
Measurement of Exception-Handling Code:
An Exploratory Study

Keith Ó Dúlaigh, James F. Power
Dept. of Computer Science,

National University of Ireland, Maynooth,
Co. Kildare, Ireland.

Email: {keithod,jpower}@cs.nuim.ie

Peter J. Clarke
School of Computing and Information Sciences,

Florida International University
Miami, FL 33199, USA.

Email: clarkep@cis.fiu.edu

Abstract—This paper presents some preliminary results from
an empirical study of 12 Java applications from the Qualitas
corpus. We measure the quantity and distribution of exception-
handling constructs, and study their change as the systems
evolve through several versions.

Keywords-exception handling code, empirical software engi-
neering, software metrics

I. INTRODUCTION

In this paper we present a number of empirical studies
of Java applications in an attempt to quantify and visualise
exception usage in code. We have examined a number of
possible metrics and graphs, and present a sample here to
stimulate discussion on two topics.

• What kind of metrics are most useful for measuring the
level of exception-related code in a system?

• What kinds of graphs are most useful for visualising
the metrics values calculated for a system?

The metrics discussed in this paper measure the quantity
and distribution of exception-related constructs in Java code.

A. Related work

Size metrics for exception-related code have typically
involved measuring the number of try blocks, catch blocks,
finally blocks, and code involved in exception handling.
These have been studied in more general exception-handling
contexts [1], in theoretical frameworks [2] and in the context
of Aspect Oriented Programming [3].

Work by Jo et al. on uncaught exceptions includes an
empirical study of 13 “benchmark Java applications” that the
authors chose as representative samples of Java applications
[4, Table 1]. While this is similar to our approach, no
version numbers are supplied for the applications, and, in
our experience, it can be quite difficult to determine exactly
which packages and classes from an application might be
included in a study. We hope to enhance the empirical results
from Jo et al. by rooting them in a publicly available and
fixed corpus of Java systems, and by extending this work to
include an evolutionary study.

System Initial No. of Final Description
Name Version Versions Version
ant 1.1 20 1.8.1 Software build tool
antlr 2.4.0 18 3.2 Parser generator
argouml 0.16.1 10 0.30.2 UML diagramming appli-

cation
azureus 2.0.8.2 51 4.5.0.4 BitTorrent client
freecol 0.3.0 23 0.9.4 Video game
hibernate 0.8.1 86 3.6.0-beta4 Object-relational mapping

library
jgraph 5.10.0.0 39 5.13.0.0 Graph drawing tool
jmeter 1.8.1 18 2.4 Load testing tool
jung 1.0.0 23 2.0.1 Graph modeling and visu-

alization framework
junit 2.0 21 4.8.2 Unit testing framework
lucene 1.2-final 21 3.0.2 Information retrieval li-

brary tool
weka 3.0.1 49 3.7.2 Machine learning software

tool

Table I
SYSTEMS FROM THE Qualitas Corpus USED IN THIS STUDY. THIS TABLE

LISTS THE TWELVE SYSTEMS, ALONG WITH THE INITIAL AND FINAL
VERSION NUMBERS AND THE TOTAL NUMBER OF VERSIONS OF EACH.

Other measures not dealt with in this paper include the
kind of code found in catch blocks [5], the precision of the
match (in terms of the class hierarchy) between thrown ex-
ceptions and their handlers [1], [4], [6], [7], and the number
of methods in the call-chain between throw instructions and
the corresponding catch block [1], [5], [6], [8].

B. Experimental setup

An important aspect of our study is that we use applica-
tions from the Qualitas Corpus [9], a standardised, publicly-
available “curated” set of Java programs. We have found
it extremely difficult to compare or precisely replicate the
results from previous empirical studies, since the numerical
results can be significantly influenced by the application’s
version, the libraries and packages deemed to be included
in the distribution, and any third-party libraries used. By
fixing the Qualitas Corpus as a baseline for this study, we
hope that our results will be repeatable and comparable with
other studies using this corpus.



System
Name methods catch

blocks
throws
clauses

throw
insts

% meth
with e-c

ant 10820 2322 1750 2823 37
antlr 2591 473 124 125 12
argouml 18268 1893 920 2690 19
azureus 36614 2982 2863 5381 28
freecol 7229 967 463 571 15
hibernate 18956 1917 3824 2665 28
jgraph 2163 65 29 33 5
jmeter 8116 1466 657 486 19
jung 4252 196 97 263 10
junit 1035 138 190 81 27
lucene 9611 1252 2786 1565 34
weka 17566 1781 2478 1801 24

Table II
SOME BASIC SIZE MEASURES FOR THE final VERSION OF EACH SYSTEM.

THIS TABLE SHOWS A COUNT OF THE NUMBER OF METHODS AND
EXCEPTION-RELATED CONSTRUCTS FOR EACH SYSTEM, ALONG WITH

THE PERCENTAGE OF METHODS CONTAINING AT LEAST ONE
EXCEPTION-RELATED CONSTRUCT.

Table I lists twelve systems from version 20101126e of
the Qualitas Corpus. Since this version of the corpus is
intended for evolutionary studies, it contains a number of
releases for each system, and we have listed the first and last
version, along with the number of versions of each system in
the second and third column of Table I. From these systems
we have included all classes categorised in the corpus as
belonging to “source packages”, as being “distributed” and
for which both binary and source code was provided. We
have excluded one system, Eclipse, from our study as its
classes were not distributed with source code in the Qualitas
Corpus.

Our automated analysis was principally conducted by our
own tool written with the aid of the ASM Java bytecode
analysis framework (http://asm.ow2.org/), and augmented
with visual inspection of the source code. This means that
the data gathering and analysis was primarily carried out on
Java bytecode, rather than the source code, but this should
not impact the results presented here.

II. SIZE AND DISTRIBUTION COUNTS

In order to compare sizes between different systems, we
normalise the counts based on the size of the system, which
we measure as the number of methods (including construc-
tors and class initialisers). Our analyses using Pearson’s
correlation coefficient (r) show that, taking all systems and
versions, there is a strong correlation between the number of
methods in a system and the number of classes (r = 0.97),
the number of LOC (r = 0.98) and the number of NCLOC
(r = 0.99), with a p-value in each case < .001 for a two-
tailed test. In this context, we chose to use the number of
methods as we felt it provided a more intuitive basis for the
essentially behavioural constructs we are measuring.

The second column of Table II gives the number of
methods in the final version of each system. Counting all

379 versions of all the systems studied, over 3.5 million
methods were analysed, containing a total of just over 1.7
million exception-handling constructs.

In the following studies we measure the occurrence of
exception-handling constructs in Java code, which we di-
vide into three types: catch blocks, where we count each
occurrence of either a catch block or a finally block (thus
one try statement can correspond to multiple counts here);
throw instructions, where we count each occurrence of a
throw statement and throws clauses, where we count each
exception named in the throws clause of a method signature.
The total numbers of each of these constructs occurring in
the final version of each system is given in the third, fourth
and fifth columns of Table II.

A. Distribution of exception-handling constructs

When considering the number of exception-related con-
structs for each system on a per-method basis, it is important
to remember that only a minority of methods actually
contain exception-related constructs. The final column of
Table II lists the percentage of methods that contain at least
one throw instruction, catch block or throws clause. As can
be seen from this data, most methods in each system do
not contain any exception-related constructs at all, ranging
from 63% in the case of ant to 95% in the case of jgraph.
However, this still reflects a reasonably high proportion of
methods being directly impacted by exceptions, with nine
of the applications showing 19% or more (i.e. roughly one
in five) of the methods containing exception-related code.

To assess the changes in distribution of exception-related
constructs in the code, we have calculated the percentage
of methods containing such code for each version of each
system in the Qualitas Corpus. Figure 1 contains twelve
bar-charts, one for each system in the study. Each individual
bar-chart has one bar for each version of the system, with
the height of the bar representing the percentage of methods
in that version that contain exception-related constructs.

As can be seen from the height of the bars in Figure 1,
the overall view is one of stability in terms of the percentage
of methods directly using exception-related constructs. The
major exception is antlr (row 1, column 2) where we see a
sudden increase, followed by a sharp decrease. There was
a considerable variance in the packages distributed with
different versions of antlr, which for some versions included
an entire copy of an earlier version of the system. This
should be borne in mind when studying this and future
results for the antlr system.

It can be seen in Figure 1 that the overall percentage of
methods with exception-related constructs actually decreases
for 6 of the 12 systems, and for most of the others the
increase is relatively minor. The one exception is in the junit
system, where from version 4.0 onwards there is a gradual
increase in the percentage of methods with such constructs.



1.
1

1.
2

1.
3

1.
4

1.
4.

1

1.
5

1.
5.

1

1.
5.

2

1.
5.

3.
1

1.
5.

4

1.
6.

0

1.
6.

1

1.
6.

2

1.
6.

3

1.
6.

4

1.
6.

5

1.
7.

0

1.
7.

1

1.
8.

0

1.
8.

1

0

10

20

30

40

50

Pe
rc

en
ta

ge
of

m
et

ho
ds

in
sy

st
em

ant

2.
4.

0

2.
5.

0

2.
6.

0

2.
7.

0

2.
7.

1

2.
7.

2

2.
7.

3

2.
7.

4

2.
7.

5

2.
7.

6

2.
7.

7

3.
0

3.
0.

1

3.
1

3.
1.

1

3.
1.

2

3.
1.

3

3.
2

0

10

20

30

40

50

Pe
rc

en
ta

ge
of

m
et

ho
ds

in
sy

st
em

antlr

0.
16

.1

0.
18

.1

0.
20

0.
24

0.
26

0.
26

.2

0.
28

0.
28

.1

0.
30

0.
30

.2

0

10

20

30

40

50

Pe
rc

en
ta

ge
of

m
et

ho
ds

in
sy

st
em

argouml
..I
.C.
.CI
B..
B.I
BC.
BCI

2.
0.

8.
2

2.
0.

8.
4

2.
1.

0.
0

2.
1.

0.
2

2.
1.

0.
4

2.
2.

0.
0

2.
2.

0.
2

2.
3.

0.
0

2.
3.

0.
2

2.
3.

0.
4

2.
5.

0.
4

3.
0.

0.
8

3.
0.

1.
0

3.
0.

1.
2

3.
0.

1.
4

3.
0.

1.
6

3.
0.

2.
0

3.
0.

2.
2

3.
0.

3.
0

3.
0.

3.
4

3.
0.

4.
0

3.
0.

4.
2

3.
0.

5.
0

3.
0.

5.
2

3.
1.

0.
0

3.
1.

1.
0

4.
0.

0.
0

4.
0.

0.
2

4.
0.

0.
4

4.
1.

0.
0

4.
1.

0.
2

4.
1.

0.
4

4.
2.

0.
0

4.
2.

0.
2

4.
2.

0.
4

4.
2.

0.
8

4.
3.

0.
0

4.
3.

0.
2

4.
3.

0.
4

4.
3.

0.
6

4.
3.

1.
0

4.
3.

1.
2

4.
3.

1.
4

4.
4.

0.
0

4.
4.

0.
2

4.
4.

0.
4

4.
4.

0.
6

4.
4.

1.
0

4.
5.

0.
0

4.
5.

0.
2

4.
5.

0.
4

0

10

20

30

40

50

Pe
rc

en
ta

ge
of

m
et

ho
ds

in
sy

st
em

azureus

0.
3.

0
0.

4.
0

0.
5.

0
0.

5.
1

0.
5.

2
0.

5.
3

0.
6.

0
0.

6.
1

0.
7.

0
0.

7.
1

0.
7.

2
0.

7.
3

0.
7.

4
0.

8.
0

0.
8.

1
0.

8.
2

0.
8.

3
0.

8.
4

0.
9.

0
0.

9.
1

0.
9.

2
0.

9.
3

0.
9.

4
0

10

20

30

40

50

Pe
rc

en
ta

ge
of

m
et

ho
ds

in
sy

st
em

freecol

0.
8.

1
1.

0
1.

1
2.

0-
be

ta
-1

2.
0-

be
ta

-2
2.

0-
be

ta
-3

2.
0-

be
ta

-4
2.

0-
rc

2
2.

0-
fin

al
2.

0.
1

2.
0.

2
2.

0.
3

2.
1-

be
ta

-1
2.

1-
be

ta
-2

2.
1-

be
ta

-3
2.

1-
be

ta
-3

b
2.

1-
be

ta
-4

2.
1-

be
ta

-5
2.

1-
be

ta
-6

2.
1-

rc
1

2.
1-

fin
al

2.
1.

1
2.

1.
2

2.
1.

3
2.

1.
4

2.
1.

5
2.

1.
6

2.
1.

7
2.

1.
8

3.
0-

al
ph

a
3.

0-
be

ta
1

3.
0-

be
ta

2
3.

0-
be

ta
3

3.
0-

be
ta

4
3.

0-
rc

1
3.

0
3.

0.
1

3.
0.

2
3.

0.
3

3.
0.

4
3.

0.
5

3.
1-

al
ph

a1
3.

1-
be

ta
1

3.
1-

be
ta

2
3.

1-
be

ta
3

3.
1-

rc
1

3.
1-

rc
2

3.
1-

rc
3

3.
1

3.
1.

1
3.

1.
2

3.
2-

al
ph

a1
3.

2-
al

ph
a2

3.
1.

3
3.

2-
cr

1
3.

2-
cr

2
3.

2.
0-

cr
3

3.
2.

0-
cr

4
3.

2.
0-

cr
5

3.
2.

0.
ga

3.
2.

1-
ga

3.
2.

2-
ga

3.
2.

3-
ga

3.
2.

4-
ga

3.
2.

4-
sp

1
3.

2.
5-

ga
3.

2.
6-

ga
3.

2.
7-

ga
3.

3.
0.

cr
1

3.
3.

0-
cr

2
3.

3.
0-

ga
3.

3.
0-

sp
1

3.
3.

1-
ga

3.
3.

2-
ga

3.
5.

0-
be

ta
-1

3.
5.

0-
be

ta
-2

3.
5.

0-
be

ta
-3

3.
5.

0-
be

ta
-4

3.
5.

0-
cr

-1
3.

5.
0-

cr
-2

3.
5.

3-
fin

al
3.

5.
5-

fin
al

3.
6.

0-
be

ta
1

3.
6.

0-
be

ta
2

3.
6.

0-
be

ta
3

3.
6.

0-
be

ta
4

0

10

20

30

40

50

Pe
rc

en
ta

ge
of

m
et

ho
ds

in
sy

st
em

hibernate

5.
4.

4-
ja

va
1.

3
5.

4.
4-

ja
va

1.
4

5.
5

5.
5.

1
5.

6.
2

5.
6.

2.
1

5.
6.

3
5.

7
5.

7.
1

5.
7.

3
5.

7.
3.

1
5.

7.
4

5.
7.

4.
1

5.
7.

4.
2

5.
7.

4.
3

5.
7.

4.
4

5.
7.

4.
5

5.
7.

4.
6

5.
7.

4.
7

5.
8.

0.
0

5.
8.

1.
1

5.
8.

2.
0

5.
8.

2.
1

5.
8.

3.
1

5.
9.

0.
0

5.
9.

1.
0

5.
9.

2.
0

5.
9.

2.
1

5.
10

.0
.0

5.
10

.0
.1

5.
10

.2
.0

5.
11

.0
.0

5.
11

.0
.1

5.
12

.0
.0

5.
12

.0
.1

5.
12

.0
.4

5.
12

.1
.0

5.
12

.2
.1

5.
13

.0
.0

0

10

20

30

40

50

Pe
rc

en
ta

ge
of

m
et

ho
ds

in
sy

st
em

jgraph

1.
8.

1

1.
9.

1

2.
0.

0

2.
0.

1

2.
0.

2

2.
0.

3

2.
1-

rc
1

2.
1

2.
1.

1

2.
2

2.
3-

rc
3

2.
3-

rc
4

2.
3

2.
3.

1

2.
3.

2

2.
3.

3

2.
3.

4

2.
4

0

10

20

30

40

50

Pe
rc

en
ta

ge
of

m
et

ho
ds

in
sy

st
em

jmeter

1.
0.

0
1.

1.
0

1.
1.

1
1.

2.
0

1.
3.

0
1.

4.
0

1.
4.

1
1.

4.
2

1.
4.

3
1.

5.
0

1.
5.

1
1.

5.
2

1.
5.

3
1.

5.
4

1.
6.

0
1.

7.
0

1.
7.

1
1.

7.
2

1.
7.

4
1.

7.
5

1.
7.

6
2.

0
2.

0.
1

0

10

20

30

40

50
Pe

rc
en

ta
ge

of
m

et
ho

ds
in

sy
st

em
jung

2.
0

2.
1

3.
0

3.
4

3.
5

3.
6

3.
7

3.
8

3.
8.

1
3.

8.
2

4.
0

4.
1

4.
2

4.
3.

1
4.

4
4.

5
4.

6
4.

7
4.

8
4.

8.
1

4.
8.

2

0

10

20

30

40

50

Pe
rc

en
ta

ge
of

m
et

ho
ds

in
sy

st
em

junit

1.
2-

fin
al

1.
3-

fin
al

1.
4.

3
1.

9-
rc

1
1.

9-
fin

al
1.

9.
1

2.
0.

0
2.

1.
0

2.
2.

0
2.

3.
0

2.
3.

1
2.

3.
2

2.
4.

0
2.

4.
1

2.
9.

0
2.

9.
1

2.
9.

2
2.

9.
3

3.
0.

0
3.

0.
1

3.
0.

2

0

10

20

30

40

50

Pe
rc

en
ta

ge
of

m
et

ho
ds

in
sy

st
em

lucene

3.
0.

1
3.

0.
2

3.
0.

3
3.

0.
4

3.
0.

5
3.

0.
6

3.
1.

7
3.

1.
8

3.
1.

9
3.

2
3.

2.
1

3.
2.

2
3.

2.
3

3.
3

3.
3.

1
3.

3.
2

3.
3.

3
3.

3.
4

3.
3.

5
3.

3.
6

3.
4

3.
4.

1
3.

4.
2

3.
4.

3
3.

4.
4

3.
4.

5
3.

4.
6

3.
4.

7
3.

4.
8

3.
4.

9
3.

4.
10

3.
4.

11
3.

4.
12

3.
4.

13
3.

5.
0

3.
5.

1
3.

5.
2

3.
5.

3
3.

5.
4

3.
5.

5
3.

5.
6

3.
5.

7
3.

5.
8

3.
6.

0
3.

6.
1

3.
6.

2
3.

7.
0

3.
7.

1
3.

7.
2

0

10

20

30

40

50

Pe
rc

en
ta

ge
of

m
et

ho
ds

in
sy

st
em

weka

Figure 1. Evolution in usage of exception-handling code for each of the twelve systems in our study. Each bar represents a version of one system, and
the divisions within a bar show the percentage of methods in each usage category.



catch.block
finally.block
throws.clause
throw.inst

catch.block
finally.block
throws.clause
throw.inst

catch.block
finally.block
throws.clause
throw.inst

catch.block
finally.block
throws.clause
throw.inst

catch.block
finally.block
throws.clause
throw.inst

catch.block
finally.block
throws.clause
throw.inst

catch.block
finally.block
throws.clause
throw.inst

catch.block
finally.block
throws.clause
throw.inst

catch.block
finally.block
throws.clause
throw.inst

catch.block
finally.block
throws.clause
throw.inst

catch.block
finally.block
throws.clause
throw.inst

catch.block
finally.block
throws.clause
throw.inst

ant

antlr

argouml

azureus

freecol

hibernate

jgraph

jmeter

jung

junit

lucene

weka

0.00 0.05 0.10 0.15 0.20 0.25 0.30

catch blocks
finally blocks
throws clauses
throw insts.

(No. of constructs) / (No. of methods)

Figure 2. Comparison of exception constructs over different systems. This dot-chart shows the relative counts (divided by the no. of methods) of exception
constructs for the most recent version of all systems. The vertical lines mark the quartile boundaries (25%=0.04, 50%=0.07, 75%=0.12).

To get a more detailed view of the changes, we have
further broken up each bar in these charts into segments rep-
resenting the kinds of methods in each of seven categories.
These categories are coded using the following convention:

B method has one or more catch or finally blocks
C method signature has one or more throws

clauses
I method has one or more throw instructions

Since a method may be categorised as “true” or “false”
under any of these three headings, we have eight (=23)
categories in total, or seven when we do not count methods
with no exception-related constructs.

Each bar in Figure 1 is partitioned into seven sections,
representing the percentage of methods in each category.
As might be expected, most methods make use of just one
of the three kinds of exception-related constructs, but we
can also see that ant, antlr and hibernate have a relatively
high percentage of methods using all three. We can also

distinguish differences between applications: for example,
jmeter makes relatively low use of throw instructions and
higher use of catch blocks and throws clauses, whereas for
jung this situation is reversed. Finally, for junit we can see
that the sudden increase of exception-related constructs is
due to a decision to increase the percentage of methods with
throws clauses from version 4.0 onwards.

III. USE OF EXCEPTION-RELATED CONSTRUCTS

Figure 2 contains a dot-chart which compares the number
of exception constructs across the most recent version of
each system. This dot-chart plots a count of the number
of catch blocks, finally blocks, throws clauses and throw
instructions, in each case divided by the number of methods
in that version of the system. One of the most notable facts
about the size distribution shown in Figure 2 is the relatively
narrow range, as all but three of the data points fall in
the range 0 − 0.2. Thus, any discussion of the differences
between the systems should be considered in the context of



this relatively low overall spread. Yet, even in this context,
it is possible to observe some outliers, as mentioned above,
in terms of exception construct usage.

For example, considering clusters on either side of the
median line in Figure 2, it appears that jgraph and to a lesser
extent jung make relatively little use of exception-related
constructs overall, whereas both ant and azureus make
relatively high use of all constructs. Considering individual
kinds of constructs, we can see that ant, hibernate, junit
and lucene all make relatively high use of throws clauses,
suggesting a policy of propagating thrown exceptions. Both
ant and lucene also have a high proportion of throw instruc-
tions, and further study of the code shows that they have a
policy of using their own exception classes, rather than those
from the Java API. The azureus system is distinctive in its
relatively high use of finally blocks, presumably related to
the need to release resources in this kind of application.

A. Evolutionary study

Studying the evolution of this construct usage over time
helps to further pinpoint changes in the systems. Figure 3
also shows the number of exception constructs per method,
but this time the ratios are plotted for all versions of each
system in the Qualitas Corpus. Thus in Figure 3, each
version of each system is represented by four vertically-
aligned dots in the relevant plot. It should be noted that
while all twelve plots in Figure 3 have the same scale on the
vertical axis, the number of methods shown on the horizontal
axis is different for each.

The graphs in Figure 3, organised by rows and columns,
are essentially scatter plots, but in this case the dots have
been joined by a line indicating the temporal sequence. In
most cases this corresponds to a monotonic increase in both
method size and construct occurrence, but there are some
differences. For example, in the plot for lucene (row 4,
column 2) we can observe a decrease in the total number of
methods in the last version. As was the case for Figure 1, the
picture for antlr (row 1, column 2) appears quite confused
due to the variations in package contents, as noted previously
in Section II-A.

The graphs in Figure 3 also give us some idea of how
the changes in the ratio of exception constructs corresponds
to overall changes in the system. This allows us to pinpoint
changes that had a particular impact on exception-related
code, or that may have denoted a change in the coding policy
relating to exceptions.

Overall, the plots in Figure 3 show a gradual evolution
towards the data given earlier in Figure 2. Both hibernate
(row 2, column 3) and lucene show a marked decrease in the
level of throws clauses as the code evolves, suggesting that
the relatively high level overall is the result of legacy code,
rather than new code. Similarly, the more modest decrease
in the ratio of throw instructions for jung (row 3, column 3)

and weka (row 4, column 3) suggests that the newer code
added to later versions makes less use of these constructs.

The plots in Figure 3 allow us to pinpoint those versions
where exception-related policy decisions were made. For ex-
ample, in the centre of the plot for ant (row 1, column 1) we
can observe a number of closely-clustered dots, indicating a
series of versions with no great increase in size, most likely
corresponding to rearranging or refactoring code rather than
developing new features. We can see from the jump in the
corresponding line that during this refactoring a decision
was taken to increase the ratio of finally blocks in the
application; the corresponding data shows an increase from
0.03 in version 1.5.2 to 0.07 in version 1.5.3.1. Similarly,
the azureus (row 2, column 1) system also exhibits a clear
policy shift towards increasing the ratio of finally blocks,
from 0.11 in version 2.3.0.4 to 0.19 in version 2.5.0.4.

Looking at the plot for junit (row 4, column 1) in Figure
3 we can see a series of refactorings resulting in an increase
in the use of throws clauses, from 0.05 in version 3.8.2
to 0.12 in version 4.0. A similar trend can be observed
in freecol (row 2, column 2) from 0.02 in version 0.5.1
to 0.07 in version 0.5.2. However, it should be noted that
junit is a relatively small application, and these changes were
relatively early in its development, so only a small number
of methods are involved in this case.

IV. CONCLUSION

This paper has presented a number of different quantifica-
tions and visualisations of the use of exception-handling con-
structs in twelve Java applications. We hope this exploratory
study will help to provide a baseline for further analyses of
such constructs, and for the development of useful measures
of such constructs in Java code.

This paper has not addressed one of the central concerns
that is common to most metrics, namely the quality of the
code related to exception handling. We are currently investi-
gating the nature of the code surrounding throw instructions,
and the code used in catch/finally blocks (following [5], [7],
[10]), and will present this in future work.

ACKNOWLEDGMENT

This material is based upon works supported by
the Science Foundation Ireland under Grant No.
11/RFP.1/CMS/3068.

REFERENCES

[1] M. P. Robillard and G. C. Murphy, “Static analysis to sup-
port the evolution of exception structure in object-oriented
systems,” ACM Trans. Softw. Eng. Methodol., vol. 12, pp.
191–221, April 2003.

[2] B.-M. Chang, J.-W. Jo, K. Yi, and K.-M. Choe, “Interpro-
cedural exception analysis for Java,” in ACM Symposium on
Applied Computing, Las Vegas, NV, 2001, pp. 620–625.



2000 4000 6000 8000 10000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Application size (in no. of methods)

R
at

io
of

ex
ce

pt
io

n-
co

ns
tr

uc
ts

ant

500 1000 1500 2000 2500 3000 3500

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Application size (in no. of methods)
R

at
io

of
ex

ce
pt

io
n-

co
ns

tr
uc

ts

antlr

10000 12000 14000 16000 18000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Application size (in no. of methods)

R
at

io
of

ex
ce

pt
io

n-
co

ns
tr

uc
ts

argouml

catch blocks
finally blocks
throws clauses
throw insts.

5000 10000 15000 20000 25000 30000 35000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Application size (in no. of methods)

R
at

io
of

ex
ce

pt
io

n-
co

ns
tr

uc
ts

azureus

2000 3000 4000 5000 6000 7000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Application size (in no. of methods)

R
at

io
of

ex
ce

pt
io

n-
co

ns
tr

uc
ts

freecol

0 5000 10000 15000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Application size (in no. of methods)

R
at

io
of

ex
ce

pt
io

n-
co

ns
tr

uc
ts

hibernate

1200 1400 1600 1800 2000 2200

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Application size (in no. of methods)

R
at

io
of

ex
ce

pt
io

n-
co

ns
tr

uc
ts

jgraph

3000 4000 5000 6000 7000 8000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Application size (in no. of methods)

R
at

io
of

ex
ce

pt
io

n-
co

ns
tr

uc
ts

jmeter

1000 1500 2000 2500 3000 3500 4000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Application size (in no. of methods)

R
at

io
of

ex
ce

pt
io

n-
co

ns
tr

uc
ts

jung

200 400 600 800 1000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Application size (in no. of methods)

R
at

io
of

ex
ce

pt
io

n-
co

ns
tr

uc
ts

junit

2000 4000 6000 8000 10000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Application size (in no. of methods)

R
at

io
of

ex
ce

pt
io

n-
co

ns
tr

uc
ts

lucene

5000 10000 15000 20000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Application size (in no. of methods)

R
at

io
of

ex
ce

pt
io

n-
co

ns
tr

uc
ts

weka

Figure 3. Changes in levels of exception-handling code for each of the twelve systems in our study. In the above plots, each dot represents a measure
for one version of the system, and the dots have been joined to represent the temporal sequence of the version releases.



[3] J. Taveira, C. Queiroz, R. Lima, J. Saraiva, S. Soares,
H. Oliveira, N. Temudo, A. Araujo, J. Amorim, F. Castor, and
E. Barreiros, “Assessing intra-application exception handling
reuse with aspects,” in Brazilian Symposium on Software
Engineering, Fortaleza, Ceara, October 2009, pp. 22–31.

[4] J.-W. Jo, B.-M. Chang, K. Yi, and K.-M. Choe, “An uncaught
exception analysis for Java,” Journal of Systems and Software,
vol. 72, no. 1, pp. 59–69, June 2004.

[5] C. Fu and B. G. Ryder, “Exception-chain analysis: Revealing
exception handling architecture in Java server applications,”
in International Conference on Software Engineering, Min-
neapolis, MN, 2007, pp. 230–239.

[6] S. Sinha, A. Orso, and M. J. Harrold, “Automated support
for development, maintenance, and testing in the presence of
implicit control flow,” Georgia Institute of Technology, Tech.
Rep. GIT-CC-03-48, September 2003.

[7] F. Filho, C. Rubira, R. de A. Maranhão Ferreira, and A. Gar-
cia, “Aspectizing exception handling: A quantitative study,”

in ECOOP Workshop on Advanced Topics in Exception Han-
dling Techniques, ser. Lecture Notes in Comp. Sci., C. Dony,
J. L. Knudsen, A. B. Romanovsky, and A. Tripathi, Eds., vol.
4119. Springer, 2006, pp. 255–274.

[8] R. P. Buse and W. R. Weimer, “Automatic documentation
inference for exceptions,” in Intl. Symposium on Software
Testing and Analysis, Seattle, WA, 2008, pp. 273–282.

[9] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe,
H. Melton, and J. Noble, “Qualitas Corpus: A curated col-
lection of Java code for empirical studies,” in Asia Pacific
Software Engineering Conference, Dec. 2010.

[10] D. Reimer and H. Srinivasan, “Analyzing exception usage in
large Java applications,” in ECOOP Workshop on Exception
Handling in Object Oriented Systems: Towards Emerging
Application Areas and New Programming Paradigms, A. Ro-
manovsky, J. L. Knudsen, C. Dony, and A. Tripathi, Eds.,
Darmstadt, Germany, July 21 2003.


