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ABSTRACT

The term grammar-based software describes software whose
input can be specified by a context-free grammar. This
grammar may occur explicitly in the software, in the form
of an input specification to a parser generator, or implic-
itly, in the form of a hand-written parser, or other input-
verification routines. Grammar-based software includes not
only programming language compilers, but also tools for
program analysis, reverse engineering, software metrics and
documentation generation. Such tools often play a crucial
role in automated software development, and ensuring their
completeness and correctness is a vital prerequisite for their
use.

In this paper we propose a strategy for the construction
of test suites for grammar based software, and illustrate this
strategy using the ISO C++ grammar. We use the concept of
rule coverage as a pivot for the reduction of implementation-
based and specification-based test suites, and demonstrate
a significant decrease in the size of these suites. To demon-
strate the validity of the approach, we use the reduced test
suite to analyze three grammar-based tools for C++. We
compare the effectiveness of the reduced test suite with the
original suite in terms of code coverage and fault detection.
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1. INTRODUCTION

The term grammar-based software describes software whose
input can be specified by a context-free grammar. Grammar-
based software includes not only programming language com-
pilers, but also tools for program analysis, reverse engineer-
ing, software metrics and documentation generation. Gram-
mar-based applications are an important category of soft-
ware in their own right, but also form the core of many tools
that are fundamental to software engineering. Such tools of-
ten play a crucial role in automated software development,
and ensuring their completeness and correctness is a vital
prerequisite for their use.

The need for a structured and disciplined approach to
the engineering of grammars and grammar-based software
has previously been noted, and ensuring the quality of such
software has been identified as a priority [14]. There have
been some preliminary approaches to the integration of soft-
ware engineering techniques, such as testing and metrics,
into grammar-based software development [15, 19, 28]. How-
ever, there is still a considerable gap between theoretical
developments in grammar engineering and their application
to practical, large-scale grammars for modern programming
languages.

A grammar may occur either explicitly or implicitly in
grammar-based software. An explicit occurrence typically
takes the form of input to a parser-generation tool such
as yacc and, in this case, a direct correlation can often be
achieved with the rules of the programming language gram-
mar. An implicit occurrence may be in the form of a hand-
written parser, where it is not easy to distinguish parsing
code from the remainder of the tool. Further, many tools
that require only partial information from the input make
use of a fuzzy parser, where irrelevant parts of the input
are ignored by the parsing routines. However, whether the
grammar is explicitly defined or not, we expect to find a
commonality that pervades all grammar-based systems: the
acceptable input can be defined by a context-free grammar.
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ware based on explicit grammars, the scale and complexity of
modern programming languages can cause considerable dif-
ficulties for theoretical approaches, such as those based on
attribute grammars. Thus, in such situations issues associ-
ated with software testing, such as coverage, fault detection
capability and test suite size come to the fore.

Test suites typically evolve in tandem with the software
they test: as new features are added to the software, and
new bugs are uncovered and fixed, relevant test cases are
added to the suite. Since large test suites can impose a
considerable overhead on regression testing, it is desirable to
reduce the test suite size if overlaps or redundancies exist.
The reduction is typically based on a code coverage criterion
within the system under test. For grammar-based software
however, we choose to use the rule coverage of the inputs to
the system as the reduction criterion.

In this paper we describe an approach to the testing of
grammar-based software, using the ISO C++ grammar as a
case study. In Section 2 we outline some of the background
relating to grammars, rule coverage and ISO C++. In Sec-
tion 3 we describe the generation of two reduced test suites
for ISO C++, and examine some of their code coverage prop-
erties. In Sections 4 and 5 we investigate the coverage and
fault-detection capabilities of the reduced suites for three ex-
amples of C++ grammar based software. Section 6 discusses
some of the threats to the validity of our experiment, and
Section 7 reviews some of the related work in the area of test
suite reduction. Section 8 concludes the paper.

2. BACKGROUND

In this section we briefly review the main concepts under-
lying grammars and grammar-based software, and discuss
approaches to testing software based on the ISO C++ gram-
mar.

2.1 Grammars and rule coverage

Formally, a grammar is a four-tuple (N, T, S, P) where N
and T are disjoint sets of symbols known as non-terminals
and terminals respectively, S is a distinguished element of
N known as the start symbol, and P is a relation between
elements of N and the union and concatenation of symbols
from (NUT), known as the production rules. The grammar
rules may be read as rewrite rules, thus specifying alternative
ways of re-writing the start symbol to a sequence of termi-
nal symbols, known as the sentences of the language. In
programming language terms, these sentences are programs
that confirm to the grammar of the language.

The use of rule coverage as a criterion for testing grammars
was introduced by Purdom [23]. A test case is said to cover
a grammar rule if that rule is used at least once in deriving
that test case. Since a non-terminal may have many alter-
native rules, rule coverage is similar to decision coverage at
the code level in a traditional software testing context [24].
Purdom described an algorithm that systematically uses the
grammar rules to generate valid sentences, such that each
grammar rule is used at least once. Thus, the output of
Purdom’s algorithm is a test suite of grammatically correct

programs that achieves 100% rule coverage. Purdom ap-
plied the technique to several small grammars, as well as a
grammar for ALGOL, and it has since been applied to other
languages including PL/1 and Pascal [2, 3].

However, there are at least three main difficulties in ap-
plying this technique to grammars for modern programming
languages. First, many grammars over-specify the language,
in that they admit constructs that are not syntactically valid.
This approach can often make the grammar easier to under-
stand, but means that extra constraints must be applied
on the generation algorithm to weed out spurious programs.
Second, context-sensitive information, such as the scope and
type of variables, is not represented in the grammar, and
thus has to be added to the programs using some other tech-
nique. While it is possible to define these extra constraints
using multi-level grammars [3] or attribute grammars [7], it
would be extremely difficult to apply this in full to a pro-
gramming language like C++. Finally, if the grammar is am-
biguous, such as the C++ grammar, there is no guarantee
that the rules used in generating a sentence will be the same
as those used in parsing that sentence.

2.2 TheISO C+ grammar

The C++ programming language was standardized by the
International Standards Organization (ISO) in 1998, and
further updated in 2003 [12]. Appendix A of the ISO stan-
dard contains a grammar for the language, with 123 non-
terminals, 184 terminals and explicitly specifying 399 gram-
mar rules. The notation used for the rules permits optional
symbols in the productions; when these are replaced sys-
tematically® this rises to 479 rules using plain context-free
notation. This grammar is significantly more complex than
that for similar languages, such as C, Java and C* [22] and,
unlike these languages, does not readily admit to standard
parser construction tools based on LL or LALR parsing al-
gorithms.

Given the popularity of the C++ programming language,
and its inherent complexity, it is vital that automated tools
for processing the language be robust and accurate. Since
the language is standardized, its syntax may be considered
as fixed, at least in the short term, and thus a standard-
ized set of test cases should be usable across all applications
accepting ISO Ct++.

Each of the difficulties with Purdom’s generation algo-
rithm described in the previous section applies to the ISO
C++ grammar. When applied to the C++ grammar, Purdom’s
algorithm generates 81 test cases, only 7 of which are valid
C++ programs [18]. Thus, it is necessary to consider alter-
native techniques to achieving the same result, i.e. a small
test suite that gives full rule coverage. In the remainder
of this paper we consider reduction rather than generation
techniques, and investigate the effect of reducing an existing
test suite to a size comparable to that produced by Purdom’s
algorithm

We replace optional occurrences of 40 grammar symbols
with a pair of rules of the form A_opt — A | e
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2.3 Existing test suites for ISO G+

The popular, open-source GNU compiler collection gcc in-
cludes a robust C++ compiler that implements ISO C++. It
also includes a large test suite for the various languages ac-
cepted by the compiler. The Ct++-specific part of the test
suite distributed with gec version 4.0.0 contains 5067 C++
programs. This is an implementation-based test suite, in
that it was assembled to test various compiler features, and
augmented as bugs were discovered or new features were
added. Indeed, the four most recent versions of gcc, 3.2, 3.3,
3.4.0 and 4.0.0, released roughly at annual intervals, show
an increase in the size of the C++ test suite of 8%, 10%, 18%
and 12% respectively on the previous version.

Since the gcc test suite was developed to test the gec Ct++
compiler, a number of its test cases relate to compiler in-
ternals or to back-end issues such as code generation. This,
along with its size and continued expansion, makes the test
suite unsuitable for use in its entirety with other grammar-
based tools, and a suitable candidate for test suite reduction.

An alternative approach to gathering a test suite is to
consult the language specification, and to attempt to cre-
ate test cases that cover all aspects of the language. This
specification-based approach is commonly used to test for
compliance with the standard, to ensure that a compiler im-
plements all features of the language. Examples for C++
include the CppETS suite developed as a benchmark suite
for reverse engineering tools [26], and the DDJ suite, devel-
oped to test compliance of different compilers to the ISO
standard [6, 17].

2.4 Goals of our study

Our study involves taking two existing test suites for ISO
C++ and analyzing test suite reduction techniques based solely
on grammar coverage. In the remainder of this paper we re-
fer to these test suites as:

® Tyce, the C++ programs from the test suite distributed
as part of gcc version 4.0.0

o T4, the DDJ test suite derived from the ISO standard,
described in reference [17]

We examine whether reduced version of these test suites
will be as effective as their larger counterparts; specifically,
we investigate the following hypotheses:

Hypothesis 1: Reducing test suites based on rule coverage
will not adversely affect code coverage when used to
test grammar-based software.

Hypothesis 2: Reducing test suites based on rule coverage
will not adversely affect the fault detection capability
when used to test grammar-based software.

3. AREDUCED TEST SUITE FOR ISO C++

In this section we describe the construction of two reduced
test suites for ISO C++. We discuss the implementation of
rule coverage measurement using gcc, and we present the

Test Rule

Test suite | Cases LOC Coverage
Tyee 5067 83919 95.3 %
Taa; 440 4019 89.6 %

Table 1: Results of profiling the two test suites. For
each of the original test suites we show the size in terms of
the number of test cases and lines of executable code, along
with the percentage grammar rule coverage achieved by each.

results of applying test suite reduction to the Tyc. and Tqq;
test suites.

There are two main phases in reducing a test suite based
on rule coverage. First a system must be constructed, capa-
ble of determining which grammar rules from the grammar
were used during a parse. Second, a test suite reduction al-
gorithm must be implemented and applied to the test suite.

3.1 Measuring Rule coverage

Since our reduction strategy is based on grammar rule cov-
erage, it is essential to be able to determine which rules are
used by each test case. Given that the C++ grammar is heav-
ily context-sensitive, it is essential to use a fully-functional
parser and front-end in order to correctly determine the rules
that are used. In previous work, we had developed an in-
strumented version of GNU bison, and had used this with
the parser in the version 3.0 of the gecc C+4 compiler to
produce an XML trace of the grammar rules used [11, 21].
However, while harnessing this explicit grammar facilitated
profiling, the grammar in question had undergone consider-
able evolution, and it proved difficult to reconcile its rules
directly with the ISO standard.

Fortunately, the Ct++ parser in gcc has been completely
re-written as a hand-coded recursive descent parser, which
corresponds closely to the grammar in the ISO standard. To
track rule coverage, the parsing code in gcc version 4.0.0 was
identified and profiling code was added to generate a log of
grammar rules that were used as each input program was
processed. Each test case in our two test suites was then
profiled in this way using our modified gcc.

The results of profiling the two test suites is given in Table
1. As can be seen from column 4 of this table, neither test
suite achieves 100% rule coverage, though both come close.
Based on this analysis, both suites were augmented with ex-
tra test cases in order to achieve 100% rule coverage. These
test cases were generated by slightly modifying Purdom’s
sentence generation algorithm so that it produced sentences
guaranteeing coverage of just a single rule at a time. These
generated test cases were simple enough so that they could
then be modified by hand to ensure that they were correct
C++ programs. In the remainder of this paper, we use T;rcc
and T;;j to denote the original test suites augmented with
the test cases necessary to bring them to 100% rule coverage.

Since we are not aware of any existing work analyzing
rule coverage for test suites, we present a summary of the
rule coverage data for the T, and T;;lj test suites in Figure
1. Figure 1 is a box plot showing the distribution of rule
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Figure 1: Distribution of rule coverage among the
T;;c and Tjdj test suites. For each graph, the horizontal
azxis represents a count of the number of rules, and the box

plot shows the distribution of rules covered.

coverage among the 5067 test cases in Tg‘*;c and the 440 test
cases in T;dj. As can be seen from this figure, the Tgtc has a
slightly higher mean rule coverage, but also a larger spread
of coverage. In fact, the mean coverage for T;;C is 92 rules,
against 70 rules for Tjdj, but the standard deviation is 55.6
for Tg"'cc, against 27.4 for T(Iij. The 25th and 75th quartile

are 65 and 101 for Tgtc, and 53 and 86 for Tjdj.

3.2 Test suite reduction

The test suite reduction algorithm follows that of Jones et
al. [13], and operates as follows:

1. For each test case in turn we compile a vector of length
479, with one entry corresponding to each C++ gram-
mar rule, holding a 1 or 0, depending on whether or
not that rule was used as the test case was parsed.

2. The vectors for all the test cases are placed together
in a 2D array whose rows are indexed by the test cases
and whose columns are indexed by grammar rule num-
ber.

3. If any column sums to one, then only one test-case

QOriginal _ Rule
Test Suite | | __ ———={ Profiled _ Coverage
— Eec — | Data

Reduced
Test Suite

Figure 2: Overview of the test-suite reduction pro-
cess. An instrumented version of gcc is used to gather rule
coverage data for each program in the test suite, and this
data then used to reduce the test suite.

Test Red- Red-

Test Suite | Cases wuction | LOC uction
Ryee 26 99.6% 779 99.1%
Ragj 22 95.0% | 239  94.1%

Table 2: Percentage reduction achieved by the test
suite reduction algorithm. For each of the reduced test
suites we show its size, in terms the number of test cases
and total lines of executable code (LOC), and the percentage
reduction compared to the corresponding original test suites.

covers the corresponding rule, and these test-cases are
deemed essential and added to the reduced test suite.
Whenever a test-case is added to the reduced suite, all
of the vector entries corresponding to rules that are
covered by this test-case are set to zero.

4. The rows are then summed to identify the test-case
that contributes the most to rule coverage. This is
added to the reduced set, the vector entries correspond-
ing to the rules it covers are set to zero, and the process
is repeated.

The test-suite reduction process is summarized in Figure
2.

It is worth noting that once all the essential test-cases have
been removed, the problem of choosing the minimum test-set
that covers the remaining rules is equivalent to the minimum
cardinality hitting set, which is an intractable problem [4].
Hence the process will always be heuristic and in our case
we choose to always use the test-case that contributes the
most coverage even though it can be proved that this will
not guarantee the smallest test suite.

The test suite reduction algorithm was applied to both of
the existing test suites, generating two new suites which we
refer to as Rgec and Rgq;. By design, each of these suites
achieves 100% rule coverage. The results of applying this
algorithm are summarized in Table 2. For Rgc. there are
5040 less test-cases, a reduction of 99.6%. For Rqq;, there are
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System | Version Source Files LOC (=)
Doc++ 3.4.10 17 6,300

Keystone | 0.0.6.9 52 6,500
Puma 0.9.3 141 18,200

Table 3: Systems Under Test. For each of the three
grammar-based applications used in our case study we show
the version number used, the number of C++ source files, and
the number of executable lines of code (LOC).

418 less test-cases, a reduction of 95%. Both of these suites
represent a dramatic reduction in size from the originals,
and are comparable to the size of the test suites generated
for C++ using Purdom’s algorithm. However, all the test
cases in these reduced suites are semantically correct C++
programs, unlike the test cases generated using Purdom’s
algorithm.

4. EMPIRICAL STUDY: CODE COVERAGE

In this section we investigate our first hypothesis, that re-
duction under rule coverage does not adversely affect code
coverage. In order to do this we use three examples of
grammar-based software that accept Ct++ programs as in-
put. We refer to these as the systems under test (SUT), and
they contain a mixture of implicit and explicit grammars.

Doc++ is an automatic documentation generator for C++
files [1]. There is no explicit grammar file and it must
rely on code landmarks within an input C++ program
to complete a fuzzy parse.

Keystone is a complete front-end to aid in the static anal-
ysis of ISO C++ programs [5]. It has an explicit gram-
mar, modeled on the grammar in the ISO standard,
which is used as input for the btyacc parser generator.

Puma is a library for parsing Ct++ that is used as the front-
end for Aspect C++, the Aspect Oriented extension to
C++ [27]. The parser code is hand written and thus has
no explicit grammar.

Table 3 gives the version numbers and some basic size
measures of these programs. In this and subsequent sections,
all measurements in terms of lines of code (LOC) refer to
executable lines of code, as reported by version 4.0.0 of the
gcov utility.

4.1 Calculating code coverage

The first experiment was conducted in a highly structured
manner and where possible automated scripts were used.
The steps involved are outlined below.

1. Each of the three SUTs was built with compiler flags
set to profile using gcov, a profiling tool that is part of
the gce.

80—

Percentage code coverage

161
o
[ O o 0O o
0038 09838 ©083a3
F o |_‘ Il F o |_‘ ﬂ:l F |_‘ Il
Doc++ Keystone Puma

Figure 3: Code coverage results for each of the
SUTs. For each SUT we show the code coverage percentages
for the total and reduced DDJ and gcc test suites.

2. Each of the three SUTs were run using the full and
reduced test suites as input. The output from each
SUT for each test case was stored for use later in the
mutation testing phase.

3. The coverage figures for each test suite were measured
twice. For the first run, all test cases were passed
through to give cumulative coverage figures for each
of the test suites. For the second run, all individual
test cases had their code coverage figures measured to
determine if there was a correlation between rule cov-
erage and code coverage.

4.2 Results

Figure 3 displays the summarized code coverage figures
for each of the test suites. Each SUT is represented by four
bars representing the code coverage percentage for the Tjdj,

Raqj, T;QC and Rgee. The first point to note in Figure 3
is the relatively low overall code coverage, even for the two
larger suites, TLV and T;;c- This is due to neither test suite
being developed specifically for the SUT in question, and
thus some of the back-end functions of each SUT remain
untested.

However, the main result shown in Figure 3 is the rela-
tively low decrease in the degree of code coverage between
the total and reduced versions of the test suite, despite the
considerable reduction in test suite size. The largest reduc-
tion in coverage for any SUT is that shown for keystone,
where moving from T}, to Rgcc reduces the code cover-
age from 69.6% to 60.4%. Further investigation of the ac-
tual lines covered in keystone determined that the larger test
suites contain negative test-cases not present in the reduced
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Figure 4: Rule coverage versus percentage line cov-
erage for the three SUTs. In each graph the horizontal
azxis measures the number of grammar rules covered, and the
vertical axis represents percentage line coverage. Fach point
on the graph represents a single test case, with outliers cov-
ering more than 250 rules removed for clarity.

test suites, and the difference is due to the proportion of
error-recovery code being executed.

Figure 4 contains a scatter plot for each SUT, showing
the relationship between rule coverage and code coverage.
Here, each point on the scatter plot represents a single test
case from the Ty, test suite. As might be expected from
the visual data in Figure 4, no strong linear correlation ex-
ists between rule coverage and code coverage. For doc++
and puma, the graphs show that code coverage is largely
invariant in the range 30%-50% for many of the test cases.
keystone exhibits a very weak linear relationship, but again
code coverage for individual test cases lie predominantly in
the range 15%-35% These result demonstrate that the re-
sults shown in Figure 3 are not simply due to rule coverage
acting as a surrogate measure for code coverage.

5. EMPIRICAL STUDY: FAULT DETECTION

In this section we investigate the usefulness of the reduced
test suites in terms of detecting faults within a grammar-
based system. Fault detection is the central focus of the
testing process, and provides an external measure of the ef-
fectiveness of that process. Our second hypothesis under
investigation aims to determine whether the reduced test
suites can detect as many faults as their larger counterparts.

5.1 Mutation Testing

To investigate the fault detection capability of the reduced
test suites, we seed the three SUTs from Section 4 with
faults, and compare the effectiveness of the full and reduced
test suites in detecting these faults. This approach is broadly
similar to mutation testing, except that our goal here is to
compare test suites, rather than to ensure full fault detection
capability. In mutation testing, the source code of the SUT
is mutated to introduce an error, and a test suite is evaluated
on its ability to detect this error. If the test suite produces
different output or behavior for the mutated version of the
SUT then it has detected the error, and the mutant is said
to be killed. Failure to kill all mutants indicates a deficiency
in the test suite and, typically, new test cases are added to
address this.

There are numerous ways of mutating a SUT but a study
by Offutt et al. analyzed 22 different types of mutation,
and identified a core set of five mutation types that were
almost as effective as the entire set [20]. These five kinds
of mutation are listed in Table 4. We applied these five
kinds of mutation to our three SUTs automatically, using
the following process:

1. Each SUT is run with each test case in the test suite
as input, and the output for that test case is recorded.

2. The C++ code for each SUT is analyzed, and relevant
expressions in the code are identified automatically as
candidates for mutation.

3. The mutation operators are applied to each expression
in turn, and the mutated expression, along with the
position where it occurs in the program is output.
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Figure 5: Overview of the fault-insertion process.
The mutator parses the source code of the SUT, identifies
expressions, and outputs the relevant mutation operations.
These are then applied one at a time, and the results are
compared with the original test results.

4. A simple script then applies each mutation to the rele-
vant source file in the SUT, which is then re-built. The
mutant SUT is first tested using the reduced test suite
and, if the mutant is not killed, it is tested using the
full version of the test suite.

The mutation generator consists of a scanner and fuzzy
parser for C++ and is written in just under 1,000 lines of
Python. For simplicity, the parser does not use a symbol ta-
ble, and thus over-recognizes expressions in the code. While
this does not impact the findings of the experiment, it does
result in a high number of mutant programs being invalid,
since they fail to compile. The effect of over-recognition of
expressions resulted in between 60% and 90% of the gener-
ated mutations being invalid. Since the process of discarding
an invalid mutant is simpler that writing an accurate parser
for C++, this was deemed to be an acceptable level of inva-
lidity.

Applying a single mutant involves changing a single source
file, rebuilding the SUT, and, if the SUT compiles, running
the SUT with each program from the test suite as input. If
the output for any one of the test cases is different from the
non-mutated version of the SUT, then that mutant is killed.
The process to apply the mutations is not complex, but is
quite time consuming. The total number of mutations gener-
ated ranged from about 50,000 for keystone to about 300,000
for doc++. Hence, not all possible mutations were applied
to the SUTSs. Instead, a random selection was made of the
possible mutations, in quantities roughly approximating the
size of the file to be mutated.

5.2 Results

Table 5 summarizes the results of the mutation process.
The first data column shows the total number of valid mu-

Operator Description

ABS Absolute value insertion
Replace an expression by 0, a positive value
and a negative value

AOR Arithmetic operator replacement
Replace one of the binary arithmetic opera-
tors by each of the others

LCR Logical connector replacement
Replace one of the binary logical operators
by each of the others

ROR Relational operator replacement
Replace one of the binary relational opera-
tors by each of the others

UOI Unary operator insertion
Insert a unary operator before the expres-
sion

Table 4: The five kinds of mutation operator applied
to the SUTs. All mutation types apply to expressions, and,
when applied recursively to a single expression, can give rise
to many mutated versions.

Mutants
SUT Total | Killed | Missed | Reduction
Doc++ 523 18 490 96.5%
Keystone | 310 123 177 59%
Puma 305 0 57 100%

Table 5: Results for fault detection within the SUTs.
For each SUT we show the total number of mutant programs
generated, the number of mutants killed and missed by the
reduced suite, and the percentage reduction in fault-detection
effectiveness.

tant programs generated by the mutation process. The sec-
ond data column shows the number of mutants killed by
the reduced test suite, and the third data column shows the
number of mutants missed by the reduced test suite, but
killed by the total test suite. The final column of Table 5
gives the reduction in fault detection effectiveness, expressed
as a percentage of the number of faults detected by the whole
suite; that is:

Reduction = Missed * 100
"~ (Killed + Missed) 1

As can be seen from this column, the reduction in effective-
ness is quite severe for all three applications, ranging from
59% for keystone to 100% for puma. While some diminu-
tion in the fault detection capability might have been ex-
pected due to the slightly lower code coverage results, the
level shown in Table 5 cannot be considered acceptable for
the programs involved. Thus we reject the second of our
hypotheses, and conclude that reducing test suites based on
rule coverage does adversely affect their fault detection ca-
pability.
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6. THREATS TO VALIDITY

In this section we discuss the threats to the internal and
external validity of our study.

Threats to internal validity
The two test suites used, Tyce and Tyq; may not be rep-
resentative of test suites for C++ programs. While Ty
is certainly among the most comprehensive implement-
ation-based test suites available, it should be noted
that commercial test suites for ISO compliance, such
as those produced by Perennial or Plum Hall, can be
an order of magnitude larger than either Tyc. or Tyq;.

Our reduction strategy was based solely on rule cover-
age, and it is possible that a combination of rule cov-
erage with other kinds of coverage might yield better
results. For example, one stronger form of rule cov-
erage is context-dependent rule coverage [15], although
our preliminary analysis suggests that there is little
practical benefit to be gained from context-dependent
coverage, at least in the context of the ISO C++ gram-
mar [10].

The mutations applied to each SUT were selected ran-
domly from the possible mutations, and it is possible
that a more representative selection would produce dif-
ferent results. Further, it should be noted that these
mutations are only a selection of those possible. For
example, mutation operators can be defined that test
object-oriented features (such as those defined by Ma
et al. for Java [16]), that could yield different results.

Threats to external validity

Threats to external validity center on the choice of
grammar used and the choice of SUTs. ISO C++ was
chosen for our study as it represents a particularly chal-
lenging grammar for analysis purposes. It is thus pos-
sible that grammars for less complex languages may
yield better results, although in the absence of a for-
mal quantification of the link between grammars and
the back-end code this is difficult to judge.

The three SUTs used in our experiments in Sections
4 and 5 were chosen as examples of medium-sized ap-
plications that took C++ code as input. As discussed
in the introduction, grammar-based software includes
many other kinds of application, and it would be use-
ful to add examples of these to our study. Using larger
applications as SUTs might also be useful, but it seems
unlikely that they would yield better back-end cover-
age results than the ones presented here.

7. RELATED WORK

In this section we review some of the related work in the
area of test suite reduction.

There are two central issues when performing test suite re-
duction. First, some criteria must be used to decide if a test
case is redundant with respect to others in the suite. Typ-
ically, the criteria used are coverage based, although there

are many different types of coverage criteria. Second, it is
desirable that the reduced test suite have the same fault
detection capability as the original.

Harrold et al. use coverage of definition-use pairs as their
reduction criterion, and apply it to a set of seventeen C
programs each containing less than 100 lines of source code
[8]. The test suites for these programs range in size from 4
to 80 test cases, and a reduction of up to 60% in the size of
the test suite is reported. They do not report on the fault
detection capability of the reduced suites.

Wong et et al. investigate the fault-detection effectiveness
of reduced test suites for ten C programs, ranging in size
from 90 to 842 executable lines of code [29]. They use block,
decision and all-uses coverage as the reduction criterion, and
with test suites for each application ranging in size from 156
to 997 test cases they achieve reductions in size in excess of
94%. To measure the effectiveness of the reduced test suite,
between 12 and 30 faults were manually injected into each
program, with an average reduction in effectiveness ranging
from 4.44% to 9.20%.

In contrast, a more recent study by Rothermel et al. finds
a significant decrease in the fault-detection capability of re-
duced test suites [25]. This study uses seven C programs,
ranging in size from 138 to 516 lines of code, with substantial
test suites, ranging in size from 1052 to 5542 test cases. Us-
ing edge-coverage as their criterion for reduction, and start-
ing with randomly selected subsets of the test suites, they
achieve a reduction in test suite size of between 87% and
95%. However, after manually injecting between 7 and 41
faults into the programs, they report a significant decrease in
the fault detection capability of the reduced suites, in many
cases by up to 100%.

Jones et al. use modified condition/decision coverage as
the reduction criterion, and apply it to two software systems
written in C [13]. The first system, TCAS consists of 138 ex-
ecutable lines of C code, and its test suite is reduced in size
from 1608 test cases to 10 test cases. The second system,
Space, consists of 6,218 executable lines of C code and its
test suite of 13,585 test cases is reduced to 11 test cases. To
evaluate the fault detection capability of the reduced suites,
41 faulty versions of TCAS and 35 faulty versions of Space
were employed, with the average loss in fault detection be-
ing 44.4% and 10.2% respectively. The figures for coverage
and fault detection are average figures, since 1,000 randomly
sized selections of test cases were used as the starting point
for the reduction process.

Heimdahl et al. apply test suite reduction to specification-
based tests for a flight system consisting of 2564 lines of code
in RSML™° [9]. They generate and then reduce test suites
using six different coverage criteria. With the original test
suite sizes ranging in size from 115 to 537 test cases, they
report an average reduction in test suite size of 80%. Using
a random fault seeder they create 100 faulty versions of the
program, and report a decrease of between 7% and 16% in
fault detection capability for the reduced suites, which they
deem unacceptable for their domain of interest.

The work presented in this paper has a number of sim-
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ilarities to the above work. First, we note a considerable
decrease in test suite size as a result of the test suite re-
duction process, in line with the related work. Second, our
work echoes the results of Rothermel in particular, in finding
that the reduced test suites are comparatively poor at fault
detection.

However, the work presented in this paper also differs from
the above related work in a number of ways. First, we are
not aware of any other test suite analysis or reduction based
on rule coverage, as opposed to code coverage measures. Sec-
ond, our test suites are considerably larger than those of Har-
rold or Wong, comparable in size to those of Rothermel, and
slightly smaller than those used by Jones. Third, the three
C++ programs used as our SUT's are considerably larger than
those C programs used by the above approaches, except for
the Space system used by Jones. Finally, all the above ap-
proaches that use mutation testing with manually generated
mutants use considerably fewer mutants than those reported
here in Table 5.

8. CONCLUSION

In this paper we have tested the practical use of rule cover-
age as a criterion in the reduction of test suites for grammar-
based software. We have taken two existing test suites for
ISO C++, and applied a reduction strategy based on rule
coverage. To estimate the effect of this reduction we have
studied three grammar-based applications, and investigated
the code coverage and fault detection capabilities of the re-
duced test suite.

The main findings of our work are:

1. Test suite reduction based on rule coverage provides a
significant reduction in the number of test-cases, and
thus in the testing overhead. The size of the reduction
is comparable to strategies that use other coverage cri-
teria, and produces a test suite that is comparable in
size to that generated by Purdom’s algorithm, with the
added advantage of semantic correctness.

2. We have demonstrated for three grammar-based ap-
plications that, while there is no formal correlation be-
tween rule coverage and code coverage, the reduced
test suites do not significantly reduce the level of code
coverage. While this was to be expected for the code
purely relating to parsing, it is notable that it also

holds for other parts of the applications that were tested.

3. However, our mutation testing results indicate that the
reduced test suite does not adequately preserve fault
detection capability. In this, the results are consistent
with those of Rothermel et al. [25], although the re-
duction in fault detection capability is more severe for
rule based coverage.

Despite the encouraging results in relation to the preser-
vation of code coverage for the reduced suites, the failure in
the rate of fault detection must be considered a significantly
negative finding.

We identify the novel contributions of this paper as:

e The use of standardized test suited for grammar-based
applications. This differs from standard testing tech-
niques where, typically, test suites are designed anew
for each individual application.

e A rule coverage analysis of two significant test suites
for ISO C++, based on results from profiling the parser
from the gec C++ compiler.

e The implementation and analysis of automated test
suite reduction using rule coverage as the criterion.

e An analysis of the reduced test suite in terms of code
coverage and fault detection, and its application to
three instances of grammar-based software.

In future work we intend to build on the positive aspects
of this study; we aim to extend the reduced test-suites to in-
corporate negative test-cases that fully exercise of the code
within a grammar-based system. Furthermore we plan to in-
vestigate the additional criteria that need to be used in order
that test suite reduction will not cause such a significant loss
in fault detection capability.
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