
Transforming EVENT B Models into Verified C#
Implementations

Dominique Méry1 and Rosemary Monahan2

1 Université de Lorraine
LORIA, BP 239, 54506 Vandœuvre lès Nancy, France

mery@loria.fr
2 Department of Computer Science,

National University of Ireland, Maynooth, Co. Kildare, Ireland
rosemary.monahan@nuim.ie

Abstract

The refinement-based approach to developing software is based on the correct-by-construction
paradigm where software systems are constructed via the step-by-step refinement of an initial high-
level specification into a final concrete specification. Proof obligations, generated during this process
are discharged to ensure the consistency between refinement levels and hence the system’s overall
correctness.

Here, we are concerned with the refinement of specifications using the EVENT B modelling lan-
guage and its associated toolset, the RODIN platform. In particular, we focus on the final steps of
the process where the final concrete specification is transformed into an executable algorithm. The
transformations involved are (a) the transformation from an EVENT B specification into a concrete
recursive algorithm and (b) the transformation from the recursive algorithm into its equivalent itera-
tive version. We prove both transformations correct and verify the correctness of the final code in a
static program verification environment for C# programs, namely the Spec# programming system.

1 Introduction
EVENT B is a formal modelling language developed by Abrial [1]. Key features of EVENT B are the use
of set theory as a modelling notation, the use of refinement to represent software systems at different
abstraction levels and the use of mathematical proof to verify consistency between refinement levels.
This mathematical proof is typically achieved in a semi-automated way, with the user interacting with
theorem proving tools using the RODIN platform. The final concrete representation of the system
results from discharging accumulated proof obligations, which are recorded as invariants of the system
under development.

In this paper, we focus on the transformation of the final concrete specification into an executable
algorithm. We present the transformations for (a) transforming an EVENT B specification into a re-
cursive algorithm and (b) transforming from that recursive program to an iterative version of the same
program. We prove both transformations correct and verify the correctness of the final code in a static
program verification environment for C# programs, namely the Spec# programming system. This work
is a component of our general framework for integrating two popular approaches to formal software de-
velopment. In this framework we combine the efforts of program refinement as supported by EVENT B
and program verification as supported by the Spec# programming system. The architecture induces a
methodology [12], which improves the usability of formal verification tools for the specification, the
construction and the verification of correct sequential algorithms.

In the sections that follow, we provide an overview of EVENT B, our integrated development frame-
work and the transformations that form an essential component of the transformation of concrete speci-
fications into an executable recursive program. Finally, we present the iterative program verified in the

1

2 2 THE EVENT B MODELLING FRAMEWORK

automatic program verification environment of the Spec# programming system.This verification ensures
that the generated program is correct with respect to the initial EVENT B abstract model.

2 The EVENT B Modelling Framework
EVENT B [1] is a formal method for system-level modelling and analysis. An EVENT B model is
defined via contexts and machines. As shown in Figure 1, machines express dynamic information about
the model via events, which modify state variables that are defined in the contexts. Machines may also
express other properties, such as invariant and safety properties of the model.

An event is equivalent to a reactive action waiting for a condition (called a guard) to hold in order
to trigger an action. It has three main parts: a list of local parameters, a guard G and a relation R over
values of state variables denoted pre-values (x) and post-values (x′). When the guard holds the actions
in the event body modify the state variables according to the relation R. The before–after predicate
BA(e)(x, x′) associated with each event describes the event as a logical predicate for expressing the
relationship linking values of the state variables just before, and just after, the execution of event e. We
indicate the ith action in each event using the prefix acti. The most common event representation has
the form

ANY t WHERE G(t, x) THEN x : |(R(x, x′, t)) END

where t is a local parameter and the event actions establish x : |(R(x, x′, t)). The form is semanti-
cally equivalent to ∃ t· (G(t, x) ∧ R(x, x′, t)).

MACHINE specquare
SEES square0
VARIABLES
r

INVARIANTS
inv1 : r ∈ N

EVENTS
EVENT INITIALISATION

BEGIN
act1 : r := 0

END
EVENT square computing

BEGIN
act1 : r := n ∗ n

END
END

CONTEXT square0
CONSTANTS
n

AXIOMS
axm1 : n ∈ N

END

• square0 is a context defining properties of a natural number n

• specsquare is a machine with an event square computing comput-
ing the square function for n and assigning the value to r.

• The SEES clause related the context and the machine.

Figure 1: EVENT B structure: context and machine

These basic structures are extended by the refinement process, which provides a mechanism for
relating an abstract model and a concrete model by adding new events or by adding new variables. This
mechanism allows the gradual development of EVENT B models and the validation of each decision
step. The refinement of a formal model allows us to enrich our formal reactive models via a step-by-step
approach and is the foundation of our correct-by-construction approach [7]. Refinement provides a way
to strengthen invariants and to add details to a model. It is also used to transform an abstract model to a
more concrete version by modifying the state description.

3

Refinement is achieved by extending the list of state variables (and possibly suppressing some of
them), by refining each abstract event to a set of possible concrete versions, and by adding new events.
The abstract (x) and concrete (y) state variables are linked by means of a gluing invariant J(x, y), which
must be maintained throughout the system modelling. A number of proof obligations ensure that each
abstract event is correctly refined by its corresponding concrete version, each new event refines skip, no
new event takes control forever and relative deadlock freedom is preserved. The refinement relationship
is expressed as follows: a model M is refined by a model P , when P simulates M . The final concrete
model is close to the behaviour of the final software system that executes events using real source code.
In this paper we present the translation of these concrete models to recursive and iterative algorithms
that can be directly mapped to code.

The EVENT B modelling language is supported by the Atelier B [3] environment and by the RODIN
platform [14] . Atelier B and the RODIN platform both provide facilities for editing contents and
machines, refinements, contexts and projects, for generating proof obligations corresponding to a given
property, for proving proof obligations in an automatic or/and interactive process and for animating
models.

3 Implementing EVENT B models
Our integrated development framework for implementing abstract EVENT B models brings together the
strengths of the refinement based approaches and verification based approaches to software develop-
ment. In particular, our framework supports:

1. Splitting the abstract specification to be solved into its component specifications.

2. Refining these specifications into a concrete model using EVENT B and the RODIN platform.

3. Transforming the concrete model into recursive and iterative algorithms that can be directly im-
plemented as real source code.

4. Verifying the iterative algorithm in the automatic program verification environment of Spec#.

In this paper we focus on the transformations involved in item number three above. First we provide
an overview of our integrated development framework to help set the context of our work.

3.1 An overview of our integrated development framework
Figure 2 provides an overview of our framework for refinement based program verification. The problem
to be solved is stated as a collection of method contracts, in the form of a Spec# program. Spec# is a
formal language for API contracts (influenced by JML, AsmL, and Eiffel), which extends C# through a
rich assertion language that allows the specification of objects through class invariants, field annotations,
and method specifications [8, 2]. Method preconditions, annotated with the keyword requires, express
the constraints under which the method will execute correctly. Method postconditions, annotated with
the keyword ensures, express what should happen as a result of the methods proper execution. The
post-condition of methods may refer to the return value of a method using the keyword result. The type
of the value stored in result must be a subtype of the method’s return type. Note also that variables in
post-conditions can be prefixed with the keyword old e.g., x = old(x) + 1 indicates that the new value
of x is the old value incremented by 1.

Spec# comes with a sound programming methodology that permits the extended static verification
of specifications and their implementations. This process is represented by the arrow labelled checking

4 3 IMPLEMENTING EVENT B MODELS

in Figure 2. Dynamic analysis allows the compiler to emit run-time checks at compile time, record-
ing the assertions in the specification as meta-data for consumption by downstream tools. This allows
the analysis of program correctness before allowing the program to be run. Internally, it uses an auto-
matic SMT solver (such as Simplify [6] or Z3 [5]) that analyses the verification conditions to prove the
correctness of the program or find errors in it.

Note that in the traditional verification approach, the programmer provides both the specification
and its implementation. In our integrated development framework we use model refinement in Event B
to construct the Spec# implementation from its specification. This refinement also generates the proof
obligations that must be discharged as part of the verification. We add these as invariants and assertions
in the program so that its verification is completely automatic with the Spec# programming system. The
result is a program, from which we can obtain a cross-proof, which verifies that the refinement process
generates a program, which correctly implements its contract.

pre/post
(Spec# contract)

PREPOST
(Event B machine)

CONTEXT
(Event B context)

PROCESS
(Event B machine)

CONTROL
(Event B context)

ALGORITHM
(Recursive Algorithm)

program
(Spec# program)

OPTIMISED ALGORITHM
(Iterative Algorithm)

-call−as−event

?

checking

-SEES

6

REFINES

-SEES

?

generating-algorithm

6

EXTENDS

?

removing recursion

�translating

Figure 2: The specification and implementation of an algorithm containing a loop.

The refinement square (with nodes PREPOST, CONTEXT, PROCESS and CONTROL) in Fig-
ure 2, provides the mechanism for deriving annotations via refinement. It can be explained briefly as
follows:

• The EVENT B machine PREPOST contains events, which have the same contract as that ex-
pressed in the original pre/post contract. This machine SEES the EVENT B CONTEXT, which
expresses static information about the machine.

• The EVENT B machine PROCESS refines PREPOST generating a concrete specification that
satisfies the contract. This machine SEES the EVENT B context CONTROL, which adds control
information for the new machine.

5

• The labelled actions REFINES, SEES and EXTENDS, are supported by the RODIN platform
and are checked completely using the proof assistant provided by RODIN.

The result of the refinement is the EVENT B machine PROCESS, which contains the refined events and
the proof obligations that must be discharged in order to prove that the refinement is correct. The trans-
formation of this EVENT B machine PROCESS into a concrete iterative OPTIMISED ALGORITHM
is achieved via two transformations which we present in the sections that follow:

1. Transformation of an EVENT B machine into a concrete recursive algorithm (represented by the
arrow labelled generating-algorithm).

2. Transformation of this recursive algorithm into its equivalent partially annotated and iterative
algorithm (represented by the arrow labelled removing recursion).

4 Generating a recursive algorithm from the EVENT B machine

As seen in Figure 2 the result of the refinement is a concrete machine which contains events and their
associated proof obligations. Our approach to generating the recursive algorithm depends on the format
of these events and is determined by using the pre/post contract of the calling procedure. The event’s
format may be deterministic, may contain a recursive call of the procedure under development, or may
contain a call to another procedure which may (or may not) be already developed. The translation of
each event into a computable structure is based on a systematic transformation using control labels. Each
event is characterised by a current label and a next label. These control labels are added as annotations
in the event, their purpose being to simulate the different steps of the computation. The computation of
the recursive algorithm is described by the acyclic graph of labels describing the set of events used in
the computation.

4.1 Generating the machines computation graph

Each event e annotates one link in the computation graph, joining nodes that represent the event’s pre
and post labels. If e annotates the link `1

e−→ `2, then the guard of e contains a predicate ` = `1 and the
action of e contains ` := `2. From a label `1, the set of possible events that can be observed is denoted
by E(`1). The set of target labels, L(`1), are those labels that can be directly reached from `1 by an
event of E(`1). The graph of labels annotated by events, denoted (L, E ,−→), is built in a way such that
the label start (representing the initial event) has no incoming labels and the label end has no outgoing
labels. A further property of the graph is that, for any label ` ∈ L, there is a path from label start to
end via label `. Moreover, the graph has no cycles since we use recursive calls. This acyclic nature of
the graph leads to a recursive version of the algorithm that implements the specification.

For every label in the graph there exists, by construction, a bottom label. The bottom label satisfies
the following property: If there is a path from `1 to `2 via each `3 ∈ L(`1), and a path that leads directly
from `1 to `2 then the bottom label `2 is unique. This bottom label is denoted by ⊥(`1).

6 4 GENERATING A RECURSIVE ALGORITHM FROM THE EVENT B MACHINE

4.2 Deriving the Recursive Program
The next step is to derive a programming structure from the graph. As
the graph is acyclic, we derive a program that initially consists only of if
statements as illustrated. If we consider the label `1 we have the follow-
ing general pattern:

• The set of labels in L(`1) is {`31, . . . , `3n}.

• The guard of the event labelling the link from `1 to `3i is denoted
by ` = `1∧g`1,`3i(x) where x is a variable parameter of the guard.

• The sentence ` = `1 is removed in the translation.

• comp`3i denotes the result of the translation from `3i.

The translation process uses the labelled graph of events for translating
events into programming structures (hence defining what the statements
act`3i are). It achieves this by applying a rule for each label `, in each
of the three following scenarios: basic events, recursive calls and non
recursive calls. We discuss these three scenarios below.

/ ∗ ` = `1
IF act`31
/ ∗ ` = `31
comp`31

ELSIF act`32
/ ∗ ` = `32
comp`32

ELSIF act`3i
/ ∗ ` = `3i
comp`3i
. . .

ELSE act`3n
/ ∗ ` = `3n
comp`3n

FI
/ ∗ ` = ⊥(`1)

4.2.1 Case 1:Basic Events

If the event e is a basic event controlling the state of the variable x, guarded by g`1,`2(x) and modified
by the assignment x := f`1,`2 where f is a function, the event e takes the form below.

EVENT e
WHEN
` = `1
g`1,`2(x)

THEN
` := `2
x := f`1,`2(x)

END1

The translation omits the control variable `, introduces an IF statement
using the guard as the condition and translates the assignment to the
target programming language as long as the function f`1,`2 is imple-
mentable. If the event e labels the link `1

e−→ `2 then the statement
act`2 is defined as WHEN g`1,`2(x) THEN x := f`1,`2(x).
The function f`1,`2 must be deterministic and translated by an expression
definable in some programming language. The EVENT B models are
designed to satisfy this hypothesis. If the writer of the models can not
remove the non-determinism, the event falls into the two possible next
categories.

4.2.2 Case 2: Recursive Call of the Procedure

EVENT rec%PROC(h(x),y)%P(y)
ANY y
WHEN
` = `1
g`1,`2(x, y)

THEN
` := `2
x := f`1,`2(x, y)

END1

The definition of the event e is not executable and the trans-
lation is driven by instances of the control variable ` in the
guard (as ` = `1) and in the assignment (` := `2). The
statement act`2 is therefore defined as: PROC(h(x), y). The
choice of the event name is the responsibility of the writer
of the EVENT B models, who must identify the case corre-
sponding to a recursive call. RODIN authorizes any string and
we choose to indicate as much as possible the category of the
event (using the keyword rec) to facilitate the translation into
the programming language. The name is meaningful and an-
notates the EVENT B models.

Note that it is possible that other occurrences of rec%PROC(h(x), y)% start from the same label
and lead to the same post-label. For instance, if the postcondition P (y) holds in one possible event,

7

then another event, with the same pre-label and post-label, may occur with ¬P (y). In this case, the two
events are translated into one call.

4.2.3 Case 3: Non Recursive Call

In the third and final case, the event e can be transformed into a call of another procedure.

EVENT call%APROC(h(x),y)%P(y)
ANY y
WHEN
` = `1
g`1,`2(x, y)

THEN
` := `2
x := f`1,`2(x, y)

END1

The call is expressed by an event e, which we name
call%APROC(h(x), y)%P (y) and the statement act`2 is de-
fined as APROC(h(x), y).
However, the procedure APROC should already be defined (or
at least specified) by an EVENT B machine PREPOST. We
consider that there is a tree-like structure of sub-procedures
under development and we develop the identified procedure
APROC in the same way. This last case provides a way to
define a hierarchical structure of procedures, which are devel-
oped using the same methodology.

In summary, the annotated, and possibly recursive algorithm ALGORITHM is derived from the
PROCESS machine by a systematic transformation using the control labels to simulate the different
steps of the computation. The next step is the transformation of ALGORITHM, into a partially an-
notated and non recursive OPTIMISED ALGORITHM. This transformation will be presented in the
section that follows.

5 Transforming the recursive algorithm into an iterative one
A recursive procedure named APROC can be transformed into a non-recursive procedure named BPROC
via a transformation T as follows T (APROC) = BPROC. The source and target of the transformation
are stated below in Figure 3. The transformation T produces a new procedure without recursive calls
and preserves the partial correctness with respect to the pre and post specification. It must preserve the
operational semantics of the algorithms. This is, if [[A]] is the function denoting the procedure A then
[[T (A)]] = [[A]]. The permitted states are expressed as the set Σ = V → VALUES, where V is the set of
variables of the procedure and VALUES are their values.

Theorem 1. The transformation is sound with respect to the pre and post specification.

We consider the macro-expansion corresponding to the call APROC(x, y) leading to the set of
variables as V = x ∪ z ∪ y where the initial values of x, y, and z are x0, y0, and z0. We prove that
[[APROC]] = [[BPROC]] by considering two cases.

CASE 1 No iteration: Consider that C(x0) is true. Then [[BPROC]](x0, y0, z0) = g(x0), since
the WHILE loop is not possible and the post processing leads to y = g(x0).

CASE 2 Iteration: Consider that a sequence of values of x, namely x0 . . . xn, lead to a value such
that either C(xn) is true or D(xn) is true, causing the loop to stop iterating. The relation between these
values are defined by two sub-cases as follows:

Sub-case 2.1: The sequence is terminated by C(xn) and no value of (xi, zi) satisfies D(xi, zi).
Hence the following properties hold:

1. ∀i ∈ 0..n− 1.zi+1 = h(xi, zi)

2. ∀i ∈ 0..n− 1.xi+1 = fki(xi) with ki = 1 if E(xi−1, zi−1)

8 5 TRANSFORMING THE RECURSIVE ALGORITHM INTO AN ITERATIVE ONE

PROCEDURE APROC(x; VAR y)
PRECONDITION P (x)
POSTCONDITION Q(x, y)
BEGIN
LOCAL VARIABLES z
IF C(x) THEN
y := g(x);

ELSE
z := h(x, z);
IF D(x, z) THEN
y := f(x, z)

ELSEIF E(x, z) THEN
APROC(f1(x), y)

ELSE
APROC(f2(x), y)

ENDIF
END

PROCEDURE BPROC(x; VAR y)
PRECONDITION P (x)
POSTCONDITION Q(x, y)
BEGIN
LOCAL VARIABLES z
WHILE not C(x) ∧ not D(x, z) DO
z := h(x, z);
IF E(x, z) THEN

x := f1(x);
ELSE

x := f2(x);
ENDIF

ENDDO
IF C(x) THEN
y := g(x);

ELSEIF D(x, z) THEN
y := f(x, z);

ELSEIF E(x, z) THEN
y := f1(x);

ELSE
y := f2(x);
ENDIF

END

Figure 3: Transformation

3. ∀i ∈ 0..n− 1.xi+1 = fki(xi) with ki = 2 if ¬E(xi−1, zi−1)

4. ∀i ∈ 0..n.¬D(xi, zi)

The result y is therefore set by the statement y = g(xn). Hence [[APROC]](x0) = g(xn).
Next, we consider the procedure BPROC executed under the same conditions: We build the same

sequence of values for x and z, which ensures that the loop terminates when C(xn) ∧ ¬D(xn, zn).
Since the value xn satisfies C(xn), the next statement executed is y := g(x) giving y the final value
g(xn). Therefore, [[APROC]](x0) = [[BPROC]](x0).

Sub-case 2.2: The sequence is terminated by D(xn, zn) and no value of xi satisfies C(xi). Hence
the following properties hold:

1. ∀i ∈ 0..n− 1.zi+1 = h(xi, zi)

2. ∀i ∈ 0..n− 1.xi+1 = fki
(xi) with ki = 1 if E(xi−1, zi−1)

3. ∀i ∈ 0..n− 1.xi+1 = fki
(xi) with ki = 2 if ¬E(xi−1, zi−1)

4. ∀i ∈ 0..n.¬C(xi)

5. ∀i ∈ 0..n− 1.¬D(xi, zi)

9

The value xn satisfies D(xn, zn) and the result y is therefore set by the statement y = f(xn, zn+1).
Hence, [[APROC]](x0) = f(xn, zn+1). Similar reasoning on BPROC leads to termination of the loop
when D(xn, zn) and ¬C(xn). The next statement executed is the assignment y = f(xn, zn+1). Hence,
[[APROC]](x0) = [[BPROC]](x0).

By the reasoning applied to both cases above, the overall transformation of APROC into BPROC is
sound. We illustrate our approach by using a transformation for removing recursion in a given case. In
the next section, we illustrate the approach on the binary search problem.

6 Case Study: Binary Search Problem

The binary search problem is a classic algorithmic problem. We reformulate the development of a
solution and illustrate the use of the transformation rules for removing recursive calls from the algorithm
generated from the EVENT B machine.

6.1 Specifying the binary search problem

The input parameters of the binsearch procedure are: a sorted array t; the bounds of the array within
which the algorithm should search (lo and hi); and the value for which the algorithm should search
(val). Output parameters are result and a boolean flag ok that indicates if t(result) = val. The
procedure pre and post conditions are presented below in Algorithm 1.

Algorithm 1: binsearch(t, val, lo, hi, ok, result)

precondition :

t ∈ 0..t.Length −→ N
∀k.k ∈ lo..hi− 1⇒ t(k) ≤ t(k + 1)
val ∈ N
l, h ∈ 0..t.Length
lo ≤ hi

postcondition :

(
ok = TRUE ⇒ t(result) = val
ok = FALSE ⇒ (∀i.i ∈ lo..hi⇒ t(i) 6= val

)

The array t is sorted with respect to the ordering over integers and a simple inductive analysis
is applied leading to a binary search strategy. The specification is first expressed by two events cor-
responding to the two possible cases: either a key exists in the array t containing the value val, or
there is no such key. These two events correspond to the two possible resulting calls to the procedure
binsearch(t, val, lo, hi; ok, result):

• EVENT find is binsearch(t, val, lo, hi; ok, result) with ok = TRUE

• EVENT fail is binsearch(t, val, lo, hi; ok, result): with ok = FALSE

10 6 CASE STUDY: BINARY SEARCH PROBLEM

EVENT find
ANY j
WHERE
grd1 : j ∈ lo .. hi
grd2 : t(j) = val

THEN
act1 : ok := TRUE
act2 : i := j

END

EVENT fail
WHEN

grd1 : ∀k ·k ∈ lo .. hi⇒ t(k) 6= val
THEN

act1 : ok := FALSE
END

These two events form the machine called binsearch1 (which corresponds to the PREPOST ma-
chine of Figure 2). This machine is refined to obtain binsearch2 (which corresponds to PROCESS of
Figure 2). This refined machine contains a new control variable, l, which simulates how the binary
search is achieved.

6.2 Refinement for Computation
The two events EVENT find and EVENT fail are refined according to the following diagram. Note that
computations are controlled by the new control variable l, which takes on the values start, middle and
end to define the possible computation paths of the algorithm. We consider eight possible scenarios
within this refinement diagram:

1.

 l = start
lo = hi

t(lo) = val

 m1−→

 l = end
lo = hi

ok = TRUE ∧ result = lo

2.

 l = start
lo = hi

t(lo) 6= val

 m2−→

 l = end
lo = hi

ok = FALSE

3.
(

l = start
lo < hi

)
split−→

 l = middle
lo < hi

mi = (lo+ hi)/2

4.

l = middle
lo < hi

mi = (lo+ hi)/2
val < t(mi)

 rec(lo,mi−1,val,ok,result)−→
(

l = end
ok = TRUE ∧ t(result) = val

)

5.

 l = middle
lo < hi

val < t(mi)

 rec(lo,mi−1,val,ok,result)−→
(

l = end
∧ ok = FALSE ∧ (∀i.i ∈ lo..hi⇒ t(i) 6= val

)

6.

l = middle
lo < hi

mi = (lo+ hi)/2
val = t(mi)

 m3−→
(

l = end
ok = TRUE ∧ result = mi

)

7.

l = middle
lo < hi

mi = (lo+ hi)/2
val > t(mi)

 rec(mi+1,hi,val,ok,result)−→
(

l = end
ok = TRUE ∧ t(result) = val

)

8.

l = middle
lo < hi

mi = (lo+ hi)/2
val > t(mi)

 rec(mi+1,hi,val,ok,result)−→
(

l = end
∧ ok = FALSE ∧ (∀i.i ∈ lo..hi⇒ t(i) 6= val

)

Each of these scenarios are used to generate the refined events in the concrete machine binsearch2
with event names corresponding to the labels on the arrows in each scenario.

6.3 Generating the algorithm from events 11

6.3 Generating the algorithm from events
The events of the machine called binsearch2 are listed below. Note that events m1, m2, split and m3
correspond directly with scenarios 1, 2, 3 and 6.

EVENT m1 REFINES find
WHEN
grd1 : l = start
grd2 : lo = hi
grd3 : t(lo) = val

WITNESSES
j : j = lo

THEN
act1 : l := end
act2 : ok := TRUE
act3 : i := lo

END

EVENT m3 REFINES find
WHEN

grd1 : l = middle
grd3 : t(mi) = val

WITNESSES
j : j = mi

THEN
act1 : l := end
act2 : ok := TRUE
act3 : i := mi

END

EVENT m2 REFINES fail
WHEN
grd1 : l = start
grd2 : lo = hi
grd3 : t(lo) 6= val

THEN
act1 : l := end
act2 : ok := FALSE

END

EVENT split
WHEN

grd1 : l = start
grd2 : lo < hi

THEN
act1 : l := middle
act2 : mi := (lo + hi)/2

END

Scenarios 4 and 5 correspond to the case where val < t(mi) and hence the search continues on
the left part of the array. Two events will be generated for this case: one where the value is found
(OK = true), and one where the value is not found (OK = false). Similarly scenarios 7 and 8
correspond to the case where val > t(mi) and the search continues on the right part of the array. Again,
two events will be generated for this case: one where the value is found (OK = true), and one where
the value is not found (OK = false). We illustrate two of the four events below.

EVENT rightsearchOK REFINES find
ANY j
WHERE
grd1 : l = middle
grd2 : val > t(mi)
grd3 : j ∈ mi + 1 .. hi
grd4 : t(j) = val
grd5 : mi + 1 ≤ hi

THEN
act1 : i := j
act2 : ok := TRUE

END

EVENT rightsearchKO REFINES fail
WHEN

grd1 : l = middle
grd2 : val > t(mi)
grd4 : ∀j ·j ∈ mi + 1 .. hi⇒ t(j) 6= val
grd5 : mi + 1 ≤ hi

THEN
act2 : ok := FALSE

END

We identify that the translation from EVENT B into an algorithmic notation introduces new proof
obligations. These proof obligations state that the call is correct [15] i.e. the current state implies that
the precondition is true. In the case of our example, we prove that each guard of rightsearchOK and

12 6 CASE STUDY: BINARY SEARCH PROBLEM

rightsearchKO implies the precondition of the algorithm: the theorems labelled thcall1 and thcall2, in the
invariant below, express the discharged conditions.

Using the control variable l, we can apply our generating-algorithm transformation to produce the
recursive algorithm. The result is Algorithm 2 below which is derived from the refined EVENT B model
binsearch2. The control variable l is removed by introducing control via if statements.

Algorithm 2: Recursive Algorithm binsearch(t,val,lo,hi,ok,result).

precondition :
(

n ∈ N1 ∧ lo, hi ∈ dom(t) ∧ lo ≤ hi
t ∈ 0 .. n− 1→ N ∧ ∀i.i ∈ 0..n− 2⇒ t(i) ≤ t(i + 1)

)
postcondition :

(
ok = true⇒ t(result) = val
ok = false⇒ (∀i.i ∈ lo..hi⇒ t(i) 6= val

)
local variables: mi ∈ Z

start :

(
n ∈ N1 ∧ lo, hi ∈ dom(t) ∧ lo ≤ hi
t ∈ 0 .. n− 1→ N ∧ ∀i.i ∈ 0..n− 2⇒ t(i) ≤ t(i + 1)

)
if lo = hi ∧ t(lo) = val then

result := lo; ok := true;
else

if lo = hi ∧ t(lo) 6= val then
ok := false;

else
mi := (lo + hi)/2;

middle :

 mi = (lo + hi)/2

val < t(mi)⇒ ∀k.k ∈ mi..hi⇒ t(k) 6= val
val > t(mi)⇒ ∀k.k ∈ lo..mi⇒ t(k) 6= val

if t(mi) = val then

result := mi; ok := true;
else

if mi + 1 ≤ hi ∧ t(mi) < val then
binsearch(t,val,mi+1,hi,ok,result);

else
if lo ≤ mi− 1 ∧ t(mi) < val then

binsearch(t,val,lo,mi-1,ok,result);
else

ok:=FALSE

;

end :

{(
ok = true⇒ t(result) = val
ok = false⇒ (∀i.i ∈ lo..hi⇒ t(i) 6= val

)}
;

Finally, using RODIN we prove that the following assertion is an invariant for our model and hence
it can be used for inferring the invariant of the generated code.

6.4 Transforming the Binary Search Recursive Procedure 13

inv1 : i ∈ 1 .. n
inv2 : l ∈ LOC
inv3 : dom(t) = 1 .. n
inv4 : mi ∈ 1 .. n
inv5 : l = middle⇒ lo < hi ∧mi ∈ lo .. hi
inv6 : l = middle ∧ val < t(mi)⇒ (∀k ·k ∈ mi .. hi⇒ t(k) 6= val)
inv7 : l = middle ∧ val > t(mi)⇒ (∀k ·k ∈ lo .. mi⇒ t(k) 6= val)
inv8 : l = end ∧ ok = TRUE⇒ i ∈ lo .. hi ∧ t(i) = val
inv9 : l = end ∧ ok = FALSE⇒ (∀k ·k ∈ lo .. hi⇒ t(k) 6= val)
inv10 : lo .. hi ⊆ 1 .. n
thcall1 : (∃j ·l = middle ∧ j ∈ mi + 1 .. hi ∧ key > t(mi) ∧ t(j) = key ∧mi + 1 ≤ hi)

⇒ mi + 1 ≤ hi
thcall2 : (∃j ·l = middle ∧ j ∈ lo .. mi− 1 ∧ key < t(mi) ∧ t(j) = key ∧ lo ≤ mi− 1)

⇒ lo ≤ mi− 1

6.4 Transforming the Binary Search Recursive Procedure

In order to generate the iterative version of our algorithm, we apply the removing recursion transfor-

mation. We identify the rules condition C as

 lo = hi ∧ t(lo) = val
∨ lo = hi ∧ t(lo) 6= val
∨ lo < hi ∧mi = (lo + hi)/2 ∧ t(mi) = val

 and

obtain PROCEDURE binsearch(t, val, lo, hi, ok, result) as presented below in Figure 4.

6.5 Interpreting the algorithms within Spec#

In order to fully utilize our integrated development framework for refinement based program verifica-
tion, we have translated the resulting iterative algorithm into Spec#. As shown in Figure 5 this is almost
a one-to-one mapping. The main difference in the algorithms is that we simply return a value of −1
when our iterative algorithm sets OK to false and return the index where the value is found when our
iterative algorithm sets OK to true. The algorithm verified as correct, in less than 2 seconds using the
Spec# programming system (version 2011-10-03). No user interaction is required in the verification as
all assertions required (preconditions, postconditions and loop invariants) have been generated as part of
the refinement and transformation of the initial abstract specification into the final iterative algorithm. It
is interesting to note that, prior to formalising our transformation rules, our initial attempt at writing this
iterative C# program contained an error. This error in the loop body, was due to our omission to check
that the values of mi + 1 and mi − 1 were within the array bounds before narrowing the search space.
This error was immediately detected by the Spec# programming system. The automatic verification of
the final program is available online at http://www.rise4fun.com/SpecSharp/psP4.

This verification step acts as an insurance check for the correct-by-construction approach in two
ways. Firstly, while the Event B framework provides for the automatic verification of some proof obli-
gations, many proofs require the user to manually interact with the tools to provide guidance.This often
leads to error, typically introduced by incorrect assumptions made by the user while proving a proof
obligation. Having an alternative verification tool that automatically verifies that the final implemen-
tation is correct with respect to its specification re-assures the developer that their interactions were
correct at each stage of the development. Secondly, Event B is a modelling language where data types,
event guards and actions are logical structures based on set theory. While the programming structures
of Spec# have logical features, they also have programming constraints that must be taken into account

http://www.rise4fun.com/SpecSharp/psP4

14 7 RELATED WORK

PROCEDURE binsearch(t, val, lo, hi, ok, result)

PRECONDITION

 t ∈ 0..t.Length −→ N
∀k.k ∈ lo..hi− 1⇒ t(k) ≤ t(k + 1)
val ∈ N ∧ lo, hi ∈ 0..t.Length ∧ lo ≤ hi

POSTCONDITION

(
ok = TRUE ⇒ t(result) = val
ok = FALSE ⇒ (∀i.i ∈ lo..hi⇒ t(i) 6= val

)
BEGIN

WHILE not

 lo = hi ∧ t(lo) = val
∨ lo = hi ∧ t(lo) 6= val
∨ lo < hi ∧mi = (lo + hi)/2 ∧ t(mi) = val

 DO

mi := (lo + hi)/2;

middle :

 mi = (lo + hi)/2

val < t(mi)⇒ ∀k.k ∈ mi..hi⇒ t(k) 6= val
val > t(mi)⇒ ∀k.k ∈ lo..mi⇒ t(k) 6= val

IF mi + 1 ≤ hi ∧ val > t(mi) THEN

lo := mi + 1
ELSEIF lo ≤ mi− 1 ∧ val < t(mi) THEN

hi := mi− 1
ENDDO

IF lo = hi ∧ t(lo) = val THEN
result := lo; ok := true

ELSEIF lo = hi ∧ t(lo) 6= val THEN
ok := false

ELSEIF lo < hi ∧ t(mi) = val THEN
result := mi; ok := true

ELSE ok := false
ENDIF
END

Figure 4: PROCEDURE binsearch(t, val, lo, hi, ok, result)

when translation from the resulting iterative algorithm to a programming langauge. The cross veri-
fication increases trust in the final product ensuring that the semantics of the original specification is
maintained.

7 Related Work

The topic of program transformation, and in particular, the transformation of recursive programs to
iterative ones is not new. In 1965, Gordon [16] investigated the tranformation of recursive relations
to recurrence or iterative relations. He also addressed the transformation of non primitive recursive
functions (namely Ackerman’s function) into iterative functions, opening a new domain of research on
transformations and promoting the use of recursive definitions of algorithms. Later Strong [9] specified
the problem of transforming recursive equations into iterative equations expressed by flowcharts while
Pettorossi [13], aimed to improve a program’s memory usage. Research by Darlington and Burstall [4]
proposed a list of transformations, which can be automatically applied for removing recursive calls from
a program.

15

class BS {
int BinarySearch(int[] t, int val, int lo, int hi, bool ok)
requires 0 <= lo && lo < t.Length && 0 <= hi && hi < t.Length;
requires lo <= hi && 0 < t.Length;
requires forall {int i in (0:t.Length), int j in (i:t.Length); t[i] <= t[j]};
ensures -1 <= result && result < t.Length;
ensures (0 <= result && result < t.Length)==> t[result] == val;
ensures result == -1 ==> forall {int i in (lo..hi); t[i] != val};

{
int mi = (lo + hi) / 2;
while (!(lo == hi && t[lo] == val) || (lo == hi && t[lo] != val)

|| (lo < hi && (mi == (lo + hi) /2) && t[mi] == val))
invariant 0 <= lo && lo < t.Length && 0 <= hi && hi < t.Length;
invariant 0 <= mi && mi < t.Length;
invariant (val < t[mi]) ==> forall {int i in (mi..hi); t[i] != val};
invariant (val > t[mi]) ==> forall {int i in (lo..mi); t[i] != val};

{
mi = (lo + hi) /2;
if ((mi+1 <= hi) && (val > t[mi])) lo = mi +1;
else if ((lo <= mi-1) && (val < t[mi])) hi = mi - 1;

}
if ((lo == hi) && (t[lo] == val)) {ok = true; return lo;}
else{

if ((lo == hi) && (t[lo] != val)) {ok = false; return -1;}
else if ((lo < hi) && (t[mi] == val)) {ok = true; return mi;}

else {ok = false; return -1;}
} } }

Figure 5: Binary Search C# program corresponding to the generated iterative procedure.

Our work does not claim to discover new transformations. Instead we have extended these trans-
formations within EVENT-B models to integrate a correctness phase in the transformation. Our work
relates two complementary frameworks: the programming framework of C# and the modelling frame-
work of EVENT-B. We promote the development of annotated programs and present this as the main
contribution over previous work. We consider that the recursive algorithms are easier to generate using
our approach and they can be easily transformed to get an efficient iterative solution.

In our seminal work on code generation [12] we have developed a shortest path algorithm based
on the dynamic programming paradigm where the discovery of program invariants utilises the under-
lying inductive properties of the algorithm. The operational aspect of the iterative solution is useful
for improving the quality and efficiency of the resulting code. This is our motivation for transforming
our recursive algorithms into iterative ones, obtaining their correctness for free using our integrated de-
velopment framework, that brings together the world of system modelling and the world of program
verification.

8 Conclusion
We have presented and verified the correctness of two transformation rules, which transform EVENT B
models into iterative algorithms. The resulting algorithms are correct-by-construction and can be di-
rectly mapped into an executable programming language. We provide a cross-proof by verifying the

16 REFERENCES

correctness of our final program using the Spec# programming system. Our integrated development
framework (Figure 2) indicates where our transformations are used for producing a program that is
correct-by-construction. The translation of the PROCESS machine into a recursive algorithm is straight-
forward and removes the control variable used to relate events when generating the code.

This work builds on a method for code generation that is detailed by one of the authors in [11, 12]
and provides the foundation for an integrated development framework that brings together the world of
system modelling and the world of program verification. The EB2ALL code generation tool [10] can
also produce a program from the PROCESS machine. However, the control variable is not removed and
the resulting code is not structured. The advantage of our approach is the production of a structured
iterative program, which can be automatically verified using the Spec# programming system.

Our experience shows that our approach assists students in developing and understanding the tasks
of software specification and verification. It also makes different forms of formal software development
more accessible to the Software Engineers, helping them to build correct and reliable software systems.
Future work will include the development of adequate plugins, which will integrate and facilitate the
co-operation between Spec# tools and RODIN tools.

References
[1] J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge University Press, 2010.
[2] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming system: An overview. In

CASSIS 2004, Construction and Analysis of Safe, Secure and Interoperable Smart devices, volume 3362 of
LNCS, pages 49–69. Springer, 2005.

[3] ClearSy, Aix-en-Provence (F). Atelier B, 2002. Version 3.6.
[4] J. Darlington and R.M. Burstall. A system which automatically improves programs. Acta Informatica,

6(1):41–60, 1976.
[5] Leonardo de Moura and Nikolaj Björner. Z3: An efficient SMT solver. In Conference on Tools and Algorithms

for the Construction and Analysis of Systems TACAS, 2008.
[6] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for program checking. Journal

of the ACM, 52(3):365–473, May 2005.
[7] Gary T. Leavens et al. Roadmap for enhanced languages and methods to aid verification. In Fifth Intl. Conf.

Generative Programming and Component Engineering (GPCE 2006), pages 221–235. ACM, October 2006.
[8] Mike Barnett et al. Boogie: A modular reusable verifier for object-oriented programs. In Formal Methods for

Components and Objects: 4th International Symposium, FMCO 2005, volume 4111 of LNCS, pages 364–387.
Springer, 2006.

[9] H.R. Strong Jr. Translating recursion equations into flow charts. Journal of Computer and System Sciences,
5(3):254 – 285, 1971.

[10] D. Méry and N. Singh. eb2all.loria.fr, 2011.
[11] Dominique Méry. A simple refinement-based method for constructing algorithms. ACM SIGCSE Bulletin,

41(2):51–59, 2009-06.
[12] Dominique Méry. Refinement-based guidelines for algorithmic systems. International Journal of Software

and Informatics, 3(2-3):197–239, 2009-09.
[13] Alberto Pettorossi. Improving memory utilization in transforming recursive programs (extended abstract). In

Józef Winkowski, editor, MFCS, volume 64 of LNCS, pages 416–425. Springer, 1978.
[14] Project RODIN. Rigorous open development environment for complex systems. http://rodin-b-

sharp.sourceforge.net/, 2004.
[15] John C. Reynolds. The Craft of Programming. Prentice-Hall International series in computer science. Prentice-

Hall International, 1982.
[16] H. Gordon Rice. Recursion and iteration. Commun. ACM, 8(2):114–115, 1965.

	Introduction
	The Event B Modelling Framework
	Implementing Event B models
	An overview of our integrated development framework

	Generating a recursive algorithm from the Event B machine
	Generating the machines computation graph
	Deriving the Recursive Program
	Case 1:Basic Events
	Case 2: Recursive Call of the Procedure
	Case 3: Non Recursive Call

	Transforming the recursive algorithm into an iterative one
	Case Study: Binary Search Problem
	Specifying the binary search problem
	Refinement for Computation
	Generating the algorithm from events
	Transforming the Binary Search Recursive Procedure
	Interpreting the algorithms within Spec#

	Related Work
	Conclusion

