
Selection of Compressed Training Data for RF
Power Amplifier Behavioral Modeling

Ziming Wang, John Dooley, Keith Finnerty, Ronan Farrell

Department of Electronic Engineering,
National University of Ireland Maynooth

Abstract—In this paper, we present an algorithm which uses
the probability information of the input signal to inform the
selection of a compressed training dataset for RF PA behavioural
model extraction. The proposed algorithm can dramatically
reduce the number of training samples. The accuracy of this
algorithm is validated by extraction of behavioural models using
a large dataset of consecutive samples and a reduced training
dataset determined using the proposed algorithm. A noticeable
reduction in computational complexity and faster execution time
is achieved with the new approach.

Index Terms—Digital Predistortion, Behavioural Modelling,
Least Square, Probability Distribution

I. INTRODUCTION

Characteristic behavior of nonlinear power amplifiers can
be efficiently and accurately represented using behavioral
models. The two main procedures which are carried out using
behavioral models are the extraction of model parameters and
the calculation of model outputs. It is generally accepted
that a model with good generalization capabilities can be
extracted for common mobile telecommunication standards
using the discrete complex envelope representations of the
input and output signals. Calculating the model parameters
for discrete signals in some digital signal processing hardware
often requires that a very large number of consecutive sam-
ples are recorded to improve the generalisation capabilities.
Further to this, with the proliferation of high efficiency PA
architectures such as Doherty and outphasing PAs for multi-
band, multistandard, even more samples are needed to extract
a model which will encompass all characteristics of the PA.

One strategy commonly employed to reduce the compu-
tational complexity of large matrix computations required to
train a behavioral model, is to reduce the number of model
parameters. This is an effective means of reducing both the
extraction time and the calculation of model outputs. However
it does not guarantee the generalisation properties of the
model. It is still required to have a good training signal which
encompasses the characteristics of the PA to train the reduced
dimension model.

In the case of RF power amplifiers the typical selection pro-
cess for behavioral model training data involves the selection
of consecutive data samples which include key samples such
as the maximum magnitude and maximum rate of change.
Since modern communication standard signals are not truly
periodic, it is not possible to simply select a short section
of consecutive data to represent the whole dataset. Guan et
al proposed an algorithm to use multiple short training data

to build multiple small matrices for behavioural modeling[1].
However, this method does not reduce the total number of
training samples and cannot guarantee the robustness for a
nonlinear system with memory. In [2] we see that a subset
of samples to train a digital pre-distorter for a given power
amplifier can be selected based on the probability distribution
function of the signals used.

In this paper, the information carried by training samples
in relation to the different groups of model parameters is ex-
plored. We identify the limitations when consecutive training
samples are applied to a Least Squares algorithm to extract
the model parameter values. In Sec. II, we introduce the
theoretical relationship between the model parameters and the
training data. The traditional training sample selection process
is outlined in Sec. III-A and a new training sample selection
method is introduced in Sec. III-B. The experimentally mea-
sured results to validate the method are given in Sec. IV.

II. INFORMATION OF TRAINING SAMPLES

We use a general memory polynomial model φ(·) to
represent all polynomial-based models. This general model
indicates the relationship between the model terms.

φ
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x(n), x(n)

2
, ..., x(n)

k0

x(n− 1), x(n− 1)
2
, ..., x(n− 1)

k1

...
x(n−m), x(n−m)

2
, ..., x(n−m)

km)
(1)

, where x(n) is the input signal, m is the memory depth and
k0 · · · km is the highest order in different memory terms.

It has been well documented that coefficient estimation for
such models can be performed by solving an over-determined
system of equations using Least Square(LS) techniques.

φTφ · ω̂ = φTy + e (2)

where ω are the coefficients of the behavioural model and y
is the output signal of nonlinear PA and e is the difference
between an observed value and the fitted value of the model.

In (2), φTφ and φTy are the auto-covariance and cross-
covariance matrices. Since the modulated signal can be treated
as standardized random variables, the covariance matrix is
equal to the correlation matrix. As a result, the coefficient
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calculation can be performed using (3).

ω̂ = R−1φφ ·Rφy (3)

where Rφφ is auto-correlation matrix and Rφy is cross-
correlation matrix.

By analysing the general memory polynomial model fro
system with and without memory, we can establish the dif-
ferences in the coefficient and input sample combinations
which ultimately lead to spreading effect in AM/AM plot for a
system with memory. By better understanding the probability
of occurrence of the samples within this range of possible
values, a more compact set of training samples can be chosen
to train an accurate model.

A. Memoryless System

Firstly we consider a memoryless nonlinear system, then
the general polynomial φ becomes

φ
(

x(n), x(n)
2
, ..., x(n)

k )
According to (3), we know the coefficients are related to the
auto-correlation and cross-correlation matrix. So we have

Rφφ = E[φφ̄] =

∫
φ · ρ(φ) dφ (4)

Rφy = E[φ(·)ȳn] =

∫∫
φyn · ρ(φ, yn) dφdy (5)

ρ(φ, yn) = ρ( xn, xn
2, ..., xn

k, yn ) (6)

, where ρ(φ) and ρ(φ, yn) are the probability distribution
function(PDF) and joint probability distribution respectively.

Extending (6) to the chain rule of probability, we obtain:

ρ(xn, xn
2, ..., xn

k, yn)

= ρ(xn)

· ρ(yn|xn) · ρ(x2n|xn, yn) · ρ(x3n|xn, x2n, yn)

· · · ρ(xkn|xn, x2n, · · · , xk−1n , yn)

(7)

From this analysis, it can be seen that for the memoryless
system, the output sample yn are only dependent on the input
sample xn.

ρ(yn|xn) = 1 (8)

Furthermore, it is easy to prove that x2n · · ·xkn are fixed for a
given xn.

ρ(x2n|xn, yn) = · · · = ρ(xkn|xn, x2n, · · · , xk−1n , yn) = 1 (9)

Hence for a memoryless system, we can rewrite (7) as

ρ(xn, xn
2, ..., xn

k, yn)

= ρ(xn)
(10)

Considering (3), (4), (5) and (10), it can be proven that, in
a memoryless system, the coefficients estimated using least
squares are directly related to the marginal probability of input
signal ρ(xn).

B. System with Memory

Let us consider the joint probability of memory polynomial
and output signal directly,

ρ(xn, xn
2, ..., xn

k0 , xn−1, x
2
n−1, ..., x

k1
n−1, ..., x

km
n−m, yn)

= ρ(xn) · ρ(x2n|xn) · · · ρ(xkn|xn, x2n, · · · , xk−1n )

· ρ(xn−1|xn, · · · ) · · · ρ(xk1n−1|xn−1, · · · ) · · ·
· ρ(xn−m|xn, xn−1, ..., xn−m+1, · · · ) · · · ρ(xkmn−m|xn−m, ...)
· ρ(yn|xn, xn−1, xn−2, ..., xn−m, ...)

(11)

Because (9) still holds for a system with memory, (11) can
be rewritten as follows:

ρ(xn, xn
2, ..., xn

k0 , xn−1, x
2
n−1, ..., x

k1
n−1, ..., x

km
n−m, yn)

= ρ(xn) (12a)
· ρ(xn−1|xn) · ρ(xn−2|xn, xn−1)

...ρ(xn−m|xn, xn−1, ..., xn−m+1) (12b)
· ρ(yn|xn, xn−1, xn−2, ..., xn−m) (12c)

One should notice that (8) is not possible in the case of a
system with memory since the output at time t is not only
determined by the input signal at time t but at time t − 1
to t − m. Using this insight we rearrange the order of the
chain rule of probability. So the term (12a) indicates the
nonlinearity as same as the (10) in the memoryless system.
Then terms (12b) depend on the bandwidth of input signal.
and terms (12c) can be treated as the degree of the memory-
effect in a nonlinear system with memory. Furthermore, in
the view of behaviour modeling, (12c) can also represent
the generalisation error which is related to the accuracy of
behaviour models.

III. TRAINING DATA COMPRESSION

A. Traditional Training Samples Selection

In most cases, a modulated signal can be approximated to
a wide-sense cyclostationary process[3]. Thus, the distribution
for any given set of samples will be time-invariant over a time
shift nT as described.

[X1, . . . , XT ] ∼ [X1+nT , . . . XT+nT ] ∀n (13)

In the case of a memoryless system with modulated signal
input, providing there are sufficient consecutive samples in
a reduced dataset to satisfy (13), the PDF of this reduced
consecutive training dataset will be similar to that of the
full dataset. As a result, selecting a consecutive modulated
training dataset is able to extract the accurate model in a
memoryless system. Fig. 1 shows the distribution of a 4-carrier
LTE signal with different number of consecutive samples.
The fundamental shape of all PDF are consistent even with
different numbers of samples.

However in terms of nonlinearity, the efficiency of using
a selected set of consecutive training samples in modelling
highly depends on how close the statistical properties of the
given signal are to a wide-sense stationary process. It leads
to an increase in training samples required for multi-standard
signal. On the other hand, in terms of a system with memory,
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Fig. 1. Normolized Probability Distribution of LTE Signal with Different
Number of Consecutive Samples

Fig. 2. the Range of xn−1 given xn. The grey point is 100-MHz LTE signal
and the black point is 20-MHz LTE signal.

the training samples have to satisfy not only (10), but also (12)
which includes the probability of nonlinear characteristics,
characteristics due to the signal bandwidth and characteristics
due to memory effects. So the more complicated memory-
effect mechanisms present in new high efficiency PA ar-
chitectures, such as Doherty, LINC, ET, EER, will require
more consecutive samples to guarantee (12c). Similarly for
wider bandwidth signals, (12b) becomes harder to train for.
As shown in Fig. 2, the red lines indicates the range of
ρ(xn−1|xn) in 100MHz and 20MHz LTE respectively.

B. Compression of Training Data

Firstly we assume there are an over-determined equations
with 2 million 14-bit LTE samples and 100 14-bit coefficients
of memory polynomials. Then by using LS algorithm, the
information of the over-determined system is compressed into
the correlation space. And it is worth noticing that no matter
how many training samples are used in the optimisation
algorithm, (2) is always a 100 by 100 determined equation,
which contain 29-bit compressed information. To compress
the training process, we design a compressive training

Fig. 3. The distribution of xn−1 for a given xn in 5-bit resolution. The
grey point is the whole dataset of 5k multi-tone samples. The red ring is 1K
consecutive samples including maximum magnitude. And the green cross is
1K selected samples from random dataset.

algorithm consisting of probability sampling to obtain the
same auto-correlation and cross-correlation matrix in (3) by
involving the minimal samples, rather than roughly using a
large section of consecutive samples.

Procedure:
1: Choose a resolution for the histogram;
2: Generate histogram from the whole input signal dataset

based on |xn|;
3: Determine the factor to reduce the length of the dataset

by;
4: Obtain a target histogram by proportionally reducing each

histogram bin size according to the factor;
5: i) Select a random sample xj and identify the |xj | bin

based on its magnitude;
ii) If the count in |xj | bin is less than the count in |xj |
bin of the target histogram, keep the sample. Otherwise,
disregard the sample;

6: Repeat step.5 until all target histogram bins are full;
7: For each selected sample xj , we also keep the previous

samples (xj , xj−1, · · · , xj−m, yj);
8: Use the selected training samples to calculate the coeffi-

cients.
The random selection of samples ensures that the terms

(12b) and (12c) can be covered correctly since the various
distributions of the whole dataset can be conserved by random
selection. Fig. 3 shows that the selected samples follow the
same ρ(xn−1|xn) distribution of the whole dataset. Meanwhile
because the target histogram is the scaling down histogram of
the whole dataset, the information is fully reserved, as shown
in Fig. 4.

Because the information of (12) is reserved, Rφφ and Rφy
in (3) are guaranteed to yield a set of determined equations.
As a result, by means of this method, the type of signal is
not restricted to satisfy the cyclostationary process. And the
number of training samples, which carry the necessary infor-
mation to obtain the optimised solution, can be dramatically
reduced.
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Fig. 4. Histogram for full dataset and compressed training dataset
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Fig. 5. PA input and output spectra with a 4-carrier WCDMA signal

IV. EXPERIMENTALLY MEASURED RESULTS

To validate the performance of the proposed compressed
training signal dataset, an experimental testbench was as-
sembled. The hardware testbench comprised of a Rohde &
Schwarz SMU200A, a 40W Doherty power amplifier and a
Rohde & Schwarz FSQ. The frequency spectrum of the 4-
carrier WCDMA input and PA output are shown in Fig. 5.
The 14-bit 16K datasets recorded by the FSQ were used
to extract the GMP model[4] in (14) with 40 coefficients.
Then the coefficients of the model are calculated by means of
standard fixed-point Recursive least squares (RLS) algorithm
with consecutive training samples or selected samples, respec-
tively. The results of NMSE versus the number of training
samples are shown in Fig. 6 for both the traditional and
proposed method. The slightly improvement of compressed
algorithm using an increased number of training samples is
due to averaging of measurement noise, a function of the
LS algorithm. The result is a more general model of the
power amplifier. The multiplication operations according to
the formula in [1] and execution time by a 2.4GHz Core i5
CPU with 8GB DDR to calculate the coefficients are shown
in Table. I.∑

k∈K

∑
p∈P

∑
q∈Q

ωkpqx(n− p)| x(n− q) |k (14)

V. CONCLUSION

The proposed compressed training algorithm is a method
to identify samples which carry the necessary information to

number of training samples
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Fig. 6. Doherty PA Test with 16K complete vector

TABLE I
BEHAVIOURAL MODELING PERFORMANCE

Standard LS Compressed
Training

Number of
Training Samples 8192 681

NMSE(dB) -45.3 -45.3
Complex

Multiplication 26,606,080 2,270,440

Execution
Time(second) 11.473 0.092

model a nonlinear dynamic system. This novel algorithm is
highly efficient since there is no additional multiplication oper-
ation involved. The accuracy of the algorithm is guaranteed by
the theory study in Sec. II and is verified using experimentally
measured data.
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