International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 7, July 2015

ISSN (Online): 2409-4285 www.|[JCSSE.org

Page: 178-189

PreSS#, A Web-Based Educational System to Predict Programming
Performance

Keith Quille', Susan Bergin® and Aidan Mooney’

" %3 Department of Computer Science, Maynooth University, Maynooth, Co Kildare, Ireland

'keith.quille.2014@mumail. ie, sbergin@cs.nuim.ie, *amooney@cs.nuim.ie

ABSTRACT

PreSS# (Predict Student Success #) is a web based educational
system developed during the academic year 2013/14. This paper
describes the design and development, highlighting the
methodologies and architecture of the system. The system builds
upon the findings of a previous study undertaken by Bergin [1],
who successfully developed a semi-automated computational
model named PreSS that could predict a student’s academic
performance in programming with an accuracy of over 80% after
only 4-6 teaching hours. PreSS used a paper based data collection
method and the analysis of the collected data required manual
data entry thus making PreSS administratively heavy. PreSS# is a
system that accurately replicates the performance of PreSS with
95% confidence (P jaue = 1.0 and a T ey = 0.0), is fully
functional and can compute predictions in real time with cross-
browser (mobile and desktop) compatibility. PreSS# is scalable,
secure and robust allowing it to be employed across different
institutions, ultimately leading to an increase in progression rates
by identifying both struggling and gifted (students in danger of
becoming disengaged) students earlier than had been previously
feasible.

Keywords: Web Based Application, Education, Learning,
Prediction, performance.

1. BACKGROUND AND INTRODUCTION
1.1 Background

PreSS (Predict Student Success) is a semi-automated
process that can predict student performance on an
Introductory Computer Programming module at a very
early stage (typically after four to six hours into the
delivery of the module) based on three attributes reduced
from an original set of 25 potential attributes [1]. The three
attributes were: Programming self-efficacy, Mathematical
ability (based on a high school mathematics exit
examination) and the number of hours per week that a
student plays computer games. The development of PreSS
was undertaken over a three year period in four different
institutions, consisting of one University, two Colleges

and one Community College. Over 200 students
participated in the study. PreSS used two computational
tools to predict student success, namely a data reduction
algorithm and a machine learning algorithm. The data
reduction algorithm used was Principal Component
Analysis (PCA) which was used to reduce the program-ing
self-efficacy data to a single principal component. The pre-
processed programming self-efficacy data consisted of ten
questions (see Appendix) and was based on the Rosenberg
self-esteem questionnaire [2] but modified to reflect a
student’s perception of their programming ability. PCA
reduced the ten data attributes to a single principal
component with an eigenvalue > 1 [3]. The machine
learning algorithm used was naive Bayes, which is a
probabilistic classifier, where the algorithm computes a
probability of how confident it is for each prediction.
Naive Bayes is computationally inexpensive and thus is
appropriate in a real-time web-based environment. The
PreSS model could predict with over 80% accuracy how
students were likely to perform in their final examination
after minimal time on a programming module. In the
PreSS study multiple algorithms including SVM,
backpropagation and decision trees were investigated with
naive Bayes achieving the highest accuracies. The naive
Bayes implementation was from the WEKA machine
learning toolbox. This toolbox will be used as the
benchmark platform when investigating PreSS#’s ability
to replicate the results of the PreSS Study [4].

1.2 Introduction

Computer science progression rates from first year into
second year were recently estimated at 74% at Irish third
level institutions [5]. It is well accepted that a large
contributor to the lower progression rates in computer
science is that students are struggling to master fundame-
ntal concepts in their first programming module [6].

With potentially large class sizes and limited resources
students who are likely to drop out or be unsuccessful may
not be identified until the final examination or in the later

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 7, July 2015

K. Quille et. al

stages of the module when it may be too late to introduce
interventions. The PreSS model was able to identify weak
students at an early stage of the module specifically
between four to six hours into the delivery of an introduct-
ion to programming module [1].

The PreSS study used a paper based data collection
method and thus it was time consuming to gather and input
the data. This made PreSS restrictive in the size of a study
that could be carried out due to the administration.
Furthermore, if PreSS was to be used across multiple
institutions with large student numbers, administration
would grow considerably and may inhibit the use of the
tool in its current form or introduce human error. The
analysis of the collected data is also time consuming, as
each entry has to be manually entered into the computa-
tional machine and each data field has to be manually
validated before entry. These overheads in terms of
administration and analysis resulted in a highly time
consuming process. The goal of the work presented in this
paper is to develop a web based system named PreSS#
which has PreSS at its computational core. PreSS# could
be used as a tool in an educational environment that would
allow educators to make informed decisions about
methodologies, differentiation and interventions at an
earlier stage that will enable both weak and strong students
to achieve their highest potential. Additionally a large
scale study could be completed using PreSS#, examining
the current effectiveness of the PreSS model, given the
change in landscape of the technology domain since the
original work by Bergin.

Before the project commenced, software requirements
were elicited in the following four domains: security, user,
device and system. The specific software requirements for
each domain are referenced by an ID tag which is used
throughout the paper when referring to a specific
requirement and are shown in Table 1; for example if the
Software Requirement in Table 1 had an ID of 1, the
reference will be (SR1).

Table 1: Software requirements for the development of PreSS#

ID Domain Description Rational
SR1 Security IP address capture | Track users of system,
of user in case of a breach
SR2 Security Encryption of all | If sever is breached,
content data is unusable
SR3 Security XXS, CSFR and | Three main cyber-
brute force attack methods
needing attention
SR4 Security HTTPS Encryption during
transit
SR5 Security Authentication Robust authentication,
user details encrypted.
SR6 User User creation | Allow rapid creation
(single & bulk | of large number of
upload) users
SR7 User Reset user | Reset (not view to
password change) user
password if required
SR8 User Training data | Allow rapid creation
-:l'hqj
<Y

179

(single & bulk | of large training
upload) instances
SR9 User Prediction system | Real time system,
with reporting
facilities
SR10 User Roles: student, | Roles used for
lecturer and admin | specific controller
access
SR11 User Student can only | Survey only required
take survey once once
SR12 | User Lecturer and | Student can redo
admin reset | survey if needed
survey
SR13 Device Device Phone, tablet, PC and
compatibility smart TV, HTMLS
and CSS3
SR14 | Device Dynamic controls | Web controls change
to be intuitive on
native device
SR15 System Development & | Fast development and
deployment deployment required
SR16 | System Separation of | Development in an
concerns MVC architecture
SR17 | System PCA Integration of PCA
into the system
SR18 | System Naive Bayes Integration of naive
Bayes into the system.
2. PLATFORM SELECTION

2.1 Server Selection

Selection of an appropriate software platform is vital in
developing a secure, robust and reliable system. The two
major leading software platforms are Ubuntu Server (Java)
and Microsoft Server 2008R2 (.NET). There have been
many debates over which platform is superior based on
market share, pricing etc. Market share is highly variable
based on time and the area of deployment [7] and pricing
can be considered less important if the quality of the
system is a priority, thus attributes such as security,
vulnerabilities and performance are considerably more
important here given the nature of the student data being
processed and the real time performance requirements.
These criteria are paramount if PreSS# as a tool is to be
used across multiple institutions with large student
numbers. This section discusses security, vulnerabilities
and performance in detail and concludes with platform and
language selection.

2.2 Security and Vulnerabilities

Security was a major factor in the selection of an overall
platform. A recent study of vulnerabilities and errors in
NET and Java found, other than input data validation
vulnerabilities (which have been addressed in the latest
release of .NET), IIS (Internet Information Services, the
NET web server) was less vulnerable than Apache
(Ubuntu Server Web Server) in every other examination of

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 7, July 2015

K. Quille et. al

error including access validation, configuration and design
errors [8]. Similarly, a study on security focusing on
encryption concluded that most Java encryption API’s
demonstrated relatively poor performances on the Linux
platform as compared to those on the Windows platform
[9]. One example of the poor encryption performance in
Java was the openSSL vulnerability, referred to as “Heart
bleed” [10] which was present on the Apache system, but
as Windows used a different SSL (SChannel) it was
unaffected by this vulnerability.

2.3 Performance in Database Management Systems

Performance relating to data storage and retrieval is key to
a real-time system, with large data sets. The Microsoft
platform typically uses Microsoft SQL Server whereas
Apache typically uses MySQL. These two database
management systems (DBMS) are associated with .NET
and Java respectively. A study by Bassil [11] analysed the
performance of several DBMS which included SQL Server
2008 R2 and MySQL 5.5. The database design was
identical on each DBMS, which included 15 distinct tables
and relationships with 1,000,000 records. The study
consisted of running ten queries varying in complexity
from a simple select-all query to highly mathematical
complex queries, thus completing a thorough analysis of
the performance of each DBMS. Bassil measured the
length of execution time of each query and found that SQL
server 2008R2 was 1% faster over the ten queries and also
faster in 80% of the individual queries [11].

2.4 Server and DBMS Conclusion

Even though there is a lot of public debate over which
platform and DBMS to use, the studies analysed have
provided evidence that the Microsoft Server is arguably
less vulnerable, has faster execution times and has a more
robust encryption algorithm than Apache [8]. The
Microsoft platform was chosen as a suitable platform for
the development of the web-based educational system.
Server 2008R2 and SQL Server 2008R2, both the market
leaders in the Microsoft platform range were selected. The
server used was a VPS server, located in a European data
centre. Additional security consisted of an industry
standard hardware firewall (Cisco ASA 5500), which only
allows remote access to the server operating system via
RDC (Remote Desktop Connection) from valid Irish 1P
address ranges thereby narrowing the possibility of
geographical attacks. The web system hosted on IIS can be
accessed via the HTTPS port, 443. Access via the Remote
Desktop Services (RDS) was secured with SSL encryption
and the latest server updates were automatically installed.

2.5 Language Selection

.;]'?I B

Yy

Sl

180

The initial short-listing of possible languages was based on
the use of the Model-View-Controller (MVC) architecture
as shown in the MVC architecture diagram in Figure 1.
This architecture was selected based on the separation of
concerns (SoC) design principle which fulfils the
requirements of PreSS# with modular and secure develop-
ment at the forefront (SR16). In MVC the architecture is
composed of three separate interconnected parts. The
Controller is the core and is implemented on the server
side. The Controller returns generated Views to the user
and the Controller get its data from Models which consist
of Plain Old CLR objects (POCO). The language short list
consisted of MVC4 .NET and Rails for Ruby, both of
which use MVC architecture. Both languages have their
own variation of MVC. Microsoft .NET was selected as
the development language as the authors have several
years of experience developing in .NET and it was felt that
this experience would lead to faster development. In
addition .NET easily integrates with the selected platform
(Microsoft Server 2008R2) and DBMS (Microsoft SQL
Server 2008R2) and includes some additional factors not
found in Rails for Ruby, which include data annotations
and the Entity framework which can increase the speed of
development. Both of which will be expanded upon in the

request

HTTRCL, etc.

response
Controller HTML RSS, XML,
JSON, ete.

demand// data \

Fig. 1. MVC architecture diagram

Model

Database. W5, etc

following sections.

3. DESIGN OF PreSS#

The design specification is illustrated by Figure 2 and
Figure 3. Figure 2 illustrates the UML case diagram for all
three types of users, outlining each case that the user may
access (SR10). Figure 3 illustrates the UML diagram of
the MVC architecture used with the actors accessing the
Views from the Controller. If the actor is a student they
may then complete the form in the View which is returned
to the Controller. The Controller then validates the data in

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 7, July 2015 181

K. Quille et. al

the form (if there are any validation errors, the same View
is returned to the student with validation error messages,
and this is repeated until the validation passes), and passes
the data into the naive Bayes and PCA models to compute
the predictions. The predictions are returned to the
Controller which may be sent to a lecturer/ teacher via a
View.

Student
Teacher Lecturer
Administrator
List training sets <l
Delete all traing sets

Delete single training set)=
Upload multiple training setg

‘

Fig. 2. UML use case diagram for the three types of users.

PreSS# Archilecture

naive Bayes @ PCA @

(Madel) (Mesdel)

||

Controlier

Reporting {i

System

Front End (View)

Fid

Student Lecwrer Adminismalor

Fig. 3. UML architecture diagram of PreSS#

4. DEVELOPMENT OF PreSS#
4.1 Development Overview

The development phase of PreSS# composed of three
parts: PCA and naive Bayes model development (Section
4.2), integration of both models into PreSS# (Section 4.3)
using the MVC Controller and the development of the web
systems interface and front end (MVC Views that are
generated by the Controller, Section 4.4) focusing on the
system requirements set out in Table 1. At each stage of
development an Agile approach was adopted focusing on
iterative development and constant testing. The testing will
be discussed further in section 5.

4.2 PCA and Naive Bayes Development

Two separate model classes were independently developed
and then examined to determine if they could accurately
replicate the results of the two techniques used in PreSS,
namely PCA and naive Bayes. These models could then be
integrated into a web-based solution. The models were
developed using C# .NET and the Accord.Net machine
learning framework [12]. To test input sets of different
sizes and validate the two models, separate systems were
developed to allow multiple variant test cases to be
investigated. These systems could also be used for future
work and investigations or for standalone PCA and naive
Bayes calculations.

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 7, July 2015 182

K. Quille et. al

4.2.1 PCA Overview

PCA plots all data points in a multi-dimensional space.
PCA essentially performs an orthogonal transformation
(rotation of data in multi-dimensions) to find the
covariance eigenvectors with the largest eigenvalues
which represented the largest distribution or effect of the
data set, hence selecting the principal component. This
was implemented in PreSS selecting eigenvalues > 1, to
reduce the 10 questions of the programming self-efficacy
attribute to one principal component [1, 3]. This can be
repeated for subsequent components to find the second
principal component etc. A graphical illustration of this
rotation of data in multi dimensions (one dimension per
attribute used) can be seen in Figure 4, where it can be
seen that the data is rotated until the largest eigenvalue is
found, which is illustrated by the additional arrows on the
figure.

Fig. 4. Principal Component Analysis showing an example of covariance
eigenvectors with the largest eigenvalues illustrated by the additional
arrows.

4.2.2 PCA Application

The .NET PCA model was created in a separate class
library and allowing for future integration into PreSS# and
other systems if necessary. The PCA application was
developed to allow data sets of different size and format to
be tested before it was finally integrated into the web
system. This was essential as the data set size in future
studies may vary significantly. The system also calculated
the first, second and third principal components allowing
for further properties to be examined throughout future
studies if required. It is worthy to note that PreSS only
used the first principal component after determining no
improvement to accuracy could be made by using
subsequent components. The system was able to open files
in two formats which allowed for quick loading of
different test data, either from WEKA (.ARFF format) or
from Comma Separated Values (.CSV) file formats. The
results were added to a visual output form and the system

allowed for the export of the results either via .CSV format
or to print the data. A visual reporting tool was also
developed to graphically display the first principal
component to aid the user in visualising the first principal
components for any post-hoc analysis of the data.

4.2.3 Naive Bayes Overview

Naive Bayes is a probabilistic machine learning classifier
which assumes that each attribute is of the same
importance as every other attribute. Naive Bayes by its
nature is a relatively low computationally intensive
algorithm as shown by Eq. (1). This makes naive Bayes
suitable for real time processing [4]. Another advantage of
naive Bayes is that for each prediction the algorithm can
compute a probability value of how confident it was of the
categorisation/prediction.

Ukelihood Class Prior Probability

P(x|e¢)Plc)

P(,\')

Predictor Prior Probability

Pc|x)=
Posterior Probability
P(c|X) = P(x, | €)% P(x, | €)% ---x P(x, |) x P(c) (O]

The probability returned from a naive Bayes calculation is
used to predict the success or failure of a student. A
prediction value P, where 0.0 < P < 0.5 will classify a
student as a weak student and a prediction value of P,
where 0.5 < P < 1.0 will classify a student as strong. This
prediction value P, is also used as a measure of how
confident naive Bayes is in its prediction, which is
strongest at a probability of one and zero respectively.
This confidence is weakest when the probability is
approaching the value of 0.5. For example, a student who
was classified as a strong programmer with a prediction
value P of 0.521 can be reclassified as a borderline-strong
student and included in any interventions to improve their
likelihood of success.

4.2.4 Naive Bayes Application

A standalone system was developed to investigate the
Accord.Net naive Bayes ability to replicate the findings of
the PreSS study while also validating the PCA of PreSS
itself [1, 12]. This system was also developed to test input
data sets varying in type and size allowing for the
possibility of multiple investigations such as holdout
testing and future pilot studies when they are completed.
All data was classified as continuous using the Accord.net
<IUnivariateDistribution> composite data type. The
system also produced the probability (confidence) of each
classification as shown in Figure 5. This was also very

Syt

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 7, July 2015

K. Quille et. al

useful for testing the model as if both .NET and/or WEKA
produced a different classification this could be used as a
measure of variance between the predictions.

"

KO Maive Bayes - Keith Quilie =

File Data Options

Training Set | Test Set | Restlls

Breakdown of predictions

Test Result Pred +- Prob | Dist

D00~ DU & WA =

C—-0—-400—=0=—2000 ==

DO =000 =0 = =000 ==

+

0.859
osn
0358
0.360
0.005
0848
0.887
0.291
0.530
0.215
0233
0.500
0.963
0.474
0.350

0141
0129
0642
0640
0995
0152
0113
0.709
0470
0785
0767
0.500
0037
0.526
0650

Fig. 5. A screen shot of the naive Bayes application developed running on
the PreSS study, showing the probability break down of each
classification.

The results table also contained a confusion matrix, as
shown in Figure 6. A confusion Matrix is a table
representing the breakdown of the predictions into four
categories that include, the number of strong students that
the system predicted to be strong, the number of strong
students that the system predicted to be weak, the number
of weak students that the system predicted to be weak and
finally the number of weak students that the system

predicted to be strong.

rm Naive Bayes - Keith Quille
File Data Options
Training Set | Test Set| Resulls

Test resulls

28/07/2014

Correct Clasifications
Incorrect Clasifications

Totalin test run

Correctly Classified Instances
Incorrectly Classified Instances

Confusion Table

29
12

Ones Correct
I Ones faied

0's Comect 52
0's failed 9

8
21

102

794118%
: 205882%

85.25%
14.75%

Fig. 6. A screen shot of the naive Bayes application developed running on
the PreSS study, showing the confusion matrix.

.;]'?I {
S]

B

Yy

T

183

Ten-fold cross validation (10FCV) was also implemented.
This is a best practice method to avoid over fitting [4] with
machine learning algorithms. This method is far more
involved than a hold-out method (this is where the data set
is split into two groups with one group used for training
and the other group used for testing) as it uses every
sample in a data set for both testing and training. This
reduces the chances of over fitting by removing any bias
that the holdout method may have introduced.

10FCV starts by first randomising the data set and then the
data is split into 10 folds of approximate equal size, this is
the most commonly used fold size [4]. If the data set size
does not allow for equally divided folds, the sets are
created as per Table 2 on 102 data samples. The data did
not divide equally into ten folds so the remaining data is
evenly dispersed into the folds starting at fold one, then
fold two as needed [4].

Table 2: Example of 10 folds, how the data is split before training /
testing begins with the PreSS study containing 102 samples.

Data Set Size = 102 _Folds = 10

11 11 10 | 10 | 10 10 | 10

A
(Fold)

B C D E F

Once the data is split into the 10 folds, 10FCV holds one
fold out for testing and trains on the remaining folds. For
example, using the data in Table 1, fold A is used for
testing and the naive Bayes model is trained on Folds B —
J. This process is then repeated using the next fold (fold
B) for testing and trains on the remaining folds. This is
repeated for all ten folds. This allows every entry fold to
be tested on an independent training set, without the same
entry being used for both training and testing. The results
are then averaged and used as the final predictions as if it
was only one test. I0FCV was not part of the Accord. NET
framework so it had to be developed separately in this
application. 10FCV was required for comparison testing of
the models of WEKA and .NET as WEKA has 10FCV as
a standard feature and it was the method used in the PreSS
study to obtain the overall accuracy of the model [1].

4.3 PCA and Naive Bayes Integration into PreSS#

The naive Bayes and PCA models were integrated into the
overall system and this can be seen in Figure 7 (SR17,
SR18). The web application can have multiple controllers
for separate tasks such as authentication, roles and
computation. A Controller was developed to handle the
interaction with the naive Bayes and PCA models, named
TestingController. A third Model (class) named NBResult
was also developed which was used as a reporting model
for logging the naive Bayes predictions (SR9).

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 7, July 2015

K. Quille et. al
TestingController A PCA A
Class. Class.
* Controller uses
Methor ds
Fiek SaPCA
*. db
Methods
- naiveBayes A
Al lass
uses
—) Ao o
alculateN an
NBResult A
lass
uses

Fig. 7. UML class diagram showing the PCA and naive Bayes classes
interacting with the TestingController.

4.4 Development of PreSS# Front End

The overall development of the front end of PreSS# was
broken down into four sub areas, namely; ease of use,
rapid development methods, security and services. At each
stage references will be made to the software requirements
as outlined in Table 1 using the ID.

4.4.1 Ease of Use

Ease of use and device compatibility was a primary focus
of PreSS#. HTMLS5 was used in conjunction with CSS3.
The development of the front end Views in HTMLS5
allowed the package to be dynamic on multiple device
platforms. HTMLS is adapted for strong mobile
integration which is a key feature for the long term success
of the web system, as a large increasing proportion of
current internet access is on varying mobile devices
(SR13).

Razor was used to enhance HTMLS5. Razor is a
programming syntax used to develop dynamic web pages.
Razor is written in C# and is classified as a “view engine”
and is written directly into the raw HTML View and is run
server side before the View is returned to the client. This
can eliminate the need for multiple pages by creating a
single page with conditional Razor statements, for
example depending on mobile or desktop requests Razor
will select different controls as it is processed on the server
side before the HTML is generated allowing dynamic
pages to be produced depending on the device requesting
it, without having to create multiple pages with similar
content. In PreSS# Razor was used extensively (SR14,
SR15).

184

4.4.2 Rapid Development Methods
4.4.2.1 Razor

One feature of models in MVC is the ability to pass a
model or a list of models from a Controller into a View.
Once passed into the View, Razor was able to parse the
model or list of models and create controls, such as, tables
using iteration, to display each of the models properties.
Razor also had the use of IntelliSense (context aware
automatic code completion) which allowed for faster
development (IntelliSense is aware of Models and
variables in the scope of that View) in a more abstract
manor. Razor was able to significantly reduce the
development time needed for views (SR15).

4.4.2.2 Data Annotations

Data annotations are a method of describing validation
rules (such as a range for values and error messages) and
Database properties (such as a primary Key or Nullable
field) which are written into the model as part of its
properties. When the View used a Model these data
annotations were also used for data validation on forms in
Views; if the data annotation was changed in the Model
this filtered into every View. This method of validation
removed the need for the creation of multiple additional
java scripts significantly reducing development time and
was a more robust method ensuring consistency for the
user with every instance of the Model in different Views
having the same validation (SR15).

4.4.2.3 Entity Framework

The Entity framework consists of an object-relational
mapper that works with Models (POCO objects) and
translates the Models to relational data storage. A class
named DB was developed which contained properties
(collection of the models), which in turn translate to the
tables in the physical database; this is shown in Figure 8.
The DB class is the Entity access control to the live
Microsoft SQL Server database.

If no database exists either in development or at release,
Entity will create a database matching the schema outlined
in the collection of models in the DB class thus allowing
the authors to focus on the development of the application
and models, and not the SQL database development,
saving a considerable amount of development time
(SR15).

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 7, July 2015

K. Quille et. al

Uses

C
w
0]
v
LR N

Database

HO

Fig. 8. Illustration of Entity class and the Models (properties) used.
4.4.2.4 LINQ

In the Controllers LINQ (Language-Integrated Query) was
used in preference to using SQL (Structured Query
Language). LINQ consists of a native C# data querying
language and was able to query the list of models using
native C# code replacing the need for SQL statements.
LINQ was integrated with IntelliSense and was able to
produce run time compile errors, two features that SQL
does not exhibit, thus leading to significant gains in terms
of development time as well as debugging time (SR15).

4.4.3 Security
4.4.3.1 Authentication

Authentication was handled by the ASP.NET web security
model which validates and manages users and roles; this
model was modified to accommodate additional properties
required for this web system such as school and institution
details. This model was also used for access control to
Controllers which could be sub divided by user roles,
which allowed for hierarchical access control for users in
specific roles. A single view could also be customised for
different roles, both contributing to a faster development
of a secure and robust system (SR5).

4.4.3.2 Encryption

Password data is hashed by the .NET web security and a
cryptography class was developed to encrypt all the data
stored in the system using the AES standard with a 256 bit
key. This class uses a salt function to prevent standard
dictionary attacks on the data. All data stored in the
database was encrypted using this class. The data in transit

185

is encrypted by Microsoft 1IS7 using HTPS with SSL.
(SR2, SR4).

4.4.3.3 Attack Prevention

To address automated brute force log in attacks, a three
attempt system was developed. The user after three failed
log in attempts is locked out of the system for ten minutes
(SR3). The IP addresses of each student surveyed were
also logged (SR1). Cross site scripting attacks (XXS) were
addressed with HTML encoding using Razor in all HTML
input and retrieval fields so if a malicious java script is
injected into the site or database only the raw HTML is
displayed making the script redundant when it reaches the
browser (SR3) Cross site forgery requests (CSFR) were
also addressed by sending two independent random tokens
to the view, one as a cookie and the other token was
randomly hidden in a field on the form. On the submission
of the form both tokens are required by the controller,
otherwise the server rejects the request (SR3).

4.4.4 Services

Three roles were created: administrators, lectures and
students, each with different levels of functionality (as
shown in the use case diagram in Figure 4) (SR10)

* Administrator: Can create users on the system,
delete users, modify a user’s details, reset passwords,
upload training set(s), run prediction analysis with a
more detailed report than a teacher would receive
and observe the survey (SR6, SR7, SR8, SR12)

* Lecturer: Can see surveys taken, allow students to
retake a survey if needed, and can run prediction
analysis with a limited report (SR12).

* Student: Can only sit a survey once and cannot redo
it unless sanctioned by a teacher; the sequence
diagram is shown in Figure 3 in Section 3.4 (SR11)

Administrators can upload users in batch mode via a .CSV
file (SR6). The system validates the data upon uploading
and returns a log of each entry, containing details of its
success or failure (and the cause of any validation error).
This bulk upload of users would be very beneficial for
large institutions. The training data set can also be bulk
uploaded via a similar function.

5. TESTING PreSS#

The next phase was to test and validate the PreSS# web
based system itself. For this testing phase the focus was on
user interactions and validation of those actions to ensure
that the web based system features and actions passed all
test cases. There was both alpha and beta test cases. The

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 7, July 2015

K. Quille et. al

alpha investigations were white box testing at each phase
of development. The beta investigation was a pre-pilot
study conducted in the 2013-14 academic year which
consisted of 34 users using multiple device types; this will
be expanded upon further in Section 5.2.

5.1 Alpha Testing

White box alpha testing was completed at each stage of the
system development. Table 3 shows the twelve main test
cases which consisted of class, API and method testing. As
both the PCA and naive Bayes classes were previously
examined they are not considered in these test cases. As
mentioned in Section 4.1 an agile approach was used,
where the test cases were completed iteratively throughout
the development to allow each phase to be validated and

the next phase built upon this validated phase.

Table 3: Results from alpha testing test cases

No Description Result Pass/

fail

1 Security — IP | Address stored in DB, even when | Pass
address capture | Proxy used.

2 Security — | All data in DB encrypted, salt | Pass
Encryption functionality working, no similar

entries

3 Security — XXS, | CSFR and brute force failed, | Pass
CSFR and brute | XXS raw displayed
force

4 Security — | HTTPS enabled, on all browser | Pass
HTTPS (SSL in | types.
11IS7)

5 Security — | Log in successful with all three | Pass
Authentication roles, each action restricted or

allowed specific roles.

6 User - User | Single user creation with .CSV | Pass
creation upload with validation.

7 User - Reset | Reset password for user, admin | Pass
user password cannot see current password as

per ADDC standard practice.

8 User - Training | Single training data set creation | Pass

data with validation, .CSV bulk
upload with validation on all
aspects that include file type and
missing values.

9 User - | Predictions completed using PCA | Pass
Predictions and naive Bayes classes,
completed compared and validated using the

two .NET applications.

10 User - Student, | Each role was tested; no user had | Pass
lecturer and | access to any control or action
admin roles even with URL injection.

11 | User - Reset a | Survey reset for student allowing | Pass
survey resit. (admin and lecturer only)

12 | Device - Submit | Survey submitted successful in | Pass
survey as | every browser on every device,
student on | issue with Safari with respect to
multiple devices | data and time validation*.

*issue caused by the safari
browsers in built date time
validation defaulting the US date
time format, issue resolved by
moving this validation to server
side.
q<]

186

5.2 Beta Testing

Black box beta testing was carried out on a small pre pilot
study group of 34 students. This small study was
completed to test and validate the system using a multitude
of devices which included PC’s, iPhone, Android phone,
iPad and a Surface tablet. This testing was completed in
April 2014. This was also the first time the system had
more than one active user at any given time. The results of
this testing can be seen in Table 4. The beta testing was
successful with only one minor validation issue (No 2)
which was addressed immediately.

Table 4: Results from beta testing test cases.

No | Description Result Pass/

fail

1 User — Log | Each of the 34 students logged in on | Pass
in each device.

2 User — | Each of the 34 students was able to | Pass
Complete fully complete the survey*.
survey

*For the age fields users on desktop
devices were able to use numbers
other than integers. This was
rectified by additional validation on
the page.

3 User Mobile devices had native drop | Pass
Interface- down menus for the self-efficacy
Dynamic where the PC and Mac desktop
interface on | computers had radial buttons.
mobile and
desktop
devices.

4 User — Could | On logging in after the survey the | Pass
not complete | user was prompted that they could
a survey | not re take the survey. (even if URL
more than | injection was used)
once

6. REPLICATION OF PreSS#
6.1 Overview

PCA and naive Bayes replication testing was carried out to
investigate if both could replicate the results of the PreSS
study. If the replication was a success the .NET
implementation of PreSS could then be confidently
integrated into the web based system.

6.2 PCA Replication of Results

The PCA implementation was based on that used in PreSS
and a tutorial by Souza [13] as described in Smiths tutorial
paper [3]. Examples in Smith’s paper were used as the
standard to confirm the PCA class in .NET. In Smith’s
study, the results were first calculated on paper and then
confirmed in Scilab [3, Appendix], a freeware alternative
to MATLAB. Even though the languages differ, the

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 7, July 2015

K. Quille et. al

calculations/pre-steps and most importantly the results that
Smith computed, would be used to compare the accuracy
of the PCA model developed. Souza’s tutorial was based
on the accord. NET framework and he was able to replicate
the results of Smith. The aim was to replicate Smith’s
result and confirm the accuracy of the PCA class.

The developed system’s results were compared with the
results of Smith using the same input data. The results
were replicated to the ninth decimal place as shown in
Table 5. These results were identical to that of both Smith
and Souza. With the results replicated, it was felt that the
PCA model was statistically the same when using the
NET implementation. It was felt that a student’s T-Test
was not required to show statistical similarity in this case,
as both results were identical.

Table 5: The Results from Lindsay I Smith’s study and from the Authors
PCA system (.NET)

PCA Results
Lindsay I Smith NET System
0.827970186 0.827970186
-1.777580325 -1.777580325

0.992197494 0.992197494
0.274210416 0.274210416
1.675801419 1.675801419
0.912949103 0.912949103
-0.099109438 -0.099109438
-1.144572164 -1.144572164
-0.438046137 -0.438046137

-1.223820555 -1.223820555

6.3 Naive Bayes Replication of Results

Table 6 shows the naive Bayes application (labelled .NET)
and WEKA’s prediction accuracies along with sensitivity
(the true positive rate) and specificity (the true negative
rate) [4]. Both systems used the PreSS study with all of the
102 data samples as the input and 10FCV to produce the
results in Table 6.

Table 6: Results from Naive Bayes and WEKA applications using 10FCV
on the PreSS study.

.. Sensitivit Specificit, Accurac
Application % y P o, y o, y
NET 81.53% 78.38% 80.39%
WEKA 80.05% 80.00% 80.39%

The results from Table 6 show that .NET had an accuracy
of 80.39%, identical to the accuracy of WEKA. The
equation for calculating accuracy is given by Eq. (2). A
two tail T-Test for a binomial distribution was run to
confirm both applications prediction accuracies were not
statistically different as shown in Eq. (3). No significant
statistical difference was found. The T-Test results with a
95% confidence level were: P e = 1.0 and a T (upe) =
0.0, showing that the WEKA results were not statistically

187

different to the .NET results and that the null hypothesis
was accepted. Sensitivity and specificity were also
recorded as presented in Eq. (4) and Eq. (5), but as it was
felt that sensitivity was the most important factor for
PreSS# (inferring that correctly predicting a weak student
is more significant and takes precedence over correctly
predicting a strong student) this was the examined
measure.

A T-Test was completed on sensitivity and specificity in
both NET and WEKA. The sensitivity between .NET and
WEKA concluded with no statistically significant
difference and the following result: P 1) = 0.09 and a T
waey = 1.6. The specificity between .NET and WEKA
concluded that there was a statistical difference with the
following result: P qaue) = 0.006 and a T ey = 2.81 and
this was investigated further with focus on the prediction
(confidence) value associated with the true negative (TN)
and false negative (FN) predictions. In both the .NET and
WEKA system, each had one TN and one FN prediction
that had a prediction value P close to the 0.5 threshold.
This finding suggests that each system was not very
confident with these specific predictions, and further
research in this area may be required. Table 7 shows the
breakdown of the predictions and associated P values.

Table 7: Results from Naive Bayes and WEKA applications using 10FCV
on the PreSS study.

Application TN - P value FN - P value
NET 0.510 0.445
WEKA 0.504 0.517
Accuracy = —LTN)
(TP+TN+FP+FN)
@)
o= {np(1-p)
©)
... _ TP
Sensitivity = TPEEN
“4)
;e .. _ TN
Specificity = 73705
)
7. CONCLUSIONS

Computer science in Ireland has one the lowest non
progression rate in first year of any honours degree
discipline at 26% and also the lowest progression rate of
first to fourth year [5]. At the same time computer science
has the highest employment rate of final year graduates at
73% after the first nine months of completion [14]. It is
acknowledged that the introductory programming module
is one of the major contributing factors to the high dropout
or failure rates. PreSS# is a completed functioning tool

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 7, July 2015

K. Quille et. al

that is ready to be integrated into the educational domain.
This tool will be invaluable for the early detection of
students who may be at risk of failing an introductory
programming module. The tool may also expedite the
development of educational methodologies, both for
students who are likely to fail and for students who are
likely to be very strong hence developing methodologies
for differentiation. This differentiation and early detection
of weak and strong students may lead to effective
interventions that may be applied faster than current
efforts, thus enabling students to possibly achieve at a
higher rate than predicted and increasing the progression
rates of computer science.

8. FUTURE WORK AND
ENHANCEMENTS

Currently lecturers cannot create users within the PreSS#
system, this can only be done by a super-user and may be a
requirement if the system is to scale up to large institutions
or become software as a service (SaaS). During testing
self-signed certificates were used for SSL in IIS. This is
acceptable for alpha testing and maybe beta testing but
secure signed certificates are needed for future use of the
system. Currently teachers can see all students who are on
the system; this is again acceptable if the system is going
to be deployed on an institution by institution basis, but if
SaaS were to be implemented, it would not be acceptable
for one institution to access another institutions data and
would need to be addressed. If this system was to be
developed as SaaS, this has been factored in to the
development of the current system, where each user is
currently associated with an institution and a specific class
within that institution.

Further research may be required in the area of the
associated P value of each prediction, as it was found that
the specificity was different between .NET and WEKA.
The authors believe that the randomisation of the data in
the pre-processing for 10FCV may have contributed to
this, on the basis that the P value in each of the
investigated cases was close to 0.5, further research should
be undertaken to investigate this fully. One final
recommendation would be to use Bootstrapping to further
develop the mobile responsive look and play.
Bootstrapping is becoming a standard in mobile CSS and
accompanying scripts and may enhance and modernise the
system.

188

9. APPENDIX

Rosenberg [2] self-esteem questionnaire modified to suit
an introductory programming module as used in the PreSS
study and Press#. Each question had four possible
answers:

Strongly agree
Agree

Disagree

4. Strongly disagree

W N =

Q1) On a whole I am satisfied with my programming
progress?

Q2) At times I think that I am no good at all at
programming?

Q3) I feel that I have a number of good programming
qualities?

Q4) I am able to complete programming items as well as
most other students in my class?

Q5) I feel that I do not have much programming ability
to be proud of?

QO6) I certainly feel useless at programming at times?

Q7) I feel that I am a person of worth, at least on a plane
with other programmers in my class?

Q8) I wish I could have more respect for my
programming ability?

Q9) All in all, I am inclined to feel that I am a failure at
programming?

Q10) I take a positive attitude towards my programming
ability?

REFERENCES

[1] S. Bergin, 2006, “A computational model to predict
programming performance”, Maynooth University PhD
thesis.

M. Rosenberg, 1965, “Society and the adolescent self-
image”, Princeton University Press.

L.I. Smith, 2002, “A tutorial on principal components
analysis”, http://kybele.psych.cornell.edu/l.pdf, Cornell
University, Tutorial. accessed 12/6/2015.

I. Witten and E. Frank, 2005, “Data Mining: Practical
Machine Learning Tools and Techniques”, Morgan
Kaufmann Publishers, second edition.

0. Mooney, V. Patterson, M. O’ Connor and A. Chantler,
2010, “A study of progression in Irish higher education”,
Higher Education Authority,
http://www.hea.ie/content/2010. accessed 18/06/2015.

(2]
(3]

(4]

(5]

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 7, July 2015 189
K. Quille et. al

[6] C. Watson, 2014, “Failure Rates in Introductory
Programming Revisited”, 2014 conference on Innovation
& technology in computer science education. ITiICSE’14,
June 21-25, 2014, Uppsala, Sweden.

[7] Netcraft Internet Services, 2015, “A survey of
876,812,666 sites, detailing market share of web servers”,
http://news.netcraft.com/archives/2015/01/15/january-
2015-web-server-survey.html, accessed 22/06/2015.

[8] S. Woo, H. Joh, O. H. Alhazmi, Y. Malaiya, 2011,
“Modelling vulnerability discovery process in Apache
and IIS HTTP servers” Computer Science Department,
Colorado State University, Science Direct, E30, p50-62.

[9] G. Francia and R. Francia, 2007, “An Empirical Study on
the Performance of Java/Net Cryptographic APIs”,
Information Systems Security, 16:6, 344-354.

[10] CVE, 2014, “CVE-2014-0160 - Heart-bleed”,
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2014-0160, accessed 22/06/2015.

[11]Y. Bassil, 2011,”A Comparative Study on the
Performance of the Top DBMS Systems”, Journal of
Computer Science & Research (JCSCR), Vol. 1, No. 1,
P.20-31.

[12] C.R. Souza, "Accord.Net Framework", Open source
Machine learning and Data mining Framework,
http://accordframework.net/index.html. Accessed
4/8/2014

[13] C.R. Souza, 2012, " A Tutorial on Principal Component
Analysis with the Accord. NET Framework ". Department
of Computing, Federal University of Sao Carlos,
Technical Report.

[14] Dr. V Patterson, V Harvey and M O' Connor, 2012, “An
Analysis of the Universities First Destination of
Graduates Survey 2013”,Higher Education Authority ,
http://www.hea.ie/content/2012. accessed 22/06/2015.

e

_‘]-?] &
Cy

o

