Implementing Protocol Verification for E-Commerce

B. Az1z, D. GrAY, G. HAMILTON, F. OEHL, J. POWER and D. SINCLAIR

Abstract— This paper presents a survey of the practical ap-
plication of protocol verification techniques to applications
in e-commerce. We concentrate in particular on logic-based
approaches, and review the current state of the art as well
as the prospects for realistic deployment of protocol verifi-
cation techniques in the near future.

Keywords— keywords

I. INTRODUCTION

A key component of e-commerce applications are the pro-

tocols that:

o identify the participants in a transaction;

o facilitate and enable the secure, reliable transfer of criti-
cal information; and

¢ provide for the non-repudiation of completed transac-
tions

This paper reviews the current state of the art and
presents the major techniques used todate to mathemat-
ically verify these protocols. In particular we focus on
logic-based approaches, the tools used to support these
techniques and highlight the protocols verified by these dif-
ferent techniques.

The formal verification of the protocols used to support
e-commerce is not easy; so why should we formally specify
and verify these protocols? The answer is to build trust
and confidence in the users of the e-commerce systems.
The users must believe that these protocols are secure and
reliable. Trust and confidence are essential for the suc-
cessful and widespread adoption of e-commerce. Todate
the adoption of e-commerce has been greater in Business-
to-Business (B2B) applications than Business-to-Consumer
(B2C) applications. One reason for this is that many B2B
applications are built on existing business relationships. In
many B2C transactions the consumer is unknown to the
business and both participants do not have a prior history
on which this trust and confidence between the participants
can be built. Formally verifying the behaviour of the pro-
tocols will help build this trust and confidence. The central
role of trust and confidence in e-commerce has been recog-
nised by the European Commission as typified by Com-
mission proposal to fund research into building trust in
confidence in the forthcoming 6th Framework Programme

(FP6).

II. THEOREM PRrRoOVING

First some information shared by all the proof methods.
In these methods, you use logical notations to model your
protocol and the properties that it must satisfy. Then you
use proof techniques (rewriting, simplification, induction,
...) to verify if the properties are satisfied by the protocol.
With these methods, the verification is not limited by the
number of actors and by the number of messages exchanged

during protocol runs. But the verification with these meth-
ods can be long and can require an expert user (you need
to inject the right lemma at the right moment in order
to make the proof converge). Tt’s very difficult to develop
automatic tools to verify protocols by proof method.

We can split these methods into two categories:
¢ The inference construction methods which construct in-
ferences using specialised logics based on a notion of knowl-
edge and belief, that protocol participants can confidently
reach desired conclusions;
o The proof construction methods which formally model
the actual computations performed in protocols and prove
theorems about these computations.

A. Inference construction methods

In this category you find all the approaches based on
the modal logic used for the analysis of the evolution of
knowledge and belief in distributed system.

The first logic developed for the verification of cryp-
tographic protocols was “the logic of authentication”[1]
(also called BAN logic). Michael Burrows, Martin Abadi
and Roger Needham developed this logic in 1989. In this
method, we reason about the beliefs of the agents in the
network and the evolution of these beliefs after each pro-
tocol step. An example of this reasoning would be: “If
Paul’s received a message encrypted with the key K, and
he believes that Alice and he share K, then he believes that
Alice’s sent the message”.

So to verify a protocol with this method, we start by
defining the initial beliefs of all the protocol’s actors. Then
after each protocol step you have access to new informa-
tion. And with this new information and the logic inference
rules, you find new beliefs by derivation. If the set of beliefs
fits with the beliefs we want for our protocol, we assume
the protocol has been proven correct. Otherwise, we may
have discovered a security flaw in the protocol. The BAN
logic has found flaws and redundancies in several proto-
cols, including Needham-Schroeder public key (flaw) and
Kerberos (redundancy).

Because we only reason about beliefs with this logic and
don’t attempt to model knowledge, we can only verify au-
thentication property. That means we only verify that ev-
ery actor can identify the sender of a message. This was
one of the reasons of the development of other logics (an-
other big reason is the lack of a complete semantics): GNY
logic [2], the Abadi and Tuttle’s logic [3], the Mao and Boy-
d’s logic [4], AUTLOG logic [5] and SvO logic [6]. These
logics are more complicate and more difficult to use than
the BAN logic except for the Abadi and Tuttle, and SvO
logics.

Other logics like Kailar’s logic [7], and Kessler and Neu-
mann’s logic [8] have been used to verified e-commerce pro-

Intl Conf on Advances in Infrastructure for Electronic Business, Science, and Education on the Internet
L’Aquila, ITtaly, Aug 6-12, 2001



tocols. These logics are still based on the BAN logic, but
they introduce the notion of accountability. Accountability
is the property whereby the association of unique origina-
tor with an object or action can be proved to a third party
(i.e.: a party who is different from the originator and the
prover). The Kailar’s logic [12] has been used to verify two
versions of the Carnegie Mellon’s Internet Billing Server
protocol, the University of Southern California Informa-
tion Science Institute’s anonymous payment protocol and
the SPX protocol. The SET [54](Secure Electronic Trans-
action) and the Payword protocols have been studied with
the Kessler and Neumann’s logic [8].

Now, you have an idea of the logics that are available to
verify cryptographic protocols. But what tools could you
use if you don’t want to do the proofs by hand? The BAN
logic was implemented in the theorem provers SETHEO
[9] and EVES [10] (these two tools produce fully auto-
matic proofs of protocols). Kindred [11] generated auto-
matic checkers for both Kailar’s logic and AUTLOG logic
using Revere. Nevertheless, if you cannot find any tool
developed for the logic you want to use, you still can im-
plement it in a theorem prover like HOL [13] (Higher Order
Logic) or SETHEO (Kessler and Neumann have started to
implement there logic this tool, but it was a lot of work
since SETHEQ is actually not suited and the running time
for most of their proofs was so bad that they decided to do
them by hand) or any other theorem provers.

B. Proof construction methods

In this category, you find methods, which try to solve the
problems of inference construction methods (lack of clear
semantics) and model checking methods (state explosion).

In [14], D. Bolignano introduced a method based on the
idea of trustable and un-trustable agents. So he has a set of
trustable agents and one intruder. This intruder stores all
the information exchange between the agents, can decrypt
messages if he has the decryption key and he also can build
and send fraudulent messages if he has the encryption key.
Protocols are formalised as automata where each state is
a n-uplet of agents’ current state, and the transitions are
the protocol steps. The protocol’s properties are verified
by induction the on automaton’s states.

D. Bolignano used the theorem prover Coq [15] to im-
plement this method and he presented an extension of his
method for the e-commerce protocols [16].

L. C. Paulson [17] has developed a method based on the
proof by induction. In this technique, the protocols are
modelled by the set of all possible traces and you have
the assumption, there is an intruder or bad agent in your
network. This intruder has access to traces, can decrypt
messages if he has caught the decryption key and finally
he can build and send fraudulent messages if he has the
encryption key. To verify protocols you verify that each
protocol step preserves the desired properties.

This method was implemented in Isabelle theorem prover
[18] and used to verify the Internet protocol TLS [19], the
Kerberos protocol [20], [21], [22] and some other proto-
cols. The proofs of these protocols are available on the

Isabelle’s website. At the moment, this technique is be-
ing used to verify the SET protocol in a project “Verifying
E-Commerce Protocols”at University of Cambridge.

I1I. MODEL-CHECKING

Model checking is an automated technique which, given
a finite state model of a system and a property stated
in some appropriate logical formalism (usually temporal
logic), systematically checks the validity of the property.
This involves traversing the state space of the system to
check the property of interest. This is why this technique
can be applied only to finite state systems. It also becomes
intractable for large systems due to an explosion in the
state space for such systems.

A number of different people have used this approach,
either with general-purpose model checkers [29], [32], [33],
[38], [25], [30], [40] or special-purpose model checkers [26],
[36], [37], [35]. The first attempt to apply model checking
to the verification of security protocols is by Dolev and Yao
[26]. In this work, the protocol is modeled by defining a set
of states and a set of transitions, and keeping track of an
intruder, messages and the information known by each of
the principals. This model is quite limited as it considers
only secrecy, and models only encryption and decryption
of messages, and adding or removing principals.

The Dolev-Yao model was extended by Meadows [36]. In
this work, the protocol 1s modeled as a set of rules that de-
scribe how an intruder generates knowledge (either through
applying encryption and decryption, or by receiving re-
sponses to messages it sends to the principals participat-
ing in the protocol). This model checker was still limited
in that it did not allow the modeling of freshly generated
nonces or session keys. These operations were added in the
NRIL Protocol Analyser [37]. This model checker also in-
cludes the states of the participants as well as the intruder.
However, there is no systematic way of converting a pro-
tocol description into a set of transition rules. The model
checker also relies heavily on the user during verification, a
drawback more normally associated with theorem provers.
The algorithms used in the NRIL Analyzer are also not
guaranteed to terminate, so a limit i1s placed on the num-
ber of recursive calls allowed for some of the model checking
routines.

In [32], Lowe used the FDR model checker for CSP [28]
to analyse the Needham-Schroeder public key authentica-
tion protocol [39] and succeeded in finding a previously
unpublished error in the protocol. However, the model 1s
parameterised by the nonces used by the participants, so it
only models a single run of the protocol. In order to prove
the general protocol correct, a theorem must be proven
which states that the general protocol is insecure only if
this restricted version is insecure.

Another scheme for the model checking of security proto-
cols is proposed in [35]. Unlike the previous systems, where
the protocol must be encoded in CSP or in term rewrite
rules, protocol definitions are translated into a sequence of
commands such as SEND, RECEIVE and NEWNONCE.

All principals and an intruder are modeled as a sequence

Intl Conf on Advances in Infrastructure for Electronic Business, Science, and Education on the Internet
L’Aquila, ITtaly, Aug 6-12, 2001



of such actions. These actions are interleaved to produce
a system trace. These traces can be model checked over a
finite number of runs of the system to see whether there 1s
a reachable state which violates the security specification.

The work in [23] further expands the model which can be
checked by the model checker to include a logic of belief.
Principals are modeled as processes able to have beliefs.
The specification of a principal therefore has two orthog-
onal aspects; a temporal aspect and a belief aspect. This
framework 1s used to verify a property of the Andrew pro-
tocol.

In conclusion, model checking has a number of advan-
tages and disadvantages when compared to theorem prov-
ing. One advantage is that little user interaction is re-
quired, with properties being verified automatically. Also,
in the cases where a required property is broken, a model
checker 1s able to indicate to the user the sequence of events
which led to it being broken.

Disadvantages of the model checking approach are that
it requires that systems have a finite number of states, and
it also becomes intractable for large state systems. As a
result, the examples of model checking security protocols
given in this section have mostly only been applied to small
examples such as the Needham-Schroeder public key au-
thentication protocol [39]. One notable exception is the
work of Leduc et al. using LOTOS [24] and the Eucalyptus
tool-box [27] to analyze the Equicrypt protocol [31], which
is a real system currently under design for use in controlling
access to multimedia services in a public channel.

Another drawback of the model checking approach is
that it is usually only applied to a model of a small sys-
tem running the security protocol, together with a model
of the most general intruder who can interact with the pro-
tocol, and then checking for attacks. However, if no attack
i1s found, this only tells us that there is no attack on the
small system being modeled; there still may be an attack
on some larger system. One attempt to try and alleviate
this problem can be found in [34].

IV. STtATIC ANALYSIS-BASED PROTOCOL VERIFICATION

Throughout the years, verification techniques and tools
have attained a high level of maturity and enjoyed reason-
able success, especially in areas related to computer hard-
ware and telecommunication industries. Model checkers
and theorem provers have become standard and attractive
tools for hardware manufacturers to reveal subtle defects in
systems and ensure the correctness and validation of their
designs.

Such success has been helped by the cost-effective au-
tomated solutions such verification techniques bring with
them. However there still remain a few obstacles that hin-
der a similar success in the software industry. Theorem
provers require human intervention, where a level of exper-
tise is needed to guide their operation. On the other hand,
model checkers suffer from two major problems: the con-
struction of finite state models and state explosion. The
former is related to infinite state spaces, which are impos-
sible to cover due to the way model checkers operate: by

traversing all the possible states of the program. Therefore,
a model i1s required with only a finite number of states. This
approximation is always imprecise and could even lead to
the wrong model. Additionally, if the number of states is
too large (or will expand at a huge rate) beyond the space
and time capabilities of the model checker, the latter prob-
lem arises.

Due to the fact that most model checkers accept in-
puts only in their own specialised languages, a semantic
gap exists and has to be bridged between any non-finite-
state software system and the language of a particular
model checker. Most e-commerce protocols are specified
with general-purpose languages, such as Java or COBOL.
Such specifications have to be abstracted, using sophis-
ticated program analyses and transformation techniques,
into a finite mathematical model that is safe and correct.
Such a process is usually characterised by errors and time-
consumption resulting from the difficulty in encoding state-
ments reflecting correctness requirements in the tool’s lan-
guage.

The state explosion problem in model checkers results
from the large number of states to check, which is a promi-
nent feature of the modern open software systems. Many
state curbing techniques exist that add more abstraction to
the model of the analysed system and therefore, introduce
more difficulty and errors.

One major framework that has been initiated by the
need to solve problems associated with model checkers 1s
the Bandera project [42]. The project integrates the dif-
ferent static analysis and transformation techniques with
model checkers while providing a pattern-based specifica-
tion language [41] with which correctness requirements can
be stated without ambiguity. Although the current imple-
mentation supports Java only (which is the de facto lan-
guage of e-commerce anyway) and Web applications, the
Bandera project is more of an open framework aimed at
integrating programming languages to verification tools in
the form of model checkers. This integration is made de-
sirable by the automated model extraction in a safe and
compact manner.

The idea to solve the state explosion problem is to do
an abstraction of your system. That means only keep from
the your model the information that are useful for the ver-
ification of your properties.

Here you have 2 concepts:

o Developing static analysis tools for the protocol verifica-
tion;

¢ Developing tools that add static analysis in present
model-checkers.

A. New tools

In this category, you find tools that use tree automata
[52], Horn clauses [53], or else the Dominique Bolignanos
model (in the project: Static Security Property Verifier) to
model protocols.

With these methods protocols as Needham-Schroeder or
even Skeme for the Horn clauses has been verified.

But the tools used are still on prototype stage.

Intl Conf on Advances in Infrastructure for Electronic Business, Science, and Education on the Internet
L’Aquila, ITtaly, Aug 6-12, 2001



B. Adding on present model-checker

The Bandera project provides a step towards the spec-
ification and automatic verification of security protocols
written with Java-like languages. It is based on the com-
ponent technology, which for the integration of new tools
and hence, supports an open framework. However, in its
current state, the Bandera project is described as a model
extractor for Java, which builds a finite-state model that
can be processed by model checkers. In doing so, it uses
components that employ both syntactic and semantic static
analysis techniques. Such techniques include mainly, pro-
gram slicing [46], abstract interpretation [48], and partial
evaluation [47].

Program slicing is a technique used for removing parts
of a program that are not of interest to the model desired
of that program. The technique works by identifying the
interesting parts selected according to the model and then
removing the rest. On the other, abstract interpretation
[43], [44] is a mathematical framework for designing safe
static approximations of program runtime semantics. The
resulting semantics has as its semantic domain abstrac-
tions of the real concrete values. Main applications of the
abstract interpretation lie in the design of compilers and
analysers. Finally, partial evaluation [51] (also known as
program specialisation) creates a specialised version of the
inputted program by substituting values in that program
that are already known at compile time. The resulting
residual i1s much faster for execution. The Bandera project
also supports components that are specialised in testing
specific software units by using a testing environment called
verification harness.

Other major projects related that have followed the
same approach are JavaPathFinder [49] for translating Java
source code into Promela, JCAT [45] for deadlock detec-
tion in Java program also by translating into Promela, and
Feaver [50], which translates C programs into Promela as
well.

V. CONCLUSION

In this paper we have have reviewed the major logic-
based approaches used to verify security protocols used in
e-commerce applications. In particular we have focussed on
techniques that have tool support and have been actually
used to verify some of the protocols used in e-commerce.
These techniques and tools broadly fall into two categories;
theorem provers and model checkers. The advantage of
the model checkers is their ability to automatically prove
a protocol without user direction, and in the case when
the protocol fails, their ability to generate the sequence
of events that invalidate the protocol. The main disad-
vantage of model checkers is that of state-space explosion.
This has prevented model checkers from being used to ver-
ify large, or infinite state, systems. Theorem provers, on
the other hand, do not suffer from this problem and they
have been used to verify large protocols. The major dis-
advantage of theorem provers is that they require ”expert”
guidance. The work we are currently undertaking seeks to
combine both techniques by embedding a model checker

inside a theorem prover. Our goal is to develop a system
that can verify large procotols but only requires minimal
user direction.

As developers of e-commerce applications we must en-
sure that the protocols we use in our applications are se-
cure and reliable. These protocols are complex entities and
very stuble errors can be hidden deep in the protocol or
introduced when the protocol is implemented. An impor-
tant lesson on how easily this can happen occurred with
the Needham-Schroeder protocol. When it was originally
published it contained two nonces. Many commentators
questioned the need for the second nonce and this nonce
was ”optimised” out of the protocol. This seemingly in-
nocuous modification introduced a stuble flaw that allowed
an attacker to access a secret shared between two others
agents by intercepting one agent’s messages while initiat-
ing a simultaneous with the other agent. This flaw was
not discovered for 11 years. This salutary lesson needs to
be kept in mind by designers and developers. SET [54] is
arguably the ”Rolls Royce” of payment protocols, but its
widespread adoption has been prevented by its size and
complexity. Just as in theNeedham-Schroeder protocol,
simplifying or” optimising” SET could unknowingly intro-
duce stuble flaws.

The formal verification of the protocols used in e-
commerce is a vital component in the process of building
trust and confidence in the users of e-commerce applica-
tions.

REFERENCES

[1] M. Burrows and M. Abadi and R. Needham. A Logic of Authen-
tication. DIGITAL, Systems Research Center, N. 39, February
1989, http://www.research.digital.com/SRC /publications/.

[2] L. Gong, R. Needham and R. Yahalom. Reasoning about Belief
in Cryptographic Protocols. In Proceeding of th 1990 IEEFE Sym-
posium on Security and Privacy, 234-248, 1990, IEEE Compter
Society Press.

[3] M. Abadi and M.R. Tuttle. A Semantics for a Logic of Authenti-
cation. In Proceedings of the Tenth Annual ACM Symposium on
Principles of Distributed Computing, 201-216, 1991.

[4] W.Mao and C. Boyd. Towards Formal Analysis of Security Proto-
cols. In Proceedings of the 1998 IEEE Computer Security Foun-
dations Workshop IV, 147-158, 1993, IEEE Compter Society
Press.

[5] V. Kessler and G.Wedel. AUTLOG-An advanced Logic of Au-
thentication. In Proceedings of the 1994 IEEE Computer Security
Foundations Workshop VII, 90-99, 1994, IEEE Compter Society
Press.

[6] P. Syverson and P. C. van Oorschot. On unifying some crypto-
graphic Protocol Logics. In Proceedings of the 1994 IEEE Com-
puter Security Foundations Workshop VII, 14-29, 1994, IEEE
Compter Society Press.

[7] R. Kailar. Reasoning about Accountability in Protocols for Elec-
tronic Commerce. In Proceeding of th 1995 IEEE Symposium on
Security and Privacy, 236-250, 1995, IEEE Compter Society
Press.

[8] V. Kessler and H. Neumann. A Sound Logic for Analysing Elec-
tronic Commerce Protocols. ESORICS’98 Proceedings of the
Fifth European Symposium on Research in Computer Security,
345-360, 1998, Springer Verlag.

[9] J. Schumann. Automatic Verification of Cryptographic Proto-
cols Using SETHEO. Technical Report AR-96-03, TU Miinchen,
Institut fir Informatik, 1996, http://wwwiessen.informatik.tu-
muenchen.de/ schumann/crypt.html.

[10] D. Craigen and M. Saaltink. Using EVES to Analyze Authenti-
cation Protocols. Technical Report TR-96-5508-05, ORA Canada,
March 1996, http://www.ora.on.ca/eves/documentation. html.

Intl Conf on Advances in Infrastructure for Electronic Business, Science, and Education on the Internet
L’Aquila, ITtaly, Aug 6-12, 2001



[11] D. Kindred. Theory generation for Security Protocols. Tech-
nical Report CMU-CS-99-130, Computer Science Department,
Carnegie Mellon University, Pittsburg, PA, 1999, Ph.D. thesis.

[12] R. Kailar. Accountability in Electronic Commerce Protocols.
IEEE Transaction on Software Engineering, 22(5):313-328, May
96.

[13] S. H. Brackin. A HOL Extension of GNY for Automati-
cally Analysing Cryptographic Protocols. In Proceedings of the
1996 IEEE Computer Security Foundations Workshop IX, 62-76,
1996, IEEE Compter Society Press.

[14] D. Bolignano. An Approach to the Formal Verification of Cryp-
tographic Protocols. ACM Conference on Computer and Com-
munications Security, 106-118, 1996.

[15] B. Barras, S. Boutin, C. Cornes, J. Courant, J.-C. Filliatre, E.
Gimenez, H. Herbelin, G. Huet, C. Munoz, C. Murthy, C. Par-
ent, C. Paulin-Mohring, A. Saibi and B. Werner. The Cogq Proof
Assistant Reference Manual : Version 6.1, RT-0203, 1997.

[16] D. Bolignano. Towards the Formal Verification of Electronic
Commerce Protocols. In Proceeding of the 1997 IEEE Com-
puter Security Foundations Workshop X, 133-146, 1997, IEEE
Compter Society Press.

[17] L. C. Paulson. The Inductive Approach to Verifying Crypto-
graphic Protocols. Journal of Computer Security, V. 6, 85-128,
1998, http://www.cl.cam.ac.uk/users/lcp /papers/protocols.html.

[18] L. C. Paulson. Isabelle: a generic theorem prover, LNCS 828,
1994, Springer-Verlag Inc. .

[19] L. C. Paulson. Inductive analysis of the Internet protocol TLS.
ACM Transactions on Information and System Security, V. 2,
N. 3, 332-351, 1999.

[20] G. Bella and L. C. Paulson. Kerberos Version IV: Inductive
Analysis of the Secrecy Goals In Proceedings of the 5th European
Symposium on Research in Computer Security, Springer-Verlag
LNCS 1485, Louvain-la-Neuve, Belgium, J.-J. Quisquater, 361—
375, 1998.

[21] G. Bella and L. C. Paulson. Using Isabelle to prove proper-
ties of the Kerberos authentication system In H. Orman and C.
Meadows, editors, Workshop on Design and Formal Verification
of Security Protocols. DIMACS, 1997.

[22] G. Bella and L. C. Paulson. Mechanising BAN Kerberos by the
Inductive Method. Computer Aided Verification, 416-427, 1998.

[23] M. Benerecetti and F. Giunchiglia. Model Checking Security
Protocols Using a Logic of Belief. TACAS 2000, 519-534, 2000.

[24] T.bolognesiand E. Brinksma. Introduction to the ISO Specifica-
tion Language LOTOS. Computer Networks and ISDN Systems,
14(1):25-59, 1987.

[25] Z. Dang and R. Kemmerer. Using the ASTRAL Model Checker
for Cryptographic Protocol Analysis. In Proceedings of the DI-
MACS Workshop on Design and Formal Verification of Security
Protocols, 1997.

[26] D. Dolev and A. Yao. On the Security of Public Key Protocols.
IEEE Transactions on Information Theory, 29(2):198-208, 1989.

[27] H. Garavel. An Overview of the FEucalyptus Toolbox. In
COST247 Workshop, 1996.

[28] A. Hoare. Communicating Sequential Processes. Prentice-Hall,
1985.

[29] R. Kemmerer, C. Meadows and J. Millen. Three systems for
Cryptographic Protocol Analysis. Journal of Cryptology, 7(2),
1994.

[30] T. Kozlowski and S. Smolka. Digital Signatures With Encryp-
tion: Fact and Fiction (Extended Abstract). In Conference
Record of the 7" ACM Symposium on Principles of Program-
ming Languages, pages 81-94, 1990.

[31] S. Lacroix, J.-M. Boucqueau, J.-J. Quistater and B. Macq. Pro-
viding Equitable Conditional Access by Use of Trusted Third Par-
ties. In European Conference on Multimedia Applications, Ser-
vices and Techniques, pages 763-782, 1996.

[32] G. Lowe. Breaking and Fixing the Needham-Schroeder Public-
Key Protocol Using FDR. In Proceedings of TACAS, LNCS 1055,
pages 147-166, Springer-Verlag, 1996.

[33] G.Lowe and B. Roscoe. Using CSP to Detect Errors in the TMN
Protocol. IEEE Transactions on Software Engineering 23(10):
659-669, 1997.

[34] G. Lowe. Towards a Completeness Result for Model Checking of
Security Protocols. Journal of Computer Security, 7(1), 1999.
[35] W. Marrero, E. Clarke and S. Jha. A Model Checker for Au-
thentication Protocols. In Proceedings of the DIMACS Workshop
on Design and Formal Verification of Security Protocols, 1997.

[36] C. Meadows. Applying Formal Methods to the Analysis of a
Key Management Protocol. Journal of Computer Security, 1:5—
53, 1992.

[37] C.Meadows. The NRL Protocol Analyzer: An Overview. In Pro-
ceedings of the Second International Conference on the Practical
Applications of Prolog, 1994.

[38] J. Mitchell, M. Mitchell and U. Stern. Automated analysis of
Cryptographic Protocols Using Mur¢. In ITEEE Symposium on
Security and Privacy, 1997.

[39] R. Needham and M. Schroeder. Using Encryption for Authenti-
cation in Large Networks of Computers. Communications of the
ACM, 21(12):99379997 1978.

[40] W. Wu and M. Fumio. Model Checking Security Protocols.
In 71999 Symposium on Cryptography and Information Security,
1999.

[41] J. Corbett, M. Dwyer, J. Hatcliff, and Robby. A Language
Framework For Expressing Checkable Properties of Dynamic Soft-
ware. In Proceedings of the SPIN Software Model Checking Work-
shop, LNCS 1885, 2000.

[42] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, S. Laubach,
and H. Zheng. Bandera: Extracting Finite-state Models from Java
Source Code. In Proceedings of the 22™% International Conference
on Software Engineering, Limerick, Ireland, 2000.

[43] P. Cousot and R. Cousot. Abstract interpretation: a unified lat-
tice model for static analysis of programs by construction or ap-
proximation of fixpoints. In Conference Record of the 4'" ACM
Symposium on Principles of Programming Languages, pages 238-
252, Los Angeles, California, U.S.A., 1977.

[44] P. Cousot and R. Cousot. Abstract interpretation frameworks.
Journal of logic and computation, 2(4):511-547, August 1992.

[45] C.Demartini, R. Iosif, and R. Sisto. A deadlock detection tool for
concurrent Java programs. Software - Practice and Experience,
29(7), pages 577-603, July 1999.

[46] M. Dwyer, J. Corbett, J. Hatcliff, S. Sokolowski, and H. Zheng.
Slicing Multi-threaded Java Programs: A Case Study. Kansas
State University Computing and Information Sciences Tech Re-
port 99-7, 1999.

[47]) M. Dwyer, J. Hatcliff, and M. Nanda. Using Partial Evaluation
to Enable Verification of Concurrent Software. Kansas State Uni-
versity Computing and Information Sciences Tech Report 97-15,
1997.

[48] J. Hatcliff, M. Dwyer, and S. Laubach. Staging Static Analyses
Using Abstraction-based Program Specialization. Kansas State
University Computing and Information Sciences Tech Report 98-
5, 1998.

[49] K. Havelund and T. Pressburger. Model checking Java programs
using Java PathFinder. International Journal on Software Tools
for Teaching Transfer, 1999. to appear.

[50] G.J. Holzmann and M.H. Smith. Software model checking: Ex-
tracting verification models from source code. In Proceedings of

the FORTE/PSTV’99, November 1999.

[51] M. Marinescu and B. Goldberg. Partial-evaluation techniques
for concurrent programs. In Proceedings of the ACM SIGPLAN
Symposium on Partial Fvaluation and Semantics-Based Program

Manipulation (PEPM ’97), pages 47-62. ACM, 1997.

[52] D. Monniaux. Abstracting Cryptographic Protocols with Tree
Automata. In In Proc. 6th Static Analysis Symposium,149—
163,1999.

[53] B. Blanchet. Abstracting Cryptographic Protocols by Prolog
Rules (invited talk). In 8th International Static Analysis Sympo-
stum (SAS’01), July 2001.

[54] SET Working Group, SETTM Specification, books 1,2 and 3,
SETCO, http://www.setco.org/set specifications.html

Intl Conf on Advances in Infrastructure for Electronic Business, Science, and Education on the Internet
L’Aquila, ITtaly, Aug 6-12, 2001



Mr. Benjamin Aziz holds a BSc in Electron-
ics from the University of Garyounis, Libya,
and an MSc in Computer Science from Trin-
ity College, Dublin, Ireland. Currently, he is
a PhD student in the Formal Methods group,
School of Computer Applications, Dublin City
University, Ireland. His PhD research is di-
rected towards the area of static analysis of
security properties for mobile and distributed
systems using the abstract interpretation ap-
proach. Other main research interests include
security and adaptability issues in integrating technologies, like

CORBA. Mr Aziz is a student member of the IEEE.

Dr. David Gray holds B.Sc. and Ph.D. de-
grees from the Queens University of Belfast,
N. Ireland. Currently he is a Senior Lecturer in
Computer Applications at Dublin City Univer-
sity, Ireland. His main areas of research are se-
curity, formal methods and e-commerce. David

is a member of the ACM.

Dr. Geoff Hamilton graduated from the
University of Stirling, Scotland with a first
class honours degree in 1989. He was awarded
a Ph.D. from the University of Stirling in 1993.
The area of his Ph.D. research was the optimi-
sation of functional programs. Geoff joined the
Computer Science Department in the Univer-
sity of Keele, England as a lecturer in 1993, and
then moved to the School of Computer Appli-
cations, DCU in 1998, also as a lecturer. His
current research activities are in the areas of
formal specification and verification.

Mr. Frédéric Oehl holds a maitrise and
engineer title in Computer Science/Software
Engineering from the University of Besangon,
France, and a DEA in Computer Science, Pro-
cess Control and Production Engineering from
the University of Dijon, France. Currently he is
a PhD student in the Formal Methods Group,
School of Cumputer Application, Dublin City
University, Ireland. The focus of his PhD
research is the formal verification of crypto-
graphic protocols. Other main research inter-
ests include the automata theory and the verification of infinite sys-
tems.

Dr. David Sinclair holds a BSc in Electronic
Engineering from University College Dublin,
Ireland and an MSc and PhD in Computing
from Dublin City University, Ireland. He is
a member of the Formal Methods Group in
the School of Computer Applications, Dublin
City University, and a founding member of
the Secure and Distributed Systems Research
Group. David’s research interests in the de-
sign and verification of real-time, embedded
and distributed systems follow from & years in-
dustrial experience in the design and development of embedded and
distributed systems. The current focus of his research is the for-
mal specification and verification of cryptographic systems and dis-
tributed systems. David is a member of the IEEE.

Intl Conf on Advances in Infrastructure for Electronic Business, Science, and Education on the Internet
L’Aquila, ITtaly, Aug 6-12, 2001



