Four Logicsand a Protocol

David Gray, Geoff Hamilton, David Sinclair
School of Computer Applications, Dublin City University
Glasnevin, Dublin 9, Ireland

Paul Gibson, James Power
Department of Computer Science, National University of Ireland, Maynooth
Maynooth, Co. Kildare, Ireland

Abstract

The Internet Protocol (IP) is the protocol used to provide connectionless communication between hosts connected to
the Internet. It provides a basic internetworking service to transport protocols such as Transmission Control Proto-
col (TCP) and User Datagram Protocol (UDP). These in turn provide both connection-oriented and connectionless
services to applications such as file transfer (FTP) and WWW browsing. In this paper we present four separate
specifications of the interface to the internetworking layer implemented by IP using four types of logic: classical,
constructive, temporal and linear logic.

1 Introduction

The Internet Protocol (IP) [1] is used to implement a connectionless internet based on an arbitrary collection of
interconnected physical networks. As such, IP provides a virtual internetworking service which allows hosts connected
to different physical networks (possibly based on different network technologies) to communicate by exchanging
packets of data.

The functionality provided by IP is deliberately limited to the connectionless exchange of individual packets of data so
as not to require the underlying physical networks to support complex functionality. In particular, IP is defined to be
unreliable so that underlying physical networks may (if need be) discard packets, duplicate packets or deliver packets
in a different order to which they were sent®.

As we show in this paper, connectionless transfer and unreliability makes the interface to IP very simple, but makes it
difficult to prove strong properties about an IP internet.

The unreliability of IP also makes it impractical to implement applications that use IP directly and therefore, most
Internet applications use Transmission Control Protocol (TCP) [2]. TCP provides a connection-oriented transport
service between hosts, i.e., two hosts communicate by setting up a connection and exchanging data. Unlike IP, TCP is
reliable; all data that is sent arrives exactly once in the same order it was sent. Since TCP uses IP to send and receive
data over an internet, it needs to incorporate complex protocol mechanisms to overcome the inherent unreliability of
IP2,

In this paper we specify the service offered by IP using a number of different formalisms. In particular, we look at
how unreliability can be captured and what properties can be established about the service offered by IP. Our longer
term goal is to specify the services offered by TCP and prove that these TCP services can be realized by using TCP
over IP.

10f course, physical networks are not deliberately designed to be unreliable, but (for example) under heavy load conditions a physical network
may be forced to discard data.

2Ultimately, since IPis unreliable, it isimpossible to build a completely reliable TCP service. Thus, TCP reliability is only guaranteed while a
connection can be maintained, i.e., if IP provesto be too unreliable, TCP can abort a connection.

Third Irish Workshop in Formal Methods, 1999 1

Accepted for the 3rd. Irish Workshop in Formal Methods
Galway, Ireland, July 1-2, 1999

Four Logics and a Protocol

There is presently a vast range of formal specification techniques and methods, based on logic, algebraic and set-
theoretic approaches, as well as various specialised formalisms for particular application areas. In this paper we deal
with logic-based specification and, in particular, present specifications based on four main types of logic:

Classical Logic supported by set theory and logic-based modularisation constructs, and expressed here using the Z
notation

Temporal Logic allowing for reasoning about a system in terms of states, and proving for quantification over transi-
tions between these states; here we use the TLA formalism

Constructive Logic a variation of classical logic via an elimination of proof-by-contradiction and an enhanced role
for induction; in this paper we use the Coq proof assistant

Linear Logic a resource-sensitive logic where the use of formulae as assumptions and conclusions of proofs mirrors
the consumption and production of resources by a computational process

In presenting these specifications we hope to provide:
e acase study in the use of various logics
e a basis for comparison between the logics
o a formal foundation for further work with higher-level protocols

In what follows we informally review the fundamentals of IP, provide a description using each of the four logics, and
compare the results. We assume a familiarity with first-order predicate logic; a brief overview of each formalism is
given with the specification.

1.1 A Brief Description of IP

IP is a protocol that defines how two hosts connected by an internet can format and exchange packets of data known
as datagrams. In particular, it defines:

e How hosts are addressed.

e The format of datagrams, i.e., it defines how a datagram is constructed from a header containing various protocol
fields and a body containing the data being exchanged between hosts.

e The rules for how datagrams should be handled.

Each host will contain software that implements IP and this software will provide a service to other software within that
host; typically this other software will implement TCP and UDP. The definition of IP [1] does not define an interface
between an implementation of IP and other software, but gives a general description of what such an interface should
look like.

In this paper, we are interested in specifying the services that are made available via such an interface, so in this section
we give an informal description of these services. It should be noted that certain functionality of IP is not required to
be visible across such an interface®. Therefore, the description of the services offered and the protocol fields in the
header of an IP datagram, are limited to those that are visible across an interface.

The services offered by IP can be described as follows:

e Each host is identified by means of an IP address; this is a 32-bit integer value. IP addresses have an internal
structure, but this is transparent to the user of the IP services.

3For example, | P supports the fragmentation of datagrams, i.e., if adatagram istoo large to be transmitted across a particular physical network, it
isfragmented into a number of smaller datagrams that are transmitted separately. These are then reassembled at the destination host. Fragmentation
is supported viaa humber of protocol fi eldsin the header of datagrams and isimplemented by |P software. However, fragmentation and reassembly
is transparent to the software that uses |P.

Third Irish Workshop in Formal Methods, 1999 2

Accepted for the 3rd. Irish Workshop in Formal Methods
Galway, Ireland, July 1-2, 1999

Four Logics and a Protocol

e The header of a datagram has source and destination fields containing the IP addresses of the source and des-
tination hosts of the datagram. These fields are used internally by IP to route a datagram from its source to its
destination. How this routing is achieved is irrelevant.

e The header of a datagram has a Time-To-Live (TTL) field; this is an 8-bit integer value. This value determines
how long a datagram can remain within an internet before being discarded®. Here we consider the TTL field to
be the maximum time in seconds that a datagram can remain within an internet.

It should be noted that (internally) IP decrements TTL values of datagrams, i.e., the TTL value in a datagram
received will be less than or equal to the value when sent. In addition, it should be noted that IP does not require
hosts (or internal nodes) to keep synchronised time. However, for simplicity, we assume that each host (and
node) has an accurate internal clock that can record one-second intervals.

e The service offered by IP supports two operations; send and receive.

— send allows a host to send a datagram to another host. The datagram being sent will contain the IP
addresses of the source ° and destination hosts and a suitable TTL value.

— receive allows a host to receive a datagram that was sent by another host. The datagram received will
contain the IP addresses of the source and destination hosts.

e IP implements a connectionless internet. Each datagram is sent and received independently and there are no
facilities in the protocol for flow control, sequencing or acknowledgements.

e IP implements an unreliable internet. Datagrams may be lost, duplicated or delivered in a different order to
which they were sent and no corrective action will be taken by the IP software.

e To protect against data errors, IP supports a checksum calculated over the header of a datagram, i.e., the header
of a datagram contains a checksum field that is calculated from the other header fields.

IP software ensures that checksums are valid and discards datagrams that have invalid checksums. Therefore,
we assume that if a host receives a datagram, then the header fields are valid and can never be corrupf. However,
since the body is not protected by the checksum, we may receive a datagram with corrupt user data.

However little the IP specification guarantees, it does say that:
— a message which has been received with an uncorrupted header must have originated from the source
indicated in that header

— if you wait sufficiently long enough between sending two message, and if both messages are received then
an ordering of the received messages is guaranteed.

In each of the following four sections we present a specification of IP along with these two consistency results.

2 Specification of IP using Z

In the Z [3][4] specification of IP, we present a schema (Datagram) describing a datagram and a schema (I1P) describing
the state of an entire IP system. We then present operations (Send, Receive and Tick) that transform the state of an IP
system and prove properties about these transformations.

4The TTL fi eld ensures that datagrams that cannot be delivered do not remain indefi nitely within an IP internet, e.g., datagrams addressed to
non-existent hosts are eventually discarded.

SFor simplicity, we assume that the source address placed in an IP datagram is the actual |P address of the source host. In redlity, a host can
masquerade as another host by using its |P address in a datagram.

60f course, there is avery small possibility that a datagram could have been corrupted in such away asto still have a valid checksum. We will
ignore this possibility.

Third Irish Workshop in Formal Methods, 1999 3

Accepted for the 3rd. Irish Workshop in Formal Methods
Galway, Ireland, July 1-2, 1999

Four Logics and a Protocol

2.1 |P Datagrams

We can define an IP datagram in terms of some simple types.

IPAddress = 0..232—1
TTL =0..255
Byte = 0..255

__Datagram
source : IPAddress
destination : IPAddress
tth: TTL

data : seq Byte

source # destination

22 IP

The state of an IP system can be captured as the bag’ of datagrams that have been sent but not received and which still
have a non-zero TTL value. An IP system is initialised by setting transfer to the empty bag.

_IP
transfer : bag Datagram

Vd £transfer e d.ttl > 0

__IPInit
P’

transfer’ =[]

2.3 The Send Operation

If IP were reliable, we could send a datagram by simply adding it to the bag of datagrams in transit. However, since

datagrams can be corrupted, discarded or duplicated, we need to define Send so that each datagram in the final state
is derived from either the datagram being sent or from one of the datagrams in the original state®. We specify this by

using bag derivation (=) as follows:

__Send
AlIP
d? : Datagram

transfer’ < transfer v [d?]

A formal definition of < is given below. Informally, t < tq if every member of t; is derived from some member of
to, i.., t; can be obtained from ty by corrupting, discarding or duplicating members of to°. Thus, in the definition of
Send, transfer’ is derived from transfer and d? by corrupting, discarding or duplicating datagrams.

“Since | P datagrams need not be delivered in the order in which they are transmitted, we use a bag rather than a sequence. In addition, since an
IP datagram may be duplicated or indeed, two unrelated datagrams may be identical, we use a bag rather than a set.

8strictly speaking we could preserve all datagrams from the original state unchanged, but allowing them to be corrupted, discarded or duplicated
does not affect the overall specifi cation.

9Aswe will see below, derivation also caters for TTL values being decremented.

Third Irish Workshop in Formal Methods, 1999 4

Accepted for the 3rd. Irish Workshop in Formal Methods
Galway, Ireland, July 1-2, 1999

Four Logics and a Protocol

24 The Receive Operation

Again, if IP were reliable, we could receive a datagram by simply removing it from the bag of datagrams in transit.
However, to allow for unreliability, we permit a copy of a datagram to be received and the bag of datagrams in transit
to be changed so that any datagram can be corrupted, discarded or duplicated. In particular, there is no requirement
that the datagram received should be removed from the bag of datagrams in transit. Of course, one would expect a
good implementation to do its best to remove the received datagram.

STATUS == yes | no

___Receive
AlP
d! : Datagram
delivered! : STATUS

transfer’ < transfer
delivered! = no V (delivered! = yes A d! etransfer)

2.5 Datagram Derivation

To allow for the possibility of the body of a datagram being corrupted or its TTL value being reduced, we define a
relation which specifies when one datagram is derived from another datagram, i.e., &y < dy if d; is the same as do,
except that some small amount of corruption has occurred to the data of do or the TTL value of dy has been reduced.
To do this, we assume that we can define when the data segments of two datagrams are approximately equal (=).

_ & _:seq Byte <+ seq Byte

VSy,S2 :seqBytees; ~ Sy & ---

— = _: Datagram < Datagram

Vdg, d; : Datagrame
d < do &
d; .source = dg.sourceAd;.destination = dg.destinationA
d,.ttl < do.ttIAd; .data ~ dy.data

We can extend datagram derivation to define bag derivation as follows:

_ =< _:bag Datagram «+ bag Datagram

V by, by : bag Datagrame (b; < by < (Vd; Eb; e 3dg Ebg e d; < dp))

2.6 Properties

Given the operations defined above, we can use composition to derive new schemas to explore the behaviour of an
IP system. For example, given datagrams do and d;, we can define the behaviour (4) of sending these datagrams,
followed by a single Receive.

Ao = IPInitg Send[do/d?] s Send[d, /d?] g Receive

The schema Ag can be rewritten as:

Third Irish Workshop in Formal Methods, 1999 5

Accepted for the 3rd. Irish Workshop in Formal Methods
Galway, Ireland, July 1-2, 1999

Four Logics and a Protocol

_Ag
AIP
dg, d; : Datagram
d! : Datagram
delivered! : STATUS

transfer’ < [do,d:]
delivered! = no V (delivered! = yes A (d! < do V d! < dy))

Ag states that if we send two datagrams on an IP system with no datagrams in transit, then if we receive a datagram
it will be derived from one of the two datagram that were sent. In addition, there may be any number of datagrams
(derived from the two datagrams sent) waiting to be received.

2.7 TTL Handling and the Tick Operation

The definition of datagram derivation given above, requires the TTL value in the derived datagram to be less than
or equal to the TTL value in the original datagram®©. Therefore, with the operations Send and Receive, datagrams in
transit can have their TTL values reduced; provided that they are always greater than zero®!.

For TTL handling, we have a stronger requirement, i.e., TTL values must be reduced every second. Therefore, we
define strict derivation (<) for both datagrams and bags.

_ < _: Datagram <+ Datagram

Vdg, d; : Datagram e (d1 < do & di <X doAdy.ttl < dott')

_ < _: bag Datagram < bag Datagram

ng, by : bag Datagram ° (bl < by & (le Eb; e 3dg Ebg e d; < do))

Using strict derivation we can define an operation Tick, which is performed every second, to reduce the TTL values of
datagrams in transit.

_Tick
AIP

transfer’ < transfer

2.8 Useful Relations and Functions

For convenience, we define a useful relation (in) and a useful function (f).
The relation in determines if a bag of datagrams contains a datagram that was (or could have been) derived from a
given datagram.

‘ _in_: Datagram <+ bag Datagram

‘ Vd : Datagram; Vb : bag Datagrame (dinb < (3d' Ebed’ < d))

The function § returns the maximum TTL value of the datagrams in a bag that have been derived from a given datagram,
i.e., dtb is the maximum TTL of any datagram in b that was (or could have been) derived from d.

‘ _t: Datagramxbag Datagram — N
‘ Vd : Datagram; Vb : bag Datagram e (dfb = max({0} U {d’ Eb | d' < d e d'.ttl}))

Note that in returns 0 if there are no datagrams in the bag that were derived from the given datagram.

10gince the TTL component of adatagram is protected by the checksum, it can never be corrupted.
1Dpatagrams with zero TTL values are not permitted by the invariant of the schema IP.

Third Irish Workshop in Formal Methods, 1999 6

Accepted for the 3rd. Irish Workshop in Formal Methods
Galway, Ireland, July 1-2, 1999

Four Logics and a Protocol

2.9 Propertiesinvolving Tick

All operations on IP (Send, Receive and Tick) are non-deterministic*2. The specifications of Send and Receive are
very weak in that they only require the output bag of datagrams transfer’ to be derived from the input bag transfer
and (in the case of Send) the datagram being sent. This leads to the possibility of states that would, in practice, not
be produced by an implementation. For example, a Send of a datagram d, followed by an infinite number of Receive
operations each returning d, is a possible behaviour.

However, the Tick operation is much more constrained. Like Send and Receive, Tick requires its output bag transfer’ to
be derived from its input bag transfer, but the TTL value of each datagram in transfer is strictly less than the TTL value
of the datagram from which it was derived. Thus, while each Tick operation can result in a datagram being corrupted
and replicated an arbitrary number of times, after a suitably large number of Tick operations, all these replicates will
have been received or discarded.

For example, consider the schema A; specified by the composition a Send operation followed by a number of Tick
operations:

A; = Send g TickN

where N is the TTL value of the datagram d? sent by the Send operation.
For each Tick operation, we can show that the maximum TTL value of datagrams derived from d? is reduced, i.e.,

_ Tick
AIP

transfer’ < transfer
Vd : Datagram e dfitransfer’ # 0 = dftransfer’ < dftransfer

Therefore, by induction over the maximum values in each intermediate state, we can show:

A
AlP
d? : Datagram

transfer’ < transfer
d?gtransfer = 0 = d?ftransfer’ = 0

A; states that datagrams derived from the sent datagram d? will only be present in transfer’ if they were already in
transfer, i.e., all datagrams introduced by the Send operation will have been removed from IP after N (d?.ttl) Ticks.
We can also express this as follows:

_ A
AlP
d? : Datagram

transfer’ < transfer
= (d? intransfer) = — (d? in transfer’)

2.10 Ordering of Received M essages

As shown by Aq above, in general, if two datagrams are sent and one is received, then the received datagram will be
derived from either of the two datagrams that were sent. This result can easily be extended to show that in general, if
two datagrams are sent and received, the order of reception is not fixed.

12This non-determinism is not just the specifi cation of adon’t care property; it is assumed that implementations of 1P will be non-deterministic.

Third Irish Workshop in Formal Methods, 1999 7

Accepted for the 3rd. Irish Workshop in Formal Methods
Galway, Ireland, July 1-2, 1999

Four Logics and a Protocol

However, if two datagrams are sent with a sufficient number of intervening Tick operations, then if they are received,
they must be received in the order in which they were sent. To express this property in Z requires us to consider all
sequences of operations characterised by this requirement.

Let use assume that we send dg and d; in that order, i.e., we are interested in sequences of operations of the form:

Ay = IPInitg Send[do/d?] 5 .4 s Send[d,/d?] s B

where:

¢ A is the composition of one or more receive operations with one of the form Receive[d;,/d!, first/delivered!],
interleaved with at least dg.ttl Tick operations.

e J3is the composition of one or more receive operations with one of the form Receive[d] /d!, second /delivered!],
interleaved with Tick operations.

For any such sequence Ay, we can show:

__As
AlP

dg,d; : Datagram
first, second : STATUS
dg,di : Datagram

transfer’ < [di]
first = nov (first = yesadg < do)
second = noV (second = yesAd; < dj)

3 Specification of IP using the Temporal Logic of Actions

3.1 A Quick Overviewof TLA
3.1.1 Introduction

Temporal logic extends classical logic by handling modalities such as fairness and eventuality. TLA [7] is a temporal
logic of actions for specifying and reasoning about concurrent systems. Systems and their properties are specified in
the same logic, so the assertion that a system meets its specification and the assertion that one system implements
another are both expressed by logical implication. TLA has four levels:

1. Constants: this level is concerned with formulas which are state-independent (constant). The variables which
are used in this level are called rigid variables and cannot change values between states.

2. States: this level allows reasoning about individual states. The formulas in this level can either be state functions
(non-boolean functions) or state predicates (boolean expressions). The variables used in this level can be flexible
variables, which can change values between states.

3. Pairs of States: this level concerns reasoning about pairs of states. The formulas in this level can either be
transition functions or transition predicates (actions). The variables used in this level can be primed. Unprimed
variables refer to the old state, primed variables to the new. For a state function or predicate f, f' is obtained by
replacing each flexible variable v in f by v'.

An action A is a relation between states which assigns a boolean to s[.4]t for states s and t, where s is the old
state and t is the new state. This is called an A step” if it is true. enabled A4 is true for a state if it is possible to
take an A step starting in that state.

Stuttering steps are steps in which specified variables do not change. These are used to help show equivalences
between behaviours. For an action .4 and a state function f, a stuttering step is written as follows:

Third Irish Workshop in Formal Methods, 1999 8

Accepted for the 3rd. Irish Workshop in Formal Methods
Galway, Ireland, July 1-2, 1999

Four Logics and a Protocol

[Af 2 AV (f' =1)
A step corresponding to an action A in which the variables in a state function f do change is written as follows:
<A>E AN #£T)

4. Sequences of States: the fourth level allows reasoning about behaviours, which are infinite sequences of states.
A behaviour is denoted by < sg, S1,S2, ... >, Where Sy is the first state, § is the second, etc.

An action A is true iff the first pair of states in the behaviour is an A step.
< S0,S51,S2,... > |[.A]] = S()l[.A]]Sl

3.1.2 TLA Formulas

A TLA formula can include the following forms:

P Satisfied by a behaviour iff P is true for the initial state.

O[Als Satisfied by a behaviour iff every step satisfies A or leaves f unchanged.

OF Satisfied by a behaviour iff F is true for all suffixes of the behaviour (F is always true).
< Sg,81,82,-.. > [OF] 2Vn € Nat :< Sp, Snp1,Snia, - > [F]

OF Defined to be —~O-F (F is eventually true).

< Sg,81,82,-- > [OF] £ 3n € Nat :< Sn, Sni1,Sn42, - > [F]
WF:(A) Satisfied by a behaviour iff A A (f # f) is infinitely often not enabled,
or infinitely many A A (f # f) steps occur (weak fairness).
WF;(A) £ 0O < A >t vOO—Enabled < A >¢
SF;(A) Satisfied by a behaviour iff A A (f # f) is only finitely often enabled,
or infinitely many A A (f # f) steps occur (strong fairness).
SF(A) £ 00 < A >f vOO-Enabled < A >

The specification of a system in TLA has the following form:
Initial A O[N]x A F

where Initial is a state predicate describing the initial state, N is a transition predicate describing the possible steps, x is
a state function indicating the variables which cannot change in any step other than a N step, and F is the conjunction
of fairness conditions.

3.2 Specifi cation of the | P Layer Interface Using TLA+

We now give a specification of the IP layer interface using TLA+, a specification language which is an extension of
TLA and includes additional data types, operators and modules.
constants
DATAGRAMS
DATAGRAMS is the set of valid datagrams

variables
sent, received, transit

These three variables represent the current state: sent is a set containing all the datagrams which have been sent so
far, transit is a set containing all the valid datagrams which are still in transit, and received is a set containing all the

13The proofs have been banished to the appendices

Third Irish Workshop in Formal Methods, 1999 9

Accepted for the 3rd. Irish Workshop in Formal Methods
Galway, Ireland, July 1-2, 1999

Four Logics and a Protocol

datagrams which have been received so far. A datagram is represented as a four-tuple giving its source, destination,
time to live and message. The actions which can be performed are as follows:
Send(datagram) 2 Asent’ = sentU {datagram}

Atransit’ = transit U {datagram}

A UNCHANGED received

When a datagram is sent, it is added to the set of sent datagrams, and also to the set of valid datagrams which are
currently in transit. The set of received datagrams is not affected.

Receive(datagram) = A (datagram € transit)
Alet dg £ choose d : A (d € transit)
Ad = datagram
in received’ = received U {dg}

A UNCHANGED < sent, transit >

A datagram which is received must be one which is currently in transit. This is not removed from the set of datagrams
in transit as it may have been duplicated. The datagram is added to the set of those which have been received.

Timeout(datagram) £ A (datagram € transit)
Alet dg £ choose d : A (d € transit)
Ad = datagram
in transit’ = transit — {dg}

A UNCHANGED < sent,received >

A datagram which is timed out must be one which is currently in transit. This is removed from the set of datagrams
which are in transit, but the sets of datagrams which have been sent and received are not affected.

Change(datagram) £ A (datagram € transit)
Alet dgl £ choose dg : A (dg € transit)
A dg = datagram
in let dg2 £ choose dg : A (dg € DATAGRAMS)

Ads,dt,ml,m2: Adgl = <s,d,t,ml >
Adg = <s,d,t,m2 >

in transit’ = transit U {dg2}

A UNCHANGED < sent, received >

Here, we model the corruption of datagrams which are currently in transit. We only include the case where the header
of the datagram remains unchanged, as these are the only ones which will be valid. Although the actual message will
not be changed very much, we do not specify this. The original uncorrupted datagram is not removed from the set of
datagrams in transit as it may have been duplicated. If the result of corruption produces invalid datagrams, the set of
datagrams in transit will therefore not be affected.

Transition £ 3 dg € DATAGRAMS : Send(dg) V Receive(dg) Vv Timeout(dg) v Change(dg)

Each transition within a behaviour must be a send, receive, timeout or change action.

Fairness £ V d € DATAGRAMS : WF (sent,transit,received) (Timeout(d))

Messages which remain in transit are eventually timed out.

Third Irish Workshop in Formal Methods, 1999 10

Accepted for the 3rd. Irish Workshop in Formal Methods
Galway, Ireland, July 1-2, 1999

Four Logics and a Protocol

Init £ (sent = {}) A (transit = {}) A (received = {})

Initially, no messages have been sent, received or are in transit.

Specification £ Init A O [Transition](sent,transit,received) A Fairness

3.3 No Message Creation

In order to prove that no messages are created, we prove that if a message is received with a specified source and
destination, then a message must also have been sent with the same source and destination. This property is stated as
follows:

NoCreation £ Vs,d,tl,ml: O(<s,d,tl,ml > € received = 3t2,m2: <s,d,t2,m2> € sent)

To prove this invariant, we prove the following two properties:

A

NoCreation1 Vs,d, t1,ml: O(<s,d,t1,ml > € transit = 3Jt2,m2: <s,d,t2,m2 > € sent)

A

NoCreation2 = Vs,d,tl,ml: O(<s,d,tl,ml> € received = 3It2,m2: <s,d,t2,m2 > € transit)

NoCreation1 can be proved by induction on behaviours:

1. Init A O[Transition](sent,transit,received) = NoCreationl
Proof Outline:
1.1. Init = NoCreationl
1.2. NoCreation1 A Send(dg) = NoCreationl’
1.3. NoCreation1 A Receive(dg) = NoCreation1’
1.4. NoCreation1 A Timeout(dg) = NoCreationl’
1.5. NoCreationl A Change(< s,d,tl,m1 >) = NoCreationl’
1.6. NoCreationl A < sent, transit, received > = < sent’, transit’, received’ > = NoCreationl’
1.7. Q.E.D.

NoCreation2 can now also be proved by induction on behaviours:

2. Init A O[Transition](sent,transit,received) = NoCreation2
Proof Outline:
2.1. Init = NoCreation2
2.2. NoCreation2 A Send(dg) = NoCreation2’
2.3. NoCreation2 A Receive(dg) = NoCreation2'’
2.4. NoCreation2 A Timeout(dg) = NoCreation2’
2.5. NoCreation2 A Change(< s,d,t1,m1 >) = NoCreation2’
2.6. NoCreation2 A < sent, transit, received > = < sent’, transit’, received’ > = NoCreation2’
2.7. Q.E.D.

3.4 Ordering of Recelved M essages

Here we prove that if two datagrams are received, then if they are sent far enough apart they will be received in the
same order in which they were sent. This property can be stated as follows:

Third Irish Workshop in Formal Methods, 1999 11

Accepted for the 3rd. Irish Workshop in Formal Methods
Galway, Ireland, July 1-2, 1999

Four Logics and a Protocol

(¢ O(dgy € sent A dg; € received A dg, € received)) =
& 0O(dgy ¢ sent = (dg; € received A dgs ¢ received))

Before we can prove this property, we need to make the following assumption:
(dg ¢ sent A< O (dg € received)) = dg ¢ received Q)

This states that any message which is eventually received and has not yet been sent cannot have already been received.
We can now prove the bounded reliability property as follows:

3.(00(dg; € sent A dg; € received A dgs € received)) =
& O(dge ¢ sent = (dg; € received A dgo & received))
Proof Outline:
3.1.¢ 0(dg; € received)
32.00(dgs ¢ sent = (dg, ¢ received))
3.3.Q.E.D.

4 Specification of IP in Linear Logic

4.1 A Crash Coursein Linear Logic

One way to look at a logic is to divide its rules into three categories:

1. Axioms. These are the defined truths of the logical system. In intuitionistic logic, the sole axiom represents the
tautology that from hypothesis A one can deduce hypothesis A.

2. Structural rules. These specify how hypotheses can be manipulated. In intuitionistic logic these are the Ex-
change, Contraction and Weakening rules.

3. Logical rules. These define the logical connectives, which in the case of intuitionistic logic are conjunction(x),
disjunction(+) and implication(D).

Linear logic[5, 6] belongs to the family of sub-structural logics. These logics remove, or weaken, the structural rules of
Exchange, Contraction and Weakening. In order to remain expressive they typically introduce addition logical rules. In
the case of linear logic, the Contraction rule, which allows hypothesis to be duplicated and the Weakening rule, which
allows hypothesis to be discarded, are removed. The effect of this is to make the logic “resource conscious”. You
cannot duplicate or discard hypotheses. If you have one instance of a hypothesis A then you cannot create additional
instances of A out of mid-air; nor can you simply sweep A under the carpet and pretend you never had A.

Though linear logic has lost two structural rules it has gained a series of logical rules. These are:

e Linear implication is written A — B and is pronounced “consume A yielding B. If you have two hypotheses A
and A — B then you can derive B but the hypothesis A has been consumed and is no longer available.

e Multiplicative conjunction is written as A®B and is pronounced “both A and B”. When used, both hypothesis
are consumed and are no longer available.

¢ Additive conjunction is written A&B and is pronounced “choose from A and B”. When used, you have the
choice of which hypothesis is consumed and no longer available.

e Additive disjunction is written A®B and is pronounced “either A or B”. When used, it represents an external
choice as to which hypothesis is consumed and no longer available.

Third Irish Workshop in Formal Methods, 1999 12

Accepted for the 3rd. Irish Workshop in Formal Methods
Galway, Ireland, July 1-2, 1999

Four Logics and a Protocol

e Exponentiation is written !A and is pronounced “of course A”. This is a new form of connective which represents
a producer of the hypothesis A. It allows us to represent intuitionistic truth in linear logic. We can also use it to
define intuitionistic implication D as (!A) — B.

Assumptions can be linear, written <A>, or intuitionistic, written [A]. Though assumptions of the form <!A> areina
sense equivalent to assumptions of the form [A] there is very important difference. Linear assumption, including those
of the form <!A>, can only be used once in a proof whereas intuitionistic assumptions may be used any number of
times.

Judgements are written T - A. Only the assumptions in the judgement are labelled with square or angle brackets and
these brackets may only appear on the left hand side of F and never on the right. Alternatively judgements can be
written I'; A F A which states that with the unrestricted intuitionistic context I" and the restricted linear context A we
can judge A to be a true conclusion. With the combination of intuitionistic and linear hypotheses we need an additional
rule called Dereliction to allow us to copy an intuitionistic hypothesis to a linear hypothesis.

4.2 Specifi cation of IP Layer Interface

There are two operations available to the user of the IP layer:

1. Send(x,y, ttl,m)
Sends a message m from node x to node y with a “time to live” value of ttl.

2. Rev(x,y,ttl,m)
Receives a message m from node x to node y with a “time to live” value of ttl.

The equations that define the user interface to the IP layer are:

VX.Vy.Vitl. vm.

Send(x, Y, ttl, m) — Datagram(x, y, lower(ttl), m))
Sending a message adds a single datagram to the system. lower is a function that reduces its operand to some non-zero
integer in the range (0, t].

VX.Vy.Vitl. Vm.
Datagram(x, y, ttl, m) — (Datagram(x, y, lower(ttl), m)@Datagram(x, y, lower (ttl), m))®1 3)

A datagram can be duplicated, or be lost.

VX.Vy.Vitl. vm.

Datagram(X, y, ttl, m)®Listen(y) —o Listen(y)® 4)
(Rev(x, y, lower(ttl), m)@Rcv(x, y, lower(ttl), change(m)))

If a datagram addressed to node y exists and node y is listening for it, then node y will receive the message m or some
corrupted version change(m) of the message m.

4.3 Verifi cation

The IP specification guarantees very little about a message sent from one node to another; however, as mentioned
earlier we can prove results relating to the origin of a valid datagram, and the ordering of receipts under certain
conditions.

Third Irish Workshop in Formal Methods, 1999 13

Accepted for the 3rd. Irish Workshop in Formal Methods
Galway, Ireland, July 1-2, 1999

Four Logics and a Protocol

4.3.1 No message appearing from mid-air

If a node receives a properly formatted message some node must have sent a message with the same header (but the
message may be corrupted). In fact, if the initial datagram is not lost, a messages sent from node A to node B may
result in one or more messages, with correct header, being received by node B.

The unrestricted context T" contains the rules for the system, i.e. equations 2,3 and 4. For the remainder of this section
we use the following shorthand:

e D(m) for Datagram(x, y, ttl, m).
e S(m) for Send(x, y, ttl, m).

e R(m) for Rev(x,y, ttl, m).

e L for Listen(y).

There are at least two styles of proofs in linear logic: one which is applicable when there is an overall goal (such as
planning), and the other when there is no overall goal but there is an evolution of state. In the latter case the right-hand
side of the judgement should be “empty”, which is modelled by 0, the impossible goal. Then the following partial
derivation shows that, given a set of rules I, the state A can evolve into state A;.

If we assume that j—1 copies of the sent message (or a similar message with the correct header) were received then

there exits a previous state that can also evolve into the reception of j copies of the sent message. Thus, letting the

multiplicative conjunction of N linear assumptions A be denoted by ®N_, A, we can prove
I'; L,D(m), ®]L, (R(m)@R(change(m))) 0

: Q)

T; S(m),L+0

4.3.2 Ordering of received messages

If two messages m; and mo are sent and successfully delivered then the precondition necessary to guarantee that m;
arrives before m, is that the interval n between sending m; and my, is greater than m;’s time to live value.

Let Ts(E) be a function that returns the time of an event E as seen by the sender’s clock. Events can be either Send()
or Rev() operations.

A corollary of 5 is that before a message is received it must have been sent, and therefore the time a message is sent (as
seen by the sender’s clock) is less than or equal to the time the message was received (as seen by the sender’s clock).
Since equations 2 to 4 are only valid when 0 < ttl’ < ttl, the following axiom is true.

VX Vy. VL vt | 0 < ttl’ <ttl.Vm.
Ts(Send(x,y, ttl, m)) < Ts(Rev(x,y, ttl', m)) < Ts(Send(x,y, ttl, m))-+ttl (6)
Therefore, if Ts(Rev(x, y, ttl},m1)) < Ts(Rev(x, y, ttlh, mo)) then:

(Ts(Send(x,y, ttl;, my)) < Ts(Rev(x,y, ttlh,my)) < Ts(Send(x,y, ttly, my))+ttl;)
< (Ts(Send(x,y, ttly, m2)) < Ts(Rev(x,y, ttly, ma)) < Ts(Send(x,y, ttlz, ma))+ttls)

and thus:
(Ts(Send(x, y, ttl;, m;))+ttl;) < Tg(Send(x, y, ttle, ms))

Let message my be sent n seconds after message my, then:

Third Irish Workshop in Formal Methods, 1999 14

Accepted for the 3rd. Irish Workshop in Formal Methods
Galway, Ireland, July 1-2, 1999

Four Logics and a Protocol

(Ts(Send(x,y, ttly,mq))+ttl) < (Ts(Send(x,y, ttly, mq))+n)
=ttly <n

Hence, if message m; is received before message m» then the sender must have waited for more then ttl; between
sending message m; and sending message ms.

5 Specification of IP using the Calculus of Constructions

5.1 Constructive Logic and Coq

Constructive logic can be seen as a variation of classical logic where we remove the “law of the excluded middle”

(Av— A) and related axioms, such as proof by contradiction. This results in a system where a proposition A is true

precisely when there exists a proof of A, as opposed to classical logic which will also allow a refutation of = A

as evidence. Under the standard Curry-Howard isomorphism we can identify each proof of a proposition A with a

program implementing the specification A; logical conjunction, disjunction and implication translate into product,
sum and function types respectively.

Our specification below was developed using the Coq [8] proof assistant, based on the Calculus of Inductive Con-
structions [9]. As well as the normal benefits of a proof assistant such as uniformity of notation and verification of
type-correctness, Coq also provides three enhancements to ordinary constructive logic:

e Coq implements a higher-order constructive logic, facilitating in particular, the descriptions of object logics
within the framework

e Coq has two type hierarchies: Set of constructive types, and Pr op for classical logic. This allows specifications
to be developed in ordinary classical logic, and then verified in the same framework against programs written
within Set .

e Coq supports inductive (and co-inductive) definitions, giving a natural logical extension of the definition-by-
cases style of programming found in functional languages

5.2 Datagrams

The basic unit of communication between the IP layer and the network layer is the datagram, which encapsulates the
data being sent, and various pieces of auxiliary information. Since we do not propose to treat the components of a
datagram in any great detail, we may take the type of these components as given, declaring:

Parameter | Paddr ess : Set.
Parameter data : Set.

Our datagram then can be regarded as a record, the fields of which are described in section 3.1 of [1]. Abstracting
from this, we specify:

Record datagram: Set : =

nk DG
source : | Paddress;
dest : | Paddress;
ttl @ nat; (* Tine to live *)

checksum : nat;
contents : data

Next we assume that a function to re-calculate a checksum for a datagram is available, and state that this calculation
is independent of the value in the checksum field. Based on this, we can specify what is means for a datagram to be
valid:

Third Irish Workshop in Formal Methods, 1999 15

Accepted for the 3rd. Irish Workshop in Formal Methods
Galway, Ireland, July 1-2, 1999

Four Logics and a Protocol

Parameter cal cChecksum : dat agram -> nat.

(* Checksumis independent of the checksumfield *)
Axiom howToCal ¢ :
(dg: dat agr am
let cs = (cal cChecksum dg) in
(cal cChecksum (nkDG (source dg) (dest dg) (ttl dg) O (contents dg))) =
(cal cChecksum (nkDG (source dg) (dest dg) (ttl dg) cs (contents dg))).

Defi nition val i dDG : datagram -> Prop : =
[dg: dat agran] ((checksum dg) = (cal cChecksum dg)).

Here val i dDGis defined to be a function from dat agr ans to Pr op - i.e. a predicate over datagrams; the square
brackets are used to delimit the argument here.

We can also define a function newDGthat constructs a new datagram from pieces of information, and construct a proof
Val i dNewDGto demonstrate that a datagram so constructed satisfies the validity property above*

Defi nition newDG : =
[newSource: | Paddress; newbDest: | Paddress; newlTL: nat; newContents:data]
let newCS = (cal cChecksum (nkDG newSour ce newbDest newlTL O newContents))
in (nkDG newSour ce newDest newTTL newCS newContents).

Lemma Val i dNewDG :
(src, dst: | Paddress) (dt:data)(tm nat)
(val i dDG (newDG src dst tmdt)).

(* Proof onmtted *)

5.3 Sending and Receiving

Since we have omitted many details of the internal operation of the IP layer, it is hardly any surprise that we choose

a simple interface between the IP and network layers. The IP layer must be able to dispatch and collect datagrams to

and from the network layer; we assume that this is achieved via two functions, which we call depart andarri ve

respectively.

Our specification of the IP interface naturally centres on the two main functions: SEND and RECV. In each case the
main purpose of the definition is to explicitly link a successful SEND or RECV with a corresponding departure or
arrival action.

Allowing for the possible error conditions specified in section 3.3 of [1], we given an inductive definition for the SEND
function:

Variable departure : | Paddress -> datagram -> Set.

Inductive SEND : | Paddress -> | Paddress -> nat -> data -> Set : =
sendk :
(src, dst: | Paddress) (tm nat) (Buf PTR dat a)
(departure src (newDG src dst tm Buf PTR)) ->
(SEND src dst tm Buf PTR)
| sendError
(src, dst: | Paddress) (tm nat) (Buf PTR dat a)
(SEND src dst tm Buf PTR).

14The variables introduced in alemma or axiom between ordinary parenthesis are taken to be universally quantifi ed.

Third Irish Workshop in Formal Methods, 1999 16

Accepted for the 3rd. Irish Workshop in Formal Methods
Galway, Ireland, July 1-2, 1999

Four Logics and a Protocol

Again, variables between square brackets are arguments, those between ordinary brackets in each of the two cases are

universally quantified; the “- >” in the send Ok case denotes implication. Giving this as an inductive definition means
that if a successful SEND has occurred we can be sure that a new datagram (which is valid by the previous lemma)

has departed onto the network layer.

The definition of RECV is similar, except now we omit the error case assuming that we block until a successful
receipt:

Variable arrival : |Paddress -> datagram-> Set.

Inductive RECV : | Paddress -> | Paddress -> data -> Set : =
recvlk :
(dg: datagram (arrival (dest dg) dg) -> (validDG dg) ->
(RECV (source dg) (dest dg) (contents dg)).

Note that the definition abstracts away from details of datagrams which have arrived but have not answered a RECV
call, or RECV calls pending that have not been satisfied by a corresponding arrive. A more model-oriented specifica-
tion might seek to implement this functionality with queues of datagrams, but this is not necessary for our purposes.

5.4 A Basic Consistency Proof

As a simple example of a consistency proof, we wish to show that any valid datagram received from the IP layer must
have been sent from the host indicated in the header.
To do this, we must assume that any datagram “in transit” has indeed been sent by the indicated source:

(* Any valid DG nmust have departed fromits source *)
Axiom SendValid :
(dg: dat agram) (val i dDG dg) -> (departure (source dg) dg).

A similar assertion cannot, of course, be given for ar r i ve, since the datagram may be lost at any stage. The proof is
now straightforward, centred around the above assumption:

(* Theorem: Any Received DG has been sent by its source *)
Lemma RecvMeansSend :

(dg: dat agr am

(r:(RECV (source dg) (dest dg) (contents dg)))

{tmnat & (SEND (source dg) (dest dg) tm (contents dg))}.
(* Proof Onmitted *)

The statement of the lemma can be read as: “for any datagram dg and any answered RECV r, there exists some
number t m(to act as the original time-to-live value) such that there was a corresponding SEND call”. The last line in
the statement beginning “{ t m nat ... ” isactually the specification of a set; in constructive logic we “prove” this
specification by showing how an element of that set can be built.

While the lemma itself is quite simple, it did play a useful role in the construction of the specification, serving as
a validation that the requisite elements were present. Indeed, the process of constructing a specification and then a
consistency proof is often an iterative one, since an inability to build the proof indicates a gap in the specification. We
suggest that this is one particular advantage of using a proof assistant, since such proofs (particularly relatively simple
ones) are often just “assumed” in a specification constructed by hand, occasionally leaving omissions unexposed.

5.5 Timeand Ordering of Received M essages

Our second proof has a temporal element - we wish to specify that the time-to-live field places a bound on the maximum
amount of time between sending and receiving a datagram. Thus we choose at this point to introduce what is essentially
a temporal variable in the form of at i neOF function for send and receive events.

Third Irish Workshop in Formal Methods, 1999 17

Accepted for the 3rd. Irish Workshop in Formal Methods
Galway, Ireland, July 1-2, 1999

Four Logics and a Protocol

First of all, for convenience, we introduce the type Event as a common name for sends and receipts:

Inductive Event : Set : =
sndEvent : (src,dst: | Paddress)(tm nat) (Buf PTR data)
(SEND src dst tm Buf PTR) -> Event
| recEvent : (src:|Paddress)(dst: | Paddress)(Buf PTR dat a)
(RECV src dst Buf PTR) -> Event.

Coercion sndEvent : SEND >-> Event.
Coercion recEvent : RECV >-> Event.

Next, we assume a function to tell us when a particular event occurred:

Variable ti meOf : Event -> nat.

Now we must state the relevant properties of our events; in particular, that a RECV always occurs after the corre-
sponding SEND, but before the time-to-live field has expired:

Axiom recvAfter
(dg: dat agram
(s: (SEND (source dg) (dest dg) (ttl dg) (contents dg)))
(r:(RECV (source dg) (dest dg) (contents dg)))
(It (tinmedF s) (timed r)).

(* Tine-to-receipt (if any) is bounded above by TTL *)
Axiom ti neBound :
(dg: dat agr am
(s: (SEND (source dg) (dest dg) (ttl dg) (contents dg)))
(r:(RECV (source dg) (dest dg) (contents dg)))
(It (timedf r) (plus (timeO s) (ttl dg))).

We note here the need to explicitly order the SENDs and RECVs in the axiom r ecvAf t er . This arises from the
strategy of modularising our specification into two parts: a “logical” part based purely on cause-and-effect, culminating
in the lemma RecvMeansSend, and a “temporal” part, based around the time at which events occur. Indeed, the
axiomr ecvAf t er could be seen as the temporal manifestation of the RecvMeans Send result.

To verify the existence of a time-bound on liveness, we assume that we have two datagrams, dg1 and dg2, both of
which have been successfully received:

Variable dg1, dg2: dat agr am

(* First/Second datagram sent and received *)

Variable s1: (SEND (source dgl) (dest dgl) (ttl dgl) (contents dgl)).
Variable r 1: (RECV (source dgl) (dest dgl) (contents dgl)).

Variable s2: (SEND (source dg2) (dest dg2) (ttl dg2) (contents dg2)).
Variable r 2: (RECV (source dg2) (dest dg2) (contents dg2)).

Next we assume that the time between sending the first datagram exceeded the time-to-live of the second. The expected
result - that the second datagram can only then arrive after the first - follows by simple transitivity:

(* Tine between sends exceeds TTL for first datagram *)
Hypothesis SendGap : (It (plus (timeOf s1) (ttl dgl)) (tinmedf s2)).

Lemma recvOrdered :

(It (tinmedF r1) (timed r2)).
(* Proof Onmtted *)

Third Irish Workshop in Formal Methods, 1999 18

Accepted for the 3rd. Irish Workshop in Formal Methods
Galway, Ireland, July 1-2, 1999

Four Logics and a Protocol

6 Conclusions

The case study chosen is relatively small and certainly does not cover all aspects of each of the chosen formalisms.
However it is an example of a “real” problem that is independent of any of the natural domains of each of the given
logics. In addition, the specifications themselves provide a flavour of each of the formalisms, and serve as a basis for
some comparative remarks.

In each case the specifications were naturally modularised around the two main proofs: one relating solely to the send
and receive functions, the other connecting the two via some kind of ordering. Within these natural sections, we can
see that in each case the main units of organisation were the datagram (the main “data-structure”) and the two function
calls send and receive.

There is a clear dichotomy here between the Z and TLA specifications on the one hand, and the linear and constructive
logic based specifications on the other.

e The first two are explicitly state-based, and in each case this style of specification seemed to lead naturally to
the same basic structures - for example, the Z specification has a bag transfer of datagrams in transit, with a
corresponding set transit in the TLA specification. Indeed, we should point out that the choice between using a
bag or set here was largely one of individual style, rather than any inherent bias in the formalism used.

¢ On the other hand, the other two specifications can be regarded as being more declarative, eschewing an ex-
plicit state and relying on their respective logical structures to provide the necessary links between send and
receive actions. In particular, in linear logic the connection between valid receipts and corresponding sends was
achieved via an explicit transfer of resources over linear implication, but in constructive logic this was achieved
by a direct axiomatic link.

It was in the presentation of the second result that a clear difference emerged between Z and TLA. In particular,
significant difficulty was encountered in arriving at a formal specification of this property within the Z schema calculus
as the statement of the result was essentially a quantification over sequences of send and receive schemas. On the other
hand, the built-in temporal operators in TLA provided a direct route towards reasoning about sequences of operations,
and thus towards establishing properties regarding the ordering of receive events.

Since neither linear logic nor the constructive formalism used here support temporal operators primitively, the simplest
approach in each case was to index events using a relative time-clock, expressed as Ty in the linear-logic specification,
and as the t i meOF function in the Coq specification. Indeed, once this had been introduced the proof of ordering
devolved to relations over natural numbers, rather than any distinctive features of the logics used.

6.1 Future Work

The results presented above are part of an ongoing collaboration between the authors in the general area of formal
methods and communication protocols. Specifically it is hoped that this work can now be used as a basis for the
specification of TCP, in particular

e specifying the TCP/user interface
e specifying the TCP protocol (based on the IP specification) and
¢ verifying implementation consistency between the protocol internals and the TCP/user interface

In addition to providing an interesting case study in the use of the four formalisms, it is hoped that this can serve as
a basis for an analysis of the suitability of each of the logics for protocol specification, as well as a foundation for
further work in the area.

Third Irish Workshop in Formal Methods, 1999 19

Accepted for the 3rd. Irish Workshop in Formal Methods
Galway, Ireland, July 1-2, 1999

Four Logics and a Protocol

References

[1] Postel J (ed). RFC 791 - Internet Protocol. Defense Advanced Research Projects Agency, 1981.

[2] Postel J (ed). RFC 793 - Transmission Control Protocol. Defense Advanced Research Projects Agency, 1981.
[3] Spivey JM. The Z Notation: A Reference Manual. Prentice Hall, 1992.

[4] Hayes I. Specification Case Studies. Prentice Hall, 1993.

[5] Girard J-Y. Linear Logic. Theoretical Computer Science 1987; 50:1-102.

[6] Girard J-Y. On the unity of logic. Annals of Pure and Applied Logic 1993; 59:201-217.

[7] Lamport L. The temporal logic of actions. ACM Transactions on Programming Languages and Systems 1994;
16:872-923.

[8] Cornes C, Courant J, Filliatre JC, et al. The Coq Proof Assistant Reference Manual, Version 5.10. Rapport Tech-
nique No. 177, INRIA, 1995.

[9] Coquand Th., Huet G. The Calculus of Constructions. Information and Computation 1988; 76:95-120.

Third Irish Workshop in Formal Methods, 1999 20

Accepted for the 3rd. Irish Workshop in Formal Methods
Galway, Ireland, July 1-2, 1999

Four Logics and a Protocol

Appendices
A TLA Proofs

1. Init A O[Transition](sent,transit,received) = NoCreationl
PROOF:

1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

1.7.

Init = NoCreationl

PROOF: follows since sent = {} A transit = {}

NoCreationl A Send(dg) = NoCreationl’

PROOF: follows since sent’ = sent U {dg} A transit’ = transit U {dg}

NoCreationl A Receive(dg) = NoCreation1’

PROOF: follows since sent’ = sent A transit’ = transit U {dg}

NoCreationl A Timeout(dg) = NoCreationl’

PROOF: follows since sent’ = sent A transit’ = transit — {dg}

NoCreationl A Change(< s,d,t1,m1 >) = NoCreationl’

PROOF: follows since sent’ = sent A 3t2, m2 : transit’ = transit U {< s,d,t2,m2 >}

NoCreationl A < sent, transit, received > = < sent’,transit’, received’ > = NoCreationl’
PROOF: follows since sent’ = sent A transit’ = transit
Q.E.D.

PROOF: follows from 1.1-1.6 and INV1.

2. Init A O[Transition](sent,transit,received) = NoCreation2
PROOF:

2.1.

2.2.

2.3.

24

2.5.

2.6.

2.7.

Init = NoCreation2

PROOF: follows since transit = {} A received = {}

NoCreation2 A Send(dg) = NoCreation2’

PROOF: follows since transit’ = transit U {dg} A received’ = received

NoCreation2 A Receive(dg) = NoCreation2’

PROOF: follows since transit’ = transit A dg € transit A received’ = received U {dg}

. NoCreation2 A Timeout(dg) = NoCreation2’

PROOF: follows since transit’ = transit—{dg} A received’ = received

NoCreation2 A Change(< s,d,t1,m1 >) = NoCreation2’

PROOF: follows since 3t2, m2 : transit’ = transit U {< s,d,t2,m2 >} A received’ = received
NoCreation2 A < sent, transit, received > = < sent’,transit’, received’ > = NoCreation2’
PROOF: follows since sent’ = sent A received’ = received

Q.E.D.

PROOF: follows from 2.1-2.6

3.(0 0 (dg; € sent A dg; € received A dgs € received)) =
<& 0O(dgy ¢ sent = (dg; € received A dg2 ¢ received))
PROOF:

3.1

3.2.

3.3.

<& 0O(dgy € received)
PROOF:
follows from initial assumption
& 0O(dgy ¢ sent = (dg, ¢ received))
PROOF:
3.21. < 0O(dgs € received)

follows from initial assumption
3.2.2. Q.E.D.

follows from 3.2.1 and assumption 1.
Q.E.D.
follows from 3.1 and 3.2

Third Irish Workshop in Formal Methods, 1999

Accepted for the 3rd. Irish Workshop in Formal Methods
Galway, Ireland, July 1-2, 1999

21

Four Logics and a Protocol

B Linear Logic Proofs

B.1 Proof of L'

T XFX T XFX
T X XFXaX R 1oxexky
T X, X, XX —o X&X I Y

T, X XFY

—o

Der.

B.2 Proof that no message appears from mid-air

The proof is by induction; here we use C as a shorthand for (R(m)@R(change(m))) and the multiplicative conjunction
of N linear assumptions A is denoted by ®N | A.

e Base Case The base case is that:

T; D(m),L,C(m) F 0

I;LEO

T; S(m),L+0

The proof is as follows:

I'; D(m)®L — L®C(m), D(m) D(m),L+F0
Der.
D(m),D(m), L I- ®L T;LEO L
T; D(m)®D(m), L + s LLF0
T; D(m) F D(m) I (D(m) D(m))&L,L 0 ®
I; D(m) — (D(M)@D(m)@1,D(m),L -0 -
T; S(m) F S(m) L D(m),LF0 e
I S(m) — D(m),S(m),LF0 -
T; S(m),L+0 e
I; L,D(m),C(m) 0
T; D(m)®LFD(m)®L T; LoC(m),D(m) F 0 P
T; D(M®L — LoC(m),D(m),D(m),LF0 o= > —°
¢ Inductive Case The inductive case is that:
F; D(m)a La ®%:1C(m) HO
T; L,@lZ]C(m) -0
T; D(m), L, ®5;C(m) + 0
The proof of this is presented in figure 1
Third Irish Workshop in Formal Methods, 1999 22

Accepted for the 3rd. Irish Workshop in Formal Methods
Galway, Ireland, July 1-2, 1999

666T ‘SPOUISIA [euI0 Ut dOYSHIOM UsH] pAIyL

€¢

T'; D(m) + D(m)

T; L,D(m),&_,C(m) 0
T; D(m®LFDM®L T; LeC(m),D(m),®!ZIC(m) 0
T'; D(M)®L — LoC(m),D(m),D(m),L, l~1C(m) 0
I'; D(m),D(m), L, ®~Ic(m) 0
T; (D(m)@D(m)),L,®IZ1C(m) I 0

®L, oLt

-1
’

—o L

Der.

T; L,gZic(m) ko0

T; 1,L,@Zic(m) 0

T; (D(m)®D(m))®1,L, @ C(m)F0

I'; D(m) — (D(M)@D(m))®1,D(m), L, ®/Z;C(m) I- 0
I'; D(m),L,®_1C(m) F 0

Der.

Figure 1: Proof of inductive case

Accepted for the 3rd. Irish Workshop in Formal Methods
Galway, Ireland, July 1-2, 1999

—o L

1L
oL

]020104d & pue s21607] ano-

Four Logics and a Protocol

C Coq Proofs

e Any newly created datagram is a valid one

Lemma Val i dNewDG :

(src, dst: | Paddress) (dt:data)(tm nat)

(val i dDG (newDG src dst tmdt)).
Proof.

Intros; Hnf; Apply howToCalc with dg: =(nkDG src dst tm O dt).
Qed.

e Any Received DG has been sent by its source

Lemma RecvMeansSend :
(dg: dat agram
(r:(RECV (source dg) (dest dg) (contents dg)))
{tmnat & (SEND (source dg) (dest dg) tm (contents dg))}.
Proof.
I nduction r.
Clear r dg; Intros dg ARR VAL.
Exists (ttl dg).
Left.
Apply SendValid
with dg: =(newbDG (source dg) (dest dg) (ttl dg) (contents dg)).
Apply Val i dNewDG
Qed.

e The first datagram is received before the second

Lemma recvOrdered :
(It (tinmed r1) (timed r2)).
Proof.
Apply Ittrans with m=(ti meOf s2).
Apply It_trans with m=(plus (timed sl) (ttl dgl));
[Apply timeBound | Apply SendGap].
Apply recvAfter.
Qed.

Third Irish Workshop in Formal Methods, 1999 24

Accepted for the 3rd. Irish Workshop in Formal Methods
Galway, Ireland, July 1-2, 1999

