REM4j - A framework for measuring the reverse engineering capability of UML
CASE tools

Steven Kearney and James F. Power

Dept. of Computer Science, National University of Ireland, Maynooth, Co. Kildare, Ireland.

Abstract

Reverse Engineering is becoming increasingly important
in the software development world today as many organi-
zations are battling to understand and maintain old legacy
systems. Today’s software engineers have inherited these
legacy systems which they may know little about yet have to
maintain, extend and improve. Currently there is no frame-
work or strategy that an organisation can use to determine
which UML CASE tool to use. This paper sets down such a
framework, to allow organisations to base their tool choice
on this reliable framework.

We present the REM4j tool, an automated tool, for
benchmarking UML CASE tools, we then use REM4j to
carry out one such evaluation with eleven UML CASE tools.
This framework allows us to reach a conclusion as to which
is the most accurate and reliable UML CASE tool.

1. Introduction

Many UML CASE tools provide the ability to reverse
engineer UML diagrams from source code, and these di-
agrams can be essential to software maintainers in under-
standing the design of a system.

Since there are many UML CASE tools available, the
question many organisations face is: Which one suits our
needs best? To answer this question they will need to eval-
uate all the available tools, measure the results of this eval-
uation and rank the tools based on the evaluation.

This paper establishes a framework for benchmarking
and evaluating UML CASE tools. We describe the con-
struction of the framework, and its use on an oracle pro-
gram, designed to expose inaccuracies in reverse engineer-
ing. We then examine the impact these inaccuracies have by
running the UML tools over a suite of real-world programs,
and examining the variance in reported metrics.

2. Background and Related Work

Often legacy systems have an originally convoluted de-
sign, obsolete documentation, and the original developers
may have left the company. Software may have numerous

patches and fixes applied over time. It can be an arduous
task to understand a legacy system [11, 12]. Re-engineering
is the examination of a subject system to reconstitute it in
a new form and the subsequent implementation of the new
form [2]. Reverse Engineering is the process of analyzing
a subject system to create representations of the system in
another form or at a higher level of abstraction [2, 16, 9, 1].

There has been much research carried out that investi-
gates tools and techniques for reverse engineering. Notable
examples include the RIGI toolset for reverse engineer-
ing [15], the Dali Workbench [8], CPPX [4] and Colum-
bus/CAN [6]. More recently, reverse engineering tools have
begun to use the diagrams of the Unified Modeling Lan-
guage (UML) as a representation for reverse-engineered ar-
tifacts. One of the major challenges faced by designers of
reverse engineering tools is the struggle to keep with con-
tinuously evolving UML versions, as well as version of the
associated XML Metadata Interchange (XMI) [10].

Our approach exploits object-oriented software metrics
to provide us with a means to collect information about the
characteristics of a Java application [13, 14]. These char-
acteristics are important since if we reverse engineer a Java
application we would expect the characteristics exported in
the XMI file to be an accurate reflection of the application.

While Cooper et al. studied the inaccuracies that occur
from Forward Engineering vs. Reverse Engineering, they
stopped short at evaluation the reliability of the tool to ex-
port XMI [3]. Jiang and Systéd explored the differences in
Exchange Formats between UML CASE tools and they in-
vestigated if UML CASE tools delivered on the OMG ideal
of interchangeable XMI files, but they stopped short of au-
tomating the process[7].

Our approach, centered on the REM4j framework is
unique in that it can automate the reverse engineering, met-
ric capture and evaluation of metrics. We first calibrate the
process on a specially-designed oracle program, and then
use peer-evaluation to investigate the performance of tools
on a suite of real-world Java programs.

3. Experimental Setup
REM4j (Reverse Engineered Metrics 4 Java) takes Java

Tool Vendor | Version | Abbrv

ArgoUML Tigris 0.22 AR
MagicDraw Magicdraw 120 MD
Bouml Bouml 2.17 BO

Metamill Metamill 42| MM

Visual Paradigm | Visual Paradigm 3.1 VP
Jude| Change Vision | Prof 6.0 JU

Enterprise Architect| Sparx Systems 6.5 EA
UModel Altova | 200612 | UM
ESS-Model Ess-Model 22 ES
Ideogramic UML Ideogramic 2.33 IC
Poseidon for UML Gentleware 4.2 PO

Table 1. The 11 tools we have chosen for our
study. The final column gives an abbreviation
for each tool that we use in later tables.

source code as its input, and reverse engineers a class dia-
gram from the code use a pre-recorded set of macros for a a
particular UML CASE tool. The result is exported in XMI
format and then run through a commercially available met-
ric calculation engine, after which REM4;j colllates all the
results and saves them to a CSV file.

The first step in this experiment was to choose a set of
UML CASE tools for the evaluation. We tried to gather as
wide a range of tools as possible, with the only selection
criterion being their ability to reverse engineer Java source
code back to UML class diagrams, and to export the dia-
grams in XMI format. These tools are listed in Table 1.

Our REM4j framework is designed to provide a modu-
lar environment within which these UML tools can be run
and their output data analysed. The framework needs to be
able to open a UML CASE tool, import Java source code,
reverse engineer it, export it to XMI, pipe the XMI into a
metric calculation engine and gather and collate the results
into one readable CSV file. REM4j uses a number of third-
party applications, and serves to coordinate the interaction
between these tools.

At the center of the framework is the SDMetrics tool
[17], which is a powerful commercial application that is
capable of analysing XMI and computing metrics based
on that XMI. Automation is achieved using Autohotkey, a
macro utility for Microsoft Windows that has the ability to
record keystrokes and mouse clicks. Autohotkey provides
the ability to write a macro for a particular CASE tool and
then compile it to an executable. Finally, Chart2D is an
open-source charting class library, and is used by REM4;j to
visualise its results.

REM4j takes two inputs when starting: the directories
of the Java source files you would like to reverse engineer,
and the AutoHotKey directory. If for example three source
code directories are selected and then four UML tools are
selected, the reverse engineering loop would execute twelve

times. Each source code directory is reverse engineered and
exported to XMI and then piped into the metric calculation
engine tool. When the REM4j automation tool has finished
executing it generates its results in both text and graphical
formats.

4. Exploratory Analysis using an Oracle

We chose the term Oracle to describe a piece of Java
source code for which all its characteristics, elements and
attributes were known. The Oracle application was de-
signed and written explicitly for this paper. In particular,
all of the metric values were calculated in advance and the
code was constructed to have as many different metric sce-
narios as was feasible.

The Oracle application was written with a 0-1-2 (ZOT)
metric policy in place. For example, the Oracle application
had at least one class with no Public Methods, at least one
class with exactly one Public Method and at least one class
with more than one Public Method.

Figure 1 shows a Class Diagram which illustrates the
structure and design of the Oracle application. On this di-
agram, overlapping classes are inner classes, dotted lines
represent an implements relationship and a solid line repre-
sents an extends relationship.

In the next three sections we will break down the metrics
that this paper investigates into Size Metrics and Inheritance
Metrics. The SDMetrics tool also reports on Coupling Met-
rics but, since these must be evaluated on a per-class basis,
we have not considered them further here.

4.1. Size Metrics

Size metrics measure the size of design elements, this is

simply a count of the elements that are contained within an
application.
o Number of Variables (NoV) The NoV metric refers
to sum of the number of variables in all classes regardless
of type, visibility, changeability or scope. It does not count
inherited variables, or variables that are members of an as-
sociation [13].

As shown in the Class Diagram the Oracle application

clearly has 12 variables or attributes. However 4 of the 11
tools produced a figure other than 12. Both Jude and Bouml
had the lowest figure as they reported the Oracle applica-
tion having only 7 variables, while Poseidon reported 8 and
Ideogramic UML reported 9.
e Number of Methods (NoM) The NoM metric has a
value that is the sum of the number of all methods in all
classes regardless of type, visibility, changeability or scope.
It does not count inherited methods, but it does count ab-
stract methods [13].

The Oracle code contains exactly 23 Methods, so any
derivation from this figure would suggest an inaccurate tool.
All UML CASE tools with the exception of Bouml which
reported 20, produced the correct figure of 23.

TagReadvO

<<interfaces>

tag: Tag RFIDARtanna
time : Timest
ime - Timestame isAntznnaln : boslean

RandomKayClass

RFIDTimeOut statAntennag : void
stopAntennal) : void
,,,,, getieyHash() : String
getRandomke) : String
staReader) : void
timeDutStap() : void

timeOutStapg) : waid T

<dinterfacess
RFIDReader

statReade : woid
getRandomKey) : String
getieyHash() : String

1
H Dbjest
1
I |size:leng
Tag getSize): lang
: lang) s veid
tagld : String
name : Sting
getTagldl) : String
sethame(name : String): void
getkeyHash() - Sting N
getRandomKew) : String RFIDObject
ariReade) : veid LUID - int
timeDutStap(l : void
getUUIDG - int

key : String

Randomiser

makekey(: String

getRandom() : long

TagReadManager

tagReads : Vectar
cumentTag : Tag
previousTag : Tag

findTagReadVDByTaglDitagld : String) : TagReadv(]
isvalidTagReadVOctaglD : String): boolean
setCurentTagttag : Tag) : woid

setPreviousTag(tag : Tag) : woid
setTagReadstagsReads : TagReadw): void

TagDestrayer

destroy : boolean

destroy(y: void

Figure 1. This Class Diagram shows the 11 classes of the Oracle application.

e Number of Public Methods (NoPM) The NoPM
metric has a value which is the sum of the number of meth-
ods in all classes that have public visibility [13].

The Oracle application was written with exactly 20 pub-
lic methods, all of the tools agreed with this figure except
one, Bouml, which reported 18. This is not surprising as
Bouml only reported a total of 20 methods when there was
actually 23 methods in the application.

o Number of Setters (NoS) The NoS metric counts any
Method that begins with ‘set’. The Oracle application con-
tains 5 such methods, and all tools produced a NoS value
of 5.

e Number of Getters (NoG) This metric counts any
Method that begins with ‘get’, ‘is’ or ‘has’. The Oracle
application contains 9 such methods, and all tools produced
a NoG value of 9.

e Inner Classes (IC) This metric will return the total
number of inner classes nested within an application. The
Oracle application contains the class RFIDAntenna which
has an inner class nesting level of 2. The RandomKey
class has a inner class nesting of 1, the TagReadManager
also has a nesting of 1. These are summed to produce a
value of 4. Ideogramic UML, Bouml, Enterprise Architect
and ESSModel reported O inner classes, while MagicDraw
UML reported 7. ArgoUML, Metamill, Poesideon, Visual
Paradigm and Jude correctly reported 4.

e Total Number of Classes (ToC) This is a count of the
total amount of classes that the UML CASE tool exported
in its XMI document. The class diagram in Figure 1 clearly

shows 11 classes however none of the UML CASE tools
reported this figure, they all reported figures of between 9
and 53. Table 2 shows how Jude reported 42 classes above
the actual of 11 classes.

This error has most likely occurred due to the fact that
different tools treat imported packages differently, such as
the java.util.String class, while not part of the Oracle ap-
plication it is used by it. Some tools count classes like the
java.util.String class in the ToC' metric, Thus making the
metric unreliable. The T'oC' metric will not be evaluated
further.

Size Metrics Summary As we know the correct value for
all the size metrics, we can state if the tools passed or failed.

As Table 2 shows, Argo UML, Metamill and Visual
Paradigm were the only tools to be correct on all evaluated
metrics. The table displays the actual metric value, if a tool
reported an incorrect value, the difference between the re-
ported and the correct value is displayed.

4.2. Inheritance Metrics

Inheritance Metrics deal with polymorphism, depth and
width of the Inheritance tree, the number of ancestors or
descendants of a class.

o Interfaces Implemented (IT)

The total number of interfaces that are implemented
within an application. The Oracle application contains two
interfaces, both of which are implemented by RFIDAntenna
and Tag. As both interfaces are implemented twice, the cor-
rect value for the /1 metric is 4.

| [NoV [NoM [NoPM | NoS [NoG [IC [ToC |
[Actual| 12] 23] 20] 5] 9] 4] 11]
AR 0] 0 o[o] o[o] +2
MD| 0| 0 0 0] 0+3] +4
BO| 5| 3 21 0] 04 -5
MM| 0 0 of o] ol o] -3
VP| 0| 0 of o] o o] -2
Jul 50 0 0 0] 0] 0]+42
EA| 0] © 0 0] o0f-4| +1
UM| 0| 0 0 0] 0f-4| 45
ES| 0| o 0 0] o0f-4| +4
ICl 3| 0 of o] of-4| 2
PO| 4| 0 0] o] o] o]+

Table 2. Size Metrics Results: For each size
metric on the top row and each UML tool in
the left column, this table shows the differ-
ence between the actual value and the value
calculated.

Ideogramic, ArgoUML, Jude, Metamill and Bouml re-
turned O as the metric value, all other tools agreed and re-
turned 4.

o Number of Children (NoC) This measures the number
of immediate subclasses subordinated to a class in the class
hierarchy.

In the Oracle application, two classes, Object and RFI-

DObject are extended by another class, RFIDObject ex-
tends Object and Tag extends RFIDObject. The value of
NoC for the Oracle application is 2. All of the UML CASE
tools agreed that it was 2, with the one exception of Enter-
prise Architect, which stated that it was 3.
e Inheritance Tree (IT) This metric represents the sum
of the ancestors or descendants of each class within the ap-
plication. The Oracle application has two instances where
a class has a inheritance depth of greater than 0, this is the
Tag class which has a depth of 2 and the RFIDObject class
which has a depth of 1. Hence the total /7" value is 3.

With the exception of Enterprise Architect which re-
ported 4, all tools agreed on 3 being the correct metric value.
o Class to Leaf Depth (CLD) With this metric we calcu-
late the longest path from a class to a leaf in the inheritance
hierarchy. For example the Object class has a depth of 2, the
distance from its furthest leaf, the Tag class. Whereas the
RFIDObject has a depth of 1 to reach its furthest leaf. These
distances are then summed for each class in the application
giving a total C'L D value of 3.

All of the UML CASE tools agreed that the C'L D was 3

with one exception again, the Enterprise Architect tool.
e Methods Inherited (MI) This metric is the sum of the
number of methods inherited by each class. This is calcu-
lated as the sum of Number of Methods taken over all an-
cestor classes of the class [13, 17].

| [1I[No
lActual[4[
AR |-4
MD| 0
BO|-4
MM | -4
VP| 0
JUu|-4
EA| O
UM | 0
ES| 0
1IC|-4
PO| 0

el
=
o
-
S
=
E

S OO O~ OO0 O OQWw

+
SO OO~ OO OO oQONN

+
SO OO~ OO OO OQOw
+
eNeoNeoNoNoNoNoNoNeoReR-1E%
S OO DO OO OO OoONN

Table 3. Inheritance Metrics Results: For each
inheritance metric on the top row and each
UML tool in the left column, this table shows
the difference between the actual value and
the value calculated.

The RFIDObject class in the Oracle application extends

the Object class, therefore it inherits the two methods in the
Object class. The Tag class extends the RFIDObject class,
so it inherits the one method in the RFIDObject class and
it also inherits the two methods from the Object class. The
M I metric value is thus 5, and all of the tools reported this
value.
e Variables Inherited (VI) This is the sum of the num-
ber of variables each class in the application has inherited. It
works in much the same manner as M I. The Oracle appli-
cation produces a metric value of 3 and all the UML CASE
tools agree on this figure.

Inheritance Metrics Summary As the table, 3 shows,
the UML CASE tools were in agreement most of the time,
with the exception of Enterprise Architect, which frequently
over rated the metric value by 1.

5. Analysis of Real World Programs

While the results for the Oracle class diagram show some
differences in the metric values over the UML tools, it is not
clear whether these are significant. In particular, it is impor-
tant to know how the differences reflected in the previous
section impact the analysis of larger programs.

To this end, we have assembled a test suite of “real-
world” Java programs, and used the REM4j framework to
extract class diagrams and calculate metrics. In this section
we examine the results of comparing the accuracy of the
eleven UML tools.

5.1. Control Charts

When using real-world programs, we have no oracular
value for the metrics, and so we use peer evaluation to rank
the UML tools. That is, we assume the collective judge-

ment produced by the tools to be a “correct” answer, and
judge each tool in this context. To this end, we adopt the
control chart or Shewhart chart, which is a chart with five
horizontal lines running across it. We use the threshold val-
ues of Lanza and Marinescu [14], and define the center line
as a middle line reflecting the mean value of the metric. The
upper and lower control limits are then 1.5 standard devia-
tions above or below this line, and define the boundaries of
“trustworthy” results. A wider threshold is provided by the
upper and lower warning limits, which are 1 standard de-
viation above or below the center line, and flag values that
require further investigation.

5.2. Java Application Selection

A selection of Java applications was chosen for this eval-
uation. Some were drawn from the DaCapo benchmark
suite [5] while other applications were chosen from source-
forge.net for diversity. The programs are:

antlr generates a parser and lexical analyzer

eje asimple editor for Java
fop renders pages to a specified output e.g. PDF

hsqldb a database written purely in Java
jameleon an automated test framework written in Java
java2d is ajava 2d graphics package
jolden abenchmark test application written in Java
junit a well-known framework to write repeatable tests

pcj aset of collection classes for primitive data types
pmd analyzes Java source code for potential problems
xalan an XSLT processor for transforming XML
We refer to these Java applications collectively as the test
suite from now on.

5.3. Metric Capture

Table 4 summarises the pass/fail results for each tool
when run over the test suite. The top row in Table 4 lists
the 11 reverse engineering tools under study, and the left-
most column lists the 11 Java applications in the test suite.
Each cell records either “P” for pass or “F” for fail, indi-
cating whether or not the UML tool exported valid XMI for
this benchmark program. For example, we can see that the
Argo tool, represented by the column labelled “AR”, ex-
ported valid XMI for all benchmark programs other than
hsgldb and pc .

The bottom row of Table 4 summarises the results for
each Reverse Engineering tool, by recording the number of
benchmark programs that passed. From this column, we can
see that 7 of the 11 tools failed for at least one benchmark
program.

5.4. Results Per Tool

Each tool is run over 11 test programs and then evalu-
ated with 12 metrics, giving a total of 132 potential metric
values.

Figure 2 sums up our findings on the eleven reverse en-

AR|MD |BO|MM | VP|JU|EA |UM|ES|IC|PO

antlr |P| P |P| P |P|P|F|P|P|P|P
eje p P|P|P|P|P/P|P|P|IP|P
fop p|P|P|P|P|P|P|P|P|P|P
hsqldb |[F | P |P| P |P|P|P| P |P|P|P
jameleon| P | P |P| P |P|P|P| P |P|P|P
javaad |P| P |P| P |P|P|P|P|P|P|P
jolden |P|P|P|P|P|P|P|F|P|P|P
junit |P| P |P| P |P|P|P|P|P|P|P
pcj F|P|F|P|P|P|F|P|P|P|F
pmd |P|P|P| P |P|P|P|P|P|F|P
xalan |P | P |F| P |P|F|P| P |P|P|P
P | 9|11]9 |11 |11|10] 9 |10 |11|10|10

Table 4. This table lists the test suite applica-
tions in the left column and the UML tools in
the top row. Each cell records the production
of valid XMI, indicating either “P" for pass or
“F" for fail.

’ni 1ttt — 1t 7111t s
50 -

umL
Equat

mic

Figure 2. For each UML tool on the horizon-
tal axis, this chart shows their success mea-
sured in terms of the metric values on the
vertical axis

gineering tools. In this figure, deep blue represents metric
values that are under the lower control limit while deep red
shows metric values that are above the upper control limit.
Metric values that are shaded light blue are in the lower
warning zone while metrics that are shaded orange are in
the upper warning zone. The white-coloured section repre-
sents the number of metric values within the warning limits.
Thus, for each UML tool, the larger the white shading in its
bar in Figure 2, the greater the level of reliability we as-
cribe to the tool. The different height of the bars in Figure
2 reflects the different pass/fail results as shown in Table 4.
e Bouml Of the 9 applications Bouml produced an output
for, it failed to capture the IC' and the I1 metric. There was
a trend of Bouml underestimating size metrics, while over-
estimating inheritance metrics. The M I metric is the only

metric that Bouml produced that was completely accurate,
with the C' LD being slightly overestimated but acceptable.
e UModel UModel showed a trend of being correct a
large proportion of the time. UModel failed to capture one
metric NoG for one application. None of UModel’s metric
values were outliers, with only one metric value being in the
warning zone.

e Visual Paradigm Visual Paradigm was accurate with
size metrics but failed to capture metrics for 5 of the inher-
itance metrics and reported metric values below the lower
control level for 3 inheritance metrics.

e ArgoUML ArgoUML has both under and over esti-
mated many of the metrics, with a clear trend showing, the
tool under-estimating the size metrics while over-estimating
the inheritance metrics.

e Metamill Metamill failed to capture the I metric for
all the applications, it also failed to capture the /C' met-
ric for one application. Out of 132 possible metric values,
Metamill captured 120, or 91% of the metrics.

o Enterprise Architect Enterprise Architect failed to
capture /C and 11 metrics for any of the applications. In-
vestigating the results further shows that Enterprise Archi-
tect consistently under-estimates all the metrics.

e ESSModel ESSModel both over and under estimated
metrics for a variety of different metrics, there was no no-
ticeable trend.

e Magicdraw We can see that Magicdraw over and under
reported the IC' metric. The majority of the tools struggled
to report this correctly, with many tools failing to capture it
at all. In total Magicdraw correctly reported 117, or 89%,
of the metric values.

e Poseidon Out of the 10 applications Poseidon did re-
port metrics for, it failed to capture 2 metrics for one appli-
cation, so in total Poseidon captured 119 metric values. For
approximately half the metrics, Poseidon under reported
them, with it only over reporting for the 11 metric.

e Jude Jude failed to capture the /1 metric but, of the
remaining metrics, only two reported values in outside the
Control Limits.

o Ideogramic UML Ideogramic failed to capture the 17
and IC metric. In the majority of metrics Ideogramic UML
failed to capture a metric for each tool, in fact it only cap-
tured all the metrics values for a third of the metrics. In
total it captured 23 metrics (17%) that were deemed to be
correct.

6. Conclusions

Figure 2 shows Visual Paradigm to be the most reli-
able tool since it reported metric values that were accurate
90.15% of the time. It was closely followed by Metamill,
Magicdraw and UModel. The worst performing tool was
the Ideogramic UML tool, reporting just 17% of the metric
values correctly.

Summary REM4j is an automation framework that eval-
uates a UML CASE tool’s ability to reverse engineer and
export valid XMI for class diagrams. It has been used to
evaluate 11 UML tools using software metrics over a vari-
ety of input programs and clearly highlighted differences in
the results obtained.

References

[1] L. A.BarowskiandJ. H. Cross II. Extraction and use of class
dependency information for Java. In 9th Working Conf. on
Reverse Engineering, 2002.

[2] E.J. Chikofsky and J. H. C. II. Reverse engineering and de-
sign recovery: A taxonomy. /EEE Softw., 7(1):13-17, 1990.

[3] D. Cooper, B. Khoo, B. R. von Konsky, and M. Robey. Java
implementation verification using reverse engineering. In
27th Australasian Conf. on Computer Science, pages 203—
211, 2004.

[4] T.R. Dean, A. J. Malton, and R. Holt. Union schemas as a
basis for a C++ extractor. In 8th Working Conf. on Reverse
Engineering, page 59, 2001.

[5]1 S.M.B. etal. The DaCapo benchmarks: Java benchmarking
development and analysis. In 215t Conf. on Object-oriented
programming systems, languages, and applications, pages
169-190, 2006.

[6] R. Ferenc, F. Magyar, A. Beszédes, A. Kiss, and M. Tarki-
ainen. Columbus - tool for reverse engineering large object
oriented software systems. In 7th Symposium on Program-
ming Languages and Software Tools, pages 16-27, 2001.

[7] J. Jiang and T. Systd. Exploring differences in exchange
formats - tool support and case studies. In 7th European
Conf. on Software Maintenance and Reengineering, page
389, 2003.

[8] R. Kazman and S. J. Carriére. Playing detective: Recon-
structing software architecture from available evidence. Au-
tomated Software Eng., 6(2):107-138, 1999.

[9] M. Keschenau. Reverse engineering of UML specifications
from Java programs. In 19th Conf. on Object-oriented pro-
gramming systems, languages, and applications, 2004.

[10] C. Kobryn. UML 2001: a standardization odyssey. Com-
mun. ACM, 42(10):29-37, 1999.

[11] R. Kollmann and M. Gogolla. Re-documentation of Java
with UML class diagrams. In 7th Reengineering Forum,
Reengineering Week, pages 41-48, 2000.

[12] R. Kollmann and M. Gogolla. Metric-based selective rep-
resentation of UML diagrams. In 6th European Conf. on
Software Maintenance and Reengineering, page 89, 2002.

[13] M. Lorenz and J. Kidd. Object-oriented Software Metrics.
Prentice Hall, 1994.

[14] R. Marinescu and M. Lanza. Object-oriented Metrics in
Practice. Springer, 2006.

[15] M.-A. D. Storey, K. Wong, and H. A. Miiller. Rigi: a visu-
alization environment for reverse engineering. In /9¢h Intl.
Conf. on Software Engineering, pages 606-607, 1997.

[16] A. Sutton and J. I. Maletic. Mappings for accurately reverse
engineering UML class models from C++. In /12th Working
Conf. on Reverse Engineering, pages 175-184, 2005.

[17] J. Wiist. SDMetrics, 2006. http://www.sdmetrics.com.

