
Accepted for the Conference of the South African Institute of Computer Scientists and Information
Technologists

Cape Town, South Africa, November 1-3, 2000

1

An Object Oriented Approach to Parser Generation in C++

Lisa Cosgravea, James Powera �
, John Waldronb

aDepartment of Computer Science, National University of Ireland, Maynooth, Co. Kildare, Ireland
bDepartment of Computer Science, Trinity College Dublin, Dublin 2, Ireland�

E-mail for correspondence: james.power@may.ie

Abstract

In this paper we describe the design and implementation of a system for representing context-free grammars
in C++. The system allows for grammar representation at the object level, providing enhanced modularity and
flexibility when compared to traditional generator-based approaches. We also describe the transformation of
grammar flow analysis problems into an object-oriented framework using the Visitor pattern, as well as the im-
plementation of a top-down LL

�
1 � parser. As such, this work represents the synthesis of three presently disparate

fields in parser design and implementation: combinator parsing, fixpoint-based grammar flow analysis, and
object-oriented design.
Keywords: context-free grammars, parsing, object-oriented design
Computing Review Categories: F.4.2, D.3.4, D.1.5

1 Introduction

Formal language theory, and context-free grammars
in particular, play a prominent role in computer sci-
ence. As well as acting as a theoretical model,
context-free grammars are the standard description
technique for the syntax of programming languages,
and a common starting point for the description of as-
pects of natural languages. Even in situations where
the descriptive power of context-free grammars is in-
sufficient, it is often useful to use them as a foundation
for more powerful formalisms.

Viewed as a specification formalism, context-free
grammars, perhaps because of their foundational na-
ture, exhibit many features still on the wish list of
more modern formalisms. First, they benefit from
a reasonably standardised notation - the closely re-
lated Extended Backus-Naur Form (EBNF) is now an
ISO standard [1]. Second, their semantics are trans-
parent, well-understood, and easily (and often) inte-
grated with other formalisms. Third, they can form
the basis of automatic program generation through the
use of parser generators such as yacc [10].

However, despite these advantages, it is still often
difficult to integrate parser-driven applications into
modern software practice. Typically, programs gen-
erated by yacc tend to be large, poorly structured by
modern standards, and difficult to modularise, render-

ing them all but opaque to the user. More modern
parser generation tools, such as ANTLR and JavaCC,
redress this deficiency somewhat, but there are still
many aspects of parser design that can benefit from
software engineering approaches.

While it is true that few people will ever write
complete compilers for programming languages,
there are still many other uses for context-free gram-
mars that justify their continuing study and analysis.
Grammars for programming languages may be used
as a front-end for program processing tools which
perform tasks such as style-checking, metric cal-
culation, maintenance and software re-engineering.
Grammars can also be used for small, once-off com-
mand languages, as well as an alternative interface for
the testing and debugging of GUI-based applications.
Indeed, the document type definitions (DTDs) used
in the Extensible Markup Language (XML) [3] are
closely related to EBNF, making parsers and grammar
processors relevant to a new generation of Internet-
based applications.

The rest of this paper discusses the design and im-
plementation of a system intended to contribute to the
construction of parsers based on context-free gram-
mars, and their integration into the development of
object-oriented software. In section 2 we describe
the implementation in C++ of a system which allows
context-free grammars to be represented at the object-

1

Accepted for the Conference of the South African Institute of Computer Scientists and Information
Technologists

Cape Town, South Africa, November 1-3, 2000

1

level in a program, overcoming the need for a separate
pass during the compilation phase. Then in section 3
Second, we describe the representation of common
Grammar Flow Analysis (GFA) algorithms using the
Visitor pattern. Finally, in section 4 we extend this to
the design of an LL

�
1 � parser, and discuss the imple-

mentation of a test parser for the programming lan-
guage Oberon.

2 Grammar Combinators in C++

In this section we overview the representation of a
context-free grammar in our system. Particular to
this approach is the representation of the grammar at
the object-level, the integration with a combinator-
style representation for grammatical operators, and
the ease with which these operators can be extended.

A context free grammar describes a language over
some finite set of terminal symbols. Formally, a
grammar consists of a set of terminal symbols, a set of
non-terminal symbols, and a set of production rules.
Each production rule defines a given non-terminal
in terms of the union and concatenation of terminal
and non-terminal symbols; we refer to this definition
as the right-part of the rule. A sequence of termi-
nal symbols from the language corresponding to the
grammar is known as a sentence, and the the task of
using a grammar to decide if a given sentence belongs
to its corresponding language is called parsing. A
production rule can be seen as a rewrite rule, where
the language defined by the grammar is the set of sen-
tences that can be derived from a distinguished non-
terminal, called the start symbol.

Context free grammars are typically used as the
specification of a parser, whose task is to decide
whether or not a given sequence of terminal symbols
is in the language corresponding to that grammar. The
code for the parser may either be written by hand, as is
the case with recursive-descent parsing, or generated
automatically from the grammar, using some well-
known algorithms such as LL or LALR parsing (see
[2] for an overview of parsing techniques). Parsers
can be categorised as either top-down or bottom-up,
depending on whether they seek to associate the start
symbol with a sentence by forward or backward ap-
plication of the production rules.

There is usually a trade-off between writing the
parser code manually and choosing a parser generator.
Writing the code manually facilitates integration into
a larger program, provides for full flexibility in gram-
mar manipulation, and makes all the standard modu-

larisation constructs of the implementation language
available. However, such code can be difficult to un-
derstand and maintain, as the underlying grammatical
structure may be obscured. Using a parser generator
preserves the grammatical structure, but is not usu-
ally as flexible or easily modularised as hand-written
code. In addition, an extra code generation pass now
becomes part of the programming process.

Combinator parsers for functional languages [7,
5] provide a compromise between the approaches of
using a parser generator or writing a parser by hand.
By defining the elements of the grammar as entitles
within the program we achieve the benefit of full in-
tegration with other code; by providing a set of com-
binators that allow high-level grammar construction
we can parallel the transparency of generator-based
approaches.

Typical combinator parsers work by overloading
operators to represent union and concatenation, and
then providing alternative implementations of these
for the various grammar-wide operations, such as
validity-checking, lookahead calculation and parsing.
Our approach is a hybrid of ordinary combinator-
based approaches and those which choose to repre-
sent the grammar explicitly, such as [8, 9]. We use
the combinators as a front-end to the representation
of the grammar as an object in our program, and it is
this object which is then used as a basis for the re-
maining grammatical operations.

The representation of grammars in our system is
given in figure 1. Each grammar consists of a list of
terminals, non-terminals and production rules, where
each production rule is an instance of the class Right-
Part. This class, which basically represents the defi-
nition part of a production rule as a regular expression
over terminals and non-terminals plays a central role
in the remaining design of our program.

Based on these classes it is then straightforward
to define the relevant operators in C++. In our imple-
mentation we have chosen to overload the operators ���
and && to represent union and concatenation respec-
tively. A user may then specify a grammar by creating
the relevant terminal and non-terminal objects (just
specifying their name in each case), and adding the
relevant production rules to the grammar using these
combinators.

There are two significant advantages of this ap-
proach over traditional approaches. First, since the
grammar is represented explicitly as an object, it may
be created and changed at run-time, providing us with
the potential of fully dynamic or adaptable grammars,

2

Accepted for the Conference of the South African Institute of Computer Scientists and Information
Technologists

Cape Town, South Africa, November 1-3, 2000

1

UnionRightPart EmptyRightPart ConcatRightPart

NonTerminalRightPart
− name : String

TerminalRightPart
− name : String

{abstract}

+ void accept(Visitor &) const

+ unsigned int addTerminal(const string &)
+ unsigned int getTerminal(const string &) const
+ string getTerminalName(unsigned int) const
+ bool isTerminal(const string &) const

+ unsigned int makeNonTerminal()
+ unsigned int addNonTerminal(const string &)
+ unsigned int getNonTerminal(const string &) const
+ string getNonTerminalName(unsigned int) const
+ bool isNonTerminal(const string &) const

+ void addProduction(unsigned int, const RightPart &)
+ RightPart *getProduction(unsigned int) const

− vector<string> nonTerminals
− vector<string> terminals
− vector<RightPart *> productions

2 2

1 1

0..*

0..*

0..*

 terminals

nonTerminals

productions 1

RightPart

Grammar

Figure 1: Overview of the representation of context-free grammars. This UML diagram shows the representation
of the essential components of a context-free grammar in our system. As can be seen from the public methods,
the index of terminals, non-terminals and right-parts in the vectors stored with the Grammar objects are used by
other classes to reference them.

in the sense of [4, 12]. Indeed, the explicit representa-
tion of the grammar as an object in the program makes
it independent of the front-end used for its specifi-
cation; at present we have facilities allowing for the
grammar to be specified using combinators, or using
a yacc-like syntax.

The second advantage is that the user is not lim-
ited to the basic context-free combinators, but may
define others for specific purposes. The implementa-
tion described already has more flexibility of expres-
sion than traditional parser-generators such as yacc
in that it allows arbitrary combinations of union and
concatenation in the right-part of a rule. One obvious,
and easily implemented, extension is to define opera-
tions that allow for optionality, as well as zero or more
repetitions, giving us the flexibility of full EBNF.

Figure 2 shows how some of these operations are
implemented. It is relatively straightforward to ex-
tend the grammar combinators beyond concatenation
and union by providing a translation of new combi-
nators back into the basic structure. Indeed, since the
programming language is effectively a meta-language
with regard to the grammar, we achieve a functional-
ity similar to that provided by two-level grammars.
The listOf method is essentially a meta-rule for the
generation of ordinary context-free grammar rules.

As an example of the style of specification, con-
sider the following EBNF right-part definition for
simple expressions (here the square brackets denote
optionality, and the curly braces denote repetition).

SimpleExpr ::=
["+" | "-"] Term � AddOp Term �

Given suitable definitions for the terminals and
non-terminals involved, we can represent this directly
in C++ as a RightPart object by writing:

RightPart *SimpleExpr =
optional(PLUS || MINUS) && listOf(Term,AddOp);

3 Grammar Flow Analysis as a Visi-
tor

In this section we briefly describe the theoretical
foundations of grammar flow analysis (GFA) prob-
lems, which are used to derive information about a
grammar’s properties, and as a basis for parsing. A
full discussion of such problems, along with their the-
oretical foundations, can be found in [13]. We show
how the representation of context-free grammars dis-
cussed in section 2, combined with the use of the Vis-
itor design pattern, facilitates the implementation of
grammar flow analysis problems in an object-oriented
setting.

A context-free grammar effectively defines a
set of mutually recursive equations over the non-
terminals of that grammar. Any information that can
be extracted from the grammar, including the infor-
mation required for parsing purposes, must be ex-
tracted by processing these equations. As with any set
of mutually-recursive equations, issues such as well-
foundedness and termination are crucial to ensuring
the correctness of this process.

A GFA algorithm typically seeks to collect infor-
mation about the non-terminals from the grammar. As

3

Accepted for the Conference of the South African Institute of Computer Scientists and Information
Technologists

Cape Town, South Africa, November 1-3, 2000

1

RightPart *optional(const RightPart &rp)�
// An optional rp
int index = theGrammar.makeNonTerminal();
NonTerminalRightPart *opt = new NonTerminalRightPart(index);
theGrammar.addProduction(index, rp || *(new EmptyRightPart()));
return opt;�

RightPart *closure(const RightPart &rp)�
// Zero or more occurrances of rp
int index = theGrammar.makeNonTerminal();
NonTerminalRightPart *close = new NonTerminalRightPart(index);
theGrammar.addProduction(index, rp && *close || *(new EmptyRightPart()));
return close;�

RightPart *listOf(const RightPart &el, const RightPart &sep)�
// A list of one or more el, separated by sep
int index = theGrammar.makeNonTerminal();
NonTerminalRightPart *seq = new NonTerminalRightPart(index);
theGrammar.addProduction(index, el && (sep && *seq || *(new EmptyRightPart())));
return seq;�

Figure 2: Extensions to the usual context-free notation. This figure shows the C++ code for three functions, which
add some extra constructs that can be used in forming the right-parts of production rules. The first two functions
add the standard EBNF operations of optionality and closure (zero or more occurrences of a right-part). The last
function provides a convenient mechanism for describing lists of one or more elements separated by some given
element.

with parsing techniques, GFA algorithms can be char-
acterised as either top-down or bottom-up, depending
on whether the information about a non-terminal is a
function of the production rules where it is used, or
of the production rule which defines it. Examples of
GFA problems are:

� REACHABLE: can the non-terminal be used in
any derivation starting from the start symbol

� PRODUCTIVE: is there any derivation starting
from this non-terminal which produces a sentence

� FIRSTk: what are the first k symbols of all sen-
tences derivable from a non-terminal

� FOLLOWk: what are the first k symbols that may
follow any part of a sentence derived from this
non-terminal

Ideally, all non-terminals in a complete context-
free grammar will be both productive and reachable,
and so these algorithms are typically used to vali-
date the structure of a grammar. The FIRST and

FOLLOW algorithms form the basis of both top-down
and bottom-up predictive parsing.

To implement a GFA problem we must define a
transfer function, which specifies how the informa-
tion is moved either down or up through the gram-
mar, in accordance with the production rules. Since
the production rules are mutually recursive, a naive
approach to defining a transfer function may lead to
an infinite loop. It can be shown straightforwardly
that if the information to be collected is from a fi-
nite domain (as is the case with each of the examples
above), and if the transfer function can only monoton-
ically increase the information associated with each
non-terminal, then an iterative procedure for collect-
ing this information must necessarily reach a fixpoint
and is thus guaranteed to terminate.

In terms of our implementation it is clear that
the transfer function must have a close relationship
with the structure of the grammar, in particular the
structure of the right-parts of the production rules.
A procedural approach might define a single trans-
fer function for each GFA problem, but in an object-

4

Accepted for the Conference of the South African Institute of Computer Scientists and Information
Technologists

Cape Town, South Africa, November 1-3, 2000

1

+ ParseVisitor(Scanner *,
const PredictVisitor &)

+ PredictVisitor(const FirstVisitor &,
const FollowVisitor &)

− set<unsigned int> myFollow

− vector<set<unsigned int> *> followOf

−− Inherited Attribute:

−− Memo−ised Data:

− set<unsigned int> myFirst

− vector< set<unsigned int> *> firstOf

−− Synthesised Attribute:

−− Memo−ised Data:

− bool amProductive

− vector<bool> areProductive

−− Synthesised Attribute:

−− Memo−ised Data:
− map<RightPart *,

set<unsigned int> *> predict

− set<unsigned int> myFollow
−− Inherited Attribute:

−− Memo−ised Data:

− bool amReachable
−− Inherited Attribute:

−− Memo−ised Data:

bool atFixpoint()
const Grammar &gram

+ void visitUnion(const RightPart &, const RightPart &)
+ void visitConcat(const RightPart &, const RightPart &)
+ void visitTerminal(unsigned int)
+ void visitNonTerminal(unsigned int)
+ void visitEmpty()

{abstract}

− vector<bool> areReachable

ProductiveVisitor

+ ProductiveVisitor(const Grammar &)

FirstVisitor

+ FirstVisitor(const Grammar &)

PredictVisitor

ReachableVisitor FollowVisitor

+ ReachableVisitor(const Grammar &) + FollowVisitor(const FirstVisitor &)

ParseVisitor

Visitor

Figure 3: The Visitor class hierarchy. This UML diagram depicts the Visitor class hierarchy. Each subclass
overrides the various visitor methods to implement its main functionality; the iterate method drives the compu-
tation until a fixpoint is reached. The current state, as well as the end result of each GFA operation is represented
in the attributes of the corresponding visitor object.

oriented implementation the functionality is clearly
more naturally distributed using methods in each sub-
class of RightPart. This however presents two imme-
diate problems. First, the functionality of each GFA
algorithm is distributed around the class, and can be
difficult to maintain as a unit. Second, each new GFA
algorithm requires an update or extension to he Right-
Part class, in order to add methods to each subclass of
RightPart for its implementation.

In our approach we take a different approach, em-
ploying the Visitor pattern of [6]. This pattern is com-
monly used where there is a structure whose repre-
sentation is fixed, along with a set of operations to be
performed on this structure which may be changed or
extended. Each of the operations to be performed, in
our case each GFA algorithm, is represented by a sub-
class of a Visitor class, which has methods that deal
with the specific cases, one for each possible sub-
class of RightPart. The fixed RightPart class itself
needs only to have a single method accept, parame-
terised by a Visitor object, which then dispatches con-
trol and any relevant accompanying information to the
received Visitor. Using the Visitor pattern has an ad-

ditional advantage, in that any information relevant to
the state of the GFA algorithm can be encapsulated in
the corresponding Visitor subclass, rather than being
held in the RightPart class itself, or elsewhere.

In figure 3 we show the class hierarchy for some
of the GFA algorithms that we have implemented
using this Visitor pattern. Each instance of Visitor
is responsible for maintaining its own state infor-
mation. Most typically this information is a map
from the set of non-terminals to the information gath-
ered by the GFA algorithm. Each Visitor subclass
has its own iterate method which repeatedly vis-
its each non-terminal and its corresponding definition,
thus performing the transfer function. This process
is repeated until the information gathered does not
change, in which case a fixpoint has been reached.

Figure 4 gives the C++ code for the imple-
mentation of a Visitor subclass that implements the
PRODUCTIV E GFA problem. Augmenting this
class with the usual ��� operator to allow printing
means that the code needed to call this visitor (and
thus perform the GFA algorithm) is a straightforward
process:

5

Accepted for the Conference of the South African Institute of Computer Scientists and Information
Technologists

Cape Town, South Africa, November 1-3, 2000

1

void ProductiveVisitor::visitUnion(const RightPart &rp1, const RightPart &rp2)�
// Implement as non-strict "or"
rp1.accept(*this);
if (!amProductive)

rp2.accept(*this);�

void ProductiveVisitor::visitConcat(const RightPart &rp1, const RightPart &rp2)�
// Implement as non-strict "and"
rp1.accept(*this);
if (amProductive)

rp2.accept(*this);�

void ProductiveVisitor::visitTerminal(unsigned int)�
// All terminals are productive
amProductive = true;�

void ProductiveVisitor::visitNonTerminal(unsigned int index)�
// Get value from previous iteration
amProductive = areProductive[index];�

void ProductiveVisitor::visitEmpty()�
// Empty string is productive
amProductive = true;�

Figure 4: Methods from the class ProductiveVisitor. This figure contains the C++ code showing the
main actions of a ProductiveVisitor object. In this case the synthesised attribute is represented by the
amProductive field, which is consulted and set as the visitor processed each RightPart object.

// First create the visitor:
ProductiveVisitor productive(theGrammar);
// Then start the iteration:
productive.iterate();
// Finally, print the results:
cout ��� productive;

4 LL(1) Parsing

One of the most obvious uses of the results from GFA
algorithms, aside from validating grammar consis-
tency and correctness, is as a basis for parsing. In this
section we describe our design, implementation and
testing of an LL

�
1 � parser, and its integration with the

object-oriented framework described in previous sec-
tions.

The central issue in parsing a sentence to see if
it belongs to the language described by a context-free

grammar is the method used in making choices. For
a top-down parser, a simple approach would be to use
a depth-first search, trying the first alternative and,
if it fails, trying the second. This is readily imple-
mented using the Visitor patterns described in the pre-
vious section, giving a functionality similar to Defi-
nite Clause Grammars (DCGs) in Prolog.

However, where speed or accurate syntax error
reporting is needed, it is usual to make a choice be-
tween alternatives based on some predictive strategy,
such as the use of one or more symbols of lookahead.
For LL

�
1 � parsing, we choose between two alterna-

tives by forming a PREDICT set for each alternative,
formed by taking the FIRST set, and, if this contains
the empty string, adding in the relevant FOLLOW set.

To this end we have implemented three more vis-
itors: a PredictVisitor that calculates a PREDICT set
for each choice-point, a ConflictVisitor to report on
any situations where this does not fully disambiguate

6

Accepted for the Conference of the South African Institute of Computer Scientists and Information
Technologists

Cape Town, South Africa, November 1-3, 2000

1

the code, and a ParseVisitor that performs LL
�
1 � pars-

ing. The characteristic method in each visitor is the
visitUnion method, since this is where the decisions
must be made between alternatives. By constructing
and iterating a PredictVisitor and then supplying this
for use in a ParseVisitor, we achieve an effect similar
to “memoising” in functional languages.

To test the system, we prepared a grammar for
the programming language Oberon-2 [16], which was
chosen as it represented a non-trivial “real-world”
programming language, without the inherent context-
sensitivity or ambiguities of languages such as C or
C++. Apart from left-recursion elimination, which is
essential to all left-to-right top-down parsers, very lit-
tle grammar manipulation was needed, since our sys-
tem allows for the use of all the usual EBNF con-
structs. As test cases we used the sample code avail-
able from four texts, [11, 14, 15, 16], comprising
some 23,000 lines of Oberon-2 code in total.

The testing phase threw up relatively few errors
in the parsing code. Since the system had been
tested and debugged for the easier GFA problems
of PRODUCTIVE and REACHABLE , most of the
issues relating to the implementation of the Visitor
pattern had been resolved. Indeed, the incremen-
tal nature of the parser development, from simple
GFA algorithms, through FIRST , FOLLOW and then
PREDICT had the effect of isolating many of the
bugs at an earlier stage, and greatly facilitated the im-
plementation of the ParseVisitor.

At present, tests of the system show it parsing
23,000 lines of Oberon-2 code in just under 9 sec-
onds1. This compares favourably to the equivalent
task performed in 0.6 seconds using a parser gener-
ated by GNU Bison version 1.28, a particularly ef-
ficient LALR

�
1 � parser generator. Profiling suggests

that a significant amount of the parser’s time is spent
in the visitUnion method, checking the lookahead
token against the relevant PREDICT set. However,
the design of our code concentrated on correctness
and ease of implementation, rather than optimality. In
particular, our use of containers such as vector and
map from the C++ Standard Template Library could
be replaced in many instances by larger, but faster,
lookup tables, as is common in parser generators.

1The tests were carried out on a 300 MHz Pentium II based
PC, with 64 MB of memory

5 Concluding Remarks

In this paper we have described a technique for
grammar representation and manipulation, as well as
parser design, based on a fusion of formal grammar
flow analysis techniques and object-oriented design.

The system we have developed and implemented
in C++ is still at the prototyping stage and, in partic-
ular, would benefit from thorough optimisation. We
envisage that systems of this nature will be of use for
the construction of parsers used for auxiliary purposes
in larger, object-oriented programs. As mentioned in
section 1, this has applications in a number of do-
mains including in particular the testing of GUI-based
applications, and the processing of DTD-based XML
documents.

We hope to continue to develop and extend the
system. Specifically, incorporating attribute manipu-
lation, as well as allowing the lookahead limit to be
extended beyond one symbol, are immediate goals.

References

[1] ISO/IEC 14977:1996. Information technology –
Syntactic metalanguage – Extended BNF. Inter-
national Standards Organisation, 1996.

[2] A.V. Aho, R. Sethi, and J.D. Ullman. Compil-
ers: Principles, Techniques and Tools. Addison-
Wesley, 1986.

[3] T. Bray, J. Paoli, and C.M. Sperberg-McQueen.
Extensible Markup Language (XML) 1.0. W3C
XML Working Group, 1998.

[4] H. Christiansen. A survey of adaptable gram-
mars. ACM SIGPLAN Notices, 25(11):35–44,
1990.

[5] J. Fokker. Functional parsers. In Johan Jeur-
ing and Erik Meijer, editors, First International
Spring School on Advanced Functional Pro-
gramming Techniques, volume 925 of Lecture
Notes in Computer Science, pages 1–23, Baas-
tad, Sweden, May 1995.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley,
1995.

[7] G. Hutton. Higher-order functions for parsing.
Journal of Functional Programming, 2(3):323–
343, July 1992.

7

Accepted for the Conference of the South African Institute of Computer Scientists and Information
Technologists

Cape Town, South Africa, November 1-3, 2000

1

[8] J. Jeuring and D. Swierstra. Bottom-up gram-
mar analysis - a functional formulation. In Don-
ald Sannella, editor, 5th European Symposium
on Programming (ESOP ’94), volume 788 of
Lecture Notes in Computer Science, pages 317–
332, Edinburgh, UK, April 1994.

[9] J. Jeuring and D. Swierstra. Constructing func-
tional programs for grammar analysis prob-
lems. In Conference on Functional Program-
ming Languages and Computer Architecture
(FPCA ’95), pages 259–269, La Jolla,, Califor-
nia, USA, June 1995.

[10] J. Levine, T. Mason, and D. Brown. Lex and
Yacc. O’Reilly, 1992.

[11] H. Mössenböck. Object-Oriented Programming
in Oberon-2. Springer Verlag, 1995.

[12] J.N. Shutt. Recursive adaptable grammars.
Master’s thesis, Worcester Polytechnic Institute,
June 1998.

[13] R. Wilhelm and D. Maurer. Compiler Design.
Addison-Wesley, 1995.

[14] N. Wirth. Compiler Construction. Addison-
Wesley, 1996.

[15] N. Wirth and J. Gutknecht. Project Oberon - The
Design of an Operating System and Compiler.
Addison-Wesley, 1992.

[16] N. Wirth and M. Reiser. Programming in
Oberon - Steps Beyond Pascal and Modula.
Addison-Wesley, 1992.

8

