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Abstract. In this paper we describe the encoding of linear logic in the
Coq system, a proof assistant for higher-order logic. This process involved
encoding a suitable consequence relation, the relevant operators, and
some auxiliary theorems and tactics. The encoding allows us to state
and prove theorems in linear logic, and we demonstrate its use through
two examples: a simple blocks world scenario, and the Towers of Hanoi
problem.

1 Introduction

In this paper we describe an encoding of intuitionistic linear logic using the Coq
proof assistant. This encoding allows for the type-checking of specifications in
linear logic, and the construction and validation of proofs in that logic.

Previous work in mechanising or implementing linear logic has either encoded
it as a distinct object logic [8], or as a logic programming language such as
Lygon [6] or Lolli [7]. One of the specific features of our encoding is that the
constructs of the Coq environment may be used in association with the linear
logic proofs, including in particular the extensive set of inductive datatypes and
their properties and proofs that form the Coq library.

In what follows we give a brief overview of linear logic and the Coq proof
assistant. We then present our encoding of linear logic, and give examples of its
use for two well-known problems: the blocks world scenario, and the Towers of
Hanoi problem?.

1.1 Linear Logic

Linear Logic is a sub-structural logic in the sense of [4] in that it rejects the use
of two of the structural rules found in classical logic, specifically weakening and
contraction. These rules are presented formally in Figure 1: basically, weakening
allows us to have unused hypothesis, while contraction allows us to disregard the
number of times a hypothesis is used.

Thus, when we write a deduction in linear logic of the form I' - A we are
stating that all of the assumptions in I" are used exactly once in the deduction

! Computational descriptions of these problems can be found in many programming
texts, e.g. [12]
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Let I' be any list of predicates, and let A and C be any predicates; then:

rec . IAAFC :
TAFC Weakening TAFC Contraction

Fig. 1. Weakening and Contraction rules for classical logic. These classical rules allow
us to replicate and delete premises during a proof; their absence is fundamental to
linear logic.

of A. For this reason linear logic is often described as “resource-sensitive”, and

we may think of I' - A as representing a process that consumes the resources I’
in the production of A.

This restriction in our use of assumptions gives us a richer power of specifi-
cation, and is particularly suitable for state-based systems. If we represent the
state of a system by some linear predicate, then a linear deduction of the form
I' - A represents a transition from the state represented by I" to one represented
by A. For example, if we use day(X) as a predicate to represent the current day,
the deduction

day(sunday) + day(monday)

would seem nonsensical or even contradictory in classical logic, but in linear
logic it would represent the transition between these days (thus “removing
day(sunday) from the current state, and “replacing” it with day(monday)).
Indeed, the well-known Curry-Howard isomorphism between constructive logic
and functional programming languages can be extended to linear logic in order
to deal with the problems of state in functional programming [1, 11].

Clearly this has implications for the operators that can be used in linear
logic. The conjunction of two propositions A and B in classical logic, written
A A B allows us to deduce either or both of A and B. For example, in classical
logic we can prove the following two theorems:

AANB,C AANB,B— D
ANC AAD

In the first case we have used A A B solely for the production of A4; in the
second we have used it to produce both A and B.

Linear logic allows us to distinguish between these two uses of conjunction:
we write A & B if we wish to only use one of either A or B, and we write A ® B
if we wish to use both.

Similarly classical disjunction, written A V B, can be established by proving
one of A or B, or indeed both. In linear logic we write A ® B for the disjunction
where just one of A or B has been proven, and use A ’® B for the case where
both have been established.

Linear implication now internalises linear deduction, and thus A — B de-
notes a process whose use will consume and A and produce a B.
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In what follows we will concentrate on intuitionistic linear logic (ILL)?; the
sequent rules for the relevant connectives are presented in Figure 15.

1.2 The Coq Proof Assistant

Our system was developed using the Coq proof assistant[3], which is based on the
Calculus of Inductive Constructions [2]. As well as the normal benefits of a proof
assistant such as uniformity of notation and verification of type-correctness, Coq
also provides three enhancements to ordinary constructive logic:

— Coq implements a higher-order constructive logic, facilitating in particular,
the descriptions of object logics within the framework

— Coq has two type hierarchies: Set of constructive types, and Prop for classical
logic. This allows specifications to be developed in ordinary classical logic,
and then verified in the same framework against programs written within
Set.

— Coq supports inductive (and co-inductive) definitions, giving a natural logi-
cal extension of the definition-by-cases style of programming found in func-
tional languages

In order to codify ILL using this system we need to be able to introduce a
type of linear predicates, provide a syntax for the linear connectives and, most
fundamentally, define their operation by encoding their left and right rules of
the sequent calculus presentation of these connectives.

Some systems designed specifically for encoding logics such as Isabelle [9]
distinguish between the system’s own meta logic, and the object logic that this
can be used to define. In contrast to this, Coq provides a single homogeneous
system with a single built-in concept of deduction, and so our definition of ILL
will have to exist as an ordinary datatype within this system. In fact, we base
our encoding around the linear consequence operator, encoding it as an ordinary
two-place relation between linear predicates.

1.3 Mixing the Logics

Linear logic is perhaps most usefully applied to state-based problems when used
along with classical or intuitionistic logic. In particular, while state-specific as-
sertions can be phrased in ILL, it is often useful to be able to express global
invariants in classical logic, since it should be possible to use these as often as
possible.

Classical intuitionistic predicates may be incorporated into ILL following [5]
by marking them with modal operator. Thus we write !A to denote “arbitrarily
many A’s”, and the rules for this operator assert that we are free to use A zero,
one or many times as we need.

% Since we are concentrating on ILL, the sequent rules have the pleasant property of
all containing a single predicate on the right-hand-side, which considerably simplifies
the symbolic manipulation of goals
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It is one of the particular features of our approach that we have an alternative
to the use of such an operator. By encoding ILL as a simple consequence relation
within the Coq system, we may freely mix linear assertions pertaining to the
state with intuitionistic or classical assertions that are state-invariant. Since
the objects that are used in the linear predicates range over Coq datatypes,
these may also be constrained by ordinary (intuitionistic or classical) predicates,
providing unrestricted use.

The significant benefit here is that all of the existing theories developed for
Coq do not need to be changed for use with linear theorems, but can be in-
tegrated directly into the proofs. This is particularly useful when dealing with
datatypes such as the natural numbers or lists, where re-encoding “linear” ver-
sions of the results would provide a significant overhead.

2 Encoding the Sequent Rules

In this section we present some of the Coq code used in setting up our ILL proof
system. The code presented here is fragmentary and for illustrative purposes;
the full source is available from the authors’ web page [10]. As indicated above,
setting up the proof system involves two main steps: Defining a type of ILL
predicates and their associated connectives, and then defining a consequence
operator and the associated sequent rules.

2.1 The Linear Connectives

First we must define a set of linear predicates which we call ILinProp; we define
this by cases as the smallest set closed under the linear connectives:

Inductive ILinProp : Set :=

| Implies : (ILinProp) -> (ILinProp) -> ILinProp
| One : ILinProp

| Plus : (ILinProp) -> (ILinProp) -> ILinProp

| Times : (ILinProp) -> (ILinProp) -> ILinProp

| Top : ILinProp

| With : (ILinProp) -> (ILinProp) -> ILinProp

| Zero : ILinProp

Since ILinProp is now defined as an ordinary Coq type, we can use arbitrary
Coq variables as linear propositions and predicates; for example we can declare
propositions A and B, as well as a predicate N over the natural numbers as follows:

Variable A,B:ILinProp. (* A and B are linear propositions *)

Variable N:nat -> ILinProp. (* N is a linear predicate *)

As might be expected Coq provides syntax-definition and pretty-printing
facilities that allow us to use infix and prefix notation for the operators. For
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Operator Symbol Syntax in Coq Unit Unit’s Syntax

Times ® *k 1 One
‘With & && T Top
Plus @ ++ 0 Zero
Implies —o -0

Fig. 2. Coq syntaz for ILL operators and units. For reference, this table defines the
syntax defined and used in our Coq code to represent the various symbols used in ILL.

example we can augment the grammar rules and give pretty-printing rules to
represent the ® operator by ** used infix by defining®:

Grammar command command6 :=

Times [ command5(cl) " * x" command6(c2) 1 -> [<<(Times cl c2)>>].
Syntax constr level 6:

PTimes [<<(Times cl c2)>>] -> [ cl:L "xx" c2:E ].

For reference the syntax used in this paper for the ILL operators is given in
Figure 2.

2.2 The Linear Consequence Operator

The linear consequence operator is defined inductively as a relation between any
list of predicates (the hypotheses) and some other predicate (the conclusion). In
our implementation this is a two-place function, giving us a result in Coq’s truth
domain, Prop:

Coq < Check LinCons.
LinCons
(list ILinProp)->ILinProp->Prop

As for the connectives, we can define an infix operator“|-" to denote this
relation, and give it a suitably low precedence.

The sequent rules can now all be coded individually, using Coq’s implication
to represent deduction. As an example, the —oy, rule of Figure 15 is encoded as:

Inductive LinCons : (list ILinProp) -> ILinProp -> Prop :=

(* ... intervening rules omitted ... *)
| ImpliesLeft :
(A,B,C : ILinProp)(D1,D2 : (list ILinProp))
(D1 |- A) -> (D2 ~ ‘B |-C) -> (D1 " D2 = ‘(A -0 B) |- 2C))

3 This also gives the operator a precedence level of 6, and the grammar rules imposes
right associativity
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(* Here A,B:ILinProp, G,D:(list ILinProp) and P:Prop *)
Axiom examplel : Empty |- A.

Axiom example2 : G |- A.

Axiom example3 : (G |- A) -> (D |- B).

Axiom exampled: P -> (G |- A).

Fig. 3. Ezamples of some sequent-based rules. These examples demonstrate the general
format of ILL rules in Coq. Axiom is a keyword in Coq introducing an axiom into the
system; the actual ILL elements represented are respectively: an axiom, a deduction
rule, a sequent rule, and a deduction rule preconditioned by a classical assumption.

In this rule the variables D1,D2,A,B and C are universally quantified, list con-
catenation is denoted by the infix “*” symbol and, as a shorthand, the singleton
list containing B is written as ‘B.

In general, an axiom in linear logic is represented as an axiom in Coq, with
an empty predicate-list (represented here by the constant Empty) to the left of
the consequence relation; for example, to state that some predicate A is valid,
we can assert something like examplel of Figure 3.

The standard conditional sequent is represented as a relation between a list
of predicates and another predicate, as in example2.

A deduction, such as one of the sequent rules or a theorem may be represented
by one linear sequent that is conditional on another; thus a rule of the form

GFA
DFB

exampled

can be represented by using Coq’s implication “->” for the deduction, as in
example3 of Figure 3

Finally, the combination of linear and ordinary classical assumptions can
be represented as in example4; here the intuitionistic predicate P may share
variables with the other predicates, and thus can assert state-invariant properties
of any of the data they might refer to.

2.3 Some Simple Tactics

Coq’s proof system naturally provides a number of built-in tactics which can
be applied in a goal-directed proof; these can be combined using sequencing or
selection, represented by the “” and Orelse operators respectively. There are
also a number of ways of adding extra functionality to this proof system. One of
the most straightforward of these is the definition of tactic macros, which allow
for parameterised definitions of tactic combinations.

For example, most of the left sequent rules of Figure 15 specify an arbitrary
left context, represented by the predicate list I'. However, in many cases there
is just a single assumption to the left of the “|-", and these rules are thus
inapplicable. To circumvent this, we can define a simple tactic macro LeftApply
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Tactic Definition LeftApply [$myTac] :=
[<:tactic:<
((Apply $myTac) Orelse
(Apply AddNilFront; Apply $myTac; Rewrite <- app_nil_front))
>>].

Tactic Definition LinSplit :=
[<:tactic:<
LeftApply TimesLeft; Apply TimesRight; Try (Apply Identity)
>>].

Fig. 4. Two simple tactic macros in Coq. Here we define two tactic macros LeftApply
and LinSplit. In the first case the macro is parameterised by an arbitrary tactic myTac,
and we use AddNilFront and app-nil_front to handle the addition and deletion of an
empty list to the premises. In the second we use Coq’s tactic Try which will test for
applicability before applying the tactic.

in Figure 4 that will try to apply a rule directly and, if this fails, will append an
empty list to the premises and try the rule again.

Another example of the use of tactic macros is the definition of LinSplit
in Figure 4. This tactic macro is defined to deal with deductions of the form
(A® B)  (C ® D), splitting it into two sub-proofs, A  C and B F D. This
is a relatively common situation, since the state of a system in ILL is often
represented by a series of linear predicates joined by the ® operator.

We note that in each case it is up to the user to apply the appropriate
tactic macro; neither is premised by a syntactic precondition that would test its
viability in the context of the current premises and goal. Thus these macros are
relatively unsophisticated features that serve mainly to eliminate some of the
repetition from a user-directed proof.

3 A Small Example: The Blocks World

The blocks world scenario is one of the classic simple examples of problem solv-
ing, commonly used in the field of Artificial Intelligence. Here we use this example
not for its planning aspects, but as an example of a state-based system where
the goals and transitions can be represented in ILL.

The blocks world assumes the existence of some finite set of blocks, as well as
a robot arm which can be used to move them. The actions of the arm typically
involve stacking and unstacking the blocks so that, in the simplest case, we may
regard this as a problem in just two dimensions.

To represent this in ILL we must first decide on a set of predicates to represent
the state of the system. These are fairly straightforward, and easily represented
in Coq, as shown in Figure 5. We have:
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Variable on : Block -> Block -> ILinProp.
Variable table : Block -> ILinProp.
Variable clear : Block -> ILinProp.
Variable holds : Block -> ILinProp.
Variable empty : ILinProp.

Fig. 5. Coq code for the predicates representing the state in the blocks world. Here we
declare the five basic predicates that will represent the state, and give their types. The
first three predicates are used to describe the relationships of the blocks to each other,
the final two are used to describe the status of the robot arm

— A relation on between blocks, where (on x y) means that block x is on
block y

— Unary predicates over blocks: (table x) indicates that block x is on the
table (i.e. there is no block underneath it), and clear x indicates that there
is no block on top of x

— Two predicates relating to the status of the robot arm: (holds x) is true if
the arm is holding block x, whereas empty is true if the arm holds no block

The second step is to define the set of allowable actions. Each such action is
defined as a linear deduction, where we specify the pre- and post-states of the
action using the above predicates. The two basic actions relate to the robot arm
picking up and putting down a single block, and are given in Figure 6

The action get says that if the arm was empty and block x had nothing on
top of it, then after performing the action the arm will hold x, and either x had
been on the table, or it had been on some other block y, in which case we add
the information that y is now clear to the state.

The action put states that starting from a state where the arm is holding a
block x we can move to a state where the arm is empty, there is nothing on top
of x, and we have either placed it on the table, or on top of some other block
which was previously clear.

We note in both cases the partitioning of the post-state into those parts
which always apply, and those which involve a choice (represented here by the
& operator). In particular, when the choice is not universally applicable, we can
use linear implication to suitably pre-condition it. The unit 1, as the identity for
®, is used with linear implication to denote a process which consumes resources
but does not produce anything.

We may establish special cases of each as lemmas in Coq: that is, they can
be derived from the axioms get and put. For example, it is useful to have a
version of get referring solely to the case where block x was on some other block
y. As an example of goal-directed proof in Coq we present the proof script for
this lemma in Figure 8, and the corresponding deduction in Figure 9. As can
be seen from a comparison of these figures there is a close correspondence, with
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(* The basic actions *)
Axiom get :
(x,y:Block)
(‘(empty #** (clear x))
|- (holds x) ** (((table x) -o One) && ((on x y) -o (clear y)))).

Axiom put :
(x,y:Block)
(¢(holds x)
|- empty ** (clear x) ** ((table x) && ((clear y) -o (on x y)))).

Fig. 6. Cogq code for the basic actions allowed in the blocks world. The actions get and
put refer to the robot arm picking up and putting down a block.

Lemma gettb :

(x:Block)

(¢ (empty ** (clear x) ** (table x)) |- (holds x)).
Lemma puton :

(x,y:Block)

(“((holds x) ** (clear y)) |- empty ** (clear x) ** (on x y)).
Lemma puttb :

(x:Block)

(‘(holds x) |- empty ** (clear x) ** (table x)).

Fig. 7. Specific Cases of put and get. To faciliate the construction our proofs we define
some specific cases of the uses of put and get. Each of these can be proved within the
system, in a manner analogous to Figure 8

some extra manipulation being required in the Coq proof to rearrange to goal
into a format suitable for the application of some rules.

The other special cases we can establish are shown in Figure 7.

As an example of the use of these actions, and of the structure of a state-based
proof in our encoding of ILL, consider the two blocks-world scenarios shown in
Figure 10. Clearly the second is attainable from the first by putting block b on
the table, and then putting a on top of it.

In fact, we may state this as a theorem in Coq:

Theorem SwapAB :

(‘(empty #** (clear b) ** (on b a) ** (table a) #** (table c) ** (clear c))
|-

(on a b) ** Top).

Here we use T in our goal as a sink for any unused predicates, since we know
that I'+ T for any I.
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Lemma geton :
(x,y:Block)
(‘(empty #* (clear x) ** (on x y)) |- (holds x) #** (clear y)).
Proof.
Intros.
LeftApply TimesAssocR. LeftApply TimesComm. LeftApply TimesLeft.
LinCut (holds x)#**((table x)-o One)&&((on x y)-o(clear y)).
Apply get.
LeftApply TimesLeft.
LeftApply ExchList.
Apply TimesRight.
Apply Identity. (* to (holds x) *)
LeftApply WithLeft2.
Apply AddNilFront. LeftApply ExchList. LeftApply ImpliesLeft.
Apply Identity. (* to (on x y) *)
Simpl; Apply Identity. (* to (clear y) *)
Qed.

Fig. 8. The statement and proof of lemma geton in Cog. This lemma establishes a
special case of the use of predicate get described earlier, where the block being picked
up had been on some other block.

(onzy)F (onzy) 1d. (clear y) + (clear y) I:l)
(on z y), ((on z y) —o (clear y)) F (clear y)

((table ) — 1)&
((0(711, xe;) —o (clear y))) - (clear y)

2

(holds x) + (holds x) Id. (on zy), (

QR
table r) — 1)&
on z y) —o (clear y))

(holds z), (on z y), ( ) F (holds z) ® (clear y)

Exch

(
(
(
(

(on z y), (holds x), ( ) F (holds z) ® (clear y)

on z y) —o (clear y))

(
(
(table ) — 1)&
E L

(table z) — 1)&

(On x y)v (hOldS (I?) ® (((on T y) —0 (clear y))

) F (holds x) ® (clear y)

t(get
empty ® (clear x), (on = y) F (holds z) ® (clear y) Cut(get = y)

empty ® (clear x) ® (on z y) F (holds x) ® (clear y)

Fig. 9. A proof in linear logic of the geton lemma. This proof is presented for com-
parison with the corresponding Coq proof script, shown in Figure 8. The crucial
Cut(get x y) proof step here corresponds to the LinCut on line 3 of the Coq script
above.
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b a

a C b C

Start State Finish State

Fig. 10. Two Blocks World Scenarios. Our goal is to prove that there is a sequence of
actions that will reverse the ordering of blocks a and b.

empty ® (clear b) ® (on b a) ® (table a) ® (table ¢) ® (clear c)
(empty) ® (clear b) ® (on b a) R (table a) @ T
(holds b) ® (clear a) @ (table a) ® T
empty @ (table b) ® (clear b) & (clear a) ® (table a) ® T
(table b) @ (clear b) ® (holds a) ® T
(table b) @ empty ® (on a b) ® (clear a) @ T T
(onab)®T (Tr)

(Tr)
(geton b a)
(puttb b)
(gettd a)
(puton a b)

Fig. 11. An outline of the proof. Here we give an outline of the proof that we can move
between the scenarios of Figure 10. The proof is basically a list of the states that we
go through as the four actions are applied.

The proof proceeds as outlined in Figure 11. To code this in Coq we must also
follow these steps but, there will also be some extra manipulation to be done.
This relates specifically to managing the predicates that describe the current
states, in particular:

— Separating them into two groups: those that changed with the current action
and those that did not. Our tactic macro LinSplit of Figure 4 can then be
used to eliminate the predicates that did not change for this action

— Re-arranging the remaining predicates in the same order as the preconditions
of the relevant action

Such work is usually implicit in handwritten proofs, but in a proof assistant
they add an unpleasant overhead to the task of theorem proving. The approach
taken in our proof was to wrap each of the four basic actions in a lemma which
performed the necessary state-manipulations in addition to applying the action.

The structure of the proof itself then mirrored that of Figure 11 quite closely.
Since Coq works in a goal directed fashion, a direct proof would involve applying
the actions in reverse order. However, in practice it was far simpler to proceed
in a step-by-step fashion forwards using the Cut rule to establish a new state for
each step.

This would seem to be a general feature of this kind of proof using our
encoding of ILL. Consider the general case of a goal of the form Sy F S,,, where
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our proof should involve constructing the intermediate states Si,...,S,_1. If
there are more than a few steps it will be likely that the final state S,, will be
quite different from the initial state Sy, and hence a goal-directed proof must
concentrate almost exclusively on manipulating S,,. When we use the Cut rule
however, we generate two subgoals, thus:

SoFS1 Si1+S,
So F Sn

Cut(Sl)

In our proof of Sy F S1 we will be able to manipulate both Sy and S; to good
effect, since they will only differ by a single atomic action. Our proof of S; F S,
can then proceed by using the C'ut rule with S2. As well as making the individual
steps much simpler, this will also make the structure of the proof much clearer,
and advantage both when constructing and when reading the proof.

4 An Example with Induction: The Towers of Hanoi

The Towers of Hanoi is one of the classic examples of the use of recursion in
programming. The problem space consists of a set of discs of various sizes which
can fit onto any one of three pegs. Initially all the discs are stacked in increasing
order of size on the first peg. The goal is to move the discs to the third peg, but
only moving one disc at a time, and never placing a larger disc on a smaller one.

This problem is easily formulated as a recursive function, since the task of
moving n discs from a source to a destination peg, using some middle peg as
intermediate storage, can be broken down into three subtasks: moving n — 1
discs to the middle peg, moving the remaining disc to the destination peg, and
moving the n — 1 discs from the middle to the destination peg.

We can encode this problem in our implementation of ILL in a manner analo-
gous to the blocks world example, where in this instance the state is represented
by a list of the discs on each peg. However, we can go further than the typical
computational solution in that we can prove the correctness of our algorithm -
expressed as a sequence of proof steps - as we develop it. In particular, we can
show that the invariant of never having a larger disc on top of a smaller one is
maintained.

This proof is also of interest since it demonstrates the interaction of our
encoding of ILL with Coq’s built-in predicates and datatypes. While the discs
may move from peg to peg, the information regarding their size, and thus con-
straining which disc may be placed on which, is state-invariant, and so may be
captured with a classical predicate. Also, the proof will proceed by induction
over the number of discs to be moved, and we will utilise Coq’s built in list
datatype, and its associated principles of induction to achieve this.

To formulate the problem in Coq we assume the existence of sets Pole and
Disc, as well as a relationship onPole telling us what discs are on a pole, and
a smaller ordering on discs, which we can generalise to a canTxfrTo relation
between one disc and a list of discs. Next we must assume that it is possible to
move a single disc, and prove that this scales up to n discs. This assumption
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Axiom Txfr :
(p1,p2:Pole) (f:Disc)(fs,ts:(list Disc))
(canTxfrTo f ts) ->
(‘((onPole pl (cons f fs))#**(onPole p2 ts))
[-
((onPole p1 fs) ** (onPole p2 (coms f ts)))).

Fig. 12. An aziom stating that we can move one disc. Here we are transferring the disc
f from pole p1 to pole p2. The state is represented by the linear predicates, with the
classical predicate canTxfrTo maintaining the global invariant that larger discs cannot
be placed on smaller ones.

Lemma Move :
(dTop,dBot: (list Disc)) (pl,p2,p3:Pole) (d2,d3:(list Disc))
(ordered dTop) ->
(canMoveTo dTop dBot) -> (canMoveTo dTop d2) -> (canMoveTo dTop d3) ->
(“((onPole pi1 (dTopAdBot))**(onPole p2 d2)#**(onPole p3 d3))
[-
(onPole pl dBot) #* (onPole p2 d2) ** (onPole p3 (dTop”d3))).

Fig.13. A lemma that we can move any number of discs. Here dTop represents the
discs being moved from pole p1 to pole p3, using p2 for intermediate storage. None of
the discs in lists dBot, d2 or d3 are moved in this operation.

is represented as an axiom Txfr of Figure 12, indicating that the appropriate
change of state is valid.

To show that this can scale up to n discs, we must prove lemma Move of
Figure 13 that allows an arbitrary list of discs to be moved from one peg to
another, provided that the global invariant prohibiting us from putting a larger
disc on a smaller one is maintained. Since we wish to use this repeatedly, we must
allow for the possibility that the middle and destination pegs already contain
some discs, and that we do not wish to move all the discs from the source peg.

This rather innocent requirement imposes a considerable amount of extra
work on constructing the proof as opposed to writing the equivalent program
since, when allowing the middle and destination pegs to be non-empty, we must
also ensure that this does not prohibit us from moving discs from the source peg
to them. Thus, in our statement of the lemma in Figure 13, we also must include
several classical preconditions covering the relationship between the discs. These
conditions are represented by the predicate canMoveTo which is a generalisation
of the smaller relationship to one between lists of discs.
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Base Case: dTop is Empty, the empty list

(onPole pl (Empty”dBot)) ® (onPole p2 d2) ® (onPole p3 d3)
(onPole pl dBot) ® (onPole p2 d2) ® (onPole p3 (Empty"d3))
Inductive Case: dTop is (ds”d)

(onPole pl ((ds"d)"dBot)) ® (onPole p2 d2) ® (onPole p3 d3)
(Moven—1 pl p2)

(onPole pl (d"dBot)) ® (onPoie p2 (ds™d2)) ® (onPole p3 d3)
. (Txfr pl p3)

(onPole pl dBot) ® (onPole p2- (dsd2)) ® (onPole p3 (d"d3))
: (Moven_1 p2 p3)

(onPole pl dBot) ® (onPole P2 d2) ® (onPole p3 ((ds"d)"d3))

Fig. 14. An outline of the proof for the Towers of Hanoi. In the inductive case we
represent the list of discs to be moved by the topmost n — 1 discs ds, and the next disc
d. The remaining discs in dBot, d2 and d3 are not moved. We have simplified the proof
considerably by omitting the conditions relating to the classical invariants.

The proof proceeds by induction over the size of the list of discs dTop that is
to be moved?, and the general structure follows the state-based “cut-and-prove”
strategy used in the blocks world example. A rough outline of the proof is given
in Figure 14.

It should be noted that each of the two inductive uses of Move also generates
a requirement to satisfy the four classical invariants in the proof, and that this
considerably increases the size of the proof above its purely “computational”
counterpart.

Once this lemma has been proved, the original problem is now just a special
case of the Move lemma:

Theorem Hanoi :

(p1,p2,p3:Pole) (ds:(list Disc))

(ordered ds) ->

(“((onPole pl ds) #** (empty p2) ** (empty p3))
|-

(empty pl) #** (empty p2) ** (onPole p3 ds)).

5 Conclusions and Further Work

In this paper we have given an overview of our encoding of ILL in the Coq proof
assistant, based around the representation of the linear consequence operator as a

4 In fact, it proceeds by reverse induction, since we wish to split a list of length n into
the first n — 1 discs and the remaining bottom disc.
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two-place predicate over linear-logic terms. We have given two simple examples
of the use of the system: a scenario from the blocks world to demonstrate a
state-based proof, and the towers of Hanoi problem to demonstrate the use of
an inductive proof.

The encoding itself was relatively straightforward, and much of the initial
work with the system was concerned with building up a library of auxiliary
lemmas relating to properties such as the associativity and commutativity of
operators.

We believe the main utility of this work is to demonstrate the feasibility of
using Coq as a proof system for linear logic, with the particular advantage of
being able to integrate the existing Coq datatypes, and classical assumptions into
the system. Even for the small examples presented here this approach showed
benefits, particularly in terms of the proofs relating to lists used in the Towers
of Hanoi example.

One aspect not examined here was the possibility of automating the proofs.
Our work to date indicates that this would have to have at least two components:
a context-handling system to deal with the order and associativity between the
predicates in the hypothesis list, and a general proof strategy, such as found in
a linear-logic based programming language. Coq provides mechanisms to allow
the construction of automated theorem proving, and we believe that the work
done to date provides a promising basis for this next step.
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A Sequent Rules for Intuitionistic Linear Logic
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Fig. 15. Sequent Rules for Intuitionistic Linear Logic. For intuitionistic linear logic we
restrict our attention to the three structural riules, linear implication and the operators
®, & and @ and their units.
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