Comparison of Bytecode and Stack Frame Usage by
Eiffel and Java Programs in the Java Virtual Machine

John Waldron
Department of Computer Science,
Trinity College Dublin,
Ireland.

jwaldron@compapp.dcu.ie

Abstract

Dynamic quantitative measurements of Byte-
code and Stack Frame Usage by Eiffel and
Java Programs in the Java Virtual Machine
are made. Two Eiffel programs are dynami-
cally analysed while executing on the JVM,
and the results compared with those from
the Java Programs. The aim is to examine
whether properties like instruction usage and
stack frame size are properties of the Java pro-
gramming language itself or are exhibited by
Eiffel programs as well. Investigations anal-
yse how the different assertion checking and
optimizations possible using the SmallEiffel
compiler affect bytecode and stack frame us-
age. Remarkably local load, push_const and
local_store instruction categories always ac-
count for very close to 40% of instruction-
s executed, a property of the Java Virtu-
al Machine irrespective of the programming
language, compiler or compiler optimization-
s used. Java programs executed 75% of their
bytecodes within the API suggesting a way to
improve the speed of Java programs would be
to compile the API methods to native instruc-
tions and save these on disk in a standard for-
mat, cutting the time spent interpreting pro-
grams. Only 4.8% of instructions were in the
API when Eiffel programs executed.

Proceedings of the 2" International Workshop on
Computer Science and Information Technologies
CSIT’2000

Ufa, Russia, 2000

James Power
Department of Computer Science,
NUI Maynooth
Ireland

jpower@cs.may.ie

1 Introduction

The purpose of this paper is to extend earlier work [1]
in which the dynamic bytecode usage for a test suit-
e of Java programs was analysed. The results in [1]
were interesting as they questioned the stack based
design for the Java Virtual Machine. In this paper t-
wo Eiffel [2] programs are dynamically analysed while
executing on the JVM, and the results compared with
those from the Java Programs. The aim is to exam-
ine whether properties like instruction usage and stack
frame size are properties of the Java programming lan-
guage itself or are exhibited by Eiffel programs as well
and therefore are innate properties of the stack based
virtual machine. The long term aim of this research
is to develope principles of virtual machine design to
support efficient execution of languages like Eiffel as
well as Java.

Recent research [3] has shown that, for the Java pro-
grams studied, dynamic bytecode usages were almost
identical when the same program was compiled by dif-
ferent Java compilers. In addition the -O option only
had small effects on bytecode usage patterns. This
paper investigates how the different assertion checking
and optimizations possible using the SmallEiffel com-
piler affect bytecode and stack frame usage in the Java
Virtual Machine.

In Section 2 we discuss the Java Virtual Machine
(JVM) bytecodes. Section 3 describes the suite of pro-
grams chosen to investigate usage of the bytecodes by
real programs. Section 4 gives the bytecode frequen-
cies over the Java and Eiffel programs and looks at the
dynamic bytecode usages produced using the different
compiler optimizations possible with SmallEiffel. Sec-
tion 5 looks at dynamic stack frame usage by the Java
and Eiffel programs studied. A summary of the results
is given in Section 6.

Workshop on Computer Science and Information Technologies CSIT’2000, Ufa, Russia, 2000 1

Accepted for the 2nd International Workshop on Computer Science and Information Technologies
Ufa, Russia, September 18-23, 2000

2 Java Virtual Machine Bytecode Fre-
quency

The dynamic frequency of an instruction is the number
of times it is executed during a program run. The stat-
ic bytecode frequency, which is the number of times a
bytecode appears in a class file or program has been
studied in [4] where a wide difference was found be-
tween the bytecodes appearing in different class files,
and each class file used on average 25 different byte-
codes.

Java originated in 1991 as the OAK project aim-
ing to produce a software development environment
for small distributed embedded systems. The design
involves compiling to a machine independent instruc-
tion set similar to UCSD Pascal [5]. The architecture
is a stack machine with almost no addressing modes, a
highly regular instruction set, and very dense instruc-
tion encoding (1.9 bytes per instruction for the pro-
grams studied in [4]). The instruction set of the Java
Virtual Machine is fully documented in [6]. The Ja-
va stack is divided into frames and there is one frame
per method invocation which has its own local reg-
isters. The Java instruction set contains an unusual
amount of type information, and there are restrictions
on the use of the operand stack, so that at every code
point each slot in the stack and each local variable has
a type. The type can be determined statically by a
bytecode verifier, which means that stack underflow
and overflow, the types of all parameters to instruc-
tions and object field references, and potential illegal
conversions can be checked statically. The type infor-
mation in the bytecode representation should also help
a just in time (JIT) compiler in translating programs
into native machine code [7].

The simplest way the Virtual Machine executes a
Java program is by interpreting the bytecodes. Per-
formance can be improved by using a JIT compiler to
produce native machine code at run time. In order to
achieve a performance competitive with the code pro-
duced by a native compiler however, it would be nec-
essary to apply the same code-generation techniques,
which seems too expensive for JIT compilation. Even
though the Java platform dynamically links and loads
classes as they are needed, most execution time is spen-
t in a small portion of the code [9] [10]. The hotspot
Virtual Machine design uses dynamic compilation to
only convert the most heavily used parts of a program
to native machine instructions, and interprets the bulk
of the code, avoiding the overhead of compiling code
that is infrequently or never executed.

In order to study dynamic bytecode usage it was
necessary to modify the source code of a Java Virtual
Machine. Kaffe [11] is an independent implementa-
tion of the Java Virtual Machine which was written

from scratch and is free from all third party royal-
ties and license restrictions. It comes with its own
standard class libraries, including Beans and Abstract
Window Toolkit (AWT), native libraries, and a high-
ly configurable virtual machine with a JIT compiler
for enhanced performance. Kaffe is available under
the Open Source Initiative and comes with complete
source code, distributed under the GNU Public Li-
cense.

3 Programs Measured

Programs written in both Java and Eiffel were stud-
ied to see if bytecode and stack frame usages were a
property of the Java language itself, or a property of
the Virtual Machine.

3.1 Java Programs

A selection of different Java programs was studied to
compare the way different Java applets and applica-
tions use the bytecodes. The atomic applet symbolises
nuclear forces at work. It is a simple applet showing
an animated atom with whizzing electrons. Lots of
configuration options make it easy to customise. The
fireworks applet displays a number of fireworks rockets
and animates them according to a set of user definable
attributes.

Jasmin [12] is a Java Assembler Interface. It takes
ASCII descriptions for Java classes, written in a simple
assembler-like syntax using the Java Virtual Machine
instruction set. It converts them into binary Java class
files suitable for loading into a Java Virtual Machine
implementation. Jasmin itself is written in Java. Jas-
min was measured assembling Count.j one of the ex-
ample programs distributed with it.

Java Compiler Compiler (JavaCC) [13] is currently
the most popular parser generator for use with Ja-
va applications. A parser generator is a tool that
reads a grammar specification and converts it to a Ja-
va program that can recognise matches to the gram-
mar. In addition to the parser generator itself, JavaCC
provides other standard capabilities related to parser
generation such as tree building actions, debugging,
etc. JJTree, the tree builder, has now become pop-
ular and many users have started using JJTree along
with JavaCC. The bytecodes JavaCC used while run-
ning javacc SPL.jj were measured. SPL (Stupid Pro-
gramming Language) is one of the example programs
distributed with JavaCC. JJTree was also measured
while running jjtree SPL.jjt.

3.2 Eiffel Programs

SmallEiffel is intended to be a complete, small, very
fast and free Eiffel compiler, available for a wide range

2 Comparison of Bytecode and Stack Frame Usage by Eiffel and Java Programs in the Java Virtual Machine

Accepted for the 2nd International Workshop on Computer Science and Information Technologies
Ufa, Russia, September 18-23, 2000

of platforms. It includes an Eiffel to C compiler,
an Eiffel to Java bytecode compiler, a documentation
tool, and a pretty printer. SmallEiffel uses an innova-
tive strategy involving whole system analysis which al-
lows compilation to be often faster than the incremen-
tal compilation of traditional compilers [14]. It was
originally designed at the LORIA lab, Nancy, France,
in 1994-95, and has been used worldwide by many in-
dividuals and Universities since September 1995. Ver-
sion -0.78, released on Saturday June 5th, 1999 was
used for these comparisons. As it is not yet possible
to create applets with compile_to_jvm, no Eiffel applets
were studied.

The main concern of the Gobo Eiffel Project is to
provide the Eiffel community with free and portable
Eiffel tools and libraries for use by any Eiffel compiler.
Two utilities from Gobo Eiffel 1.5 were measured —
Gobo Eiffel Lex, version 1.5 (gelex) and Gobo Eiffel
Yacc, version 1.5 (geyacc). Gobo Eiffel Lex is a tool
for generating Eiffel programs that perform pattern-
matching on text. Gelex reads a given input file for
the description of the scanner to be generated. The de-
scription is in the form of pairs of regular expressions
and Eiffel code, called rules. Gelex generates as out-
put an Eiffel class equipped with routines to analyze
input text for occurrences of the regular expressions.
Whenever one is found, the corresponding Eiffel code
is executed.

Gobo Eiffel Yacc is a general-purpose parser gen-
erator that converts a grammar description for an
LALR(1) context-free grammar into an Eiffel class e-
quipped with routines to parse that grammar. Gey-
acc may be used to develop a wide range of language
parsers, from those used in simple desk calculators to
complex programming languages. Geyacc is very sim-
ilar to yacc and GNU bison. Anyone familiar with
these utilities and fluent in Eiffel programming should
be able to use geyacc with little trouble.

Gelex was measured running gelex ascii2ps.l, a sim-
ple ASCII to PostScript filter which can be used as a
pretty printer. Geyacc was measured running geyacc
-0 calc_parser.e calc_parser.y a simple calculator.

4 Instruction Execution Frequencies
4.1 Java Programs

In [1] the total bytecode usage for the Java programs
above was given. In order to fully study the dynamic
execution of bytecodes, those used within API meth-
ods were measured separately from those in the pro-
gram’s methods. Table 1 compares the dynamic per-
centages of instructions and non-native method calls
in the API and in the program’s classes for the Ja-
va programs studied. It can be seen that 74.1% of
bytecodes executed and 67.1% of Java methods are

API

non-native bytecodes bytecodes

method % % per method
atomic 43.5 79.8 37.7
fire works 72.8 64.9 24.1
jasmin 86.4 89.7 22.4
JJTree 61.6 63.9 15.5
JavaCC 71.3 72.4 19.1
average 67.1 74.1 23.8

non-API

non-native bytecodes bytecodes

method % % per method
atomic 56.5 20.2 7.3
fire works 27.2 35.1 34.8
jasmin 13.6 10.3 16.4
JJTree 38.4 36.1 14.0
JavaCC 28.7 27.6 18.2
average 32.9 25.9 18.1

Table 1: Comparison of dynamic percentages of in-
structions and non-native method calls made by meth-
ods in the API and in the program classes for the Java
programs studied.

in the APL java/lang, java/awt and jave/util contain
the API methods most frequently executed by the pro-
grams. Table 1 implies that the behaviour of these
methods will dominate the overall behaviour of a pro-
gram. One obvious suggestion to improve the speed
of Java programs would be to compile the API meth-
ods to native instructions and save these on disk in a
standard format, cutting the time spent interpreting,
which should give a dramatic increase in performance.
Table 1 shows that on average each Java method in
the programs (i.e. not in the API) only used 18.1
bytecodes when executed and that Java API methods
executed on average 23.8 bytecodes.

Total (API and non-API) dynamic bytecode execu-
tion frequencies of each instruction are given in Table 2
for the atomic, fireworks, jasmin, JavaCC, and JJTree
Java programs. API and non-API methods use similar
bytecodes. The unabridged version of the instruction
frequencies given in Table 2 is available at [15]. The
last column in Table 2 shows the average of the five
benchmarks

100 x Cik
fi= 5 Z 256

— z 1 Cik

where c;i, is the number of times bytecode 7 is executed
during the execution of program k. f; is an approxi-
mation of that bytecode’s usage for a typical program.
The Java bytecodes selected for inclusion in this Table
2 were the 35 most commonly used bytecodes. For the
purposes of this study, the 202 bytecodes can be split
into 22 categories as shown in Table 3. By assigning
those instructions that behave similarly into groups it
is possible to describe clearly what is happening. Table
2 is summarised in Figure 1.

Workshop on Computer Science and Information Technologies CSIT’2000, Ufa, Russia, 2000 3

Accepted for the 2nd International Workshop on Computer Science and Information Technologies
Ufa, Russia, September 18-23, 2000

Instruction atom | fire jas jec jjt fi

aload_-0 7.9 21.3 | 15.7 | 11.3 | 11.9 | 13.6
getfield 4.8 20.3 | 13.2 9.7 9.4 11.5
iload-1 3.8 2.3 4.5 3.9 2.9 3.5
invokevirtual 3.6 2.9 3.5 2.7 3.2 3.2
iload-2 3.6 3.7 2.8 3.3 2.5 3.2
aload-1 1.0 4.6 1.8 3.3 4.6 3.1
iload 6.3 1.0 2.8 2.6 1.5 2.8
iload-3 1.7 2.3 2.9 3.2 3.2 2.7
getstatic 0.1 0.1 0.1 5.5 6.5 2.5
invokestatic 6.1 1.5 0.3 2.0 2.7 2.5
iadd 2.1 1.4 3.6 2.8 2.4 2.5
dmul 9.9 0.7 0.0 0.0 0.0 2.1
ireturn 3.0 1.2 2.0 1.8 2.1 2.0
return 0.8 2.3 1.4 2.5 3.0 2.0
putfield 0.5 4.1 2.3 1.5 1.8 2.0
iconst_0 0.4 0.7 1.8 2.9 3.1 1.8
iconst_1 0.2 1.9 2.3 2.3 2.2 1.8
dup 0.2 2.9 1.9 1.7 1.9 1.7
goto 0.8 0.5 2.5 2.0 1.6 1.5
if icmpge 1.7 0.8 2.4 1.4 0.8 1.4

Table 2: Total (API and non-API) dynamic bytecode execution frequencies for the Java programs studied.

Category Number | Bytecodes

misc 5 nop,iinc,athrow,wide,breakpoint
push_const 20 1-20

local_load 25 21-45

array_load 8 46-53

local_store 25 54-78

array-_store 8 79-86

stack 9 87-95

arithmetic 24 96-119

logical shift 6 120-125

logical_boolean 6 126-131

conversion 15 133-147

comparison 5 148-152
conditional_branch 16 153-166,198,199
unconditional_branch 2 goto,goto_w

subroutine 3 jsr,ret,jsrow

table_jump 2 tableswitch,lookupswitch
method_return 6 172-177

object_fields 4 178-181

method_invoke 4 182-185

object_manage 3 new,checkcast,instanceof
array_manage 4 188-190,197

monitor 2 monitorenter,monitorexit

Table 3: Categories of Java bytecodes.

4 Comparison of Bytecode and Stack Frame Usage by Eiffel and Java Programs in the Java Virtual Machine

Accepted for the 2nd International Workshop on Computer Science and Information Technologies
Ufa, Russia, September 18-23, 2000

conditional_branch

local_load

object_fields

others

array_manage
misc

array_load

stack

push_const conversion
local_store

method_return
method_invoke

arithmetic

Figure 1: Total (API and Non-API) dynamic byte-
code execution frequencies by category by the Java
programs studied.

4.2 Bytecode Usage by Eiffel Programs

The Eiffel programming language supports the con-
cept of “design by contract”, where the operation of
methods can be predicated by using various forms of
assertions. These assertions, including the checking of
pre- and post-conditions as well as loop and class in-
variants, forms an important part of the design of Eiffel
programs and has a corresponding impact on the gen-
erated Java bytecodes. The SmallEiffel compiler sup-
ports 8 modes of compilation, allowing a fine-grained
degree of control over assertion checking.

-boost Compilation mode with the highest degree of
optimization. There is no target’s existence test,
no system-level validity checking. Some routines
are inlined. No code is generated to get an ex-
ecution trace in case of failure. No assertion is
checked.

-no_check Compilation mode in which no FEiffel as-
sertion is checked. The target’s existence test
is performed. Some code is generated for the
system-level validity checking, and to produce an
execution trace (an execution stack is managed).
There is no inlining and no assertion check.

-require_check Compilation mode in which FEiffel
preconditions are checked. The generated code
is similar to the previous one, but also includes
code to test preconditions (require).

-ensure_check The generated code is similar to the
previous one, but also includes code to test post-
conditions (ensure).

-invariant_check The generated code is similar to
the previous one, but also includes code to test
class invariants.

unconditional_branch

-loop_check The generated code is similar to the pre-
vious one, but also includes code to test loop vari-
ants and loop invariants.

-all_check The default mode. The generated code is
similar to the previous one, but also includes code
for the check instruction.

-debug_check The generated code is similar to the
previous one, but also includes code for debug in-
structions. All debugs are checked regardless of
the optional string key.

Eiffel programs were measured compiled under two dif-
ferent modes, firstly -all_check and secondly with the -
no_check option, a compilation mode in which no Eiffel
assertion is checked. Of equal significance, this mode
also disables the inlining optimisations of the Small-
Eiffel compiler (as described in [16]).

The first difference noted between the Eiffel pro-
grams and the Java Programs is the amount of exe-
cution time spent in the non-API program methods.
This was 98.1% of instructions for geyacc and 99.2%
for gelex when these were compiled with all checks
(87.2 and 96.3 respectively with no checks). This re-
sult is not surprising since many low level routines are
written in pure Eiffel. When gelex is compiled with
all checks, it takes 1.3 x 10® total instructions and
4.5 x 106 methods. With the no checks option this
falls to 3.3 x 107 instructions and 1.2 x 10% methods
(all quantities include API methods).

Total (API and non-API) dynamic bytecode ex-
ecution frequencies for the Eiffel programs studied
when compiled using SmallEiffel no_check and al-
1_check modes are shown in Table 4. Total (API and
Non-API) dynamic bytecode execution frequencies by
the categories in Table 3 by the Eiffel programs stud-
ied when compiled using SmallEiffel no_check modes
are shown in Figure 2. One immediately noticeable
difference between the Java programs and the Eiffel
programs is the greater use of the iconst_1 and ifne
instructions in the latter. This is a direct consequence
of the “design by contract” approach, and the resultan-
t assertion checking during the execution of the Eiffel
programs. For example, an object’s integrity is repre-
sented by a check_flag field, and this is checked by
comparison with the value 1 (pushed using the iconst_1
instruction), with a resulting branch if this test fails
(using an ifne instruction). Total (API and Non-APT)
dynamic bytecode execution frequencies by the cate-
gories in Table 3 by the Eiffel programs studied when
compiled using SmallEiffel no_check mode, a compila-
tion mode in which no Eiffel assertion is checked, are
shown in Figure 3. The results are remarkably simi-
lar to those for Java Programs (Figure 1) suggesting
that the instruction set usage is a property of the Java

Workshop on Computer Science and Information Technologies CSIT’2000, Ufa, Russia, 2000 5

Accepted for the 2nd International Workshop on Computer Science and Information Technologies
Ufa, Russia, September 18-23, 2000

no_check mode all_check mode

instruction geyacc | gelex fi instruction geyacc | gelex fi

aload_0 14.4 10.8 12.6 iconst_1 9.8 13.0 11.4
getfield 5.6 9.3 7.5 aload_0 8.6 10.2 9.4
checkcast 5.6 9.3 7.5 ifne 7.9 6.6 7.2
instanceof 9.5 3.4 6.5 getfield 4.8 8.1 6.4
dup 5.1 6.3 5.7 iconst_0 4.9 6.0 5.5
ifeq 8.2 1.8 5.0 ifeq 5.0 4.8 4.9
iconst_0 3.9 4.8 4.3 checkcast 5.6 4.2 4.9
ifne 3.6 4.3 4.0 goto 3.4 4.4 3.9
istore_2 2.3 5.6 3.9 iload-1 2.8 4.4 3.6
goto 3.5 3.5 3.5 dup 4.8 2.5 3.6
iload-1 2.7 4.2 3.5 getstatic 3.8 2.6 3.2
invokevirtual 2.6 3.4 3.0 invokevirtual 3.6 2.6 3.1
iload_2 2.3 3.3 2.8 putstatic 1.3 3.4 2.4
ifnull 2.2 3.0 2.6 instanceof 3.8 1.0 2.4
iconst_1 2.4 2.8 2.6 ireturn 2.0 2.6 2.3
isub 1.7 3.0 2.4 istore_2 1.4 3.1 2.2
ireturn 1.4 3.0 2.2 istore_1 2.1 2.0 2.0
iload-3 2.1 2.3 2.2 pop 2.3 1.8 2.0
iload 1.7 2.5 2.1 return 2.1 1.0 1.6
iaload 0.5 2.3 1.4 iload -2 1.1 1.8 1.5

Table 4: Total (API and non-APT) dynamic bytecode execution frequencies for the Eiffel programs studied when
compiled using SmallEiffel all_check mode.

conditional_branch

local_load

object_manage

local_load

method_return
conditional_branch
unconditional_branch
object_fields
method_invoke

push_const . .
arithmetic
push_const

stack

local_store

others
arithmetic

Figure 3: Total (API and Non-API) dynamic byte-
code execution frequencies by category by the Eif-
fel programs studied when compiled using SmallEiffel
no_check mode.
Virtual Machine design, rather than the programming
language used.

unconditional_branch

method_invoke
object_fields
method_return

object_manage
ject] 9 local_store

Figure 2: Total (API and Non-API) dynamic byte-
code execution frequencies by category by the Eiffel
programs studied when compiled using SmallFiffel al-
1_check mode.

5 Stack Frame Usage

Each Java Virtual Machine thread has a private Java
stack, created at the same time as the thread. A Java
stack stores Java Virtual Machine frames. The Java
stack is similar to the stack of a conventional language
such as C. It holds local variables and partial results,
and plays a part in method invocation and return. Be-
cause the stack is never manipulated directly except to
push and pop frames in the Java design, it may actu-
ally be implemented as a heap, and Java frames may
be heap allocated and do not need to be contiguous

6 Comparison of Bytecode and Stack Frame Usage by Eiffel and Java Programs in the Java Virtual Machine

Accepted for the 2nd International Workshop on Computer Science and Information Technologies
Ufa, Russia, September 18-23, 2000

[6].

A Java Virtual Machine frame is used to store da-
ta and partial results, as well as to perform dynamic
linking, to return values for methods, and to dispatch
exceptions. A new frame is created each time a Ja-
va method is invoked. A frame is destroyed when its
method completes, whether that completion is normal
or abnormal (by throwing an exception). Each frame
has its own set of local variables and its own operand
stack. The memory space for these structures can be
allocated simultaneously, since the sizes of the local
variable area and operand stack are known at compile
time and the size of the frame data structure depend-
s only upon the implementation of the Java Virtual
Machine [6].

On each Java method invocation, the Java Virtual
Machine allocates a Java frame, which contains an ar-
ray of words known as its local variables. Local vari-
ables are addressed as word offsets from the base of
that array. Local variables are always one word wide.
Two local variables are reserved for each long or dou-
ble value. These two local variables are addressed by
the index of the first of the variables [6]. The local
variables holds three different categories of data:

e position zero holds the this pointer if executing an
instance method

e the parameters, if any, used by the method.

e the temporary variables, if any, declared by the
method.

The Java stack frame also contains an operand s-
tack. Most Java Virtual Machine instructions take val-
ues from the operand stack of the current frame, oper-
ate on them, and return results to that same operand
stack. The operand stack is also used to pass parame-
ters to methods and receive method results. Subcom-
putations may be nested on the operand stack, result-
ing in values that can be used by the encompassing
computation [6]. Unlike the stack used in a C pro-
gram, the size of the Java operand stack is known at
compile time.

This Section studies the way some real object ori-
ented programs, written in Eiffel and Java used the
stack frame of the Java Virtual Machine during exe-
cution. Dynamic measurements of local variable, pa-
rameter temporary variable and operand stack sizes
were made for every method call during the execution
of both program and API methods for the programs
studied.

5.1 Dynamic Stack Frame Usage by Java Pro-
grams

Table 5 shows dynamic percentages of different local
variable array, operand stack, temporary variable and

parameter sizes for Java methods, including the this
pointer for instance methods for the programs stud-
ied. Calls to native methods were not included when
calculating these percentages. Omne surprising result
is the high level of method calls with a local variable
array size of zero made by both JavaCC and JJtree.
The explanation for this seems to be that some of the
methods used by these programs may not have been
coded in true object oriented Java style, possibly for
reasons of efficiency. The high number of method calls
with local array size of one and two may be instance
methods that get an object field and set an object field
respectively, which can be typical of object oriented
programs. 60% of method calls for the Java program-
s studied needed a local variable array size of two or
less.

The high percentage of Java methods with zero
operand stack size gives concern, as nop is the on-
ly bytecode that does not need an operand stack,
but this can be explained by two factors. The
Java/lang/Object/<init> method is ultimately called
for each object that is created. This counts for 17,557
of the method calls with no operand stack during
JJTree execution. There are an additional 1,099 call-
s to methods in the JJTree code that have no bod-
ies, and 125 calls to Java API methods that have no
bodies. One explanation for this might be an object
oriented design with consistency of interface to allow
for inheritance. 89% of methods executed needed an
operand stack size of five of less. 75% of the methods
executed do not have any temporary variables, which
means local array size is largely needed for parameters.

5.2 Dynamic Stack Frame Usage by Eiffel
Programs

Dynamic percentages of local variable array, operand
stack, temporary variable and parameter sizes for Eif-
fel programs, including the this pointer for instance
methods when compiled using SmallEiffel no_check
and all_check modes are shown in Table 6.

The figures for the local variable array sizes are
broadly the same for both modes, with a noticeable
drop-off in numbers of methods with array size over
3. The differences between these figures and those for
the Java programs in Table 5 can be sourced to the
high parameter counts for the atomic and fire works
Java programs, both of which make extensive use of
parameter-heavy API routines.

The figures for the operand stack sizes show that
considerable changes take place as a result of turn-
ing on all assertion-checking using the all_check mod-
e. While the figures for no_check mode are broadly
comparable to those for Java programs, the number of
methods with operand stacks of size 6 and over appear

Workshop on Computer Science and Information Technologies CSIT’2000, Ufa, Russia, 2000 7

Accepted for the 2nd International Workshop on Computer Science and Information Technologies
Ufa, Russia, September 18-23, 2000

| atom | fire | jas [jjt [jec | fi
Local variable array size
0 0.3 0.4 0.2 11.8 | 104 | 4.6
1 24.9 18.8 | 42,9 | 30.5 | 27.2 | 28.9
2 23.4 28.4 | 24.6 | 32.1 | 30.4 | 27.8
3 1.4 0.7 9.6 5.4 8.4 5.1
4 1.0 21.3 6.0 9.7 8.0 9.2
5 46.3 26.1 7.8 6.2 9.2 19.1
6 1.3 3.0 7.2 2.2 1.4 3.0
7 0.1 0.0 0.6 0.4 1.6 0.5
8 0.1 0.0 0.9 1.5 3.0 1.1
9 0.1 0.0 0.0 0.0 0.1 0.0
>9 1.0 1.3 0.0 0.3 0.3 0.6
Operand stack size
0 1.6 1.7 6.0 7.6 5.9 4.6
1 2.5 3.7 19.2 | 12.1 11.5 9.8
2 25.0 28.8 | 19.4 | 26.1 | 24.4 | 24.7
3 3.6 5.9 | 34.2 | 12.7 | 13.7 | 14.0
4 19.5 2.8 9.2 20.7 | 20.3 | 14.5
5 10.9 | 55.6 | 9.9 14.0 | 16.5 | 214
6 0.6 0.6 1.2 4.2 3.5 2.0
7 0.1 0.5 0.0 2.0 3.4 1.2
8 35.2 0.0 0.9 0.2 0.3 7.3
9 0.4 0.0 0.0 0.4 0.3 0.2
>9 0.6 0.4 0.0 0.0 0.1 0.2
Temporary variable size
0 92.7 | 62.2 | 75.1 | 77.4 | 70.3 | 75.5
1 2.5 6.1 7.1 9.4 14.2 7.9
2 0.6 20.4 6.1 8.2 8.4 8.7
3 0.7 1.5 3.3 1.0 0.8 1.5
4 2.0 6.2 7.5 3.4 4.4 4.7
5 0.9 2.7 0.9 0.0 0.2 0.9
6 0.1 0.1 0.0 0.0 1.1 0.3
7 0.3 0.0 0.0 0.4 0.3 0.2
8 0.0 0.6 0.0 0.0 0.0 0.1
9 0.0 0.0 0.0 0.0 0.0 0.0
>9 0.2 0.2 0.0 0.3 0.2 0.2
Parameter size
0 0.8 1.3 0.2 16.8 | 14.9 6.8
1 279 | 329 | 47.6 | 38.6 | 36.3 | 36.7
2 23.7 44.3 | 34.8 | 28.2 | 30.1 | 32.2
3 1.4 0.4 12.8 1.4 0.8 3.4
4 0.4 0.7 3.2 11.0 | 14.4 5.9
5 44.5 19.6 1.4 3.9 3.0 14.5
6 0.4 0.1 0.0 0.0 0.1 0.1
7 0.3 0.0 0.0 0.0 0.1 0.1
8 0.1 0.0 0.0 0.1 0.2 0.1
9 0.1 0.0 0.0 0.0 0.0 0.0
>9 0.5 0.6 0.0 0.0 0.1 0.2

Table 5: Dynamic percentages of different local variable array, operand stack, temporary variable and parameter
sizes for Java methods, including the this pointer for instance methods.

8 Comparison of Bytecode and Stack Frame Usage by Eiffel and Java Programs in the Java Virtual Machine

Accepted for the 2nd International Workshop on Computer Science and Information Technologies

Ufa, Russia, September 18-23, 2000

no_check mode all_check mode
size | geyacc | gelex | f; size | geyacc [gelex | f;
Local variable array size
0 0.0 0.0 0.0 0 0.0 0.0 0.0
1 13.2 4.5 8.8 1 9.8 1.4 5.6
2 27.0 12.8 19.9 2 40.3 30.5 35.4
3 49.9 82.1 | 66.0 || 3 36.4 66.6 | 51.5
4 5.1 0.3 2.7 4 9.2 1.2 5.2
5 3.6 0.3 1.9 5 2.0 0.1 1.1
6 0.7 0.0 0.3 6 0.7 0.0 0.3
7 0.1 0.0 0.1 7 0.2 0.0 0.1
8 0.0 0.0 0.0 8 1.3 0.0 0.7
9 0.0 0.0 0.0 9 0.0 0.0 0.0
>9 0.2 0.0 0.1 >9 0.1 0.0 0.1
Operand stack size
0 3.8 0.3 2.0 0 1.7 0.1 0.9
1 10.9 4.3 7.6 1 9.5 2.3 5.9
2 18.1 6.9 12.5 2 8.3 23.8 16.1
3 37.7 78.4 | 58.1 || 3 0.4 0.1 0.2
4 1.2 0.1 0.7 4 0.1 0.0 0.1
5 3.3 3.3 3.3 5 12.9 24.3 18.6
6 3.9 2.1 3.0 6 6.0 1.7 3.9
7 9.2 0.5 4.8 7 5.4 1.2 3.3
8 4.5 3.8 4.2 8 17.1 18.9 18.0
9 2.6 0.1 1.4 9 10.0 6.1 8.1
>9 4.7 0.1 2.4 >9 28.6 21.5 | 25.1
Temporary variable size
0 32.1 11.5 21.8 0 14.0 3.2 8.6
1 61.1 88.2 | 747 || 1 62.0 73.3 | 67.7
2 4.2 0.2 2.2 2 14.7 23.3 19.0
3 1.5 0.1 0.8 3 7.0 0.1 3.5
4 0.8 0.1 0.5 4 0.5 0.1 0.3
5 0.2 0.0 0.1 5 1.7 0.1 0.9
6 0.0 0.0 0.0 6 0.0 0.0 0.0
7 0.0 0.0 0.0 7 0.0 0.0 0.0
8 0.0 0.0 0.0 8 0.1 0.0 0.1
9 0.1 0.0 0.1 9 0.0 0.0 0.0
>9 0.0 0.0 0.0 >9 0.0 0.0 0.0
Parameter size

0 0.3 0.0 0.1 0 0.0 0.0 0.0
1 31.6 144 | 230 || 1 66.5 53.5 | 60.0
2 56.7 81.4 69.1 2 27.9 45.3 36.6
3 8.7 3.9 6.3 3 5.0 1.2 3.1
4 1.3 0.1 0.7 4 0.4 0.0 0.2
5 1.3 0.1 0.7 5 0.1 0.0 0.1
6 0.0 0.0 0.0 6 0.0 0.0 0.0
7 0.0 0.0 0.0 7 0.0 0.0 0.0
8 0.0 0.0 0.0 8 0.0 0.0 0.0
9 0.0 0.0 0.0 9 0.0 0.0 0.0
> 9 0.0 0.0 0.0 > 9 0.0 0.0 0.0

Table 6: Dynamic percentages of local variable array, operand stack, temporary variable and parameter sizes for

Eiffel programs when compiled using SmallEiffel no_check and all_check modes.

Workshop on Computer Science and Information Technologies CSIT’2000, Ufa, Russia, 2000

Accepted for the 2nd International Workshop on Computer Science and Information Technologies

Ufa, Russia, September 18-23, 2000

unique to Eiffel programs compiled under all_check
mode. These larger operand stacks can be explained
by the need to evaluate invariants, which are imple-
mented as boolean-valued expressions, and whose com-
plexity would typically be greater than those boolean-
valued expressions normally used in conditional and
iteration statements.

The proportion of methods with one temporary
variable is considerably higher for the Eiffel programs
studied than for any of the Java programs, irrespec-
tive of whether or not assertion checking is enabled.
This can be explained by the mechanism used in Eif-
fel to return a value from a method, where the re-
turn value is always assigned into a special variable
called Result. The SmallEiffel compiler implements
this naively, treating it as though it were an ordinary
local variable during the method’s execution, and then
pushing it onto the stack before the return instruction.
Thus even simple accessor methods, which normally
contain just a simple return statement, are translated
to bytecode methods that have a temporary variable
size of one.

As can be seen from the last section of Table 6, few
of the Eiffel methods executed had no parameters. As
mentioned earlier, this contrast with the figures for Ja-
va programs is more likely a result of the specific pro-
grams studied, rather than the language or compila-
tion mode used. The effect of all_check mode on Eiffel
programs can be seen in a reversal of the proportions
of methods with one and two parameters, going from
roughly a 1:3 ratio to almost a 2:1 ratio. The most
likely explanation for this is that the class invariants
are implemented by generating an extra method for
each class called invariant (), which, as an instance
method with no parameters, would have been recorded
as a method with parameter size 1 in Table 6.

6 Conclusions

The results obtained from studying the test suite must
be analysed with caution since they may have been in-
fluenced by the particular programs analysed. The
JVM is primarily designed for Java, and it is difficult
to translate a language like Eiffel which includes gener-
icity as well as a complete assertion mechanism.

For the set of programs studied, most of the byte-
codes are used at least once during execution. Howev-
er a small subset of the bytecodes is executed with
very high frequency. The data in this paper ques-
tion the stack based design for the bytecode interme-
diate representation of Java programs. Because a s-
tack based architecture is not random access, there
is a lot of moving data between the stack and local
variables which does not do any useful work but is
merely a way of telling those instructions that do the

work of the program what operands to use. Previous
research [1] has shown that the categories local load,
push_const and local_store account for 44.9 percent of
instructions executed for the Java programs analysed.
This research shows that for the Eiffel programs stud-
ied, these three categories account for 39.9 percent of
instructions when the no_check compiler mode is cho-
sen, implying that this property is a function of the
instruction set design, not the programming language
used. When the all_check compilation mode is used
and assertions are checked, the conditional branch in-
structions become the most frequently executed cat-
egory. In spite of this local load, push_const and lo-
cal_store still account for 41.1% of instructions execut-
ed, a remarkably consistent figure.

The moving of values between local variable arrays
and operand stack uses a lot of execution time when
bytecodes are interpreted. However for frequently used
parts of a program, a dynamic compiler will incorpo-
rate a lot of these pushes and pops into a single native
instruction. JIT compiling to convert this inefficien-
t representation to native code has been proposed as
a solution but to achieve a performance competitive
with the code produced by a native compiler, it would
be necessary to apply the same code-generation tech-
niques which seems too expensive for JIT compilation.

The dynamic percentages of instructions and non-
native method calls in the APT and the program classes
was studied to compare the way different applets and
applications use the bytecodes and it was found that
74.1% of bytecodes executed and 67.1% of Java meth-
ods are in the API. This suggests a way to improve
the speed of Java programs would be to compile the
API methods to native instructions and save these on
disk in a standard format, cutting the time spent in-
terpreting programs. Non-API program methods only
used 18.1 bytecodes on average when executed and Ja-
va API methods executed on average 23.8 bytecodes.
The Eiffel programs analysed however only spend a
small percentage of there execution time in API meth-
ods, so this optimization would have relatively little
effect on the speed of execution of Eiffel programs.

Stack frame usage was similar for both object-
oriented languages. 66.4% of the methods in the Java
programs studied used a local variable array size of 3
or less. With the no_check compiler option 84.7% of
the Eiffel program’s methods used a local variable ar-
ray size of 3 or less, rising to 92.5% when all_check was
used. Interestingly when the Eiffel compiler starts to
inline methods, 25% of stack frames created need an
operand stack greater than 9 words in size.

10 Comparison of Bytecode and Stack Frame Usage by Eiffel and Java Programs in the Java Virtual Machine

Accepted for the 2nd International Workshop on Computer Science and Information Technologies
Ufa, Russia, September 18-23, 2000

References

[1]

[2]

[3]

[4]

[5]

[10]

[11]

[12]

[13]

[14]

Waldron John, Dynamic Bytecode Usage by Ob-
ject Oriented Java Programs, Technology of
Object-Oriented Languages and Systems 29th In-
ternational Conference and Exhibition, Nancy,
France June 1999.

Meyer, Bertrand, Object-Oriented Software Con-
struction, Prentice Hall 1997.

J. T. Waldron, C. Daly, D. Gray and Jane Hor-
gan, Comparison of Factors Influencing Bytecode
Usage in the Java Virtual Machine, Second Inter-
national Conference and Exhibition on the Prac-
tical Application of Java, Manchester, UK, April
12-14, 2000

Antonioli, Denis and Pilz, Markus. Analysis of
the Java Class File Format, Dept. of Computer
Science, University of Zurich, Technical Report
98.4

Bowles, Kenneth UCSD Pascal, Byte 46 May
1978 170-173.

Lindholm, Tim and Yellin, Frank, The Java Vir-
tual Machine Specification, Addison Wesley 1996

Gosling James, Oak Intermediate Bytecodes,
ACM SIGPLAN Workshop on Intermediate Rep-
resentations (IR ’95) p. 111-118.

Aho, Sethi, and Ullman, Compilers: Principles,
Techniques, and Tools, Addison Wesley, 1986

Armstrong, Eric Hotspot: A New Breed of Virtual
Machine, Java World, March 1998.

The Java Hotspot Performance Engine Architec-
ture: A White Paper About Sun’s Second Gener-
ation Performance Technology
<http://java.sun.com/products/hotspot/>

Wilkinson, Tim J., KAFFE, A Virtual Machine
to run Java Code, <www kaffe.org>

Meyer, John and Downing, Troy The Java Virtual
Machine, O’Reilly 1997

Java Compiler Compiler,

<http://www.suntest.com/JavaCC>

Collin Suzanne, Colnet Dominique and Zendra
Olivier, Type Inference for Late Binding: The
Small Eiffel Compiler Joint Modular languages
Conference JMLC ’97. Springer Verlag Lecture
Notes in Computer Science Vol 1204 pp 67-81
1997.

[15]

[16]

[17]

Dynamic Bytecode
<http://www.compapp.dcu.ie/~jwaldron>

Data,

Zendra, Olivier, Colnet, Dominique and Collin,
Suzanne, Efficient Dynamic Dispatch without
Virtual Function Tables. The SmallEiffel Com-
piler 12th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA’97), Volume
32, Issue 10 - Atlanta, GA, USA, October 1997,
pages 125-141.

Gosling, James, Joy, Bill and Steele, Guy, The Ja-
va Language Specification, Addison Wesley 1996

Workshop on Computer Science and Information Technologies CSIT’2000, Ufa, Russia, 2000 11

Accepted for the 2nd International Workshop on Computer Science and Information Technologies
Ufa, Russia, September 18-23, 2000

