number of calls of each of the functions in the Families2Persons transfor-
mation for each of the four possible inputs in Figure 2. This provides a crude measure
of the level of cover, but fails to adequately distinguish between the test cases.

Of course, it is clear that there is a rule each for female and male family
members, so logically a better input model would contain at least one instance of
each, such as shown in Figure 2(b). A quick analysis shows that all six generated
functions are executed at least once for this test case: the number of calls to
each function are shown in the data columns of Table 1. However, this simple
statement masks some potential complexity. The filter that decides which rule is
selected is defined in the helper operation isFemale, so, technically, constructing
the effective metamodel correctly is contingent on being able to interpret this
helper fully.

An analysis of the decision coverage data for the six functions is shown in
Table 2. From this it can be seen that the test case of Figure 2(b) still covers only
75% of the decisions of the isFemale function, and even less of the initialiser for
familyName. Adding a daughter to the family, as shown in Figure 2(c) completes
the coverage for isFemale. Similarly adding a son familyName, as shown in
Figure 2(d) completes the coverage for familyName. Comparing this data with
that shown in Table 1 clearly shows that decision coverage is delivering a more
complete picture than just counting the number of calls for each function.

Decision Coverage

Family: Fig 2(a) Fig 2(b) Fig 2(c) Fig 2(d)

initfamilyName 17% 50% 83% 100%
isFemale 50% 75% 100% 100%

matchMember2Male 50% 100% 100% 100%
applyMember2Male 0/0 0/0 0/0 0/0

matchMember2Female 50% 100% 100% 100%
applyMember2Female 0/0 0/0 0/0 0/0

Table 2. The decision coverage percentage for each of the functions in the Fami-
lies2Persons transformation for each of the four possible inputs in Figure 2. These
data allow for a greater level of distinction between test inputs than the measures in
Table 1.



4.2 Discussion

Even this simple example shows some of the difficulties involved in identify-
ing the effective metamodel for a transformation. Since the code for isFemale

could be substituted into the rule definitions, it should clearly be considered
relevant to determining the effective metamodel. However, the defined attribute
familyName is also relevant to the discussion, since it is defined entirely over
the input metamodel, and thus a test suite would need to ensure that all of the
possible permutations are exercised. Indeed, in this example there is very little
of the code that is not relevant to fully defining the effective metamodel.

Even considering decision coverage, as above, does not quite give a full picture
of metamodel coverage. For example, the coverage data for isFemale is the
amalgamated coverage for each call to the function. In theory, a fuller picture
would be given by considering the context of the call, so that we could distinguish
between isFemale as used by Member2Male and as used by Member2Female. Only
the example shown in Figure 2(d) exercises all these options, but this is not shown
in the context-independent data of Table 2. There is an obvious potential for
combinatorial explosion here, and further research would be required to see if
adding context was justified in terms of the improvement in test suite analysis.

5 A larger study

In this section we apply the coverage measures to a larger example, the UML2
to Measure transformation from the ATL Transformations zoo [15]. This trans-
formation calculates a set of metrics for UML class diagrams. As such, it has a
well-known source metamodel, so plenty of test cases are available. It also has
a computationally-intensive back-end that calculates 51 metrics over the input
UML class diagram. It thus represents an extreme example of a transformation
where the exact effective metamodel is not easily deducible.

The UML2 to Measure is composed of four modules: one main UML22Measure
module, and three modules that calculate metrics called MOOD4UML2, EMOOSE4UML2
and QMOOD4UML2. In what follows, we abbreviate these as U2M, MOOD,
EMOOSE and QMOOD respectively.

5.1 A test suite of UML class diagrams

The test cases used in our study were taken from the Eclipse UML2 Tools project
[16]. This project includes, among other examples, 19 UML class diagrams from
chapter 7 of the UML Superstructure Specification. The 19 class diagrams are
described briefly in Table 3, mainly to provide reference to the original source.
While there was no coverage data or analysis provided with these models, they
were selected as they presumably covered a wide range of features in class dia-
grams.

The relevant coverage measures were calculated for each of the 19 test cases
individually, and then calculated for the test suite as a whole.



Test Case Description used in UML2 Tools project

7.19 Graphic notation indicating exactly one association end owned by the
association

7.20 Combining line path graphics
7.21 Binary and ternary associations
7.22 Association ends with various adornments
7.23 Examples of navigable ends
7.24 Example of attribute notation for navigable end owned by an end

class
7.25 Derived supersets (union)
7.26 Composite aggregation is depicted as a black diamond
7.27a An AssociationClass is depicted by an association symbol (a line) and

a class symbol (a box)
7.27b Association Class
7.28 Class notation - details suppressed, analysis-level details,

implementation-level details
7.30 Examples of attributes
7.32 Comment notation
7.33 Constraint attached to an attribute
7.34 {xor} constraint
7.39 Example of element import
7.40 Example of element import with aliasing
7.48 Multiple ways of dividing subtypes (generalization sets) and con-

straint examples
7.54 Instance specifications representing two objects connected by a link

Table 3. A summary of the “Chapter 7” class diagrams from the UML2 Tools project
(release 0.8.1 (2008/09/23) [16]. In future tables we refer to these models by number
only; this table can be used to refer back to the models in the UML2 distribution.

5.2 Decision coverage results

Since there are 75 if instructions, this makes a total of 150 possible decisions,
and over half of these (88) in the U2M module. The results from the coverage
analysis are summarised in Table 4 on a per-model basis. This table has one
row for each of the UML models described previously in Table 3. The data in
each row represent the fraction of decisions covered for each module in the ATL
transformation, summed over all functions in that module.

For example, the value “28/88” in the first column of the first data row of
Table 4 measures the decision coverage for the U2M ATL module when run with
class diagram #19 as input. There were 44 if instructions in the module, so the
total possible decision coverage would have been 88. In this case, only 28 of the
possible true/false decisions were taken.

As can be seen from the data in Table 4, the test cases are relatively similar
in terms of their module-by-module coverage. This possibly reflects the nature
of the transformation itself: since all metrics are calculated for each test case,
the level of coverage is quite similar for each. It is notable that decision coverage



UML Proportion of Decisions Covered
Model U2M MOOD EMOOSE QMOOD Total

19 28/88 12/24 1/8 15/30 56/150
20 28/88 12/24 1/8 15/30 56/150
21 27/88 12/24 1/8 15/30 55/150
22 31/88 12/24 3/8 18/30 64/150
23 28/88 12/24 1/8 15/30 56/150
24 28/88 12/24 1/8 15/30 56/150
25 26/88 12/24 3/8 15/30 56/150
26 22/88 12/24 1/8 12/30 47/150
27a 22/88 12/24 1/8 12/30 47/150
27b 27/88 12/24 1/8 16/30 56/150
28 36/88 12/24 1/8 19/30 68/150
30 44/88 12/24 3/8 22/30 81/150
32 20/88 10/24 1/8 12/30 43/150
33 25/88 10/24 1/8 13/30 49/150
34 22/88 12/24 1/8 12/30 47/150
39 24/88 10/24 1/8 12/30 47/150
40 30/88 10/24 1/8 14/30 55/150
48 26/88 12/24 3/8 15/30 56/150
54 27/88 10/24 1/8 14/30 52/150

Cum. Tot. 55/88 24/24 3/8 25/30 107/150

Table 4. The decision coverage of each of the four modules for each of the UML models
of Table 3. The coverage is given as a fraction of the total number of decisions in the
helper functions.

for any individual test case rarely exceeds 50% in a module, and is particularly
low for the EMOOSE module.

The final row of Table 4 shows the cumulative decision coverage when all
19 UML models were transformed, and thus represents the total coverage for
all models considered as a test suite. This is important to consider since, even
though the individual totals are similar, the decisions being covered may not be
the same in each case. For example, all of the test cases cover either 10 or 12
of the 24 decisions in the MOOD module, but the cumulative total of 24 shows
that these must be different decisions in at least some of the cases.

The overall coverage of 107/150, or 71% seems quite a reasonable level of cov-
erage for a suite that was not designed with such coverage in mind. Nonetheless,
it would clearly be advisable to augment the suite to achieve full coverage.

5.3 Detailed analysis of decision evaluation

As a further example of the type of information available from decision coverage
analysis, Table 5 analysis the 75 decisions in the four modules for the test cases.
This table has one row for each test case, and shows the number of if statements
that were never evaluated, that evaluated just to false or true respectively, or



UML No. of if statements
Model Neither False True Both Total

19 26 24 18 7 75
20 26 24 18 7 75
21 27 24 17 7 75
22 23 25 15 12 75
23 26 24 18 7 75
24 26 24 18 7 75
25 29 17 19 10 75
26 33 16 21 5 75
27a 33 16 21 5 75
27b 25 23 21 6 75
28 21 30 10 14 75
30 14 33 8 20 75
32 35 13 24 3 75
33 30 21 20 4 75
34 32 15 24 4 75
39 34 11 24 6 75
40 28 17 22 8 75
48 28 16 22 9 75
54 27 21 23 4 75

Cum. Total 12 13 6 44 75

Table 5. A breakdown of the overall cumulative decision coverage data for all 19 UML
models. This table splits the decision instructions into four categories based on the
degree to which they were covered during the transformations.

that evaluated to both false and true. This gives a deeper insight as to the
overall cause of low coverage, since this could be due either to decisions not
being covered at all, or not being evaluated to all possibilities.

For example, the first data row of Table 5 shows the coverage details for
class diagram #19. From this we can see that 26 of the decisions in the ATL
transformation were never executed, 24 were executed and only ever evaluated
to false, 18 only ever evaluated to true, and just 7 were fully tested, being
evaluated to both false and true during the transformation. For comparison
with Table 4, we can calculate the total decision coverage for this test case as
24 + 18 + (7 ∗ 2) = 56, as shown in the final column of the first row of Table 4.

For individual test cases, relatively few of the if statements evaluate to both
true and false: only three test cases cause more than 10 of the 75 if statements
to be fully evaluated. Happily, the final row of Table 5 shows that in total 44 of
the 75 if statements are fully evaluated, and efforts to augment the test suite
need only concentrate on the remaining 31 statements.



5.4 Comparison with instruction coverage

The ATL transformation contains 151 functions in total (excluding scaffolding
code), and these contain a total of 2988 ATL byte-code instructions. The to-
tal cumulative instruction coverage for all 19 test cases is 2626 instructions, or
88% of the total. Thus the instruction coverage runs well ahead of the decision
coverage figure of 71%.

Just 20 of the 151 functions were never called during any of the 19 transforma-
tion runs, and these account for a total of 201 instructions. Since 362 instructions
were not covered in total, this means that the remainder, 161/362, or 44% of the
uncovered instructions are directly attributable to decisions not taken. Indeed,
since the non-coverage of these instructions might have resulted in functions not
being called, the figure of 44% is actually a lower-bound on the influence of de-
cision coverage. This demonstrates that improving decision coverage can have a
significant impact on improving the coverage of the transformation as a whole.

In the previous subsection we noted that the deficiencies in decision coverage
resulted form the incomplete coverage of just 44 if statements. In fact, we can
make a further attempt to estimate the ease of localising the lack of coverage.
Of the 131 functions that were called at least once during the 19 transformation
runs, 104 of these have 100% decision coverage. In fact, of these, 73 contain no
decision instructions, and so the function call covers all decisions by default. This
means that locating the decisions not taken is localised to just 27 of the 151 func-
tions in the ATL transformation. This suggests that tracking down incomplete
decision coverage is at least feasible, even in a relatively large transformation.

6 Conclusion and Future Work

In this paper we have noted the dual nature of a model transformation: part
input-recognition, like a grammar, and part generation, like program code. Thus
it is possible to extend the notion of rule coverage from grammars to model
transformations, and use instruction and decision coverage to evaluate the re-
maining elements. We have developed tool support to measure decision coverage
for the transformation language ATL. Finally, we have shown how these criteria
were used in the process of testing a specific model transformation.

The work presented in this paper takes place in the overall context of de-
veloping a framework for calculating metrics from various kinds of models. Our
approach is based on designing a single metamodel, called the measurement
metamodel that describes the quantifiable elements used in software metrics [17,
12]. We are in the process of developing a set of model transformations from
other artifacts, such as UML class diagrams and Java programs, into this mea-
surement metamodel. Hence, in order to ensure the correctness of the resulting
metrics it is important that the model transformations faithfully represent the
source models in each case.

This paper is a first step in identifying suitable white-box coverage measures.
In future work we plan to validate the utility of these coverage measures primarily



by examining their correlation with coverage of the effective metamodel. We
also intend to compare the fault-detection effectiveness of the coverage criteria
presented in this paper with other test adequacy criteria in the literature such
as that in [5, 2]. Using this information we plan to establish a full set of test
adequacy criteria for testing model transformations and use these criteria for
automating the generation of test cases for model transformation testing.

References

1. McQuillan, J.A., Power, J.F.: A survey of UML-based coverage criteria for soft-
ware testing. Technical Report NUIM-CS-TR-2005-08, Dept. of Computer Science,
National University of Ireland, Maynooth (September 2005)

2. Andrews, A., France, R., Ghosh, S., Craig, G.: Test adequacy criteria for UML
design models. Software Testing, Verification and Reliability 13 (2003) 95–127

3. Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCL models in USE
by automatic snapshot generation. Journal on Software and System Modeling 4(4)
(2005) 386–398

4. Ehrig, K., Küster, J., Taentzer, G., Winkelmann, J.: Generating Instance Models
from Meta Models. In: 8th IFIP Intl. Conf. on Formal Methods for Open Object-
Based Distributed Systems. (June 2006) 156–170

5. Fleurey, F., Steel, J., Baudry, B.: Validation in model-driven engineering: Testing
model transformations. In: Workshop on Model Design and Validation. (2004)

6. Brottier, E., Fleurey, F., Steel, J., Baudry, B., Traon, Y.L.: Metamodel-based test
generation for model transformations: an algorithm and a tool. In: International
Symposium on Software Reliability Engineering, Raleigh, NC (November 2006)
85–94

7. Fleurey, F., Baudry, B., Muller, P., Traon, Y.L.: Qualifying input test data for
model transformations. Software and Systems Modeling (2009) (to appear)

8. Lämmel, R.: Grammar testing. In: Fundamental Approaches to Software Engi-
neering, Genova, Italy, Springer Verlag (April 2-6 2001) 201–216

9. Lämmel, R., Schulte, W.: Controllable combinatorial coverage in grammar-based
testing. In: 18th IFIP TC6/WG6.1 International Conference on Testing of Com-
municating Systems, New York, USA (May 2006) 19–38

10. Hennessy, M., Power, J.F.: Analysing the effectiveness of rule-coverage as a re-
duction criterion for test suites of grammar-based software. Empirical Software
Engineering 13(4) (2008) 343–368

11. Binder, R.: Testing Object Oriented Systems: Models, Patterns and Tools.
Addison-Wesley (October 1999)

12. McQuillan, J.A., Power, J.F.: A metamodel for the measurement of object-oriented
systems: An analysis using alloy. In: IEEE International Conference on Software
Testing Verification and Validation, Lillehammer, Norway (April 9-11 2008) 288–
297

13. Jouault, F., Allilaire, F.: The ATL virtual machine. Available on-line as http:

//www.eclipse.org/m2m/atl/doc/ATL_VMPresentation[v00.01].pdf (2006)

14. Allilaire, F., Jouault, F.: Presentation families to persons. http://www.eclipse.

org/m2m/atl/basicExamples_Patterns/ (February 2007)

15. Vépa, E.: ATL transformation example: UML2 to measure. http://www.eclipse.
org/m2m/atl/atlTransformations/



16. The Eclipse Foundation: Eclipse modeling - model development tools: UML2 tools.
http://www.eclipse.org/modeling/mdt/ (2009)

17. McQuillan, J.A., Power, J.F.: On the application of software metrics to UML
models. In: Models in Software Engineering. Volume 4364 of Lecture Notes in
Computer Science., Springer (2007) 217–226



1 module Families2Persons;

2 create OUT : Persons from IN : Families;

3 helper context Families!Member def: familyName : String =

4 if not self.familyFather.oclIsUndefined() then

5 self.familyFather.lastName

6 else

7 if not self.familyMother.oclIsUndefined() then

8 self.familyMother.lastName

9 else

10 if not self.familySon.oclIsUndefined() then

11 self.familySon.lastName

12 else self.familyDaughter.lastName

13 endif

14 endif

15 endif;

16 helper context Families!Member def: isFemale() : Boolean =

17 if not self.familyMother.oclIsUndefined() then

18 true

19 else

20 if not self.familyDaughter.oclIsUndefined() then

21 true

22 else

23 false

24 endif

25 endif;

26 rule Member2Male {
27 from

28 s : Families!Member (not s.isFemale())

29 to

30 t : Persons!Male (

31 fullName <- s.firstName + ’ ’ + s.familyName

32 )

33 }

34 rule Member2Female {
35 from

36 s : Families!Member (s.isFemale())

37 to

38 t : Persons!Female (

39 fullName <- s.firstName + ’ ’ + s.familyName

40 )

41 }

Fig. 3. The ATL transformation Families2Persons, taken directly from the examples
in the ATL transformation zoo. This transformation is used as an example in Section
sec:example.


