PROGRAMMER’S TOOLCHEST

onformance to a standard is one of

the most important assurances com-

piler vendors can make. Conformance

can affect acceptance of the compil-
er and, in many cases, impact the language
itself. Conformance enables code porta-
bility and wider use of the language and
corresponding libraries. And even if code
portability isn’t important, conformance
facilitates documentation so that text books
and language-reference manuals have a
common frame of reference.

However, conformance is especially im-
portant and difficult for C++ because the
language standard was slow to develop
and acceptance of the standard occurred
years after its introduction. By 1998, when
the ISO Standard was accepted, there were
many established and accepted C++ com-
pilers in use.

In this article, we describe a test har-
ness we built to measure conformance of
C++ compilers. In applying the same stan-
dard to all vendors under consideration,
we use the same test cases and testing
framework for all executions—even
though some of the compilers are platform
dependent and there is no common plat-
form for all compilers. We found that with
its scripting facility, platform independence,

Brian Malloy is an associcate professor in
the computer science depariment at Clem-
son University and can be contacted at
bttp:/www. brianmalloy.com/. Scott Livide
received his M.S. in Computer Scievice from
Clemson University in February, 2002. This
paper is part of bis M.S. thesis. Edward
Duffy is a masters student in the comput-
er science department at Clemson Uni-
versity. James Power is a researcher in the
compulter science department at the Na-
tional University of Ireland at Maynooth.

bttp.//www.ddj.com

and object orientation (facilitating code
reuse), Python provided the functionality
we needed. Moreover, unlike other lan-
guages, Python includes a testing frame-
work with the language. This testing frame-
work is a Python module called “unittest”
(http://pyunit.sourceforge.net/), written
by S. Purcell, and patterned after the JU-
nit framework developed by Kent Beck
and Erich Gamma (http://members
.pingnet.ch/gamma/junit htm), and included
with Python 2.1 and later (http://www
python.org/). We have extended the frame-
work to facilitate measurement of ISO con-
formance.

We use our extended framework in all
test case executions. To avoid bias for or
against any vendor, our test case selection
is based on test cases found directly in
the ISO C++ Standard (International Stan-
dard: Programming Languages— C++.
Number 14882:1 998(E) in ASC X3. Amer-
ican National Standards Institute, First Edli-
tion, September 1998. ISO/IEC JTC 1). All
of our test cases are actual examples list-
ed specifically in the Standard with out-
comes specified.

The Python code, together with Clause
3 test cases from the ISO Standard, are
available electronically from DDJ (see “Re-
source Center,” page 5) and http://www.cs
clemson.edu/~malloy/projects/ddj.html.

The unittest Testing Framework

In Python, each class begins with the key-
word class and each function begins with
the keyword def. There are classes de-
fined on lines 1-3 of Listing One and func-
tions defined on lines 4, 10, 12, 14, 16, 18,
and 26. The classes in lines 1-2 do not
contain data or methods, as indicated by
the keyword pass: They are used to han-
dle exceptions. Class Binary (lines 3—25)

Dr: Dobb’s Journal, June 2002

Testing C++ Compilers for
15O Language Conformance

Conforming to standards really is a big deal

Brian A. Malloy, Scott A. Linde, Edward B. Duffy, and Jomes F. Power

represents an abstraction for binary num-
bers. Users of the class instantiate Bina-
ry numbers using positive decimal num-
bers, then, using the overloaded operators,
manipulate each binary number in the
same manner as an integer, applying ad-
dition, multiplication, comparison, and
output. Binary has six member functions.
Function __init__ (lines 4—9) is the con-
structor for Binary. Functions __add__,
__mul__, __eq__,and __ne__ overload
the +, #, == and | = operators for two bi-
nary numbers. Function __str__ (lines
18-25) enables output of binary numbers,
similar to operator << for C++, and
toString for Java. Function tesi() (lines
26-34) represents one approach to test-
ing class Binary. Binary numbers binl
and bin2 are instantiated in lines 27-28,
then used in addition, multiplication, and
comparison in lines 29-34. Function fest()
is invoked (line 36) when the module is
executed in standalone fashion.

These tests aren’t intended to be ex-
haustive, but rather illustrate one approach
to testing modules. There are drawbacks,
of course, in using this approach. First,
the code 1o test the module is included in
the module itself, which can distract read-
ers interested in understanding the class
and requires that the code to test the mod-
ule be shipped with the module. Second,
the person performing the test must in-
spect the output and verify it is correct. If
this verification were performed auto-
matically with a summary report at the
end of the test, the testing process would
be less prone to error.

Listing Two is an alternative, using the
unittest module, to the testing approach
in Listing One. (For detailed information
on unittest, see the PyUnit homepage,
the Python Library Reference, and Mark

71

Understand Your Softw

But I didn’t write this...lump of spaghetii the boss just
dumped on the server, or the source [or a product my company

4 picked up in a merger. Wherever it came from, it's big, it's ugly.
1L uses macros 10 make C look like Pascal, and I need help,

A AT e FTT AT s =

| Help is available... Undersiand for C++ helps C/AC4+ and
Java developers understand, maintan, measure, and document

& code they didn’t write, they wrote a long time ago, or that has
grown oo large or complex to comprehend

| How are we different?...Euch toul quickly parses and manipu-
lates very large amounts of code. 1 ({KLOUO SLOC projects are
common smong our customers, We also focus on exceptional

1 customer support with rapid response from a real engineer. Fixes
and new featares are incorporated into weekly builds.

See for yourself... hitp:/fwww.scitools.com/

Understand for C++/{Java

= K&R COANSIC. C4+, Java
= Analyzes all 4 languages together
Fast on big projects
lorers™ programmer editor—nifty Tor exploris
ed cross reference of everything - one click visiting
: led information for everything declared or used in code
= Works on partial ¢ode or missing preprocessor definitions
=>Class browsing (inheritance and base)
= Graphical Call Tree, Call-By Trees, Include, Include-By Trees
=o' Visio export of graphics
#PERL ar C API 1o get data/graphics for custom documentation
=¢Comment extraction for documentation generation
=¢Freely sharable HTML and text reports of analysis information
= Complexity, Size, 00, and other metrics,
=2 Eagy export of metrics to spreadsheets and databases

Download and try for free at
http://www.scitools.com

ieatific Toolworks, Inc. |-802-763-2995 infoéscitools.com

L G D P LA A A) 7 3 L LA R O T) X0 8 o LA 20 3 L 0 L 8 D D DR, L D L T L 2 R S B BT LU EA

SOFTWARE & DOCUMENT PROTECTION

It's all in your hands!

You need a reliable copy protection system that can be
flexibly adapted to the requirements of your software
sales strategy?

Choose WIBU-KEY!

Highest Security

MMM

Support for C/C++, Pascal, Ja
Network and Local Support
Pay-Per-Use |

oo nqim-

ESD - Integration in '%nr
License Management
User’s Benefits: Data Enci

Authentication
Order your Test Kit
WIBU-SYSTEMS AG 1-B00-286-6578
076137 Karhirube IjsA, =1 .
WIBU-SYSTEMS USA, Iy 7 nada:
SR . st A st " Griffin Tachnologies. LLC '.GRI FF] N
SYSTEMS niniisn et N . TECHNOLOGIES
Argenting. -\ull':ﬂl‘ B"lg-iull\, Cansdn. Croatia, Dﬁnhlr;;ﬂ‘. Finlang. France. ﬁﬂl.“:y -
Great Beitaln, Hungary, Japan, joidan, Kerna, Lebanan, Nethariands, Spain. festugal, Syria, US4
72 Di: Dobb's Journal, June 2002

Pilgrim's public-domain book, Dive Into
Python at http://diveintopython.org/.)
Listing Two imperts the modules
wnittest, Binary, and InvalidBinaryError
in lines 1, 2, and 3, respectively. The im-
port format on line 1 requires all uses of
the imported module be prefixed with the
module name; the format used in lines 2—-3
do not require the module name prefix.
The classes BinaryTest (line 4) and Bad-
InpuutTest (line 18) encapsulate the test cas-
es we use to test class Binary. Both class-
es are derived from TestCase, 4 class in
module wniftest; this inheritance is indi-
cated by putting the class names in paren-
theses at the point of declaration (lines
4-18). By inheriting from TestClass, we ac-
quire useful methods to facilitate testing.
BinaryTest and BadnputTest encapsu-
late the testing process of Binary, with
BinaryTest testing for success, and Bad-
InpuiTest testing for failure. BinaryTest
contains five methods that either initialize
the test process, fest, or recover from the
test process. The first method in Binary-
Test, setllp (lines 5—-06), instantiates 4 Bi-
nary zero as a data member. Method fear-
Down (line 7) does nothing, but might be
used to clean up after the test process.
There are three test cases in BinaryTest:
methods festZero, testAddition, and test-
Multiplication, each containing assert-
Equal statements to determine if the val-
ues returned by the Binary APl are
correct. The statement in line 9 of testZe-
ro compares the value of the data mem-
ber selfn to the newly instantiated num-
ber Binary(0): If they are equal, the test
passes; if not, assertEqual raises an ex-
ception and the test fails. festAddition is
one test case but actually tests two addi-
tion operations. The festMultiplication
method is also a single test case, but tests
100 multiplication operations.
BadInputTest uses the assertReises state-
ment to ensure the Binary API handles
bad input. The festNegeative test case (line
21, Listing Two) ensures that Binary rais-
es the exception InvalidBinaryError (line
23) if users of the API attempt 1o instan-
tiate a negative binary number; this test
case passes. However, festDecimal, the
method to test for decimal input (line 25),
does not pass since the Binary API does
not raise an exception when users attempt
to instantiate a decimal Binary. This is the
only test case in Listing Twao that fails,
unittest automatically calls setljp and
tearDown before/alter each test case ex-
ecution, and the three test methods in Bi-
naryTest are invoked automatically by
wnittest. Similarly, the setUp routine for
BadinputTest and both its negative test
cases are automatically called. In fact, a
lot automatically happens when using
Listing Two in standalone fashion. For
instance, when main is invoked in line

bittp//www.ddj.com

29, all methods that begin with “test” in
classes BinaryTest and BadlnputTest are
recognized as test cases and a test suite
is constructed consisting of each of these
methods. These test cases then run auto-
matically; the order of execution is deter-
mined by a function that sorts the test cas-
es lex;cograplucal[y by the name of the
function using the built-in Python cmp
function. The testing framework provides
an environment in which the test cases
can execute and a report is generated. Al-
ternatively, users can construct the test
suite and pass the name of the test method
as a parameter to the newly constructed
test suite. Executing the tests in Listing
Two produces the output in Figure 1, with
five test cases executed and one test case
failure (testDecimal).

Building the Test Harness

Listing Three, the test case generation
module called “runtests.py,” consists of
two functions, doTests (lines 3—13) and
cleanlp (lines 14-21). Each Python mod-
ule contains a global namespace with an
identifier called name that stores the mod-
ule’s name. When a Python interpreter ses-
sion begins executing a module, the val-
ue of name is main. Thus, we begin our
lest case generation by running the Python
interpreter on runtests.py and the if state-
ment (line 22) evaluates to True.

When the session begins, the if state-
ment (lines 23—34) verifies user input and
calls functions to run the tests and clean
up. Our test suite is partitioned into di-
rectories and we have a directory for each
clause in the standard that we test, The if’
statement in line 23 verifies that two pa-
rameters were entered, and line 28 veri-
fies that the second parameter is a valid
directory within the current directory.
Then, doTests and cleanlp do the testing
of the clause and clean up afterward.

Function doTests (line 3) accepts two
arguments: the full path to the directory
containing the clause under test, full-path,
and the directory name, directory. The
function gathers a list of the files contained
in the directory, and instantiates a test run-
ner (using TextTestRunner) and a test suite
(using TestSuite). TextTestRunner and Test-
Suite are part of the unittest framework,
which we import. The for loop in doTests
examines each name in the list to deter-
mine if it's a file, and verifies the proper
extension. If the name represents a file
with a C++ extension, a test case is gen-
erated (line 10) with two parameters
passed to the constructor: the function that
executes the test, testfixecute, and the pre-
fix of the name of the C++ test case. Af-
ter the test case is generated, it is added
to the test suite. The final action of doTests
tells the TextTestRunner object, runner,
to run the tests (line 13).

bitpr.//www.ddj.com

Function cleanl]p (Listing Three, lines
14-21) cleans up after the test suite is ex-
ecuted. We could have used the fearDown

method in CppTestCase, derived from

unitlest to clean up after individual test
cases, but we found it more efficient to
clean up after all test cases when the test
suite has been executed. Line 15 gets a
listing of the files in the directory of the
clause under test and the for loop exam-
ines each file to see if it should be re-
moved, In running each test case, we may
have constructed an object file or exe-
cutable and these are also removed as part
of the cleanup process.

The C++ Test Case Wrapper
Listings Four and Five present class
CppTestCase, a wrapper for our C++ test

cases extracted from the 1SO C++ Stan-
dard. The class contains four methods.
Method init (lines 3—18) is the class con-
structor, and serljp (lines 19-28) performs
initialization for each test case. Method
tearDown does nothing because we re-
cover from test case execution in the test
case generator after the entire suite is ex-
ecuted, as previously described, Function
testExecuite is the longest method in the
class and we show only its signature in
Listing Four; the code for testExecute is in
Listing Five,

The constructor for CpplestCase (init
in Listing Four) initializes the data used in
the test case. The method begins by call-
ing the constructor of the superclass, Tes/-
Case (line 4), passing the name of the
function that executes the test case: in our

On Time

RTOS-32

On Time’s royalty-free embedded RTOS for 32-bit x86
implements a Windows NT subset kernel in only |6k.

On Time RT0S-32 has a scalable
component. architecture. Only
the components actually .
needed by the application are
loaded on the target.

On Time RT0S-32 Features:
> Source and binary compatibility
with Windows 95/98/NT/2000/XP
> Supports DLLs
> Unmatched real-time performance
> Context switch 0.73ps on P120
» Supports (but does not require)
PC compatible hardware

> Boots from disk, BIOS extension,
ROM, or DOS

> Windows 95 look-and-feel GUI

> Free tech support

> Full source code available

» Supports Microsoft, Borland,
Delphi Compilers

> Fully integrates with
MS Visual Studio 6/.NET

> Free Evaluation Kit
available at http://www.on-time.com

> No run-time royalties

* Target Hardware

On T| me.—

REAL-TINME AND SYSTEM SOFTWARE

Dr: Dobb’s Journal, June 2002

73

framework this is festExecute, introduced
in Listing Three. It is important that the
CppTestCase constructor explicitly calls the
constructor of the superclass because, in
Python, constructors for superclasses are
not automatically invoked. Lines 5-14 ini-
tialize a list that contains the calls for each
of the compilers we use to execute C++
test cases; the actual compiler is chosen
in festExecute by indexing into this list. In-
cluded with the compiler call is a flag,
passed using the — D option, that may be
used in the test cases to determine the
name of the files 1o include. We also set
the name of the file for this C++ test case,
the toPass flag that indicates if this test
case is supposed to pass or fail, and has-
Main, a flag that indicates if this test case
has a main function. Finally, the directo-
1y is initialized to the current working di-
rectory, line 18.

Method setlp (lines 19-28, Listing Four)
parses the test case to determine if it con-
tains a function mein. If it does, the has-
Main flag is set to True (line 20) and the
test case is compiled, linked, and execut-
ed. Listing Four is festExecute, the code
for the final method of CppTestCase. The
first part of testExecute chooses the com-
piler, link, and execute call, and then com-
piles the program. If the test case has a
main and it successfully compiled, the
program is linked and executed.

The system calls to compile, link, and
execute the program are on lines 4, 7, and
10 of Listing Four, respectively, where the
results are assigned to variables compiled,
linked, and executed. All of the systems
we used follow the convention that upon
successful compile, link, or execute, a zero
value is returned; otherwise, a nonzero
value is returned. However, Windows
95/98 do not follow this convention, but
return 4 zero value for both success and
failure. Thus, our framework will not pro-
vide correct results on these systems.

Some examples in the ISO Standard are
intended to compile, others to link, exe-
cute, and give a specified output, and still
others are intended to fail. We translated
the examples into test cases that are ei-
ther positive or negative, dependmg on

whether they are expected to successful-
ly compile, link, or execute. Negative test
cases are intended to expose compilers
that accept a superset of the Standard.
Thus, a negative test case does not pass
if it compiles successfully, or compiles and
executes successfully. Forty-one percent
of the test cases we extracted from the
Standard are negative test cases and form
an important part of our measurement of
ISO conformance.

We applied our
testing framework to
several C++
compilers running
on several different
platforms

The most important function of festEx-
ecute is to determine whether the test case
passes or fails, based on the values of the
flags toPass and hasMain and the outcome
of the compile, link/execute phase of the
test process. If the toPass flag is True, then
this is a positive test case; if the hasMain
flag is True, then this test case is supposed
to link, execute, and possibly give a spec-
ified output. We make a judgment about
whether the test case passes based on the
values in these two flags and the outcome
of the compile and link/execute phases
of the test, Thus, there are four variables
that must be modeled, producing 16 pos-
sible paths, six of which are infeasible.
We model the 10 possible outcomes on
lines 12—48 of Listing Five.

Test Case Exiraction
A single example in the Standard can pro-
duce many test cases. Some examples ex-
pand into multiple positive test cases,

; % python =bix;azytsst ,:y.‘.

e 2l
ina. Error, Bmﬁ; 1)
2 /ﬁb/unittest. ;

Figure I: E.a,ecurmg the tests in LIS!mg Two pmduces this ourput

T4

D Dobb's Journal, June 2002

while others may expand into a single
positive test case and multiple negative
test cases. Consider Listing Six, taken from
Clause 3 of the ISO Standard, which spec-
ifies rules for name lookup in namespaces.
Listing Six represents a single example in
the Standard, but clearly this must be more
than one test case. For example, there are
errors on lines 12 and 17; if this example
is used as a single test case and the pro-
gram fails, the tester will not be able to
determine if the error occurred on line 12,
line 17, or both.

In our approach, we generate three test
cases for Listing Six: One test case with
no errors that should pass, another test
case with the first error that should fail,
and a third test case with the second er-
ror that should also fail. Thus, we get one
positive and two negative test cases. How-
ever, a different testing approach might
generate many more test cases than three
using the example in Listing Six.

Many of the positive examples will not
compile as described in the Standard. Some
examples require variable or type decla-
rations, or header file inclusion. We have
found a wide variation in nomenclature of
include files across vendors. In some cas-
es, we were able to avoid the problem of
this variation in the include file names if
the class or function in the included file is
not part of the test. For example, a vari-
able declaration such as strings; might be
modified to ints; if the purpose of the test
does not involve the siring class.

However, in some cases a function or
class in the included file is part of the test.
Listing Seven, taken from Clause 3 of the
ISO Standard, illustrates a test case where
the function memepy is part of the test. In
Listing Seven, memcpy is used to copy a
value from a struct to a buffer, then back
again to the stiici; the test case succeeds
if the value is successfully transferred in
both directions. However, the Borland com-
piler places memcpy in mem.b while the
other compilers place memcpy in menio-
r.h. The conditionally compiled code, lines
1-5 of Listing Seven, chooses the file to in-
clude based on the compiler under test.

C++ Conformance Roundup

The article “C++ Conformance Roundup,”
by Herb Sutter (C/C++ User’s Journal,
April 2001), presents the results of a
roundup of a dozen C++ compiler and
library vendors in an attempt to establish
their conformance to the 1SO Standard.
In the roundup, three suppliers of C++
conformance test suites— Dinkumware
(hop://www.dinkumware.com/), Peren-
nial Chtp://www.peren.com/), and
Plum Hall (heep://www:plumhall.com/)—
were asked to evaluate compilers from
IBM, Sun Microsystems, Kuck and Asso-
ciates, Metrowerks, Intel, Hewlett-Packard,

bttp//www.ddj.com

(continued from page 74)
Microsoft, GNU, Borland (BC++ and BCC),
and Comeau Computing.

The Plum Hall test suite is based on
providing a test case for each sentence in
the 1SO Standard. For Clauses 1 through
16, describing the language definition, this
line-by-line approach produced some
4356 test cases. Perennial has used a sim-
ilar approach but produced nearly 10 times
as many— a total of 35,993 test cases for
the same clauses.

We found the Conformance Roundup
to be inconclusive, so we decided to de-
sign our own conformance tests. In an at-
tempt to factor out bias, we decided to
use the same testing framework for all test
executions. Moreover, rather than engage
in a line-by-line interpretation of the 1SO

Standard, which might bias us toward the
compiler with which we were most fa-
miliar, we have chosen to only extract ex-
plicit examples in the Standard with out-
comes specified. Using this approach, we
extracted 760 test cases.

Case Study

We applied our testing framework to sev-
eral C++ compilers running on several
different platforms. The compilers in our
study include Borland 5.5.1 (htp://
www.borland.com/), Visual C++ 6.0
(http://www.microsoft.com/), gce 2.95.2,
gee 2.96, and gee 3.0.4 (htp://gee.gnu
.org/), and MIPSpro7.3.1.2m (http://www
sgi.com/). We executed the test cases for
Borland 5.5.1 and Visual C++ 6.0 on Win-
dows NT/2000; the rest of the test cases

lint 8.0 Bug of the Month

for C/C++

#682

fiinclude <stdio.h>
int anf4] = {1, 2, 3, 4 };

int sum(int a[4])

int result = 0;

result += a[i];
return result;
}

int main()
{
printf("%d\n", sum(an));

return 0;

}

PC-lint for C/C++ will catch this and many
other bugs. It will analyze a mixed suite of C
and C++ modules to uncover bugs, glitches,
quirks and inconsistencies.

Not your Grandpa's lint: PC-lint has
introduced several spectacular and revolutionary
innovations in the art of static program analysis.
Taking clues from initializers, assignments, and
conditionals, variable and member values are
tracked, enabling reports on potential uses of
null pointers and out-of-bounds subscripts.

New with Version 8: Interfunction value
racking — Actual argument values are used to
initialize parameters; return values are computed;
a multi-pass operation (you control the number
of passes) allows you to plumb the depths of
function behavior to arbitrary levels,

PA add 6% sales 1nx.

{
int limit = sizeof(a) / sizeof(int);

for(int 1 = 0; i < limit; i++)

The programmer expected that summing the elements of the array would produce the
vatue 10. Instead he got something much smaller. What did he do wrong? Call if you
need a hint or visit our web site at www . gimpel . com

Gimpel Software

Serving the C/C++ Community for 15 Years.
3207 Hogarth Lane, Collegeville, PA 19426
CALL TODAY (610) 584-4261 Or FAX (610) 584-4266
www.gimpel .com

Plus Our Traditional C/C++ Warnings:
Uninitialized variables, inherited non-virtual
destructors, strong type mismatches,
ill-formed macros, inadvertent name-hiding,
suspicious expressions, efc., etc,

Full Language Support for ANSIVISO

C and C++.
PC-lint for CIC++ $239

Numerous compilers/ libraries supported.
Runs on Windows, MS-DOS, and OS/2.

FlexeLint for C/C++

The same great product for other operatin
systems. Runs on all UNIX systems, VMS,
mainframes, etc. Distributed in shrouded

C source form. Call for pricing.

30 Day Money Back Guarantee

PC-lint and FlexeLint are trademarks of Gimpel Software

76

Dr: Dobb’s Journal, June 2002

were executed on Linux or Solaris systems
running Red Hat 7.1 or Solaris SunOS 5.8,
We have tested the framework on Python
1.5 through 2.2; for versions of Python pri-
or to 2.1, the unittest module must be
downloaded separately. To provide some
insight into the efficiency of the Python
framework, we were able to run the 217
test cases for Clause 14, containing the
largest number of test cases, in 5.125 sec-
onds on a Dell Precision 530 workstation,
with a Xeon 1.7-GHz processor and 512
MB of Rambus memory.

Figure 2 summarizes our results, where
the first column lists the names of the com-
pilers and the columns labeled 315 list the
results for Clauses 3—15 for the respective
compilers. The column labeled “Failures”
lists the total number of test cases failed by
the respective compiler and the final col-
umn, “% Passed,” represents the percent-
age of rest cases that passed. The bottom
row in Figure 2 lists the number of test cas-
es in each of the respective clauses, with
the total number of test cases at 760. For
example, column 1 shows that the gee 3.0.4
compiler failed 8 out of 88 test cases for
Clause 3 of the ISO Standard.

The final column of Figure 2 shows that
the first three compilers passed at least 90
percent of the test cases, with the gec 2.95.2
and Borland compilers very close to 90 per-
cent. Moreover, the Visual C++ 6.0 com-
piler also performed well in the tests. Our
goal here is to show that our testing frame-
work is extensible to multiple platforms
and provide some measure of how the
compilers stack up against the examples
in the 1SO Standard. We are not consider-
ing compile speed, efficiency of optimized
code, or friendliness of the environments.
Mareover, the performance of a given com-
piler on these tests may not directly pre-
dict the performance of the compiler on a
real-world program or test suite. To un-
derscore the intricacy of the test cases, con-
sider Listing Eight, a test case that all com-
pilers failed. The purpose of the test case
is to illustrate that the expression in line 6
is not a function call and that argument-
dependent name lookup does not apply;
rather, the expression is a cast equivalent
to int(a). However, the compilers we test-
ed find the expression in line 6 to be a re-
declaration of the fiiend function in line 3
and became confused with the fpedef in
line 1. None of the compilers were able to
compile this example correctly.

Figure 2 provides an overview of com-
pliance on a clause-by-clause basis. For
example, the four bars at the top of the
graph illustrate the percentage of Clause
15 test cases passed by gec 3.0.4, MIPS-
pro7.3.1.2m, Borand 5.5.1, and Visual C++
6.0. The bar in the graph for Clause 4
(Conversions) shows that gee 3.0.4 and
Borland 5.5.1 passed both tests, while

hittp.//www.ddj.com

MIPSpro7.3.1.2m and Visual C++ 6.0 failed
one of the two test cases, The bars for
Clause 4 might indicate that the latter two
compilers did poorly on this clause but,
in fact, they failed only a single test case.
One of our goals was to measure the
progress of the GNU C++ compiler toward
1SO conformance. Figure 3 reveals that
gee is making steady progress toward con-
formance. The graph contains three bars
for cach of the clauses, where the top bar
for a clause represents the most recent
version of gee in our tests (gee 3.0.4), the
second bar represents gee 2.96, and the
third bar represents the oldest version (gee
295.2). For all clauses we tested, gee 3.0.4
performed as well or better than gcc
2952, Also, for Clause 14, which tests
templates, gee has shown steady im-
provement toward 1SO conformance.

Conclusion

We have described the construction of a
Python test framework that lets us use the
same test harness for compilers on dif-
ferent platforms. We have used the ex-
amples from the 1SO Standard ogether
with the described outcomes to construct
test cases 1o measure the conformance of
popular compilers. Since nomenclature for
include files varies across vendors, we con-
ditionally compile the correct header file
for the respective compiler. Our results in-
dicate that all of the compilers in our test
suite performed very well and that the
GNU C++ compiler is moving steadily to-
ward conformance to the [SO Standard.
We believe that our approach is adaptable
to other forms of testing where cross-
platform compatibility is important. We
are currently extending our framework to
perform unit testing on C++ classes,

DDJ

Compiler 3 45 6 7 8 9 10 11 12 13 14 15 Failures %Passed
Hgee 3.0.4 8 01 2 8 8 1 0 123 0 241 70 90.7
BMIPSpro7312m 131 0 2 B8 4 2 0 7 8 3 200 72 305
gee 2.96 8 02 2 108 1 0 123 2 271 76 90.0
gec 2.95.2 8§ 0 1 2 14101 1 123 2 31 2 86 886
MBorland 5.5.1 1830 1 0 187 4 1 1110 2 38 1 104 86.4
WVisual C++ 6.0 191 4 9 17157 6 9 13 18 80 2 201 73.6
Total Cases 88 2 20 14 B4 90 38 41 54 53 52 2177 760 —

Templates: 14

Overloading: 13

Spec. Member Func: 12 Ji
Member Access: 11

1.”:{--.||”HE—“||”:|H|}u»n:rnlllll}r{'r‘H ::1:
0% 10% 20% 30% 40% 50% 60% 70% B0% 90% 100%
Percantage of Test Cases Passed
Figure 2: Resulls of our study.
Excaplionsﬂsl‘ — 7’ - S ——— i ‘
Templates: 14 pe—— P — —— e T
Overloading: 13 p— Ry e e
Spec. Member Func: 12 :; ——r——— 1 = -l‘ e -
Member Access: 11 [il N et | |
Derived Classes; 10— — B R S e
Classas: § pm— . ” ”
Declarators: & [—— a———— E— =
Declarations: 7 === —— - —
Statements: 6™ , B p——
Expresions:5 i ‘ — T P —————.
Conversions; 4 [* i
Basic Concepts: 3 S S S B I A |
0% 10% 20% 30% 40% G50% 60% 70% B80% 90% 100%
Cgec3.04 Percentage of Test Cases Passed
B gec 2.96
O gec 2.95.2

Figure 3: Progression of gce toward conformance.

« e
Listing One

1 class BinaryBrror(Exception): pass

2 class InvalidBinar yError(BinatyE rior): pass
3 -clags Binary:

4 (salf, no= '@l):

5 her & are stored as integers""?
6 £ int(n) <@

7 raigé invalidBinery Error,

g "Hegative numbers are invalid"

9 self.numbar = int{ n)

16 def _add. (self, rhs):

1 return Binary(self,numbertrhs.number)
12 def _mul_ [self, rhs):

13 return ' Bi {gelf.number*rhe.number)
14 def _eq. (self, rhs):

15 return (self num ber==ris. numbe r)
16 def _me- { self, rhs):

17 return [(salf,num berl=rhs.muabe r)
18 def _gtr. (self):

19 #eiprints the number in binary format!™!
i nunber = self.number

21 result = []

22 while ‘number:

23 result.inser (@, strinumber®2))
24 number = number / 2

25 raturn ", Jein(resile)

26 def testl}:

27 Binl = Bigaryl 17)

1] bir2 = Binary(127)

".,r’])’//aivu lu,!.d{(f_ con

29 print binl, "+ " 'bin2, " is ". binltbin2
30 print bini, " * v, hin2, " ig *, binlehin2
a1 if binl 1= bin2: print “Not Equal"
32 else : print “"Equal®
33 if bin2 |= Binary(i27): print "Not Equal"
34 elsge : print "Equal™
35 if name == " _pain_"!
16 zest()
)
Listing Two
import unittest
2 Trom binary import Binary
from binary import InvalidiinaryError
class BinaryTest{uniztesy,TestCase):

1

2

3

4

] def setrlip{s elf):
6 gelf.n = Binary (@)

r def tearDow niself): pass

] def tegtZero(salf):

9 self.asse rtEquali{self.n, Binary(0))
10 def testAdd ition(self):

1 rhe = Binary(7)

12 self.asgertBqual ((self.ndrhe), Binawy(7))

13 self.assertBqual{(Binary(7)+chs), Binary(14))
14 def testMultiplication(self):

15 for' n in range(1@@):

16 self.asgertBqual{Binary(n) *Binary(n}.
17 Binary(d*a))

Di: Dobb’s Journal, June 2002

(continued on page 78)

(continued from page 77)

18 class Badlnput'i‘esttuuittest.'[‘eatcaea):

19 def setlplself):

20 self.n = Binary(@)

21 def testNegativelself):

22 Wiginary should fail with negative imput'"
23 self.assertRaisas (InvalidBineryBrror, \
24 Binary, -1)

25 def testDecimal(self):

26 self. agsertRaises (InvalidBinaryError,\
27 Birary, ©.5)

28 if name == " _main_ ":

29 unitvtest.main ()

.ae
Listing Three

1 nl/use/binfeny python2.Z

2 import unittest, fnmatch, os, sys, cpptests

3 def doTests(fu llpath. directory):

4 dirlist = os.listdir(fullpath]

5 runner = unittest,TextTestRumner {) =

k] suite = unittest.TestSulte()

7 for fname in dirlist :

] if os.path,isfile(fullpath+' /!+fname) \

] and fnmatch,fnma tch{fname, “k.epp'):

1@ gen = cpptests.CppTestCase("test Execute!, \
11 fnama[:=4])

12 suite.addTest{ gen)

13 riifiner . tun (sulte)

14 def cleanlp(fu llpath):

15 dirlist = os.listdir(fullpath)

16 for fpame in dirlist :

17 if os,path.isfile{fullpath+' /'+fname) and \

18 {frmatch. fimatchifname, "#.9")

19 or frmatch. Pamsteh(fname, “*.obj")

20 or fopatch, fnmatch(fname, "¥.exe")):

a1 o8 . remove | fnamal

22 if __pame__ =="__main_.":

23 if len(sys.argv) I= 2:

4 print "usage: ". sys.argv[0], " ¢clause dir>"
25 else :

26 directory = sys.argv[i]

27 fullpath = os.getowd() +'/'+diregtory

28 if gs.path.isdir(fullpath):

29 os.chdir(fullpath)

30 doTests(fullpath. directory)

3 cleanlip (fullpath)

32 else :

33 print directary, " is not it this directory"
34 print “Current directery is: ", os.gatewd (]

Listing Four

1 dmport unittest. os. re

2 class CppTestCase{unittest TestCase):

3 def __init__ [self, testfun, fpams):

4 unittest.TegtCase. init (self, testfun)

5 salf.compile = [“g++ -¢ -DGCCI9x %s.cpp”, \
[tgtt elino- ~c -DECCHBx %w.epp", A

1 vel My /oologo /e -DMSVCEx %s.cpp”.

8 “heed2 -w- =g ~¢ -DBORLAND 55 Es.cpp”. \

9 2

10 gelf.link = ["gH -o %siexe Zs.o”, \
11 Mgt -0 %s.exe E5.0", \

12 "l /nolege /w /Ee%s.exe %s.0bi", \
13 "heed2 -q -e¥g. exe Re.obi” , A\

14 "CE -0 %a.exe F5.0" N

15 1

16 self filelame = fname

17 gelf.toPass = not (fname{:4] = "fail")
16 gelf hasMain = @

19 gelf.directory = oa.getowd()

il def setlp(self):

21 print "Executing: %s.cpp" % self.fileName
22 oldfile = open(self.Fils Namet".epp", “c'")
23 curreptiine = oldFile.readline()}

24 while currentline :

25 if re.search("nsin", eurrentline):
26 self hasMain = 1

27 break:

28 current line = pldFile.readline()
29 oldPile.close{]

k() def rearDown(self): pass

I def testExecute(self]:

32 #liode for this methed in Listing Five

b

Listing Five

1 def testExecute(self):

2 def vestExecute(self):

3 exacuted = @

4 compiled = (ve.systen{gelf.conpileB] = \
5 gell, FileNane) = @)

78

Listing Six

int ji):
void ql):

namespace [dnt 1 =

nanespace K {

int gl char &) {
ceturn 1%a;

Do o e e
(=3

19
11]
120 dnt 43

13 dnt §()

14 46t 0 f

15 return gli):
16

17 dnt q):
18

Listing Seven

binelide <mem.hd>
felse

#inciude ¢ memory.h
Fandif

tdefine N sizeof(T)
int madn () 0
char Buf[N];
T obj:
obj.a = 1138;
memepy (buf, &obj
memepy (bobY, buf

T I PO A

1
u
12
13
14
15
16 1

return @

e e
Listing Eight

L typedef int £

2 struct A {

3 friend void £[A &
& opecator int ()
5 wodd gla a)
& £la):
T4

81 :

Dr Dobb’s Jouwrnal, June 2002

6 if eompiled and self.hasMain:

7 linked = (os.system(self.link[@] % \

8 (eelf.fileName. self.fileName)) == @)
4

if linked!
10 executad = {os.system (“%s.exe" % \
11 gelf. filelama) = @)
12 if salf.roPass and self hasMein \
13 and campiled end execured:
1y print "PASS: Semantics properly supported”
15 elif self. toPass end self hasMain V
16 and compiled and not executed:
17 print “FAIL: Semantics not supported”
18 failured,add(self, fileName)
1% elif self.toPass and self hasMain and \
w0 not compiled and not executed:
21 print "FAIL: Should have compiled"
22 failures.ddd(self. fileNane)
23 elif self.toPass and not self.hapMein and \
24 compiled and not executed:
25 print "PASS: Compiled as expserad"
26 21if pelf toPass and not self.hasMain and \
27 not compiled &nd not execyted:
8 print "FAIL: Should have compiled"
25 fallures, add(self. fileName)
30 elif not self.toPass and self.hasMain |
3 and compiled atid sxecuted:
iz print "FAIL: Executed bur shouldn't have"
a3 failuree.add (self.fileName)
34 elif not self.tcPass and self, HasMadn \
35 and compiled and not executed:
36 print "PASS: Sementics properly supported"
37 elif not selfitoPass end self hamsMain \
38 and not compiled and not executed:
39 print MBASS: Did not compile; =8 expegted!
4 eldf not s=lf.toPdes and not 8elf hadMain \
41 and compiled and not executed:
42 print "FATL: Sheuld not have compiled "
43 failures.ndd{self. fileName)
4k elif rior gelf.toPass and mot self.hasMain \
s and not compiled and not exscuted:
46 piint "PASS: Did not compile. &g expected!
] elsa:
48 print "logic erzors"

int gl int a) [fetden a:)

1)
1/ everloads Ni:gl dnt)

/{ 1 ig from \nnames Hamespace

// error: duplicate definition

/{ 0K: duplicate function declaration
/1 0K; definition of N::ijl)

/¢ calla N::igl dmt)

// errory different return type

#if defined(BORLANDSS]

>

gtruct T [int a;);

. N}
. W)

if (1138 |= obj.a) rewumm i;

i

DDJ

bitp.//www.ddj.com

