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Abstract

In this paper, we describe g4re, our tool chain
that exploits GENERIC, an intermediate format in-
corporated into the gcc C++ compiler, to facili-
tate analysis of real C++ applications. The gcc
GENERIC representation is available through a file
generated for each translation unit (tu), and g4re
reads each tu file and constructs a corresponding Ab-
stract Semantic Graph (ASG). Since tu files can be
prohibitively large, ranging from 10 megabytes for a
“hello world” program, to 18 gigabytes for a version
of Mozilla Thunderbird, we describe our approach
for reducing the size of the generated ASG.

1 Introduction

Software tools are essential for the comprehen-
sion, analysis, testing and debugging of software ap-
plications. Tools can automate repetitive tasks and,
with large scale systems, enable computation that
would be prohibitively time consuming if performed
manually. The Java language is accompanied by
an abundant selection of libraries and tools to sup-
port application development [6, 28, 29]. However,
there are relatively fewer tools to support applica-
tions that use the C++ language.

One explanation for the lack of software tools
for C++ is the difficulty in constructing a front-
end for the language, as described in references
[5, 16, 17, 18, 20, 24, 25, 26, 27]. This difficulty re-
sults from the complexity and scale of the grammar
and language of C++ as well as the insufficient un-
derstanding of the engineering aspects of grammar-
ware [16]. Despite the pervasive role of grammars

in software systems and the continuing research in
this area, a complete understanding of grammar-
based systems remains an elusive goal [16]. Recent
efforts in constructing a parser and front-end for
C++ have focused on using novel techniques such as
token-decorated parsing [20] or GLR parsing [24].
However, these parsers have difficulty parsing real
applications and although there is an excellent com-
piler in gcc, the gcc parser is tightly coupled to the
compiler itself.

In this paper, we describe g4re1, our tool chain
that exploits GENERIC, an intermediate format in-
corporated into the gcc C++ compiler, to facilitate
analysis of real C++ applications. The gcc GENERIC
representation is available through a file generated
for each translation unit (tu), and g4re reads each
tu file and constructs the corresponding Abstract
Semantic Graph (ASG) for each translation unit.
Since tu files can be prohibitively large, ranging
from 10 megabytes for the single tu file generated for
a “hello world” program, to 18 gigabytes for the col-
lection of tu files generated for Mozilla Thunderbird
(version 1.0), we describe our approach for reducing
the size of a generated ASG through transforma-
tions on the ASG. Our g4re tool chain can reverse-
engineer any application that can be parsed by the
gcc C++ compiler.

In the next section we provide background about
the gcc ASG schema, GENERIC, and the XML-based
exchange format GXL, and in Section 3 we provide
details about the construction and usage of our g4re
tool chain. In Section 4 we provide some results
about the sizes of both tu files - generated with and
without stub headers, and re-created ASGs - before
and after optimization. In addition, we compare our

1The name of our tool, g4re, when expanded, is ggggre,
which is a mnemonic for gcc and generic gxl graphs for reverse
engineering
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g4re tool chain to the gcc2gxl subsystem of XOGas-
tan [3] and summarize the differences in the size of
the GXL graphs generated by each system as well
as the time required by each system to generate the
GXL graphs. Finally, in Section 6 we draw conclu-
sions and describe future work.

2 Background

In this section we provide some background on
the two major technologies we use in this paper:
the gcc ASG schema, GENERIC, and the Graph eX-
change Language (GXL). Section 2.1 provides a brief
overview of GENERIC, which has recently been ex-
ploited by several research tools for program analy-
sis and reverse engineering [2, 3, 9, 23]. Section 2.2
provides a brief overview of GXL, commonly used
by reverse engineering tools.

2.1 GENERIC - The gcc ASG Schema

The Abstract Semantic Graph (ASG) is a com-
mon program representation used by compiler front
ends and other grammarware tools. A UML class di-
agram is frequently used to describe the nodes and
edges in an ASG; such a class diagram is referred to
as a schema for the ASG. The C++ compiler from
the GNU Compiler Collection, gcc, uses an ASG to
facilitate recognition, analysis, and optimization of
a program. Since version 3.0, gcc has begun to de-
velop an ASG schema known as GENERIC.

The gcc ASG schema, GENERIC, consists of
over 200 node types and is documented - almost
exclusively - in the form of source code com-
ments. Example node types include: record type,
call expr, and field decl. The GENERIC instance
for each translation unit in a C++ program is avail-
able as a text file via the command line option
-fdump-translation-unit-all. The format of the
text files, known as tu files, is illustrated in Figure
1.

The tu file format, illustrated in Figure 1, can be
parsed easily by a tool wishing to use the gcc ASG
for program analysis, comprehension, testing, and
transformation. A node in a tu file is represented
by:

• a unique identifier consisting of ’@’ concate-
nated with a unique integer,
• a node type from the GENERIC ASG schema,

@8 field_decl name: @15 type: @16 scpe: @5

srcp: test.cpp:5 chan: @17

public size: @18 algn: 32

bpos: @19 addr: 4065e000

Figure 1. Example: This figure illustrates tu
file node representation.

• edge tuples consisting of the edge name and the
unique identifier of the destination node,
• field tuples consisting of the field name and the

field value,
• single word attributes.

For example, in Figure 1, node ’@8’ has type
field decl, an edge name with destination ’@15’,
a field srcp with value test.cpp:5, and a single
word attribute public.

2.2 GXL - Graph eXchange Language

Selecting an exchange format is an important as-
pect in the design of a reverse engineering tool such
as a parser, analyzer, or visualizer. Currently, GXL
(Graph eXchange Language) is the de facto stan-
dard exchange format for use with reverse engineer-
ing tools [12]. GXL is an XML sublanguage de-
fined by an XML DTD (Document Type Definition)
and conceptualized as a typed, attibuted, directed
graph. GXL is used to describe both instance data
and its schema; schemas in GXL can be represented
by UML class diagrams [12].

3 The g4re Tool Chain

Our g4re system reads each tu file and re-creates
an in-memory representation of the corresponding
ASG. Since tu files can be prohibitively large, we
have developed two optimizations and incorporated
them into the g4re tool chain: (1) removing extra-
neous library code, and (2) pruning the ASG.

To remove extraneous library code, we use stub
headers in place of the C++ standard library files,
reducing the size of the generated ASG without los-
ing information needed for static analysis of C++
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Figure 2. System Architecture. This figure provides an overview of the phases performed by the g4re
tool chain to create a GXL instance graph for each translation unit in a C ++ program. User inputs
to the system, e.g. the C ++ Code, are shown as tabbed, dashed rectangles, external programs,
e.g. gcc, are ellipses, generated files, e.g. the GXL instance graphs, are lined rectangles, and
our inputs and programs, e.g. the stub STL and TUxformer, are tabbed, solid rectangles and
non-tabbed rectangles, respectively. I/O in the system is shown as solid edges with solid arrows,
while conformance is shown as dashed edges with open arrows.

user code. Stub header files contain class decla-
rations, function signatures, type definitions, and
variable declarations, but do not contain class def-
initions or function bodies. We can elide details of
the library implementation because the details are
not required for static analysis of user code. In fact,
only details of the interactions between user code
and library code are required for static analysis of
user code. The stub header files that we have con-
structed to replace C++ standard header files are
based on the gcc implementation, version 3.3.4.

We use the stub headers to generate each tu file,
and then re-create the corresponding ASG using the
information in the tu file. However, this ASG con-
tains extraneous nodes and fields that hold inter-
nal information that the gcc compiler uses to facil-
itate recognition or optimization of the input C++

program. For the second optimization, we remove
these extraneous nodes and fields, since they are
not needed for analysis of user code. It would be
easier to simply “filter” these non-essential nodes
when traversing the ASG. However, non-essential
nodes can be inserted between essential nodes in
the GENERIC ASG, and therefore appear as such in

the generated tu file. Thus, the non-essential nodes
must be “unlinked” from the ASG, with essential
nodes relinked so that the optimized ASG remains
a single connected graph.

In Section 3.1 we provide an overview of the g4re
tool chain, including a description of where the two
optimizations fit into the chain. In Section 3.2 we
provide further details about the optimizations and
describe generation of GXL to provide a familiar
point of access to the tool chain. Finally, in Section
3.3 we describe our approach to validation of the
generated GXL.

3.1 Overview of theg4re system

Figure 2 provides an overview of the g4re tool
chain, partitioned into three phases: (1) ASG Ini-
tialization, (2) ASG Construction, Transformation
and Serialization, and (3) ASG Validation. Each
partition in Figure 2 is separated by a vertical
dashed line. The first phase, ASG Initialization,
is illustrated on the left side of the figure where
the C++ source code representation of the appli-
cation under study, together with the stub headers,
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are used as input to the gcc compiler. Using the
-fdump-translation-unit-all option, the output
for this first phase is a text file for each translation
unit (tu), leading into the second stage of the g4re
system.

The second stage of our tool chain is illustrated in
the middle partition of Figure 2, where the tu files,
shown as rectangles in the upper left of the middle
partition, are used as input to the g4re transforma-
tion system, the TUxformer subsystem. The tu files,
together with a listing of the names of the source files
for the application, shown as a single dashed rect-
angle, are used as input to the TUxformer, shown
as a solid rectangle on the right side of the middle
partition. The TUxformer performs three actions
referred to in the figure as TUparse, TUprune and
TUgxl. These three actions include parsing the tu
file and re-creation of an ASG, optimization of the
ASG through transformation, and generation of a
GXL representation of the optimized ASG. Addi-
tional detail about the TUxformer subsystem is pro-
vided in Section 3.2.

The third and final phase of our current g4re tool
chain, ASG Validation, is shown on the right side
of Figure 2. In this phase, we use two tools, our
GxlSW and the publically available GXL Validator
[1], to validate the GXL instance graphs output by
our TUxformer system. Input to our GxlSW, repre-
sented by the three tabbed rectangles in the upper
left of the rightmost partition, is GENERIC domain
information. The GXL schema output by GxlSW,
along with the GXL instance graphs and the GXL
DTD [11], constitutes the input to the GXL Val-
idator. Additional detail about ASG Validation is
provided in Section 3.2.

3.2 The TUxformer subsystem

The TUxformer subsystem of the g4re tool chain
reads a gcc generated tu file and performs the three
actions reviewed in the previous section, including
parsing the tu file and re-creation of an ASG, op-
timization of the ASG through transformation, and
generation of a GXL representation of the optimized
ASG. Our prototype of the TUxformer subsystem is
written in Python, which is ideal for the kind of
text-processing that we require [32]. Python’s rapid
prototyping facility and ease of interoperability with
other tools were also important factors. In this sec-
tion, we provide detail about the TUxformer subsys-
tem.

3.2.1 ASG Transformation: TUparse

The TUparse module of the TUxformer subsystem
provides functionality to parse an input tu file and
re-create a corresponding ASG. The TUparse mod-
ule also performs the first stage of our second size
reduction optimization, pruning the ASG. In this
first stage of pruning the ASG, removing extraneous
fields, we remove from each node fields that contain
internal information used by the gcc compiler. To
explicate our actions and to enable other researchers
to reproduce our results, we describe the details of
extraneous field removal in Stage 1.

Stage 1 Remove Extraneous Fields
Input: n a node under construction by TUparse
1: procedure REMOVE-FIELDS(n)
2: FA ← {’addr’,’algn’,’lngt’,’prec’,’size’}
3: FE ← {’max ’,’min ’,’purp’}
4: foreach field f ∈ F[n] do
5: if f ∈ FA ∪ FE then
6: F[n] ← F[n] - {f}

Stage 1 captures the important actions in remov-
ing extraneous fields from an ASG re-created from
a tu file. In line 1 of Stage 1 we begin REMOVE-
FIELDS, a procedure that takes one input, n, a
node under construction by TUparse. In lines 2 and
3 we create two sets to describe the kinds of extra-
neous fields encountered in re-creating an ASG: FA

and FE . The set FA contains attribute fields and
the set FE contains edge fields; collectively, these
are the kinds of fields that we delete from the nodes
of an ASG. In line 4 of Stage 1 we consider each
field f of node n. In line 5 of Stage 1 we consider
if the kind of f is in either of the two sets, FA or
FE , and if so we remove the field f from the node
n. In removing these fields, we may be removing
the only reference to another node in the ASG. In
the next section we describe the actions of TUprune,
which prunes extraneous nodes and edges from the
remaining reachable nodes of the ASG.

3.2.2 ASG Transformation: TUprune

The TUprune module of the TUxformer subsystem
provides functionality to transform the ASG re-
created by TUparse and consitutes the second stage
of our second size reduction optimization. In this
second stage of pruning the ASG, node and edge
removal based on source file, name, and reference
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Stage 2 Remove Nodes and Edges based on Source
File, Name, and Reference Count
Input: ASG the ASG constructed by TUparse
Input: UserCode the list of user code source files
Output: P the set of nodes to prune from ASG
1: function SELECT-NODES(ASG,UserCode)
2: P ← ∅
3: R@1 ← BFS(ASG,’@1’)
4: foreach node n ∈ V[R@1] do
5: if SRC-FILE(n) ∈ UserCode then
6: continue
7: if IS-SELECTED-NODE(n) then
8: P ← P ∪ {n}
9: return P

Input: n a reachable ASG node
Output: boolean indicating if the node is selected
10: function IS-SELECTED-NODE(n)
11: name← NAME(n)
12: isMangled← IS-MANGLED(name)
13: S ← {’ comp ctor’, ’ comp dtor’}
14: isInternal← name[0:2] = ’ ’ ∧name /∈ S
15: if isMangled ∨ isInternal then
16: return TRUE

17: if IN-DEGREE(n) 6= 1 then
18: return FALSE

19: Echain ← {’chan’, ’dcls’, ’flds’, ’fncs’}
20: if TYPE-OF(edge(src,n)) ∈ Echain then
21: return TRUE

22: return FALSE

count information, we select nodes from the reach-
able graph to be pruned based on the aforemen-
tioned information.

Stage 2 captures the important actions in select-
ing nodes for removal from an ASG based on source
file, name, and reference count information. In line 1
of Stage 2 we begin SELECT-NODES, a function
that takes two inputs: ASG, the ASG re-created by
TUparse, and UserCode, the list of user code source
files (shown as input to the system in Figure 2). In
line 2 we initialize P , the set of nodes to prune from
ASG and the output of SELECT-NODES, to ∅.
In line 3 of Stage 2 we use a breadth-first search of
ASG to compute R@1, the subgraph of ASG that
is reachable from the initial node, which we desig-
nate as ’@1’. The foreach loop on line 4 considers
each node n in the set V [R@1], the nodes reachable
from ’@1’. In lines 5 and 6 we continue to the next
iteration of the foreach loop if the source file of n,
computed by SRC-FILE, is in UserCode. In line

8 of Stage 2 we conditionally add n to P , the set of
nodes to be pruned, based on the return value of the
line 7 call to IS-SELECTED-NODE, a function
that indicates if node n is selected for pruning. We
return the set P on line 9, the final line of SELECT-
NODES.

In line 10 of Stage 2 we begin IS-SELECTED-
NODE, a function that takes one input, n, a reach-
able ASG node, and returns a boolean indicating if n
is selected for pruning. The variable name on line 11
is a string that contains the name of the node under
consideration. The variable isMangled on line 12 is
a boolean that is set if name is mangled. In line 13
of Stage 2 we construct a safe set of nodes, S, con-
sisting of the names that gcc assigns to programmer
provided constructors and destructors. The variable
isInternal on line 14 is a boolean that is set if the
name is an internal name used only by gcc. Lines
15 and 16 return TRUE if the name under considera-
tion is either mangled or internal. Lines 17 and 18
return FALSE if the in-degree of the node under con-
sideration is not equal to 1. In line 19 we initialize
set Echain to the set of field attributes ’chan’, ’dcls’,
’flds’, ’fncs’, the field attributes that can constitute
the beginning of a chain of nodes in a GENERIC ASG.
In lines 20 and 21 we return TRUE if the type of the
exclusive edge with destination n is in Echain. Fi-
nally, on line 22 we return the fall-through value,
FALSE.

3.2.3 ASG Serialization: TUgxl

The TUgxl module provides methods to perform
ASG serialization, i.e. to convert the in-memory
ASG to a GXL instance graph stored on disk. TUgxl
takes as input the pruned ASG that is output by
TUprune and produces a GXL instance graph that
complies to the GXL schema graph described in Sec-
tion 3.3.

3.3 Validation of the generated GXL

One advantage in using an XML technology such
as GXL is the outstanding tool support provided by
the community. This level of support is due in part
to the ease with which an XML processor can be im-
plemented. In this section we describe GxlSW, a sys-
tem to automatically generate a valid GXL schema
graph given a plain-text, simplified UML class dia-
gram and domain type definitions.
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We have written a collection of Perl modules,
GxlSW, to automate the construction of a GXL
schema graph for a schema, such as GENERIC, given
only minimal input. To create our first GxlSW in-
put we reverse engineered a plain-text UML class
diagram for GENERIC by collecting data from the tu
files generated by gcc. To regenerate as much of
the gcc GENERIC schema as possible, we require a
large and varied test suite; thus, we use the C/C++

testsuite included with gcc and an extensive C++

testsuite [21] extracted from the ISO C++ standard
[14]. The second input, domain type information,
consists of two small (approximately 10 line) files
that provide mappings from the domain types to
GXL primitive types.

We perform, using GxlSW, a direct translation
from the simplified UML class diagram to a GXL
schema. Using this technique, we gain two dis-
tinct advantages over other systems using GENERIC.
First, the cognitive burden on a reverse engineer
who chooses to use the GXL generated by our g4re
toolset is reduced, because said user needs only to
understand the GENERIC ASG schema and not an
adaptation of the schema. Second, the implemen-
tation of our tool does not require a set of map-
pings from the GENERIC ASG schema to an adapted
schema; therefore, the implementation is more flex-
ible with respect to changes to GENERIC. XOGAS-
TAN [3] uses the adaptation technique, and as a
result requires mappings for each node type in the
GENERIC schema. While performing the experi-
mentation presented in Section 4, we found that
XOGASTAN is unable to create GXL for certain
GENERIC node types, including try catch expr and
using directive.

The GXL Validator [1] validates a GXL graph
against the GXL DTD, the specified GXL schema
graph and additional constraints that cannot be
expressed by the GXL DTD [11]. We use the
GXL Validator to demonstrate the compliance of
both the TUgxl generated GXL instance graphs to
the GENERIC GXL schema and the GENERIC GXL
schema to the GXL metaschema [11]. Generating
valid GXL is important, because valid GXL files are
more likely to be accepted by available XML tools
than non-compliant files.

4 Experiments

In this section we describe the results of a fea-
sibility study of our g4re tool chain executed on a

workstation with an AMD Athlon64 3000+ proces-
sor, 1024 MB of PC3200 DDR RAM, and a 7200
RPM SATA hard drive, running the Slackware 10.0
operating system. One issue involved in using the
gcc GENERIC system for construction of an ASG is
the large size of the files required to store each trans-
lation unit (tu), and the large number of nodes in
the generated ASG. To reduce the size of the gener-
ated ASG, we exploit two optimizations: removing
extraneous library code and pruning the ASG. In
this section we describe some results of these opti-
mizations on a testsuite of application programs.

In the next section we describe five applications
that serve as a testsuite in the study. In Section
4.2 we describe the results of the first optimization,
the use of stub headers to remove extraneous code
from the gcc library header files. In Section 4.3 we
summarize the results of the second optimization:
pruning nodes from the constructed abstract seman-
tic graph (ASG). Finally, in Section 4.4 we compare
the time efficiency of our g4re tool chain to that of
XOGASTAN, as well as the space efficiency of the
GXL files created by each system.

4.1 The Testsuite

Table 1 lists the five applications, or test cases,
that form the testsuite that we use in our study,
together with important statistics about each test
case. The top row of the table lists the names that
we use to refer to each of the test cases: Doxygen,
FluxBox, FOX, Jikes and Keystone. Doxygen is a
documentation system for C++, C, and Java [31]
and FluxBox is a light-weight X11 window manage-
ment system built for speed and flexibility [8]. FOX
is a toolkit to facilitate development of graphical
user interfaces [30] and Jikes is a Java compiler sys-
tem [13]. The final test case is Keystone, a parser
and front-end for ISO C++ [15, 20]. The testsuite
covers a range of applications including a system
for documentation, libraries for graphical user in-
terfaces (GUI), and applications for language im-
plementation and analysis.

The remaining five rows of data in Table 1 de-
scribe important details of the test cases. The sec-
ond row of the table lists the version number and the
third row lists the number of source files in each of
the test cases. For example, the FOX toolkit is ver-
sion 1.4.6 and includes 474 source files, the largest
number of source files for any of the test cases. The
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Testsuite Doxygen FluxBox FOX Jikes Keystone
Version 1.3.9.1 0.9.12 1.4.6 1.22 0.2.3
Source Files 260 229 474 74 113
Translation Units 122 104 245 38 52
Size 7.76 MB 1.93 MB 6.06 MB 3.33 MB 1.38 MB
LOC (≈) 200 K 30 K 125 K 70 K 30 K

Table 1. Testsuite. This table lists the five testcases that we use in our study, together with
statistics about the test cases. Our statistics describe the number of source files, translation
units, size, and lines of code for each test case.

tu size Doxygen FluxBox FOX Jikes Keystone
STL 14 034 612 23 363 090 25 815 273 13 932 339 12 240 694

Lines Stub STL 14 034 612 15 988 900 25 815 273 11 036 707 7 452 885
Diff 0 7 374 190 0 2 895 632 4 787 809
STL 7 675 555 11 364 192 11 881 617 7 455 700 6 072 635

Nodes Stub STL 7 675 555 7 016 962 11 881 617 5 797 562 3 256 285
Diff 0 4 347 230 0 1 658 138 2 816 350

Table 2. Stub Headers The data illustrated in this table provides a comparison of the savings
accrued using stub headers rather than the full header files in the standard C ++ library.

fourth row of the table lists the number of transla-
tion units constituting each test case and the fifth
row lists the size or number of mega-bytes that each
test case occupies on disk. For example, the FOX
toolkit contains 245 translation units, the largest
number of translation units, and occupies 6.06 MB
of disk space. Finally, the last row of Table 1 lists
the number of lines of code in each test case, ex-
pressed in thousands of lines of code. For example,
the Doxygen documentation system contains 200 K
lines of code (LOC), the largest number in the test
suite.

4.2 Removing extraneous library code

One of the issues involved in using the GENERIC
system for construction of an ASG is the large size
of the files required to store each translation unit
(tu), and the large number of nodes and edges in the
generated ASG. To illustrate this size issue, consider
that a Hello World program generates a tu file of
ten megabytes (10.2 MB) and a lightweight email
client, Mozilla Thunderbird, generates a set of files
18 gigabytes in size. To reduce the number of nodes
and edges in the generated ASG, we exploit the two
optimizations described in Section 3.

The results in Table 2 summarize the savings ac-

crued using stub headers rather than the full header
files in the standard C++ library. The table is par-
titioned into three sections: the first partition is the
top row of data listing the testcases, the second par-
tition is the middle three rows comparing the num-
ber of lines in the full tu file with the number of
lines in a tu file when stub headers are used, and
the third partition is the final three rows of data
comparing the number of nodes in the ASG con-
structed when the full library files are used with the
number of nodes in the ASG constructed when stub
headers are used.

The second partition is illustrated in rows two,
three and four of Table 2, showing the number of
lines in the tu file when the full header files are used,
the number of lines in the tu file when stub head-
ers are used and the difference between these two
values, respectively. The first test case in the ta-
ble lists results for the Doxygen documentation sys-
tem, which does not use the standard C++ library.
With Doxygen, the tu file consumes 14 034 612 lines
of code when the full headers are used and the same
number of lines when the stub headers are used.

The second test case in Table 2 lists results for the
Fluxbox window manager, which uses the standard
C++ library. With Fluxbox, the tu files consume
23 363 090 lines when the full header files are used

7



Doxygen FluxBox FOX Jikes Keystone

Before 7 675 555 7 016 962 11 881 617 5 797 562 3 256 285
Nodes After 5 133 305 2 221 299 6 967 120 4 162 046 880 350

Diff 2 542 250 4 795 663 4 914 497 1 635 516 2 375 935

Before 13 350 444 12 745 573 22 785 781 10 425 650 5 769 231
Edges After 9 512 107 4 278 372 13 680 285 7 819 724 1 749 339

Diff 3 838 337 8 467 201 9 105 496 2 605 926 4 019 892

Figure 3. Summary of size reduction optimizations.

and 15 988 900 lines when the stub headers are used:
a savings of 32 percent. The fifth test case in the ta-
ble lists results for the Keystone parser, which makes
heavier use of the standard C++ library. With Key-
stone, the tu files consume 12 240 694 lines when the
full header files are used and 7 452 885 lines when the
stub headers are used: a savings of 40 percent.

Table 2 demonstrates that the savings accrued
using stub headers for the C++ standard library are
dependent on the source code characteristics of each
application. The first test case, Doxygen, does not
use the C++ standard library, but rather a combi-
nation of the Qt library and the C standard library.
For this reason, the use of stub headers yields no
size reduction for the tu files generated for Doxygen.
The third test case, FOX, uses only the C standard
library, and again we see no size reduction for its tu
files. The fourth test case, Jikes, utilizes the C++

standard library exclusively for input and output;
thus, the use of stub headers does yield a size reduc-
tion for this test case. Finally, test cases two and
five, FluxBox and Keystone, make extensive use of
the C++ standard library, including classes provid-
ing input, output, containers, and algorithms, and
as a result the use of stub headers yields substantial
size reductions in both cases.

4.3 Removing extraneous fields and nodes

In this section we describe the results of pruning
the ASG, the second size reduction optimization we
perform on the gcc generated ASG. It would be eas-
ier to simply “filter” non-essential nodes when read-
ing the tu files. However, non-essential nodes can
appear among essential nodes in the tu file. Thus,
the non-essential nodes must be “unlinked” from the
ASG, with essential nodes relinked so that the opti-
mized ASG remains a single connected graph.

The algorithm for field removal, Stage 1, in Sec-
tion 3.2.1, summarizes our actions in removing ex-
traneous fields from the ASG. These fields hold in-
ternal information that the gcc compiler uses to fa-
cilitate recognition or optimization of the input C++

program. Since they are not needed in analysis of
the reverse-engineered code, we remove them. After
removing these fields, there are nodes and subtrees
that are no longer connected to the ASG. The Stage
2 algorithm, in Section 3.2.2, summarizes the actions
taken on the remaining reachable graph to perform
further size optimization.

We observe that, as is the case with the use of
stub headers, the savings accrued using our two
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stage ASG pruning are application dependent, as de-
mostrated by Figure 3. For three of our test cases,
FluxBox, FOX, and Keystone, substantial savings
accrue using our pruning algorithm. These savings
result from both the heavy uses of the C and C++

standard libraries, and the large amount of library
code that is included but not referenced by user
code. For Doxygen we observe a moderate savings
accrued by the pruning algorithm. Doxygen uses
the Qt library and references a large portion of the
included code; therefore, there are savings, but to
a lesser degree. Finally, Jikes makes only light use
of the C++ standard library, and provides wrapper
classes for the functionality it uses. These wrapper
classes ensure that nearly all of the included library
code is referenced. Thus, the savings accrued for the
Jikes test case are the least significant for any of our
test cases.

The table and graph in Figure 3 summarize the
space saved using the algorithms in Stages 1 and
2. The last five columns of data in the table at the
top of Figure 3 list results for each of the five test
cases before and after these two stages. The rows
of data in the table can be partitioned into two sets
of data: the first three rows list optimization results
for nodes and the last three rows list optimization
results for edges removed from the generated ASG.

For example, the column of data labeled Doxy-
gen and the first row of data illustrates that the
number of nodes in the ASG before field and node
removal is 7 675 555; the second row of data shows
that the number of nodes after removal is 6 679 399,
for a total edge savings of 996 156. The third row of
data, labeled Diff, lists this total node savings. The
column of data labeled Doxygen and the fifth row il-
lustrate that the number of edges in the ASG before
field and node removal is 13 350 444 and the number
of nodes after removal is 12 623 626 for a total edge
savings of 726 818. The third row of data, labeled
Diff, lists this total edge savings.

The bar graph in Figure 3 consists of five pairs of
bars, graphically illustrating the total node savings
accrued from pruning the ASG. The first bar in the
pair is the number of nodes in the ASG before prun-
ing and the second bar in the pair is the number of
nodes in the ASG after pruning. For example, the
first pair of bars illustrates node savings for Doxy-
gen and the second set of bars illustrates node sav-
ings for FluxBox. The third set of bars illustrates
the node savings for FOX, the improvement in to-
tal number of nodes removed. The final two sets of

Figure 4. Space comparison.

Figure 5. Time comparison.

bars illustrate node savings for Jikes and Keystone,
respectively.

4.4 Comparison of gcc2gxl and TUgxl

In this section we present a comparison of our
g4re tool chain to the gcc2gxl subsystem of XOGAS-
TAN [3]. Specifically, we compare two properties of
the GXL output of each system: the time required
to generate the GXL, and the space occupied on disk
by the GXL. The two systems that we compare are
written in different languages: the g4re tool chain is
written in Python [32] and the XOGASTAN system
is written in Perl [33]. Version 2.3.4 of the Python
interpreter and version 5.8.4 of the Perl interpreter
were, respectively, used to execute the systems. We
obtained our results using tu files generated using
stub headers and the testsuite described in Table 1.

Figure 4 illustrates some space comparisons for
the GXL produced for each of the five test cases.
The figure consists of five pairs of bars, where the
first bar in the pair is the space occupied by the
GXL output of XOGASTAN and the second bar in
the pair is the space occupied by the GXL output
of g4re. The figure further illustrates that for the

9



FluxBox, FOX and Keystone test cases, the output
of g4re occupies considerably less space, and the av-
erage space improvement of g4re over XOGASTAN
is 53%. This improvement results entirely from our
removal of extraneous nodes and fields from the gen-
erated ASG, as described in Section 3.

Figure 5 illustrates some timing comparisons for
each of the five test cases. The figure consists of five
pairs of bars, where the first bar in the pair is the
time requirements for XOGASTAN and the second
bar in the pair is the time requirements for g4re.
Here we see that XOGASTAN is consistently faster
than g4re and is considerably faster for the Doxygen
and Jikes test cases.

5 Related Work

Antoniol, et al. present a toolset, XOGASTAN,
that is similar to our g4re tool chain [3]. XO-
GASTAN includes tools to convert a gcc tu file
to a GXL instance graph and to construct an in-
memory representation of the GXL instance graph
[12]. However, XOGASTAN does not include facil-
ity to reduce the ASG, resulting in large GXL in-
stance graphs with extraneous information that is
not useful to the user of the toolset.

Gschwind, et al. present TUAnalyzer, a sys-
tem that is complementary to g4re [9]. The fo-
cus of TUAnalyzer is on using a gcc tu file to per-
form analysis of template instantiations of func-
tions and classes. TUAnalyzer performs virtual
method resolution by using the ’base’ and ’binf’
attributes, along with the output provided by the
compiler switch -fdump-class-hierarchy, to re-
construct the virtual method table. However, the
functionality of the tool has a narrow scope and does
not include a representation of the gcc tu file for ex-
change with other reverse engineering tools.

The GCC.XML toolset also uses the gcc tu file
approach [2]. GCC.XML generates an XML rep-
resentation for class, function, and namespace dec-
larations, but does not propogate information such
as function and method bodies. As a result, many
common program representations, such as the call
graph or the ORD, cannot be constructed using
GCC.XML.

The CPPX tool relies on gcc for parsing and se-
mantic analysis [7]; however, it predates GENERIC
and is built directly into the gcc code base. CPPX

constructs an ASG that is compliant to the Datrix
ASG Schema [4] and can be serialized to GXL, TA,
or VCG format. The Datrix ASG Schema is more
general than the GENERIC schema to accomodate
C++ and other languages; however, this generality
makes it difficult to accurately represent many C++

language constructs.

gccXfront In previous work we developed an ap-
proach to annotate source code with syntactic tags
in XML based on modifying the bison parser gen-
erator tool [22]. We exploited this approach in de-
veloping the gccXfront tool, which harnessed the gcc
parser to tag C and C++ source code [10]. However,
since the migration of the gcc C++ compiler to re-
cursive descent technology, this latter approach is
no longer directly applicable.

6 Conclusions

In this paper, we have described g4re, our tool
chain that exploits GENERIC, an intermediate for-
mat incorporated into the gcc C++ compiler, to fa-
cilitate analysis of real C++ applications. Since tu
files can be prohibitively large, we also describe our
approach for reducing the size of the generated ASG
using transformations on the ASG. Using the trans-
formations, we were able to reduce the average size
of the generated ASGs for our test suite by 53%.

We have used g4re for modeling and visualizing
the dynamic interactions among objects in a C++

application [23]. Our visualizer uses UML graphs
and diagrams, typically used during the require-
ments and design phases of the life cycle, to expres-
sively visualize both the static and dynamic proper-
ties of the application under study. The visualizer is
especially useful for comprehension and debugging
of graphical applications such as games and GUIs.

As part of our ongoing research, we are using
g4re to build Object Relation Diagrams (ORD) [19],
and to compute a firewall for a modified class in the
ORD. We are also in the process of incorporating an
Application Programmers Interface (API) into g4re
to provide accessibility to its functionality while re-
lieving the user of the burden of understanding the
intricacies of the GENERIC schema or the generated
ASG.
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