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Abstract

This paper describes the design and development of a Java Distributed Computation Library,
which provides a simple development platform for developers who wish to quickly implement
a distributed computation in the context of an SPMD architecture (Single Program, Multiple
Data). The need for this research arose out of the realisation that the currently available
distributed computation libraries and systems do not adequately meet certain criteria, such
as ease of development, dynamic changes to system behaviour, and easy deployment of
distributed software. The proposed solution to this problem was to produce a Java-based
distributed computation library which enables developers to use the Java language to quickly
and easily implement a distributed computation. The results of experiments conducted using
DCL are also presented, as a means of showing that DCL met its design goals.

keywords: Distributed Architecture

1: Introduction

Research in the field of distributed computation has been aimed mainly at developing

programming environments, API’s and libraries which allow developers to design software

which can take advantage of distributed computational resources. This raises serious is-

sues, such as the coordination of computational effort across a network; communication

and sharing of resources between processes distributed across a network; the provision of

fault tolerance, transparency and other desirable distributed system properties; and the
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deployment of software to run on such systems. Many distributed computation environ-

ments make the handling of these issues the responsibility of the developer. Due to the

complexity of these issues, developing applications using such environments is usually dif-

ficult, error-prone, and slow. Attempts to use such systems to solve problems also lead to

various administrative difficulties, especially with regards to the deployment of distributed

software. For example, many distributed computation systems are based on the client-

server model, in which the client computers run purpose-built client software. This client

software is responsible for communication with the server in order to coordinate the allo-

cation of processes in the system. Typically, the client software is dedicated to performing

only one task or type of task, with very little ability to change its own behaviour. However,

the central system administrators may wish to change the task the system performs, or

wish to update the existing client software, which will usually involve deploying an up-

dated client application to each of the client computers. This process can be extremely

tedious. The problem is made worse in the case where the client computers are not directly

under the control of the administrators, but are owned by individuals who willingly take

part in distributed computation projects. In such cases, the administrators must notify

each participant that an updated client exists and then encourage all the participants to

download and install the new client. Thus, much of the administrative burden falls on the

client-side. This problem is compounded further for developers when one considers that

different versions of the client software need to be written, compiled and tested for each

different platform on which the client software is expected to function. Together, these

factors make the developer’s task many times more complex, and vastly increase develop-

ment time. They are also not adequately addressed by the currently available distributed

computation libraries and environments.

To summarise, the situation of concern addressed in this paper is that the currently available

distributed computation environments do not provide a platform for development that is

easy to use, generally do not support dynamic changes to system behaviour (especially in

terms of updated client behaviour), and do not promote easy deployment of software (due

to platform specific issues).

The main goal of this research project is to solve these problems by providing developers

with a Java-based library called the Distributed Computation Library (DCL) that can be
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used to easily implement a distributed computation. The library should not require the

programmer to know specific details about the underlying architecture of the system, but

should rather allow the programmer to deal only with high level constructs which make

sense in a distributed environment. The library should make changing system behaviour

dynamically and deployment of software as easy as possible.

Sub-goals which need to be considered in order to achieve the main goal are:

• to determine what level of abstraction, in the form of high level constructs, are re-

quired and on what system models the library should be based in order to make using

the library as developer-friendly as possible with respect to a distributed environment.

• to determine what formal classifications have been developed to describe tasks and

what criteria determine whether or not a task will be well suited to being implemented

in a distributed environment.

• to develop an effective task distribution and communications mechanism using such

technologies as Java Remote Method Invocation (JavaRMI), object serialisation and

client-server architectures.

• to implement a suitable problem using DCL, and to use this as a means of showing

that DCL fulfills its design objectives.

The potential users of this library are developers who wish to implement distributed com-

putations without having to concern themselves with the details of the underlying systems.

It is thus assumed that the users of the library will have prior programming experience,

specifically in the Java language, as well as familiarity with the Java Runtime Environment

(JRE) version 1.2 (or later), and Java compiler tools. It is also assumed that they will be

familiar with the main concepts in the field of distributed systems. The library will not be

intended as a teaching tool.

It is also assumed that each of the potential host computers will have a Java Virtual Machine

(JVM) installed (Java Development Kit version 1.2 or later), and that the network will

support the TCP/IP protocols. This is due to limitations of previous Java versions, and

limitations imposed by Java’s networking API’s. These assumptions are not unreasonable

(nor overly restrictive), considering the widespread use of the TCP/IP suite of protocols and

the ready availability of JVMs for most commonly used hardware and software platforms.
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As several authors have noted, there is a growing trend in the IT industry towards an

object-oriented paradigm for distributed computing. Furthermore, from a practical point

of view, the dominant architecture used when discussing distributed computing is the client-

server model due to its ability to conceptually model the way in which distributed software

components interact (Umar 1993), although various other models are used for theoretical

discussions. This view is supported by the success of applications which use the client-

server model, such as SETI@home Sullivan et al (1997), GIMPS, and DCTI (Distributed

Technologies Inc., 2000). However, each of these systems fails to meet the criteria of easy

deployment of software, since they all require that the owner of the client computers take

responsibility for ensuring that the client software is the most recent available version. Also,

these systems do not support the ability of executable tasks to migrate across the network.

Rather, the executable tasks are bound to their host computers, and it is only the data

that migrates across the network. Even the PVM system does not provide a mechanism

for tasks to migrate across the network. Although PVM Manchek (1995) provides far more

flexibility through its more general MIMD architecture, it does not provide a simple plat-

form for development, since it still requires significant developer effort to achieve effective

load balancing and concurrency control. Furthermore, all the systems examined suffer from

platform-dependency issues, requiring that different versions of client software be written

for different platforms (as is the case with GIMPS, SETI@home, and DCTI), or that exe-

cutable tasks be written and tested in a variety of programming languages and platforms

(as is the case with PVM).

Thus, there is a need for a distributed system which solves the problems of ease of devel-

opment and easy deployment of software. Based on the research presented above, such a

system should be based on a client-server model, using an SPMD architecture. It would

need to be platform independent, in order to promote easy deployment of distributed soft-

ware and to simplify the development process by shielding developers from platform specific

issues. The system should also present the developer with a set of simple constructs which

can be used to develop a distributed computation within the context of an SPMD archi-

tecture.
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Figure 1. Main subsystems of DCL.

2 System Design

The software described in this document is intended for use by developers who wish to

implement distributed computations within the context of an SPMD architecture. The

software is in the form of a programming library, called the Distributed Computation

Library (DCL), which can be used to distribute developer-defined tasks across a network

for processing by remote clients, gather the results of these tasks together, and allow the

results to be handled in a developer-defined manner.

The software is written in Java, and thus requires that all developer-defined software compo-

nents also be written in Java. Furthermore, the Java Runtime Environment (JRE) version

1.2 (or later) must be installed on each machine which is expected to run the software.

2.1 Architectural Design

2.1 Overview of Sub-Systems

The main sub-systems of which the system is composed are shown in Figure 1. Below is a

brief description of the responsibilities and functions of these sub-systems.

Java Virtual Machine The JVM must run on both the client and the server sides. The

JVM provides the interface between the ClientEngine and ServerEngine sub-systems,

and the hardware and networking platforms on which they run. The JVM is also

responsible for providing the platform- independent features of the system.

ServerEngine The most important sub-system on the server-side is the ServerEngine.

This sub-system runs on top of the JVM, and is able to communicate with clients via

the network interface and the network. Its principle responsibility is to manage vari-
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ous server-side data structures and components, as well as interacting with the three

developer-defined components, namely the ResultHandler, ParameterGenerator and

Task (described below). The ServerEngine also manages the communication mecha-

nisms through which transactions between clients and the server will be conducted.

Task The Task defines the basic unit of computation for a specific application, and is

developer- defined. The Task is sent to clients on request via the network. It is the

only sub-system which can migrate across the network in this fashion. At the client-

side, the Task is responsible for executing the algorithm of the application, using

parameter sets which are passed to it by its host ClientEngine.

ParameterGenerator The ParameterGenerator sub-system is responsible for generating

parameter sets, or work units, which are sent to clients, on request, via the network.

The parameter sets are received by the ClientEngine and passed to the local Task

sub-system for processing. The ParameterGenerator is developer-defined.

ResultHandler The ResultHandler is responsible for handling result sets, which have been

processed by Tasks residing within a remote ClientEngine and have been returned to

the ServerEngine. The ResultHandler is developer-defined, and should, at a minimum,

record the global result of a specific computation in a fixed storage location, such as

a file.

ClientEngine The ClientEngine is the most important sub-system on the client side,

and is responsible for maintaining various client-side data structures necessary for

its runtime functionality. It is also responsible for requesting the Task sub-system

from the ServerEngine in order to create a local copy. The ClientEngine must also

request parameter sets from the ServerEngine, which it passes to the local Task for

processing. Once the Task indicates that the processing is complete, the ClientEngine

is responsible for sending the result set back to the ServerEngine, where it is passed

to the ResultHandler, as described above.

Network Interfaces and Network The network interfaces and the network are the medium

across which all client-server communication takes place, and are thus critical in de-

termining the overall performance of the system. The network must support the

TCP/IP protocols.

6



Accepted for the 2nd Intl Conf on Parallel and Distributed Computing, Applications and Technologies
Taipei, Taiwan, July 9-11, 2001

1

Parameter Generator

Result Handler

Task

Task

Logfile Logfile

Engine
Client 

Engine
Server

Set
Result

ParameterSet

Bytecodes

messgaes
system

Result
SetParameterSet

Bytecodes

ParameterSet

Result

Set

Result

Figure 2. The inputs and outputs, and their interaction with the system.

2.2 System Model

It has already been implied in the above discussion that the overall system structure is

based on a client-server model. This model was chosen due to its similarity to the SPMD

architecture on which the system is based. Also, the client-server model is well-understood,

easy to use, and provides a good conceptual model for the way in which a distributed

computation functions in the context of an SPMD architecture (Umar 1993). The inputs

and outputs, and their interaction with the system, are shown in Figure 2. The inputs to

the system are all developer-defined and are specific to a particular distributed application.

They must all be written in Java. The inputs are:

Task This is the executable task which will be distributed to the client computers, and

must be in the form of a compiled Java class. This task should conform to the

standard interface, in order for it to migrate across the network from the server to

the client and still work as intended. The task represents the executable component

of a particular distributed computation.

Parameter generator This is the component which generates successive parameter sets

which are sent to client computers for processing, and must be in the form of a

compiled Java class. The parameter sets represent the data component of a particular

distributed computation.

Result handler this is the component which is responsible for handling the results sent

back to the server from clients. The manner in which the results are handled is

application-specific, and thus the result handler must be developer-defined. This

component is also responsible for any application-specific logging which needs to take

place (ie: over and above the standard logging facilities provided by the system, which

serve a mainly diagnostic purpose). For example, the result handler is responsible for
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storing results in an appropriate file.

Initialisation files These are used on both the client and server sides in order to set up

various runtime parameters (such as server IP address, default TCP port, and logging

options). These files are in the form of plain text files, and must be provided by the

developer.

The system produces the following output:

Log files These files indicate any errors or failure in the system (for diagnostic purposes)

as well as reflecting the correct functioning of the system (in the form of informational

messages).

Result sets These are the raw, unprocessed results that are returned from clients to the

server. The server passes these results to the result handler for application-specific

processing.

Additional output The developer may embed additional output facilities into the result

handler, allowing for customised output of results, for example writing results into a

file of a specified format.

2.3 Component Design

The classes involved in the system can be broadly divided into three groups: developer-

defined classes; server-side classes; and client-side classes. The latter two groups form the

system itself. A brief description of the functions and design of each component is given

below.

The ServerEngine class manages various server-side data structures and classes. It rep-

resents the program entry point on the server-side. When the ServerEngine is started,

it retrieves its runtime parameters from a developer-defined initialisation file. The struc-

ture of this file is described in the section 4.3 below. The ServerEngine creates the Er-

rorLog, SystemLog and ResultsLog, as well as the PendingTasks and ExpiredTasks lists.

The ServerEngine must also load the ParameterGenerator, the ResultHandler, and the

Task, which are all specified by the developer in the initialisation file. At this point, the

ServerEngine allows the ParameterGenerator and ResultHandler to perform any applica-

tion specific initialisation. This process is described in section 4. The ServerEngine creates

8



Accepted for the 2nd Intl Conf on Parallel and Distributed Computing, Applications and Technologies
Taipei, Taiwan, July 9-11, 2001

1

and runs the ConnectionManager, and passes it the necessary information so that it can

begin listening for incoming connections. Finally, the ServerEngine creates and runs a

SchedulerThread.

The ConnectionManager class is responsible for listening on the server socket for incoming

connections, and creating a new ServerMessageHandler to handle each new connection. It

is also responsible for closing the server socket when the ServerEngine has determined that

the computation is complete. The ConnectionManager must also keep track of all active

ServerMessageHandlers so that it can terminate them all in an orderly fashion before closing

down itself.

These two classes are responsible for keeping track of the status of all parameter sets

currently being processed in the system. They do so by storing each parameter set, together

with the time allocated for the completion of that parameter set, in a hashtable indexed

by task ID. The task ID is a unique integer identifier which is assigned to each parameter

set by the ServerEngine. PendingTasks keeps track of all parameter sets which have been

allocated to a client, but for which no results have yet been returned and which have not

exceeded their allocated time. ExpiredTasks keeps track of all parameter sets for which

the allocated time for completion has elapsed. These parameter sets were allocated to

clients which failed to return a result within the allocated time and failed to request a

time extension, and are thus assumed to have crashed. When a client requests a parameter

set from the server, it will be assigned a parameter set taken from the ExpiredTasks list,

if possible. If the ExpiredTasks list is empty, a new parameter set will be generated by

the ParameterGenerator, which will be assigned a unique task ID and entered into the

PendingTasks list, before being sent to the client. This ensures that the system is able to

recover from client crashes, by simply reassigning the parameter sets that a crashed client

was working on to a new client.

The ServerMessageHandler class is responsible for communicating with the client, using the

protocol described in Section 4. It does this by waiting for the client to request a service,

and then sending the appropriate response after having consulted its host ServerEngine,

if necessary. All communication is achieved by the transmission and reception of Message

objects, which are described below.

The ClientEngine manages various client-side data structures and classes. It represents the
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program entry point on the client-side. When the ClientEngine is started, it retrieves its

runtime parameters from a developer-defined initialisation file, whose structure is described

below. The ClientEngine must also create a SystemLog and an ErrorLog file for logging

purposes. Unlike the ServerEngine, the ClientEngine does not create a ResultsLog, since

results are only meaningful when they are gathered together at the server-side. The Clien-

tEngine loads a special ClassLoader called the ByteArrayClassLoader. It also creates and

runs the ClientMessageHandler.

The ClientMessageHandler class is responsible for communicating with the server, using the

protocol described in Section 4. The ClientMessageHandler always initiates communication

by requesting a service from the server. When it receives a response, it performs the appro-

priate action, and possibly requests another service from the server. All communication is

achieved by the transmission and reception of Message objects, which are described below.

The ByteArrayClassLoader is a special ClassLoader, which is able to instantiate Java classes

based on the Java bytecodes extracted from a Message object. The ByteArrayClassLoader

is used by the ClientMessageHandler to dynamically create new instances of the Task

objects that the server sends to the client. This mechanism of creating new classes and

instantiating instances of those classes is a critical feature of the system, namely that client-

side behaviour can change dynamically and under the full control of the server-side, without

requiring that a new client component be written for every new kind of computation that

a developer wishes to implement. Instead, the ClientMessageHandler can request a copy of

the latest version of the Task object from the server and instantiate it locally. In this way,

the core of the client side software remains the same from computation to computation, and

is able to accommodate any arbitrary developer-defined executable Task object, without

change to the main client-side core. This ability of the client to dynamically load Tasks

in order to change its behaviour greatly increases its flexibility, and simplifies software

distribution.

These classes provide logging facilities which are used by the system to record errors (in

the ErrorLog), results (in the ResultsLog) or informational messages (in the SystemLog).

They may also be used by the developer to provide additional logging services from within

the ResultHandler, ParameterGenerator and Task classes. The format of the log file output

can be controlled using the initialisation files (described in section 4) in order to set various

10



Accepted for the 2nd Intl Conf on Parallel and Distributed Computing, Applications and Technologies
Taipei, Taiwan, July 9-11, 2001

1

options. For example, output may be prefixed with time and date stamps, or it may be

written to a specified file or to standard output, or both.

The SchedulerThread is used to provide scheduling services to classes which need to peri-

odically perform some action. The SchedulerThread does this by setting a flag visible to its

owner which indicates that a timeout has occurred, and then alerting its owner using the

notify() method call. This forces the owner to wake up, examine the flag, and to perform

any necessary actions based on the value of the flag. The length of the timeout used by

the SchedulerThread is passed to it by its owner class, and is usually retrieved from an

initialisation file. Two classes make use of the SchedulerThread, namely the ClientMes-

sageHandler and the ServerEngine. The ClientMessageHandler must be woken periodically

in order to request time extensions from the server. The ServerEngine must be woken peri-

odically in order to examine the PendingTasks list to determine if any Tasks have expired,

and if necessary to move them to the ExpiredTasks list.

The ResultHandler is a developer-defined class which is controlled by the ServerEngine,

and is responsible for handling result sets that clients send back to the server. The Re-

sultHandler should be extended by the developer to include any application specific func-

tionality with regards to handling results, such as storing results in formatted files. Result

sets are passed to the ResultHandler in the form of arrays of Objects, which were generated

by a Task residing in a remote client. The exact format and composition of this array of

Objects is application specific and defined by the developer.

The ParameterGenerator is a developer-defined class which is controlled by the ServerEngine.

Its purpose is to generate successive parameter sets, which are sent to clients for processing

by remote Task objects. These parameter sets are in the form of arrays of Objects, whose

exact format and composition is application specific and thus defined by the developer.

The Task class represents the executable portion of a computation. Since its exact function

is application specific, it must be defined by the developer. However, its overall function is

to process parameter sets (which are generated by the ParameterGenerator on the server

and sent to the client), and produce result sets (which are sent back to the server to be

handled by the ResultHandler). The Task object notifies its host ClientMessageHandler

when it has completed processing a parameter set, at which point the ClientMessageHandler

can retrieve the result set from the Task and return it to the server.
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The Message class forms the basis for all communications between the ClientMessageHan-

dler and ServerMessageHandler. Any request or response is packaged into a Message object,

which is then serialised and sent via a TCP socket to the receiving side. Each Message ob-

ject consists of a message type and a content type, which describe the nature of the Message

object and its contents respectively. Each Message also has a content, which is simply an

array of Objects, into which the actual data is packed. The Message may also contain a

timeout field and a task ID field, which are used when parameter sets or result sets are

being transmitted. This allows the MessageHandlers to determine which task ID is being

referred to, or what timeout has been assigned to a given task.

3 Design of Experiments and Results

Two experiments were conducted using the DCL library. There were two main reasons

for conducting these experiments. Firstly, the experiments were designed to give concrete

results regarding the runtime performance of DCL, and to give an indication of how well

these results conform to expected results and theoretical predictions. Secondly, the exper-

iments provided a means of examining DCL through the eyes of a typical developer, in

other words treating the DCL library as a black box. This gave valuable insights into the

effectiveness of the developer interface which DCL presents, and thus gave an idea of how

well DCL met its design goals in terms of ease of development.

3.1 Simulated Problem

The aim of this experiment was to examine the runtime performance of the DCL library

using a simulated problem, which was distributed to various numbers of clients, in order to

establish how well the performance of DCL corresponded to theoretically predicted results.

A Task class, which simulated a computation by sleeping for 20 seconds, was written and

compiled. In order to produce a verifiable result, the Task was also designed to add up

the integers between two given numbers. The ParameterGenerator for the experiment

generated these pairs of numbers such that each pair involved adding up 5 numbers, and

the overall computation would result in finding the sum of the numbers from 1 to 100.

Thus, there were a total of 20 parameter sets to be processed, with each one taking roughly

20 seconds to complete. This provided a means of predicting the approximate runtime that
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Figure 3. Runtime versus number of processors (solid line expected values).
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Figure 4. Speedup versus number of processors (solid line theoretical maximum).

could be expected of the system. The experiment was conducted using various numbers of

processors, ranging from 2 to 10, with three trials being conducted each time. The results

were then averaged over these three trials.

In the graph of runtime versus number of processors (Figure 3), the expected runtime

curve should be below the actual runtime curve, since the calculation used to generate the

expected runtime curve does not take communications delays into account. However, it

can be expected that the two curves will be highly correlated. The runtime curves are also

inversely proportional to the number of processors. However, the runtime curves begin to

level off beyond 7 processors, with very little runtime performance improvement coming

from each additional processor. This will be discussed further below.
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Figure 5. Efficiency versus number of processors.

In the graph of speedup versus number of processors (Figure 4), the curve representing

the maximum theoretical speedup that can be attained is a straight line, since it is always

equal to the number of processors being used. The actual speedup curve shown in this

graph exhibits a high correlation to the maximum theoretical speedup for small numbers of

processors. However, as the number of processors increases, the actual speedup curve begins

to flatten out, with the difference between the maximum theoretical speedup and the actual

speedup becoming larger. This corresponds well with the runtime result discussed above,

namely that the incremental benefit of using more than 7 processors becomes increasingly

small. This conforms to the predicted theoretical results, specifically Amdahl’s Law. This

law states that the speedup that can be achieved by a parallel algorithm is limited by the

fraction of the algorithm which must be run in sequence. Thus, the algorithm will not be

able to benefit as much from each additional processor, but will rather derive less and less

benefit from each additional processor. Amdahl’s Law predicts that there will come a point

where additional processors will produce no benefit whatsoever. In practice, additional

processors could even degrade performance, since they naturally consume resources, such

as network bandwidth, which could cause the performance of the entire system to suffer.

The graph of efficiency versus number of processors (Figure 5) also shows an interesting

trend, namely that efficiency drops as the number of processors rises. This is because

processors can not spend all of their time doing useful computational work. Rather, some

of their time is spent communicating with other processors. Thus, perfect efficiency cannot

be achieved in practice. Instead, it is expected that the efficiency of a system will gradually
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drop as the number of processors increases. This is due to the increase in communications

overhead that each additional processors necessarily brings to the system, and hence each

additional processor results in a drop in overall system efficiency.

3.2 Sorting Problem

The aim of this experiment was to examine the runtime performance of the DCL library

using a real world problem, which was distributed to various numbers of clients, in order to

establish how well the performance of DCL corresponded to theoretically predicted results.

This experiment also provided an opportunity to examine the developer interface of DCL

in more detail, and specifically in terms of ease of development.

A Task class, which was able to sort a given set up numbers into ascending order, was written

and compiled. The sort algorithm implemented in the Task was a simple bubble sort, which

was chosen due to its simplicity. This Task was then distributed to various numbers of client

computers. Three files, each containing 400000 randomly generated integers in the range 0

to 1000, were generated. These files were read in by the ParameterGenerator, and broken

up into parameter sets of 20000 integers per set, for distribution to the clients. This makes

a total of 20 parameter sets. The ResultHandler gathered the result sets in the form of

arrays of sorted integers, and once all 20 result sets had been gathered, it performed a

final merge sort on the 20 sets to obtain a final sorted list of 400000 integers. A sequential

algorithm implementing the same procedure, except performing the individual bubble sorts

in sequence instead of in parallel, was also written to form a basis for comparison. The

experiment was conducted using various numbers of processors, ranging from 2 to 10, and

three trials were conducted each time. Each trial also used a different random number data

set, in order to prevent the possibility of the algorithm being unfairly subjected to best

or worst case scenarios. The runtimes over the three trials were then averaged. The same

data sets were also processed by the sequential algorithm, and again the three trials were

averaged.

The results of this experiment proved to be very similar to the results of experiment 1. This

was an encouraging sign, since it showed that the system performance agreed with expected

theoretical results in simulated and real world situations. Firstly, the graph of runtime

versus number of processors (Figure 6) shows a gradual drop in runtime as the number of
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processors increases, with the incremental runtime improvements becoming less and less

with each additional; processor. In the graph of speedup versus number of processors

(Figure 7), the difference between actual speedup and maximum theoretical speedup again

becomes greater as the number of processors increases. Also, the actual speedup starts to

level off after about 7 processors. Finally, the efficiency graph (Figure 8) shows the same

gradual decline in efficiency as more processors are added to the system. This is due to

the increased communications burden that each additional processors brings to the system,

specifically the server, which begins to act as a bottleneck. All of these trends agree well

with the theoretically predicted results for a distributed computation.

Interestingly, in both the simulated and the real problem, the speedup curves tended to

level off at between 6 and 7 processors. This would indicate that the system exhibits some

degree of reliability in terms of performance. However, performance is highly application

specific, and thus this result should be seen merely as an accidental correlation between the

two experiments.

4 Conclusion

The problem identified in this paper is that the currently available distributed systems and

programming libraries do not provide developers with easy platforms for development, do

not allow client behaviour to be changed dynamically, and do not promote easy deployment

of software. Yet, these libraries and environments are becoming increasingly important in

the modern computing environment, with the rapid growth in network technologies. Thus, a

programming library which addresses these issues is needed, so that developers may easily

implement a distributed computation. Such a library should shield the developer from

platform specific issues which may hinder the development process, and should provide a

simple and complete set of high level constructs with which a developer can implement a

distributed computation. Furthermore, the library must support the automatic update of

the client to ensure that the latest possible task available from the server is being executed.

This will result in a far simpler software deployment mechanism than systems such as

GIMPS, DCTI, and PVM currently support.

The goals of this paper were to develop a library which met those requirements. Specifically,

the goals were to produce a library which provided a simple development platform for the
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implementation of distributed computations, which allowed client behaviour to be updated

dynamically, and which was platform independent to promote easy deployment of software.

This resulted in the development of the Distributed Computation Library (DCL).

In Section 3, two experiments were conducted, whose purpose was not only to gather

empirical data regarding the runtime performance of DCL, but also to determine to what

extent DCL met its design goals. It was concluded that DCL met the goals of the paper

in several ways. Firstly, DCL only requires the developer to use three classes in order

to develop a distributed computation. The experiments presented in Chapter 4 show that

these three classes form a complete set of tools for implementing a distributed computation.

The classes are also designed in such a way that the developer is only required to overwrite

a maximum of 2 methods in each of these classes in order to produce a valid distributed

computation for DCL. Since DCL is entirely written in Java, the developer is also required

to use Java, and this brings to DCL the property of platform independence. This not

only simplifies the development process by shielding the developer from platform specific

issues, but also promotes easier software deployment, since developers no longer have to

write different versions of their client software for each platform in the network. Also,

due to Java object serialisation and ClassLoaders, the client side components of DCL are

able to dynamically load Java class files which have been retrieved from the server, and

instantiate local copies of those classes. This means that the client side components of DCL

can dynamically change their behaviour, thus ensuring that the clients are always executing

the latest possible version of the distributed computation provided by the developer. Thus,

DCL has successfully met all the design goals originally specified.
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