
Accepted for the 40th International Conference on Technology of Object-Oriented Languages and Systems
Sydney, Australia, February 18-21, 2002, pp. 13-21

1

Reveal: A Tool to
Reverse Engineer Class Diagrams

Sarah Matzko, Peter J. Clarke,
Tanton H. Gibbs, Brian A. Malloy

Computer Science Department
Clemson University
Clemson, SC 29634

{smatzko,peterc}@cs.clemson.edu
{thgibbs,malloy}@cs.clemson.edu

James F. Power and Rosemary Monahan
Department of Computer Science

National University of Ireland
Maynooth, Co. Kildare

Ireland
james.power@may.ie

rosemary@cs.may.ie

Abstract

Many systems are constructed without the use of
modeling and visualization artifacts, due to con-
straints imposed by deadlines or a shortage of man-
power. Nevertheless, such systems might profit from
the visualization provided by diagrams to facilitate
maintenance of the constructed system. In this pa-
per, we present a tool, Reveal, to reverse engineer a
class diagram from the C + + source code representa-
tion of the software. In Reveal, we remain faithful to
the UML standard definition of a class diagram wher-
ever possible. However, to accommodate the vagaries
of the C + + language, we offer some extensions to
the standard notation to include representations for
namespaces, stand-alone functions and friend func-
tions. We compare our representation to three other
tools that reverse-engineer class diagrams, for both
compliance to the UML standard and for their abil-
ity to faithfully represent the software system under
study.
Keywords Reverse Engineering, Unified Modeling
Language, UML, Class Diagram, Automated Con-
struction, Object-Oriented Programming

1 Introduction

The deliverable produced by a quality development
process is excellent software that satisfies the evolv-
ing needs of its users. One approach to the production
of such software requires the construction of models
to visualize and control the systems evolving archi-
tecture, requirements, structure and behavior. The
Unified Modeling Language (UML) has rapidly be-
come the language of choice for developers who wish
to visualize and model the system under development.
The UML includes use cases to facilitate visualization
of user requirements, class diagrams to visualize the
design of the software and sequence diagrams to visu-
alize the behavior of the objects in the system.

Unfortunately, many systems are constructed
without the use of modeling and visualization arti-
facts, due to constraints imposed by deadlines, or
a shortage of manpower. Nevertheless, such sys-
tems might profit from the visualization provided
by the UML diagrams to facilitate maintenance of
the constructed system. In this paper, we present
Copyright c©2002, Australian Computer Society, Inc. This pa-
per appeared at the 40th International Conference on Tech-
nology of Object-Oriented Languages and Systems (TOOLS
Pacific 2002), Sydney, Australia. Conferences in Research and
Practice in Information Technology, Vol. 10. James Noble and
John Potter, Eds. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

a tool, Reveal, to reverse engineer a class diagram
from the C + + source code representation of the
software. In Reveal, we remain faithful to the
UML standard definition of a class diagram wher-
ever possible. However, to accommodate the va-
garies of the C + + language, we offer some exten-
sions to the standard notation to include represen-
tations for namespaces, stand-alone functions and
friend functions. We compare our representation to
three other tools that reverse-engineer class diagrams:
Superwomble(Jackson & Waingold 2001), Rational
Rose c© and TogetherSoftTM(TogetherSoft 2001). We
compare the tools for both compliance to the UML
standard and for their ability to faithfully represent
the software system under study.

We have found Reveal to be useful for reverse
engineering class diagrams of legacy code. How-
ever, Reveal does not provide round-trip engineering;
that is, users cannot construct a class diagram, use
the diagram as a guide to code development, and
then reverse-engineer the resultant code back to a
class diagram. Nevertheless, the contributions of our
work are threefold. First, our tool is more precise
than the three tools that we used in our compari-
son. We suspect that the other tools do not use a
full parse to guide the reverse engineering process,
but rather use a fuzzy parse that scans the code for
keywords(Asveld 1995, Koppler 1997). In Reveal,
we use keystone to provide a full parse of the code
(Power & Malloy 2000, Power & Malloy 2001). A
full parse permits reveal to capture class relationships
that might be omitted in a fuzzy parse. Second, our
extensions to accomodate C++ language constructs
provide more complete modeling of the application.
Third, our class diagrams are closer to the UML stan-
dard, version 1.3, than the other tools.

In the next section, we provide background about
class diagrams, graphviz, the tool that we use to draw
the class diagrams, and about keystone the parser
front-end that we use to parse the input program un-
der study. In Section 3, we overview the Reveal sys-
tem, including a discussion of its usage. In Section 4,
we present our API, Clouseau, that permits inspec-
tion of the namespaces, classes, functions and vari-
ables in a C + + program. In Section 5, we describe
construction of Reveal class diagrams and in Section
6, we compare Reveal to three other tools. Finally,
we draw conclusions in Section 7.

2 Background

In this section, we provide background information
about UML class diagrams, the graphviz tool, and the
keystone parser front-end that we use to parse the

Accepted for the 40th International Conference on Technology of Object-Oriented Languages and Systems
Sydney, Australia, February 18-21, 2002, pp. 13-21

1

C + + input program(Power & Malloy 2000, Power &
Malloy 2001).

2.1 UML Class Diagrams

Because of the complexity inherent in large programs,
a developer, or group of developers, may not be
able to grasp the overall design of the system, even
if those involved are familiar with the source code.
The Unified Model Language (UML) includes graph
structures to represent aspects of the program, pro-
viding an overview of the programs structure and
behavior(Booch, Rumbaugh & Jacobson 1999). The
UML can help even non-programmers get a better
grasp of the overall functionality of the system.

A UML class diagram is a static representation
of the program consisting of rectangles to represent
classes in the system and lines connecting the rectan-
gles to represent the relationships between the classes.
In UML, a class is represented as a box with three
vertical sections. The top section shows the name of
the class. The middle section displays the variables
belonging to the class, with symbols representing the
visibility (public, protected, or private) and proper-
ties (constant or static). The bottom section contains
the member functions of the class. Each method has
a name, signature, and properties.

There are four types of relationships in a class di-
agram: association, dependency, generalization and
realization. Each relationship is represented in the
diagram by a different type of arrow.

An association is a structural relationship that de-
scribes a set of links, where a link is a connection
among objects. An association can be a one-way or
two-way relationship. Class A has an association with
class B if class A has a data member of type B. If
class B also has a data member of type A, then the
relationship is bi-directional. A directed arrow to the
associated class specifies a one-way relationship. A
line (no arrowhead) signifies a bi-directional relation-
ship. Associations are often adorned with numbers or
symbols representing the multiplicity of the relation-
ship, or how many objects of one class the other is
using.

Dependency is a semantic relationship between two
classes in which a change to one class (the indepen-
dent class) may affect the semantics of the other class
(the dependent class). A method is said to use an
object of a class if the object is passed in as a pa-
rameter, created in the method, or returned from a
method. In UML, dependencies are designated by a
dashed arrow from the dependent class to the class
on which it depends. If both classes depend on the
other, a double-headed dashed arrow is used.

Dependency may also be used to show a special
type of relationship between classes: friendship. If
class A is a friend of class B, class A can access class
B’s private information. Friend classes are denoted by
a dependency arrow with the stereotype <<friend>>
on the arrow.

Generalization, or inheritance, is a special-
ization/generalization relationship where objects of
the specialized element (the child) are substitutable
for objects of the generalized element (the parent).
Realization is a semantic relationship between classi-
fiers, wherein one classifier specifies a contract that
another classifier guarantees to carry out. In C++,
an abstract base class, parent, has one or more purely
virtual methods that every immediate child must
overwrite. The contract between the parent and the
child is that the child will overwrite these methods.
Abstract classes are written in italics. Children of ab-
stract classes are connected to the class by a dashed
arrow with a hollow arrowhead.

2.2 The Graphviz Tool

Graphviz is a set of open-source drawing tools for cre-
ating directed or undirected graphs. Graphviz has
two main purposes: creating graphs with good qual-
ity automated layout, and providing web drawing ser-
vices that are easy to use. The layout of graphviz
graphs is, in some cases, better than graphs drawn
manually.

Among the Graphviz tools, dot is best suited
to drawing UML diagrams. dot constructs directed
graphs laid out in a hierarchical fashion. In addition
to its layout ability, dot also allows a great deal of
variation, including different node shapes, various ar-
row types for connecting the nodes, and graphs inside
graphs. dot’s layout algorithm places nodes in such a
way that connecting lines seldom intersect and nodes
appear organized. Part of dot’s algorithm for place-
ment of nodes involves determining a node’s rank,
or importance. When nodes are placed on a graph
(with no arrows), dot will place them side-by-side,
since these nodes all have the same rank. If an arrow
is drawn between two nodes, the target will be moved
down below the source of the arrow. The target now
has a lower rank. In this manner, dot places each
node. It is possible to specify that certain items must
have equal rank.

Dot provides for three possible output formats for
the graphs it creates: graphics interchange format
(GIF), portable network graphics format (PNG), or
Postscript format. Reveal generates the UML dia-
gram using dot and automatically displays the out-
putted Postscript.

2.3 Keystone

Keystone is a parser front-end for the ISO C + +

programming language. Keystone uses a bottom-
up, bactracking parse algorithm, together with tech-
niques such as token decoration to facilitate recogni-
tion of ambiguous language constructs.

Figure 1 summarizes the design of keystone, our
system to construct a parser front-end for ISO C++.
The figure presents two subsystems, illustrated as
tabbed folders and designated by the �subsystem�
stereotype. The ProgramProcessor subsystem is
shown on the left and the Symbol Table subsystem
is shown on the right of Figure 1.

The ProgramProcessor subsystem includes a Scan-
ner and Parser and is responsible for initiating and di-
recting symbol table construction and name lookup.
This responsibility includes two phases: (1) assem-
bling the necessary information for creation of a
NameOccurrence object, and (2) directing the search
for a corresponding NameDeclaration object in the
Symbol Table subsystem.

The NameOccurrence object encapsulates local in-
formation relevant to name lookup, including the
String representation of the name, a boolean to indi-
cate name qualification (by class or namespace), and
an enumeration, OccurSpecifier, that captures lexical
information about the context in which the name oc-
curred.

3 Overview of the Reveal Tool

In this section, we overview the Reveal Tool. In Sec-
tion 3.1, we describe the important subsystems used
to build Reveal, including the Clouseau API that is an
interface into the keystone parser front-end (Power
& Malloy 2000, Power & Malloy 2001). In Section
3.2, we describe use of the Reveal tool, including our
graphical user interface that permits users to set op-
tions to adjust the view of the class diagram.

Accepted for the 40th International Conference on Technology of Object-Oriented Languages and Systems
Sydney, Australia, February 18-21, 2002, pp. 13-21

1

name : String
kind : Kind
containedIn : Scope

uses in
search

class, enum, function,
label, namespace,
variable, typedef

returns

builds

looks for

<<use>>

<<use>>

<<subsystem>>

<<subsystem>>

name : String
hasQualifier : Boolean
specifiedAs: OccurSpecifier
ignoreUsings : Boolean

<<enumeration>>

convFunction, destructor,
destructorQualifier,
elabEnum, elabClass,
label, namespace,
pseudoDestructor,
qualifier, typename

OccurSpecifier

<<enumeration>>
Kind

NameDeclaration

Scanner

Parser

ProgramProcessor

Scope

Symbol Table

NameOccurrence

Figure 1: Keystone. This figure summarizes the design of keystone, a parser front-end for ISO C++. The
ProgramProcessor subsystem is responsible for initiating and directing symbol table construction and name
lookup by marshaling information about the name in a NameOccurrence object and directing the search for a
corresponding NameDeclaration in the Symbol Table subsystem.

input
program

UML
Class

Diagram

returnInfo

Keystone
Parser

Front-end

getInfo

returnInfo

getInfo
Clouseau

API

Reveal

Program
Application

Figure 2: Reveal System Overview.

3.1 Overview of the Reveal System

Figure 2 illustrates the important subsystems in the
Reveal tool. The box on the left of the figure is the
Reveal program that contains the algorithm and data
structures to construct a class diagram. The box on
the right of the figure is the keystone parser front-
end that we use to parse the input program, providing
information such as type, scope and accessibility for
variables, classes, and namespaces in the program.
The box that is interposed between the Reveal pro-
gram and keystone is an API, Clouseau, that allows
the Reveal program to access keystone without hav-
ing to understand keystone. Thus, the Reveal pro-
gram never actually “sees” code, but rather retrieves
any required information about the input program
using Clouseau.

The rounded box at the top of Figure 2, illus-
trates the C + + input code, input program, for
which the Reveal system will construct a class dia-
gram; the constructed class diagram is represented
by the rounded box on the lower left of the figure,
UML Class Diagram.

3.2 Using the Reveal Tool

Figure 3 illustrates a sample usage of the Reveal tool.
The large rectangle on the left is the graphical user
interface, GUI, that facilitates use of the tool, and the
large rectangle on the right is an abbreviated version
of a class diagram for the example program in Figure
4. Reveal permits users to choose many options in-
cluding either a full class diagram that lists all data
attributes and member functions for each class, or an
abbreviated class diagram where the data attributes
and member functions are elided from the diagram.
Reveal writes the class diagram in postscript format
and uses ghostview as the viewer.

The GUI on the left of Figure 3 is developed us-
ing the V GUI Toolkit(Wampler 2001), has two drop
down menus, File and Options, and four buttons,
New, Refresh, Redraw and Exit. The File menu
permits the user to select a file and load the C + +

program into the workspace. Once loaded, Reveal
preprocesses the input file to generate a file containing
all of the C + + files used by the input program, dis-
plays the code on the read-only canvas, and displays
the UML class diagram. The preprocessing, loading
and displaying are all performed by the single load
command. Also, by displaying all of the source files
in one window, the user can easily compare the code
with the corresponding class diagram that is being
displayed.

The Options menu permits the user to set options
to display library classes, namespace partitions, data
members and member signatures for classes. These
options permit the user to display only the informa-
tion required to understand the code under study.
The rectangle on the right side of the GUI, labeled
Diagram Options, is the dialog box that permits the
user to set these options. There are five options listed
in the dialog box and none of these are checked, which
produces the abbreviated class diagram on the right
side of the figure.

The buttons in the GUI permit the user to clear
the workspace, New, refresh the canvas in case the
user has changed the code that is currently depicted,
Refresh, redraw the current class diagram, Redraw,
or to quickly exit the program: Exit. The code listed

Accepted for the 40th International Conference on Technology of Object-Oriented Languages and Systems
Sydney, Australia, February 18-21, 2002, pp. 13-21

1

Figure 3: GUI and abbreviated class diagram. This figure illustrates the GUI that provides an interface
for Reveal. The canvas of the GUI contains a C + + program; the corresponding class diagram is shown on the
right of the figure. The user has chosen an abbreviated class diagram, but Reveal permits the user to choose
options to view the full class diagram.

on the canvas of the GUI is the C + + program that
corresponds to the class diagram on the right side
of the figure. This canvas permits the user to scroll
through the code listing, but does not permit the
user to modify the code. The full code listing for the
example program is listed in Figure 4; this example
threads our paper and we later use this example to
compare and contrast Reveal with three other tools
that reverse-engineer class diagrams. In Section 5, we
present more explanation of the example program in
Figure 4, together with a full class diagram drawn by
Reveal.

4 The Clouseau API

The Clouseau1 application programmers interface
(API), was designed to facilitate symbol table inspec-
tion of programs written in the C++ language. Clou-
seau provides information about the accessibility, visi-
bility, and type of namespaces, classes, functions, and
variables for the program under consideration. With
Clouseau, the application programmer is completely
separated from the complexity of parsing. Figure 2
illustrates the relationship between Clouseau and the
other parts of the Reveal system, where the input
program is actually read by the Clouseau API, rather

1The Clouseau API is named after Inspector Clouseau, a char-
acter in the Pink Panther movies, because the API permits users
to “inspect” symbol table information.

than the Reveal Program. Moreover, the Clouseau
API forms a facade for the keystone parser, so that
users can access its functionality without the burden
of dealing with its complexity(Gamma, Helm, John-
son & Vlissides 1995). Clouseau users are relieved
of the burden of parsing the program, since the API
exploits the keystone parser to provide this function-
ality. Clouseau is implemented as a UnixTM shared
object.

A goal of the Clouseau API is to provide a com-
plete and minimal interface to provide parsing and
symbol table information for various and sundry ap-
plications. Clouseau is currently being used by two
different applications: Reveal, and Taxonomy, an ap-
plication that describes a taxonomy for implementa-
tion-based testing of object-oriented classes(Clarke &
Malloy 2001). The parsing and symbol table infor-
mation required by Taxonomy is mostly boolean, such
as information to determine if a variable is a pointer.
However, the information required by Reveal is more
comprehensive, such as information about the list of
classes that might be contained in a namespace. Clou-
seau provides both types of information, while pre-
senting a minimum interface for easy use.

The important classes in the Clouseau inter-
face are illustrated in Figure 5, including member
functions for two of the classes, ScopeInfo and
ClassInfo. ScopeInfo is a base class for the other
classes in the API; ClassInfo contains functionality
to provide information about classes to users of the

Accepted for the 40th International Conference on Technology of Object-Oriented Languages and Systems
Sydney, Australia, February 18-21, 2002, pp. 13-21

1

1 namespace Security {
2 class Password {
3 public:
4 Password () : passwd("password") {}
5 Password (char* password)
6 : passwd(password) {}
7 void setPassword(char* newPasswd) {}

8 private:
9 char* passwd;

10 };
11 }

12 class Person {
13 public:
14 Person (char *nm) : name (nm) {}
15 Person () {}
16 char* getName () { return name; }
17 virtual void print() = 0;

18 protected:
19 char* name;
20 };

21 void check(); // stand-alone friend function

22 class BankAccount;

23 class Customer : Person {
24 public:
25 friend void check();
26 Customer (char* nm) : Person(nm) {}
27 static int getPasswordLength() {
28 return LENGTH;
29 }
30 void print () { }
31 void checkPassword() {
32 Security::Password p;
33 }

34 private:
35 static const int LENGTH;
36 BankAccount *b1;

37 };

38 const int Customer::LENGTH = 7;

39 class Company{
40 public:
41 Company (float pr) : profits (pr) {}
42 ~ Company() {}
43 float getProfits () {
44 return profits;
45 }

46 protected:
47 float profits;
48 };

49 class BankAccount {
50 public:
51 BankAccount (Customer c)
52 : holder(c) { }
53 void deposit (float amt) {}
54 float getTotal () {
55 return total;
56 }

57 private:
58 float total;
59 Customer holder;
60 };

61 class Bank : Company {
62 public:
63 Bank (float profits)
64 : Company (profits) { }
65 void addAccount (
66 const BankAccount& b) { }

67 private:
68 BankAccount* acctList;
69 };

70 int main () {
71 Customer myCustomer("sarah");
72 Bank b(1000);
73 b.addAccount(
74 BankAccount(myCustomer));
75 return 0;
76 }

Figure 4: C++ Code Example. This figure shows a complete C++ program including six classes, a namespace
and function main.

Accepted for the 40th International Conference on Technology of Object-Oriented Languages and Systems
Sydney, Australia, February 18-21, 2002, pp. 13-21

1

ScopeInfo

+ getName() : string

VariableInfo

Interface

DataType

FunctionInfo

NamespaceInfo

ClassInfo

+dataItems() :Container<VariableInfo>
+parents() :Container<ClassInfo>
+children() : Container<ClassInfo>
+friendClasses() :Container<ClassInfo>
+friendFuns() :Container<ClassInfo>
+isAbstract() : Boolean
+funDefsInClass() :Container<FunctionInfo>
+classDefsInClass() :Conatainer<ClassInfo>

Figure 5: Class Diagram for the Clouseau API. The Clouseau API permits users to acquire information
about the type, accessibility and visibility of namespaces, classes, functions and variables in the C + + program
under consideration. This figure illustrates the important classes in the API, including the member functions
for two of the classes, ScopeInfo and ClassInfo.

API. Other classes in the interface are Namespace-
Info, VariableInfo, and FunctionInfo, providing
information about namespaces, variables and func-
tions. The class DataType encapsulates type informa-
tion about variables and functions and the line con-
necting DataType with VariableInfo and Function-
Info represents this relationship.

Whenever possible, we have designed Clouseau us-
ing a C + + idiom, rather than a Java idiom. Thus,
Clouseau containers use templates, rather than inher-
itance and polymorphism, to allow variation in type.
Moreover, the Container class in the API is derived
from the vector class in the C + + standard library
so that the full complement of STL functionality is
exploited by the API(Institute 1998, Josuttis 1999).
Furthermore, Clouseau includes iterators to permit
users of the API to iterate through the lists of classes,
namespaces, functions and variables. For example,
the user may wish to search the list of functions
contained in a class by iterating through the con-
tainer returned by the funDefsInClass() function
in ClassInfo, shown in Figure 5.

5 Class Diagram Construction

We reviewed the UML in Section 2 and described
class diagrams, which consist of rectangles represent-
ing classes, and lines connecting the rectangles repre-
senting the relationships between the classes. We also
described the four types of relationships that classes
can have and their representation in the UML class
diagram. We now show how the class diagram is con-
structed by the Reveal tool and how these relation-
ships appear in the diagram.

In Reveal, we remain faithful to the UML stan-
dard definition of a class diagram wherever possible;
however, we offer extensions to the standard nota-
tion to accommodate C + + namespaces, stand-alone
functions and friend functions. We also present these
extensions in this section.

The first step in constructing a class diagram in
Reveal is to identify the C + + program’s names-
paces. Namespaces act as a modularization construct
in C + +, allowing the programmer to partition the
names used in a program to prevent them from inter-
fering with each other. Namespaces may be nested, in
which case name occurrences inside the inner name-
space may refer to those already declared at the outer
level, with this process continuing recursively, event-
ually reaching the global namespace where all names-
paces are ultimately nested(Institute 1998). Figure 6
illustrates a class diagram for the example program
shown in Figure 4. Figure 6 includes two namespaces,
GlobalNamespace and Security. The entire dia-

gram is enclosed in a rectangle that represents the
global namespace; the name of the global namespace
is shown in the upper left corner of the square. A
second namespace, Security, is shown in the lower
right corner of Figure 6.

Several benefits derive from including namespaces
in the class diagram. First, the viewer can visually
differentiate the code segments that have been placed
in different namespaces in the input program. Second,
if a name is used in two different namespaces, the user
will be able to distinguish the names in the diagram
by the enclosing namespace rectangle.

A stand-alone function is a function that is not
contained in a class. Some object-oriented languages
do not have stand-alone functions; C + +, derived
from C, does include stand-alone functions. Reveal
uses a class rectangle for stand-alone functions and
global variables, except that the rectangle is dotted
rather than solid. Stand-alone functions are placed in
the member function partition of the box and global
variables are placed in the data attribute partition of
the box.

A friend function is a special kind of stand-alone
function. Although a friend function is not a member
of a class, it can access the private attributes of the
friend class. Reveal handles friend functions as any

Accepted for the 40th International Conference on Technology of Object-Oriented Languages and Systems
Sydney, Australia, February 18-21, 2002, pp. 13-21

1

_GlobalNamespace

Security

main (): int

Customer
-$ LENGTH: int {frozen}
- b1: BankAccount*
+ Customer::Customer (nm: char*)
+$ getPasswordLength (): int
+ print ()
+ checkPassword ()

Bank
- acctList: BankAccount*
+ Bank::Bank (profits: float)
+ addAccount (b: BankAccount&)

Person
name: char*
+ Person::Person (nm: char*)
+ Person::~Person ()
+ getName (): char*
+ print ()

BankAccount
- total: float
- holder: Customer
+ BankAccount::BankAccount (c: Customer)
+ deposit (amt: float)
+ getTotal (): float

 1

*

check ()

<<friend>>

Password
- passwd: char*
+ Password::Password ()
+ Password::Password (password: char*)
+ setPassword (newPasswd: char*)

Company
profits: float
+ Company::Company (pr: float)
+ Company::~Company ()
+ getProfits (): float

 *

1

Figure 6: Full Class Diagram. This figure contains a class diagram, showing the data attributes and
member functions for each class, the relationships between the classes, and accessibility information of the
class member attributes. The figure also illustrates our extensions to the UML class diagram to accommodate
C + + namespaces, stand-alone functions and friend functions.

stand-alone function, placing them in a separate dot-
ted box, indicating the dependency with a directed
line connecting the friend function to its associated
class. This directed line is adorned in Reveal with
the <<friend>> stereotype.

Figure 6 depicts a stand-alone function, main,
in the upper right corner of the diagram, and a
friend function, check, at the bottom of the dia-
gram. The dependencies between main and classes
Bank and Customer are illustrated in the diagram
by dashed, directed lines. The dependency between
check and Customer is illustrated in the diagram
with the dashed, directed line, adorned with the
<<friend>> stereotype.

Generalization, or inheritance, is a specializa-
tion/generalization relationship in which objects of
the specialized element are substitutable for objects
of the generalized element. Figure 6 illustrates inheri-
tance at the top of the figure where Company is shown
as the base class and Bank is shown as the derived
class. The line with the hollowed arrowhead indicates
the inheritance relationship between two classes.

Realization is a semantic relationship between
classifiers, wherein one classifier specifies a contract
that another classifier guarantees to carry out. In
C++, an abstract base class has one or more purely
virtual methods that every immediate child must
overwrite. The contract between the parent and the
child is that the child will overwrite these methods.

In Reveal, children of abstract classes are connected
to the parent class by a dashed arrow with a hollow
arrowhead. In Figure 6, this relationship is illustrated
between Customer, the derived class, and Person, the
abstract base class.

6 Comparison with Other Tools

In this section we compare our tool, Reveal, to three
other tools that reverse-engineer code, including Su-
perwomble, Rational RoseTM C++ Demo 4.0.3 and
Together ControlCenterTM. We first give a brief
overview of Superwomble, Rational Rose and To-
gether. We then use the C++ example illustrated
in Figure 4, Section 3, to compare the generated class
diagrams for Reveal, and the other three tools.

6.1 Overview of the Tools

Superwomble generates object models from Java byte
code. The object model is used to describe the ab-
stract features not explicitly expressed in code. An
object model is a subset of UML consisting of nodes
and objects. A node in the model is used to represent
an object. Nodes are connected using either a rela-
tion edge or a subset edge. The relation edge may be
annotated to reflect multiplicity and/or mutability.

Superwomble performs inferences on associations
that allow it to filter out associations not relevant to

Accepted for the 40th International Conference on Technology of Object-Oriented Languages and Systems
Sydney, Australia, February 18-21, 2002, pp. 13-21

1

Figure 7: Rational Rose Diagram for C++. This
figure shows the class diagram produced by the Ra-
tional Rose tool using the C + + example of Figure
4.

the application. This inference mechanism allows the
user to ignore standard Java library classes when cre-
ating the model. This tool also infers multiplicity and
mutability depending on how the fields of an object
are used.

Rational Rose C++ Demo 4.0.3 is a model driven
software development tool. The models used in this
tool are based on UML. The Rose C++ analyzer re-
quires the user to set up the appropriate environment
identifying all the directories containing the files re-
quired for analysis. Before the design is exported,
the user chooses the level of detail required in the
model. The model exported to Rose contains a log-
ical view and a component view. The logical view
consists of class diagrams for each package, as well as
detailed specifications for each class. The component
view shows the dependencies between the packages
and classifies packages as either an interface or an
implementation.

Together is a comprehensive end-to-end Model-
Build-Deploy development platform for building en-
terprise solutions. Together provides the following
services: creation and editing of several types of dia-
grams including UML diagrams, synchronization be-
tween design and implementation code (round-trip
engineering), offers a workbench for writing code and
integrates with different version control systems.

6.2 Comparison of the Tools

Since SuperWomble will only accept Java byte code,
we translated the C + + example of Figure 4 into
Java. The Java version of the example does not con-
tain any stand-alone functions or friend functions,
and namespace Security was replaced by the Java
package Security. Thus, for our comparison, we use
a Java version of the example for SuperWomble, and

Figure 8: Together Diagram for C++. This figure
shows the class diagram produced by the Together
tool using the C + + example of Figure 4.

the C + + version for Rational Rose, Together and
Reveal.

Figure 6 shows the class diagram produced by Re-
veal, Figure 7 shows the class diagram produced by
Rational Rose, Figure 8 shows the class diagram pro-
duced by Together, and Figure 9 shows the class dia-
gram produced by SuperWomble.

All four of the tools show the inheritance rela-
tionship between classes Bank and Company in a sim-
ilar manner. The Reveal, Rational Rose and To-
gether representation of this inheritance relationship
is consistent with the UML standard. Although
the SuperWomble tool does not show a hollow ar-
row, this is likely an artifact of the graphviz draw-
ing tool. The inheritance relationship between classes
Customer and Person are also shown similarly. How-
ever, the Reveal representation of this inheritance
shows a dashed line between Customer and Person;
the dashed arrow in the Reveal diagram indicates
that the relationship between Customer and Person
as a realization(Rumbaugh, Jacobson & Booch 1999).
Similarly, in the Together diagram, the Person class
is underlined and the class name italicized, indicating
that Person is an abstract base class.

The Reveal, Rational Rose and Together tools also
model the association between the classes Customer
and BankAccount. Rational Rose and Together mo-
del this bi-directional relationship using two arrows,
one for each of the dependencies. However, Reveal
uses a more succinct notation, combining the bidirec-
tional relationship into a single, undirected line be-
tween classes Customer and BankAccount. Reveal,
Rational Rose and Together model the multiplicity
of this relationship differently, yet each captures the
fact that there is a single instance of Customer in
BankAccount: Reveal adorns the undirected line with
the number 1, Rational Rose adorns the directed line
from BankAccount to Customer with the number 1.

Accepted for the 40th International Conference on Technology of Object-Oriented Languages and Systems
Sydney, Australia, February 18-21, 2002, pp. 13-21

1

Figure 9: SuperWomble Diagram for Java. This
figure shows the class diagram produced by the Su-
perWomble tool using a Java version of the example
of Figure 4.

Together uses aggregation to show this multiplicity,
indicating that the Customer, BankAccount relation-
ship is a part-whole relationship.

The Reveal, Rational Rose and Together tools also
model class data attributes and member functions,
including an indication of accessibility. We note that
Reveal and Together are more resonant with the UML
standard, using + and − to indicate public and pro-
tected; Reveal uses the # notation for protected. Ra-
tional Rose uses icons to model accessibility, which is
inconsistent with the UML standard.

SuperWomble provides an abbreviated version of
the class diagram, which might be more useful for
large programs with many classes; however, we note
that SuperWomble does not include provision for the
full class diagram.

The Reveal diagram for class Customer indicates
that the LENGTH data attribute is frozen (constant);
this indication that LENGTH is constant is consistent
with the UML standard; both Together and Rational
Rose indicate this constness by attaching const as a
prefix to the type of LENGTH, int.

Finally, Reveal offers extensions to the UML class
diagram to model namespaces, stand-alone functions
and friend functions. However, the user may choose to
turn this facility off, by de-selecting these extensions
in the options menu of the GUI.

7 Concluding Remarks

We have presented our design and implementation of
a tool, Reveal, to reverse engineer a UML class dia-
gram for a C + + program. We have also presented
extensions to the UML class diagram to accommodate
namespaces, stand-alone functions and friend func-
tions in the C + + language. We have compared Re-
veal to three other tools, Rational Rose, Together and
SuperWomble, indicating compliance of the generated
diagrams with the UML standard.

References

Asveld, P. (1995), ‘A fuzzy approach to erroneous inputs in
context-free language recognition’, Proceedings of the 4th
International Workshop on Parsing Technologies .

Booch, G., Rumbaugh, J. & Jacobson, I. (1999), The Unified
Modeling Language User Guide, Object Technology Se-
ries, Addison-Wesley.

Clarke, P. & Malloy, B. A. (2001), ‘A unified approach to
implementation-based testing of classes’, Proceedings of
1st Annual International Conference on Computer and
Information Science (ICIS ‘01) .

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995),
Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley.

Institute, A. N. S. (1998), ISO/IEC JTC 1, number
14882:1998(E) in ‘ASC X3’, first edn, International Stan-
dard: Programming Languages - C++.

Jackson, D. & Waingold, A. (2001), ‘Lightweight construction
of object models from bytecode’, IEEE Transactions on
Software Engineering .

Josuttis, N. M. (1999), The C++ Standard Library, Addison-
Wesley.

Koppler, R. (1997), ‘A systematic approach to fuzzy parsing’,
Software – Practice and Experience 27(6), 637–649.

Power, J. F. & Malloy, B. A. (2000), An approach for model-
ing the name lookup problem in the C + + programming
language, in ‘ACM Symposium on Applied Computing’,
Como, Italy.

Power, J. F. & Malloy, B. A. (2001), Symbol table construction
and name lookup in ISO C + +, in ‘Technology of Object-
Oriented Languages and Systems, TOOLS 2000’, Sydney,
Australia, pp. 57–68.

Rumbaugh, J., Jacobson, I. & Booch, G. (1999), The Unified
Modeling Language Reference Manual, Addison Wesley
Longman, Inc.

TogetherSoft (2001), ‘Together Control Center 5.5’,
http://www.togethersoft.com/ .

Wampler, B. (2001), ‘The V C++ GUI framework’,
http://www.objectcentral.com .

