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Abstract 

Measurement error in BMI is known to be a complex process has serious consequences 
for traditional estimators. In this paper I examine the extent to which Stochastic Multiple 
Imputation approaches can successfully addressing this problem. Using both Monte Carlo 
simulations and real world data I show how the MI approach can provide an effective 
solution to measurement error in BMI in appropriate circumstances. The MI approach yields 
consistent estimates that efficiently use all the available data. 
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1. Introduction 
 

Obesity is an important cause of morbidity, disability and premature (WHO, 2009).  

Body Mass Index (BMI), defined as weight in kg/height in m2, is the most widely used 

measure of obesity. However, there is a large body of evidence that shows that individuals 

misreport both their height and weight in surveys leading to biased estimates of BMI. 

Furthermore, O’Neill and Sweetman (2013) show that the popular econometric approaches 

that have been adopted to address problems of measurement error in BMI, such as the 

Regression Calibration approach and the Instrumental Variable approach, continue to exhibit 

significant biases. These biases reflect the non-classical nature of the measurement error in 

BMI. O’Neill and Sweetman (2013) propose a Multiple Imputation (MI) approach to 

overcome measurement error in BMI. This approach builds on work by Brownestone and 

Valetta (1996) who used a version of the MI approach to address concerns about 

measurement error in earnings, a left hand side variable in their regression analysis. In this 

paper I examine the extent to which the MI approach can address the measurement error in 

BMI, when BMI is an explanatory variable in a linear regression model. The contribution of 

MI to overcoming self-reported bias is illustrated using both simulations and real world data.  

The layout of the paper is as follows. Section 2, summarises earlier work on measurement 

error in BMI, with particular emphasis on the non-classical nature of the measurement error. 

Section 3 summarises the MI approach to missing data. Section 4 evaluates the MI approach 

for measurement error using Monte Carlo simulations, while section 5 applies the MI 

approach to a real world application examining the impact of BMI on income. Section 6 

concludes. 

 

2. Measurement Error in Self-Reported BMI 

O’Neill and Sweetman (2013) provide a detailed examination of measurement error in 

self-reported BMI using data from both Ireland and the US. The key feature of the data sets 

used in their analysis is that in addition to self-reported height and weight the data also 

contained recorded clinical measures of height and weight. The availability of reported and 

recorded height and weight allowed the authors to measure the extent of measurement error 



in reported BMI, and also characterise the nature of this error process. O’Neill and Sweetman 

(2013) proceeded to examine the consequences of this error for a linear regression model 

relating BMI to income. Crucially they found that measurement error in self-reported BMI 

deviated from textbook classical error model in a two important ways. Firstly the error was 

correlated with the true value and secondly the error contained information about outcomes 

over and above that available in the true recorded measure of BMI. In the statstitics literature 

the second proprty is a violation of the surrogacy condition; in econometrics it is more 

typically referred to as differential measurement error.   

The bias in the OLS estimator in these circumstances is given by  

ൌ ఉሼ௏௔௥ሺ௑ሻା஼௢௩ሺ௨,௑ሻሽ
௩௔௥ሺ௑ሻା௩௔௥ሺ௨ሻାଶ஼௢௩ሺ௨,௑ሻ

൅ ஼௢௩ሺ௨,ఌሻ
௩௔௥ሺ௑ሻା௩௔௥ሺ௨ሻାଶ஼௢௩ሺ௨,௑ሻ

    (1) 

where X is the true recorded measure of BMI, u is the measurement error in reported 

BMI and ε is the stochastic component of the income data generating process. Differential 

measurement error is captured in the last term reflecting the correlation between u and ε. 

O’Neill and Sweetman (2013) find this correlation to be negative and substantial in bith the 

Irish and US data sets they examine. The regression calibration approach often used in this 

literature, involves using the observed X alone to impute values for the missing data. O’Neill 

and Sweetman (2013) show that while this approach can correct for the correlation between 

the measurement error in X and its true value, it fails to adequately control for the differential 

nature of the measurement error.  In the conclusion of their paper they propose a stochastic 

imputation technique to adjust for differential measurement error. In the remainder of the 

paper we consider the effectiveness of such an approach. 

 

3. Multiple Imputation  

Schafer (1997) provides a detailed overview of the analysis of incomplete 

multivariate data. The simplest way to deal with missing data is to base the final analysis only 

on complete case observations. However, at best this approach may be highly inefficient and 

result in a significant amount of valid information being excluded from the final analysis.  MI 

is an algorithm for tackling arbitrary patterns of missing data, first proposed by Rubin (1978). 

It uses the fact that in any incomplete data set the observed values provide indirect evidence 



about the likely values of the unobserved ones. This is captured in the predictive probability 

distribution of the missing data given the observed data, [ ]|miss obsP D D . Rather than treating 

missing data as a nuisance factor to be gotten ridden of, MI views the missing data as a 

source of variability to be averaged over. To see this note that the observed case likelihood 

function, ( ) ( )| , |obs miss obs missp D p D D dDθ θ= ∫ , can be rewritten as 

( ) ( ) ( )| | , |obs obs miss miss obs missp D p D D p D D dDθ θ= ∫ . The first term inside the integral sign is 

just the complete case likelihood. This is often easy to calculate, even in circumstances where 

the observed case likelihood may be intractable. The second term is the predictive 

distribution of the missing data given the observed data. This expression makes it clear that 

the observed likelihood is obtained by averaging the complete case likelihood over the 

predictive distribution of the missing data.  

Evaluating the necessary integral analytically may be complicated. The MI approach 

solves the problem by estimating the integral using stochastic simulation techniques. In 

particular repeated samples are drawn from [ ]|miss obsP D D . At each draw the missing data 

missD  is replaced (imputed) using the draw from the predictive distribution. For each of these 

imputed samples  the parameter of interest is estimated treating the imputed data as observed. 

Final point estimates and standard errors are obtained by combining these estimates using 

rules provided by Rubin (1987). Provided the draws are from the correct predictive density 

(often termed proper imputations) these combined estimates are standard errors will correctly 

reflect the missing-data uncertainty.  

The key to performing proper imputation is ensuring the imputed missing data are 

drawn from the correct predictive distribution. In many cases researchers rely on data 

augmentation approach of Tanner and Wong (1987) to achieve this. However, in the case of 

the normal linear regression model obtaining proper draws is more straightforward 

(Freedman et al. 2008). To proceed in the case of measurement error assume we have a 

validation data set containing true values for the outcome variable Y and the regressor X, 

along with mismeasured value for X which we denote Xe. Many of the proposed estimators 

for tackling measurement error rely on such a validation data set and validation samples often 

arise in medical applications where collecting true values of X for everyone would prove 

costly. For the remainder of the sample we only have the outcome variable Y and reported  

Xe. Such a data scheme is illustrated in Figure 1. The MI approach to measurement error 



proceeds by imputing the missing values of X using observed data Y, Xe and X (when 

available). Fro the normal linear regression model proper imputations may be obtained as 

follows. 

1. For the validation sample run the regression 1 2 3
eX X Y eα α α= + + + . 

2. From this regression obtain point estimates, the variance covariance matrix of the 

estimator and estimated sum of squared residuals. 
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3. Draw parameter values from posterior parameter distributions 
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4. Draw a value of the error term from ( )2~ 0,pos posNω σ  

5. Generate imputed values of X  using 
^

1 2 3
e

pos pos pos pos posX X Yα α α ω= + + +  if X is 

missing and X otherwise 

6. Run the final regression of interests with the observed and imputed values 
^

1 2 posY Xβ β υ= + + . 

7. Repeat steps 3-6 m-times and combine the m-estimates using Rubin’s rules to 

obtain final imputation estimates. The final point estimate is simply the average of 

the estimates across the m imputations, while the variance of the estimator is a 

weighted average of the average of the m within sample standard errors and the 

variance of the estimates across samples. 

In the following section we evaluate this approach using simulated data and compare it to 

other popular alternatives. 

 

4. Monte-Carlo Simulation Results 



To compare alternative approaches to adjusting for measurement error we consider the 

following data generating process.  
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For our purposes the crucial feature of this data generating process is the differential 

measurement error as captured by the negative correlation between u and ε. Having generated 

this data for everyone I randomly replace half of the true X as missing to mimic the 

validation data illustrated in Figure 1. I then estimate the parameters β using a number of 

alternative estimators. In particular I consider the naive or denial estimator which just uses 

the reported Xe, ignoring measurement error.  I also consider the standard RC approach 

which uses the relationship between X and Xe in the validation sample to impute values for X 

in non-validation sample. I consider an amended RC approach which adds Y as an 

explanatory variable to the imputation process. This is equivalent to only using the first step 

of the MI approach to do the imputation, treating estimated parameters as fixed truths and 

ignoring the stochastic component of the data generating process. I also consider the 

complete case analysis which in my simulations throws out half of the data. Finally I consider 

the stochastic MI approach outlined in Section 3. In all the simulations the sample size is 

1000 and I run 1000 simulations. Within each simulation the MI approach itself is repeated m 

times. In these simulations I choose m=10. The results are given in Figure 2. 

The dark blue curve gives the sampling distribution of the OLS estimator of the slope 

coefficient using true X and Y for full sample. This is included for comparison purposes and 

is centered at the true value of .4. To the far left of the graph the denial estimator is 

represented by the red distribution. As expected this estimator is badly biased with a mean 

value equal to .2, half of the true value. This reflects the traditional attenuation bias 

associated with classical measurement error plus the additional downward bias resulting from 

the negative differential measurement error. Moving to the right in figure 2 we have 

regression calibration estimator represented by the black distribution. As expected, given the 

results in O’Neill and Sweetman (2013), this estimator is better than the naive estimator in 

that it corrects for classical measurement error but fails to adjust for the downward bias due 

to our differential error, and so remains inconsistent. 



The MI estimator is given by the green distribution. Unlike the RC estimator MI Is 

consistent. Furthermore it is more efficient than the complete case estimator because it uses 

data more effectively is more efficient than the complete case approach.  Finally I compare 

the MI estimator to the amended RC which simply adds Y to the imputation process but fails 

to consider the uncertain nature of parameter estimates or the role of stochastic term in the 

imputation process. Although the presence of the outcome variable in the imputation model is 

crucial for control for differential measurement eror using this approach, these results clearly 

show how just adding the outcome measure to the imputation process is not sufficient. 

Failure to properly control for the uncertainty in the imputation process attributes too much 

importance to the relationship between Y and X, resulting in the amended estimator being 

biased in the opposite direction to the traditional RC approach.  

These simulations highlight the valuable role played by MI approach when dealing 

with differential measurement error. It provides consistent estimates in this instance, while 

other popular estimators struggle. In the next section I apply these approaches to the real 

world example considered by O’Neill and Sweetman (2013). 

 

5.  Multiple Imputation of Self-Reported BMI. 

 O’Neill and Sweetman (2013) show that the popular econometric approaches that 

have been adopted to address problems of measurement error in BMI, such as the RC 

approach and the Instrumental Variable approach, continue to exhibit significant biases. This 

largely reflects the differential nature of the measurement error in self-reported BMI, a 

feature of the error process highlighted in their study using both Irish and US data.  They 

suggested a stochastic multiple imputation approach to correct for self-reported measurement 

error. In this section I apply the imputation procedure discussed above to the Irish Growing 

Up in Ireland (GUI) survey. The GUI data tracks the development of a cohort of Irish 

children born between November 1997 and October 1998. The data used for this analysis are 

from the first wave of interviews, which were carried out between August 2007 and May 

2008. In addition to self-reported measures of height and weight, the GUI also contains 

independent measures of the respondent’s height and weight. I refer to the latter as recorded 

measures and treat them as the true height and weight of the respondents. In the GUI sample 

the recorded measures were obtained by the interviewer in the respondent’s home at the end 



of the interview. The respondent was unaware that these measurements would be taken at the 

time they were providing their self-reported measures. Although recorded BMI is available 

for everyone for the purposes of exposition I only use the recorded BMI indirectly in the 

imputation process. This is true for both the regression calibration approach and the MI 

approach. I restrict the GUI sample to biological mothers of the study child who were not 

pregnant at the time of the study I am left with a working sample size of 6637.  

42.65% (13.9%) of mothers in the GUI sample are overweight (obese) on the basis of 

self-reported data. However, the true numbers are 49.55% and 17.34%. This illustrates a clear 

tendency for individuals to underestimate their BMI in self-reported data. In addition O’Neill 

and Sweetman (2013) show that this error is both non-classical and differential and illustrate 

the consequences of such an error process by examining the relationship between income and 

obesity.  

In this section we replicate some of the earlier result sof O’Neill and Sweetman 

(2013) but in addition consider the new stochastic MI approach. The results are given in 

Table 1. The first column reports the results based on recorded BMI and shows a significant 

negative correlation between BMI and income. Column 2, reports the results when self-

reported BMI is used in place of recorded BMI. In contrast to what one would expect with 

classical measurement error use of reported BMI overstates the true effect. Column 3 shows 

that the traditional regression calibration approach does nothing to alleviate the bias, with the 

RC estimator in this case being almost identical to the simple denial estimator based only on 

reported BMI. The similarity of the two estimators reflects a combination of offsetting biases 

in both estimators and warns researchers against using the similarity of two estimators to 

make inferences on the presence or nature of measurement error. Adding income to RC 

model does not help our estimation and if anything only exaggerates the bias further. Finally, 

column 5 shows the results for the MI estimator. In keeping with the simulation results 

presented earlier the MI point estimate is very similar to the true estimate, although the 

standard error is somewhat larger.  

These results illustrate in practice how the MI approach can be combined with 

internal validation data to overcome problems of self-reported BMI, despite the complicated 

nature of the error process.  

 



6. Conclusion 

Measurement error in BMI is known to be a complex process involving non-classical and 

differential measurement error. This can cause serious problems for traditional estimators, 

with the magnitude of the biases often uncertain and potentially opposite to what one would 

expect from classical textbook model. In this paper I examine the role of MI in addressing 

this problem. Using both Monte Carlo simulations and real world data I show how the MI 

approach can provide an effective solution to measurement error in BMI. 
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Table 1: Alternative Estimates of the relationship between BMI and Income  

 OLS 
(True) 

OLS 
(Self‐
Reported)  

Regression 
Calibration 

Regression 
Calibration 
+y  

Multiple 
Imputation 

BMI  ‐.82 
(.09)  

‐.92 
(.097)  

‐.918 
(.097)  

‐.93 
(.097)  

‐.83 
(.103)  

N  6637  6637  6637  6637  6637  

      

 

Figure 1: Validation Data Set 

Y  X  Xe

√  √  √  

√ √ √ 

√ √ √ 

√ .  √ 

√ .  √ 

√ .  √ 

√ .  √ 

 



 

Figure 2: Monte-Carlo Simulation Results with Differential Measurement Error 
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