
Accepted for The IASTED International Conference on Software Engineering
Innsbruck, Austria, February 15-17, 2005.

1

A Coverage Analysis of Java Benchmark Suites

Stephen Brown,́Aine Mitchell and James F. Power

Department of Computer Science,
National University of Ireland,
Maynooth, Co. Kildare, Ireland.

The IASTED International Conference on Software Engineering,
Innsbruck, Austria, February 15-17, 2005

Note: This is a slightly extended version of the paper that appears in The IASTED International Confer-
ence on Software Engineering, 2005.

Accepted for The IASTED International Conference on Software Engineering
Innsbruck, Austria, February 15-17, 2005.

1

A COVERAGE ANALYSIS OF JAVA BENCHMARK SUITES

Stephen Brown,́Aine Mitchell and James F. Power∗

Department of Computer Science,
National University of Ireland,

Maynooth, Co. Kildare, Ireland.

ABSTRACT
The Java programming language provides an almost ideal
environment for both static and dynamic analysis, being
easy to parse, and supporting a standardised, easily-profiled
virtual environment.

In this paper we study the relationship between results
obtainable from static and dynamic analysis of Java pro-
grams, and in particular the difficulties of correlating static
and dynamic results. As a foundation for this study, we fo-
cus on various criteria related to run-time code coverage,
as commonly used in test suite analysis.

We have implemented a dynamic coverage analysis
tool for Java programs, and we use it to evaluate several
standard Java benchmark suites using line, instruction and
branch coverage criteria. We present data indicating a con-
siderable variance in static and dynamic analysis results
between these suites, and even between programs in these
suites.

KEY WORDS
Benchmarking, software testing, dynamic analysis.

1 Introduction and Motivation

In this paper we provide a foundation for the study of the
relationship between results obtainable from static and dy-
namic analysis of Java programs. This paper is motivated
by the following observations:

1. The Java programming language and its associated
virtual machine provides a fertile environment for the
static and dynamic analysis of object-oriented pro-
grams.

2. A significant body of research already exists on the
analysis and manipulation of Java code, and a number
of papers refer to both static and dynamic analysis

3. Fundamental to relating static and dynamic analysis
is a knowledge of the degree to which the analysed
source code corresponds to the code that is actually
executed, yet there is little existing research that com-
pares results obtained from static and dynamic analy-
ses.

In this paper we seek to address this apparent gap in
the literature and in research by examining Java programs

∗Contact author: James F. Power<jpower@cs.may.ie>

from a static and dynamic perspective, and using coverage
criteria to provide a framework for comparison. We posit
that poor coverage results may hinder the comparison of
static and dynamic analyses and should, in any case, be a
measured, recorded factor in such a comparison.

The remainder of this paper is structured as follows.
Section 2 discusses the background to our work, and seeks
to connect static analysis metrics with dynamic coverage
analysis. Sections 3 and 4 use this connection to evaluate
some common benchmark suites for Java. Section 5 sum-
marises these results and concludes the paper.

2 Background and Related Work

A significant amount of the research on the analysis and
manipulation of Java programs has sought to combine static
and dynamic data, or to manipulate the dynamic behaviour
of Java programs through static code transformations. Re-
cent examples from the last year alone include work on
conflict analysis [1], super-instruction selection [2], static
and dynamic slicing [3], and, of course, program optimisa-
tion [4].

Recent work by the Sable group [5] has sought to
record the results of running various programs from dif-
ferent benchmark suites. Many of the measurements they
record, such as program size, polymorphism and memory
usage are of interest to the Java performance community.
However, the title of their work, “Dynamic Metrics” seems
to draw a parallel with the corresponding field ofstaticsoft-
ware metrics.

Much of the research that performs both static and
dynamic analysis of Java code concentrates on a particular
aspect of a program’s behaviour. However, we suggest that
any such comparison should be viewed in the context of
someoverall perspective of the relationship between the
static and dynamic data. To this end, this paper analyses
a series of Java programs using four basic measurements,
lines of code, cyclomatic complexity, instruction coverage
and branch coverage. These measurements are summarised
in Figure 1.

To quantify the static aspects of a program we have
used the two most basic metrics available. The lines of
code (LOC) metric is frequently used as a general guide
to the size of a program. It is just as frequently criticised
as being subject to many arbitrary variations depending on
the language used, source code layout etc. Yet despite its

Accepted for The IASTED International Conference on Software Engineering
Innsbruck, Austria, February 15-17, 2005.

1

Static Dynamic

Lines of Code Line/Instruction
(LOC) Coverage
McCabe Cyclomatic Branch/Edge
Complexity Coverage

Figure 1. Two basic static metrics and their dynamic equiv-
alents.

many limitations it is still the universal first step in program
measurement. The McCabe cyclomatic complexity of a
program quantifies the number of decisions in the source
code, and is often used as a rough guide to gauge the effort
required for testing or maintenance.

Many other more complex or more specific metrics
exist [6]. The purpose of choosing such basic measures
is that their use is commonly accepted, and is not usually
deemed to be biased toward any particular area of applica-
tion. In Figure 1 we also identify twodynamiccounterparts
to these metrics, drawn from the domain of software test-
ing. These are discussed in the following subsection.

2.1 The Role of Coverage Criteria

Dynamic coverage measures are typically used in the field
of software testing [7, 8, 9, 10] as an estimate of the effec-
tiveness of a test suite. The basis of software testing is that
software functionality is characterised by its execution be-
haviour. Clearly, improved test coverage leads to improved
fault coverage and improved software reliability [11]. From
our perspective, higher execution coverage by a program in
a benchmark suite (measured as test coverage) means that
execution of the program provides a better characterisation
of that program’s behaviour.

There are a number of established analyses for de-
termining test coverage in a program from a control-flow
viewpoint. These include statement coverage, decision
coverage, condition coverage, decision/condition coverage,
multiple condition coverage [7], and modified condition/-
decision coverage (MC/DC) [12]. As is the case with some
static software metrics, there can often be subtle differences
in the definition of these coverage measures. However,
each of them seeks to measure, typically as a percentage,
the degree to which a certain aspect of the program source
code has been exercised at run-time.

The most fundamental form of coverage, statement
coverage, is achieved if every source language statement in
the program is executed at least once. This can be measured
at run time by instrumenting every basic block, or vertex in
the control-flow graph [13]. This relates directly to the size
of the program, and a low statement coverage implies that
large sections of the program are not being exercised during
the dynamic analysis.

The other coverage analyses (decision coverage, con-
dition coverage, multiple decision coverage, and deci-

sion/condition coverage) can be measured by instrument-
ing every branch in the source code, corresponding to trac-
ing edges in the control flow graph [13]. It is important to
differentiate between different branches to the same desti-
nation in order to measure full edge coverage of the predi-
cate graphs [12]. This measurement is different from pro-
filing and tracing as defined in [13] in that neither the se-
quencing, nor the count of edge executions is relevant; for
measuring control-based test coverage, just a boolean flag
indicating execution of each edge is sufficient.

For many programming languages, attempts to com-
pare run-time behaviour to static data is complicated by
the difference between the compiled code and the origi-
nal source code. With Java, however, source code is com-
piled into bytecode, which retains many of the features
of the original code. In particular, the simplicity of byte-
code means that we can unambiguously identify the quan-
tities being measured. Using bytecode-level measures may
sometimes result from necessity: it is not always the case
that the original Java source code is made available for
analysis.

Thus, in the remainder of this paper we focus on the
static manipulation, and the static and dynamic analysis of
Java programs at the bytecode level. In particular, we use
the bytecode instruction as our unit of measurement for
LOC and line coverage. Similarly we equate the condi-
tional jump instruction with predicates or decision-points
in the program, and use these as a basis for calculating the
cyclomatic complexity and the run-time decision coverage.
Working at the bytecode level also considerably facilitates
the identification of edges in the control-flow graph. To
avoid confusion with the numerous methods of calculating
decision coverage mentioned above, we call thisedge cov-
erage.

At run-time, edge coverage at the bytecode level lies
between condition/decision coverage and modified condi-
tion/decision coverage, at the source code level. Short-
circuit evaluation of multiple conditions in boolean expres-
sions limits the number of possible edges (at the object
level) to 2N (short-circuit operator extensions to MC/DC).
But impossible branches, due to coupled conditions, are not
easily identified at the bytecode level. This form of cover-
age is discussed as “object code coverage” in [12].

Deciding what percentage constitutes an acceptable
level of coverage is a necessarily empirical task, but es-
timates tend toward the highest quartile. Piwowarski et
al. [14] deem 70% sufficient for statement coverage, with
anything under 50% regarded as generally insufficient.
Malaiya et al. [15] note that 80% branch coverage “often
produces acceptable results”, whereas Grady [16] consid-
ers 85% branch coverage to be an appropriate figure for en-
suring good characterisation. Devanbu et al. [17] suggest
a range of 80%-90% branch coverage has a high likelihood
of exposing software faults. It is not obvious however that
all these estimates are based on objective quantitative data,
nor that they are all independent.

Accepted for The IASTED International Conference on Software Engineering
Innsbruck, Austria, February 15-17, 2005.

1

S1. count = 0;
S2. n = fileptr.read();
P3. while(fileptr.ready()) {
P4. if (n>=0)
S5. return(error);

else {
S6. numarray[count] = n;
S7. count++;

}
S8. n = fileptr.read();

}
S9. avg = calcavg(numarray,count);
S10. return(avg);

P4

S5 S6

S7

S8

S9

S10 exit

T F

indicates probe position

S1

S2

P3

entry

F

T

Figure 2. A piece of Java code, along with the corresponding control-flow graph, indicating the location of the edge-coverage
probes.

3 Implementation Details

As has been previously noted [18], the Java runtime system
provides an ideal environment for dynamic analysis. Typ-
ically, such analysis can be conducted at three main levels
of granularity:

1. Instrumenting a JVM: There are several open-source
implementations of the JVM available, such as Kaffe,
Jalapẽno or the Sable VM, and access to their source
code means that all aspects of a running Java program
can be observed.

2. Using the Java Virtual Machine Debug Interface
(JVMDI): Version 1.4 and later of the Java SDK sup-
port a debugging interface that provides event notifi-
cation for low-level JVM operations. A trace program
that handles these events can thus record information
on the execution of the Java program.

3. Instrumenting the bytecode: This involves statically
manipulating the bytecode to insert probes, or other
tracing mechanisms, that record information at run-
time.

The last approach, involving bytecode manipulation,
provides the simplest method of dynamic analysis since it
does not require low-level knowledge of JVM internals,
and imposes little overhead on the running program.

In what follows we have run the programs from a
number of benchmark suites and collected line, instruc-
tion and edge coverage data. The data was collected by

instrumenting the programs at the bytecode level, insert-
ing probes to collect relevant events. The basic framework
used the Byte Code Engineering Library [19], along with
the Gretel Residual Test Coverage Tool [20] to perform line
and instruction coverage.

The Gretel tool statically determines the basic blocks
in a Java class file and inserts a probe consisting of small se-
quence of bytecode instructions at each basic block. When-
ever the basic block is executed, the probe code records a
“hit” as a simple boolean value. The number of bytecode
instructions in the basic block can then be used to calculate
instruction coverage. Furthermore, if the class file contains
a line number table, mapping bytecode instructions to line
numbers in the original Java program, line coverage can
also be deduced from this data. We note that line coverage
corresponds to lines of code in the Java source program,
and that this may not correspond to statement coverage.

3.1 Implementing Edge Coverage

We have written a complimentary tool to Gretel which ma-
nipulates bytecode, inserting probes to calculate edge cov-
erage. Each conditional jump in the bytecode is associ-
ated with a probe-pair, recording the true and false eval-
uations of the conditional. The probe to record the false
edge is simply inserted immediately after the jump instruc-
tion, while the probe to record the true edge is inserted at
the target of the jump instruction. The probe at the jump
target is preceded by a goto instruction to ensure that it is

Accepted for The IASTED International Conference on Software Engineering
Innsbruck, Austria, February 15-17, 2005.

1

not executed under any other circumstances, such as a “fall-
through” from a source-levelif or switch statement. We
note that unconditional jumps are not instrumented, since
they do not correspond to a predicate in the source code.

We note that this approach does not correspond ex-
actly to counting conditions in the original Java code. In
particular, short-circuit boolean operators (&&and||) can
cause an early exit from evaluation, represented by a con-
ditional jump in the bytecode. Thus a boolean expression
of the form(a && b) would count for two possibilities
in the original Java code, but counts for four possibilities in
our calculation.

Our implementation of edge coverage also deals with
loops, since these are implemented by conditional jumps in
the bytecode. For each loop we register two possibilities
depending on whether it is executed zero or more times
for a while and for loop, or one or more times for a
do-while loop. Such calculations could be affected by
intensive bytecode optimisations, where conditional code
might be moved or merged. However, most Java compilers
carry out very little such optimisation by default [21].

To illustrate the functionality of our edge-coverage
tool, Figure 2 shows an example of some Java code,
adapted from an example by Rothermel and Harrold [22].
Here, probes are inserted to record the outcomes of both
predicates,P3 andP4, so that running the program will
produce an edge coverage as a fraction of4. This example
also highlights the difference in granularity between state-
ment and edge coverage. For example, the two simplest
paths through this program are:

Path 1: entry → S1 → S2 → P3 → S9 → S10 → exit
Path 2: entry → S1 → S2 → P3 → P4 → S5 → exit

Both paths 1 and 2 correspond to 50% line cover-
age (counting the predicates), but edge coverage can dis-
tinguish the cases, yielding 25% for path 1 and 50% for
path 2.

The McCabe cyclomatic complexity of a program can
be defined as the number of decisions occurring statically
in the program code, plus one [6]. Since each probe-pair we
insert is associated with a single decision point, the number
of probe-pairs occurring statically in the code provides a
measure of the cyclomatic complexity. Specifically, if a
program has a McCabe cyclomatic complexity value ofm,
the “edge count” (i.e. number of probes) recorded below
corresponds to(m − 1) ∗ 2, since we record two possible
outcomes for each decision.

4 Coverage Results

In this section we examine several benchmark suites for
Java programs, and detail instruction and branch counts,
along with the associated coverage data.

The instruction counts reported below correspond to
size.appLoad.value of the Sable group’s dynamic
metrics [23], and our coverage percentage corresponds
to size.appRun.value expressed as a percentage of

size.appLoad.value . Despite the fact that edge cov-
erage is regarded as one of the most fundamental coverage
criteria, we are not aware of any work to date that has ap-
plied them to Java benchmark suites.

4.1 Experimental Environment

In this section we report results from a variety of Java pro-
grams, taken from a number of popular benchmark suites.
We use version 1.0305 of the SPEC JVM98 benchmark
suite [24], version 3.0 of the CaffeineMark suite [25], and
section 3 of version 2.0 of the Java Grande benchmark suite
[26]. There appears to be just one version of the JOlden
suite, dated March 6, 2003 [27].

All the programs except those in the SPEC and Caf-
feineMark suites were compiled using thejavac compiler
from Sun’s SDK version 1.4.2, and all benchmarks were
run using the client virtual machine from this SDK. The
programs in the SPEC and CaffeineMark suites are dis-
tributed in class file format, and were not recompiled or
otherwise modified. We note (in accordance with the li-
cence) that the SPEC programs were run individually, and
thus none of these results are comparable with the standard
SPEC JVM98 metric. All benchmark suites include not
just the programs themselves, but a test harness to ensure
that results from different executions are comparable.

In all cases, only the bytecode corresponding to the
benchmark programs was instrumented, and thus the re-
sults presented below do not include bytecode instructions
executed in the Java class library. While excluding the class
libraries may not always be appropriate for performance-
based analysis, it is clearly a sensible approach from a cov-
erage perspective.

4.2 Results for Application Programs

The instruction and edge coverage results for the programs
in the SPEC JVM98 benchmark suite are given in Table
1. For each program we show the instruction count, cor-
responding to the number of bytecode instructions occur-
ring statically in the class file, and the edge count, which is
twice the number of conditional jumps occurring statically
in the bytecode. We do not give line number coverage de-
tails for the SPEC suite since line number tables were not
available for four of the programs, and may be unreliable
for the others. We note that for most of the programs in
the other suites, instruction coverage seems to approximate
line coverage fairly well.

The columns labelled 1, 10 and 100 correspond to the
instruction and edge coverage percentages when the SPEC
programs are run at sizes 1, 10 and 100. Size 100 is the
standard, reportable size for the benchmarks, and the other
sizes represent 1% and 10% of this size. As we can see
from Table 1, none of the SPEC programs have complete
instruction coverage and three programs,jess , db and
javac have particularly low coverage. One consequence

Accepted for The IASTED International Conference on Software Engineering
Innsbruck, Austria, February 15-17, 2005.

1

spec98 Instr % Instr Coverage Edge % Edge Coverage
Program Count size 1 size 10 size 100 Count size 1 size 10 size 100
201 compress 2045 63 63 64 172 72 72 73
202 jess 19309 35 34 36 1836 36 36 39
205 raytrace 5839 80 80 81 446 76 77 80
209 db 1867 41 39 36 215 47 47 58
213 javac 43614 16 42 45 5535 14 48 51
222 mpegaudio 45760 92 93 93 683 60 62 61
228 jack 18480 75 75 75 1545 67 67 67

Table 1. Instruction and edge coverage percentages for the SPEC JVM98 benchmark suite, run at sizes 1, 10 and 100.

Grande Line % Line Coverage Instr % Instr Coverage Edge % Edge Coverage
Program Count size A size B Count size A size B Count size A size B
Euler 490 85 85 9601 88 88 148 90 90
MolDyn 198 98 98 2003 97 97 90 98 98
MonteCarlo 675 55 55 4070 53 53 154 36 36
RayTracer 277 89 89 2424 81 81 72 91 91
Search 181 79 79 1754 81 81 164 78 78

Table 2. Line, instruction and edge coverage percentages for section 3 of the Java Grande benchmark suite, run at sizes A and
B.

CaffeineMark Instr % Instr Edge % Edge
Program Count Coverage Count Coverage
Dialog 310 99 4 75
Float 34 94 12 91
Graphics 87 97 8 87
Image 382 71 16 68
Logic 75 70 108 61
Loop 107 98 10 90
Method 68 89 12 83
Sieve 50 96 16 87
String 85 97 6 83

Table 3. Instruction and edge coverage percentages for the CaffeineMark benchmark suite, run individually, at the standard
size.

JOlden Line % Line Instr % Instr Edge % Edge
Program Count Coverage Count Coverage Count Coverage
bh 278 78 1978 73 160 69
bisort 100 79 624 84 60 70
em3d 115 74 878 71 80 68
health 157 85 1082 88 106 79
mst 120 76 749 81 74 63
perimeter 129 87 871 81 116 83
power 169 87 2213 91 96 81
treeadd 54 38 378 58 32 59
tsp 154 87 988 86 79 78
voronoi 262 60 1840 58 104 50

Table 4. Line, instruction and edge coverage percentages for the JOlden benchmark suite, run with the default parameters.

Accepted for The IASTED International Conference on Software Engineering
Innsbruck, Austria, February 15-17, 2005.

1

of such low instruction coverage is that it will be difficult
to correlate the results of static and dynamic analyses, since
such a high proportion of the static code is not involved in
the execution.

The results for edge coverage in Table 1 are some-
what poorer than those for line coverage, with only one pro-
gram,raytrace , even making it as high as 80%. Thus,
by Grady’s criteria mentioned in Section 2.1 above, none
of these programs would offer satisfactory coverage from a
testing standpoint.

One notable feature of the SPEC JVM98 coverage
data in Table 1 is the relatively small difference between the
different run sizes. For all programs exceptjavac there
is virtually no difference in coverage between the run sizes
suggesting that, at least for some analyses, the overhead of
running the benchmarks at size 100 could be avoided. In-
deed, for thedb program the instruction coverage actually
decreases for the larger input size, falling from 41% to 36%
as we move from size 1 to size 100. The change in this case
is due to a help method containing 112 instructions which
is called for sizes 1 and 10, but not for size 100.

Table 2 gives the line, instruction and edge coverage
for the five applications in section 3 of the Java Grande se-
quential benchmark suite. Since the Grande programs are
distributed in source code format, line numbers are avail-
able, but we note that in any case, line coverage corre-
sponds closely with instruction coverage. Overall, the line
and instruction coverage for the Java Grande programs are
a little better than for the SPEC programs, being above
80% for all except theMonteCarlo program. As with
the SPEC suite, using the smaller versions with size A in-
puts makes little relative difference to the coverage results
for the programs.

4.3 Results for Smaller Programs

The programs in the SPEC JVM98 and Java Grande sec-
tion 3 suites are intended to model “real world” applica-
tions, and consist of full-fledged programs. However, a
number of benchmark suites are designed to model specific
aspects of Java programs, or specific types of operations.
In this subsection we analyse two such benchmark suites:
CaffeineMark, a set of micro-benchmarks for Java, and
JOlden, a suite of programs intended to model memory-
intensive programs.

Table 3 presents the instruction and edge coverage for
the programs in the CaffeineMark suite. Since these pro-
grams were distributed as class files we do not include line
numbers here. As can be seen from this table, these pro-
grams present a markedly different coverage profile to the
SPEC and Java Grande suites, with instruction coverage
at or over 89% for seven of the nine programs. As before,
edge coverage is lower than instruction coverage, but is still
over 85% for four programs, and at 83% for two others.
Clearly, the simple, single-task design of these programs
contributes to their higher coverage results.

Table 4 presents the line, instruction and edge cover-
age data for the programs in the JOlden benchmark suite.
Again, these results appear much better overall then ei-
ther the SPEC or Java Grande suites, with all but three
of the programs having line coverage over 80%. We note,
however, that the coverage results are not as good for the
programs in the JOlden suite as for the CaffeineMark pro-
grams. This can be attributed to their increased complexity,
measured in terms of the edge count. Using the relationship
with the cyclomatic complexity defined above, we note that
the cyclomatic complexity of the JOlden programs ranges
from 17 (treeadd) to 81 (bh), whereas all but one of the
CaffeineMark programs have a cyclomatic complexity un-
der 9.

4.4 Going beyond the standard suites

As well as using the standard benchmark suites, many re-
searchers use mixtures or subsets of these suites and, oc-
casionally, augment these suites with programs that better
reflect the problems encountered in their work. An example
of this latter approach is the work by Ishizaki et al. [28],
and Suganuma et al. [29] which uses the programs from
the SPEC suite, but augments these with a number of more
graphically-based programs of their own choosing.

We stress that we do not seek to criticise either of
these works, and that we are addressing the use of these
programs from a different perspective than the original au-
thors. In addition, once standard benchmark programs are
not being used, it becomes difficult to reproduce the exact
environment of an experiment. Thus, the results we report
in the remainder of this subsection should be considered
to be indicative, and should not be directly correlated with
the results reported in either [28] or [29]. In particular, the
versions of the software used here are typically later than
those cited in [28] and [29].

In Table 5 we list four of the programs used in both
papers, which we have assessed using line, instruction and
edge coverage criteria. The first two columns are the de-
scription gleaned from [28] and [29], the remaining col-
umn lists the version information for the programs used in
our trial. Two of the programs are fully-fledged applica-
tions, whereas two are demo programs from the standard
Java SDK distribution.

Table 5 shows the coverage results for running the
four programs under these conditions. It is notable that the
coverage results for all programs are relatively poor, with
the edge coverage in particular falling considerably behind
the benchmark suites. Also, as might be expected, the two
demo programs,Java2D and SwingSet are exercised
more fully then eitherICE or Jfig .

Most of the poor coverage for the two applications can
be accounted for by the minimal tasks performed; indeed,
the ICE application only exercised 276 of 896 classes,
whereasJfig only exercised 58 out its 233 classes. When
the non-used classes are excluded, theICE instruction us-
age increases to 38%, and that forJfig increases to 34%,

Accepted for The IASTED International Conference on Software Engineering
Innsbruck, Austria, February 15-17, 2005.

1

Program Description Version
ICE Browser Simple Internet browser. Run the application and open a web page version 54 3 1
Java2D 2D graphics library. Run the demo program as an application with

options -runs=1, -delay=0
From the Java 2 SDK, version 1.4.2

Jfig A Java version of the xfig drawing program. Run the application and
open a document

version 2.20

SwingSet GUI component. Run the demo program as an application to bring up
the initial window

From the Java 2 SDK, version 1.4.2

Line % Line Instr % Instr Edge % Edge
Program Count Covg. Count Covg. Count Covg.
ICE 34576 17 310029 20 50381 17
Java2D 4510 64 43544 73 2309 44
Jfig 19809 11 189873 13 8903 9
SwingSet 2904 67 30173 76 697 24

Table 5. Some of the programs used by Ishizaki et al., and their running conditions, along with line, instruction and edge
coverage percentages.

which nonetheless is still a long way from satisfactory cov-
erage.

5 Conclusion

In this paper we have noted the importance of comparing
static and dynamic analyses of Java programs. In order to
provide the foundation for such analysis, we have proposed
that common static metrics should be evaluated for cover-
age in a dynamic context. We have presented the results of
an analysis of several Java benchmark suites, showing the
relationship between static and dynamic data.

The results presented in this paper lead to the follow-
ing conclusions:

• The larger suites designed to measure “real-world” ap-
plications had poor instruction and edge coverage, so
we conclude that static analysis will prove a poor pre-
dictor of dynamic behaviour.

• The suites with smaller programs had better cover-
age, but this probably resulted from much lower com-
plexity, rendering the programs less suitable for wider
analyses.

• The ad hoc addition of programs to benchmark suites
is a perilous activity, and could benefit from a full
analysis of the relevant metrics.

This paper is a first step in comparing static and dy-
namic analyses using coverage criteria. Some experimental
results have indicated that testing to achieve branch cover-
age performs more poorly than testing to achieve data-flow
coverage [30], [31]. It is likely that data-flow or path cover-
age techniques would provide a better indicator of the cov-
erage provided by the execution of Java benchmark suites.
We believe it important that existing and future benchmark
suites should be evaluated using not just the usual static

metrics, but also using the fullest possible range of cover-
age criteria.

In a recent paper, Sim et al. issued a challenge to
the software engineering community to define benchmarks
for use in their field [32] . They cited the importance of
benchmark suites in other areas of computer science, and
identified the importance of benchmark suites in achieving
consensus on research goals and allowing for more a rigor-
ous examination of research results. We hope that the work
presented in this paper can complement any such move-
ment toward the increased use of benchmark programs.

The Java programming language provides an appar-
ently fertile environment for conducting dynamic analysis.
Java programs can be readily analysed statically or dynam-
ically, and at various levels of granularity. The availabil-
ity of numerous Java programs, including many benchmark
suites, seems to furnish an ideal basis for dynamic analysis.

This paper outlines and demonstrates a basis for mak-
ing a comparison between static and dynamic analyses,
through recording and comparing some base line measure-
ments. The results in this paper suggest that caution must
be exercised in the choice of a benchmark suite, or of pro-
grams from a benchmark suite, given the wide variance
among the coverage results.

6 Acknowledgements

This work is partly funded by the Embark initiative, oper-
ated by the Irish Research Council for Science, Engineer-
ing and Technology (IRCSET).

References

[1] Christoph von Praun and Thomas R. Gross. Static con-
flict analysis for multi-threaded object-oriented programs.
In Conference on Programming Language Design and Im-

Accepted for The IASTED International Conference on Software Engineering
Innsbruck, Austria, February 15-17, 2005.

1

plementation, pages 115–128, San Diego, California, USA,
June 9-11 2003.

[2] M. Anton Ertl and David Gregg. Optimizing indirect branch
prediction accuracy in virtual machine interpreters. InCon-
ference on Programming Language Design and Implemen-
tation, pages 278–288, San Diego, California, USA, June
9-11 2003.

[3] F. Umemori, K. Konda, R. Yokomori, and K. Inoue. De-
sign and implementation of bytecode-based java slicing sys-
tem. InThird IEEE International Workshop on Source Code
Analysis and Manipulation, pages 108– 117, Amsterdam,
The Netherlands, Sept. 26-27 2003.

[4] Kazuaki Ishizaki, Mikio Takeuchi, Kiyokuni Kawachiya,
Toshio Suganuma, Osamu Gohda, Tatsushi Inagaki, Akira
Koseki, Kazunori Ogata, Motohiro Kawahito, Toshiaki Ya-
sue, Takeshi Ogasawara, Tamiya Onodera, Hideaki Ko-
matsu, and Toshio Nakatani. Effectiveness of cross-platform
optimizations for a java just-in-time compiler. InConference
on Object-Oriented Programming Systems, Languages and
Applications, pages 187–204, Anaheim, CA, USA, October
26-30 2003.

[5] B. Dufour, K. Driesen, L. Hendren, and C. Verbrugge.
Dynamic metrics for Java. InConference on Object-
Oriented Programming, Systems, Languages, and Applica-
tions, pages 149–168, 2003.

[6] N.E. Fenton and S.L. Pfleeger.Software Metrics: A Rigor-
ous and Practical Approach. International Thomson Com-
puter Press, 1996.

[7] G.J. Myers. The Art of Software Testing. John Wiley &
Sons, February 1979.

[8] M. Roper.Software Testing. McGraw Hill, September 1994.

[9] R. Binder. Testing Object Oriented Systems: Models, Pat-
terns and Tools. Addison Wesley, October 1999.

[10] J.D. McGregor and D.A. Sykes.A Practical Guide to
Testing Object-oriented Software. Addison Wesley, March
2001.

[11] Y. K. Malaiya, M. N. Li, J. M. Bieman, and R. Karcich.
Software reliability growth with test coverage.IEEE Trans-
actions on Reliability, 51(4):420–426, December 2002.

[12] J. J. Chilenski and S. P. Miller. Applicability of modified
condition/decision coverage to software testing.Software
Engineering Journal, 9(5):193–200, September 1994.

[13] T. Ball and J. R. Larus. Optimally profiling and tracing pro-
grams.ACM Transactions on Programming Languages and
Systems, 16(4):1319–1360, July 1994.

[14] P. Piwowarski, M. Ohba, and J. Caruso. Coverage measure-
ment experience during function test. In15th International
Conference on Software Engineering, pages 287–301, Bal-
timore, Maryland, USA, May 17-21 1997.

[15] Y. Malaiya, N. Li, J. Bieman, R. Karcich, and B. Skibbe.
Software test coverage and reliability. Technical Report CS-
96-128, Colorado State University, 1996.

[16] R. E. Grady. Practical Software Metrics for Project Man-
agement and Process improvement. Prentice-Hall, 1992.

[17] P.T. Devanbu and S.G. Stubblebine. Cryptographic verifica-
tion of test coverage claims.IEEE Transactions on Software
Engineering, 26(2):178–192, February 2000.

[18] Claire Knight. Smell the coffee! uncovering Java analysis
issues. InInternational Workshop on Source Code Analysis

and Manipulation, pages 161 – 167, Florence, Italy, Novem-
ber 10 2001.

[19] M. Dahm. Byte code engineering with the BCEL API. Tech-
nical Report B-17-98, Institut für Informatik, Freie Univer-
sität Berlin, April 3 2001.

[20] C. Howells. Gretel: An open-source residual test cover-
age tool, June 2002. http://www.cs.uoregon.edu/research/-
perpetual/Software/Gretel/.

[21] D. Gregg, J.F. Power, and J. Waldron. Platform independent
dynamic Java virtual machine analysis: the Java Grande
Forum benchmark suite.Concurrency and Computation:
Practice and Experience, 15(3-5):459–484, March 2003.

[22] Gregg Rothermel and Mary Jean Harrold. A safe, effi-
cient regression test selection technique.ACM Transactions
on Software Engineering and Methodology, 6(2):173–210,
April 1997.

[23] Sable Research Group, McGill University.
Dynamic software metrics, April 24 2003.
http://www.sable.mcgill.ca/metrics/.

[24] Standard Performance Evaluation Corporation. SPEC re-
leases SPEC JVM98, first industry-standard benchmark for
measuring Java virtual machine performance. Press Release,
August 19 1998. http://www.specbench.org/osg/jvm98/-
press.html.

[25] Pendragon Software Corporation. Caffeinemark 3.0, May
13 1999. http://www.benchmarkhq.ru/cm30/info.html.

[26] J.M. Bull, L.A. Smith, L. Pottage, and R. Freeman. Bench-
marking Java against C and Fortran for scientific applica-
tions. In ACM Java Grande / ISCOPE Conference, pages
97 – 105, Stanford University, California, USA, June 2-4
2001.

[27] B. Cahoon and K.S. McKinley. Data flow analysis for soft-
ware prefetching linked data structures in Java. InInterna-
tional Conference on Parallel Architectures and Compila-
tion Techniques, pages 280–291, Barcelona Spain, Septem-
ber 8-12 2001.

[28] K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu, and
T. Nakatani. A study of devirtualization techniques for a
Java Just-In-Time compiler. InObject Oriented Program-
ming Systems Languages and Applications, pages 294 –
310, Minneapolis, Minnesota, USA, October 15-19 2000.

[29] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and
T. Nakatani. A dynamic optimization framework for a Java
just-in-time compiler. InConference on Object-Oriented
Programming Systems, Languages and Applications, pages
180–194, Tampa, Florida, USA, October 14-18 2001.

[30] P. G. Frankl and S. N. Weiss. An experimental comparison
of the effectiveness of branch tetsing and data flow testing.
IEEE Transactions on Software Engineering, 19(8):774–
787, August 1993.

[31] M. Hutchins, T. Goradia, and T. Ostrand. Experiments on
the effectiveness of dataflow- and controlflow-based test ad-
equacy criteria. In16th International Conference on Soft-
ware Engineering, pages 191–200, Sorrento, Italy, May 16-
21 1994.

[32] S.E. Sim, S.M. Easterbrook, and R.C. Holt. Using bench-
marking to advance research: A challenge to software engi-
neering. In25th International Conference on Software En-
gineering, pages 74–83, Portland, Oregon, USA, May 3-10
2003.

