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Abstract

Nonnegative matrix factorization (NMF) is widely used in a variety of machine learning tasks
involving speech, documents and images. Being able to specify the structure of the matrix factors
is crucial in incorporating prior information. The factors correspond to the feature matrix and
the learnt representation. In particular, we allow an user-friendly specification of sparsity on the
groups of features using the L1/L2 measure. Also, we propose a pairwise coordinate descent
algorithm to minimize the objective. Experimental evidence of the efficacy of this approach is
provided on the ORL faces dataset.
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Abstract

Nonnegative matrix factorization (NMF) is widely used in a variety of machine
learning tasks involving speech, documents and images. Being able to specify the
structure of the matrix factors is crucial in incorporating prior information. The
factors correspond to the feature matrix and the learnt representation. In particular,
we allow an user-friendly specification of sparsity on the groups of features using
the L1/L2 measure. Also, we propose a pairwise coordinate descent algorithm to
minimize the objective. Experimental evidence of the efficacy of this approach is
provided on the ORL faces dataset.

1 Introduction

Nonnegative matrix factorization is useful for extracting latent features [5], a problem which arises in
a wide range of application domains, including such diverse areas as image analysis [8], document
clustering, recommender systems, and many others [1, 2]. Given a nonnegative matrix X of size
m × n, we want to approximate it as the product of two nonnegative matrices W and H of sizes
m× r and r × n, respectively:

X ≈ WH.

Sparsity can be specified by the L0-norm but it is usually difficult to optimize directly. L1 norm is
used as a proxy for sparsity but it is not scale-invariant. So, the following measure of sparsity has
been proposed in the literature [5, 10]:

sp(W ) =

√
mr − ‖W ‖1/‖W ‖F√

mr − 1
(1)

This measure is always between zero and one, with higher values corresponding to sparser solutions,
and has also been shown to satisfy many appealing properties [6], one such being invariance to
scaling.

Here, we consider an explicit sparse NMF formulation which sets a hard constraint on sp(W ) build-
ing on the sparse model byHoyer [5]. Previous work required that the sparsity be set for each feature

1



individually [5, 4, 11]. However, we would like to be able to set a sparsity budget for groups of fea-
tures and allow the individual features to adapt their sparsity which best suits the data. Without loss
of generality, let us assume that we wish for the “feature” matrix W to be sparse—analysis for the
symmetric case where we wish for H to be sparse is analogous. A formulation which restricts the
norms of the features to unity can be utilized to enforce the sparsity measure (1) using the following
sparse NMF objective:

min
W,H

f(W ,H) =
1

2
‖X−WH‖2F s.t. W ≥ 0,H ≥ 0

‖Wi‖2 = 1 ∀ i ∈ {1, . . . , r},
∑

i∈Ig

‖Wi‖1 = αg ∀ g ∈ {1, . . . , G}
(2)

where g indexes the partition set of the columns of W into the corresponding G groups and
{I1, . . . , IG} is a partition of {1, . . . , r}. A similar formulation for sparse NMF [10] did not enforce
norm constraints at the feature level. Another, closely related implicit mixed-norm formulation of
sparse NMF has also been recently introduced [7].

We will follow the usual alternating updates strategy to solve for the matrices W ,H . That is we
optimize for one of the matrices while keeping the other fixed. The updates for the matrix H are
the same as in NMF and standard solvers can be applied such as those based on multiplicative
updates [8] or projected gradient[9]. Therefore, we will solely focus on the optimization problem in
the matrix W .

Similar to the algorithm presented by Hoyer [5], we could apply standard gradient descent followed
by a projection step to satisfy the norm constraints. However, projection algorithms are generally
inefficient. Another approach would be to attempt a Frank-Wolfe type algorithm [3] by considering
a linear approximation to the objective function. These algorithms generally have a sub-linear rate of
convergence. A recent work based on block coordinate descent [11] proposed updating one feature
at a time. This would not work in our case since the L1 constraint is across the features in a group
and updating features independently will freeze the L1 constraint to the initial feasible solution.
Instead, we propose to optimize over two features of a group at a time. This would allow the L1

norm to mix across the features while maintaining the L2 norm constraints.

2 Proposed Algorithm for Sparse NMF

We will show how the structure of the problem can be exploited to make coordinate descent a very
efficient linear operator.

2.1 Pairwise Coordinate Descent

Let us denote a subset of m rows by index set A and the corresponding elements of Wi by WA
i .

Choose A,B to be two non-overlapping subsets of m rows. Observe that the objective (2) reduces
to the following linear function while fixing the rest of the elements of matrices W,H:

min
WA

i ≥0,WB
j ≥0

f̃(WA
i ,WB

j ) =
1

2
di‖WA

i ‖22 + u⊤i W
A
i +

1

2
dj‖Wj‖22 + u⊤jW

B
j

=
[

u⊤i u⊤j
]

[

WA
i

WB
j

]

+ constant

s.t. ‖WA
i ‖2 = γ, ‖WB

j ‖2 = δ, and ‖WA
i ‖1 + ‖WB

j ‖1 = β(3)

where di = H⊤
i Hi and ui = [−XH⊤

i +
∑

l 6=i Wl(HH⊤)li]
A (similarly for index j) and γ, δ, β

are initialized from the previous run.

We can reduce it to the following projection problem:

max
y≥0

b⊤y s.t. 1
⊤y = k, ‖y1‖2 = 1, ‖y2‖2 = 1(4)

where y = [y⊤1 ,y
⊤
2 ]
⊤ and b = [b⊤1 , b

⊤
2 ]
⊤ and dim(b1) = m1, dim(b2) = m2. We solve it approx-

imately by the following projection Algorithm 1. It uses the Sparse-opt routine (Algorithm 3) [11]
for efficiently projecting onto the intersection of L1/L2 constraints.
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Algorithm 1 Sparse-biopt(b, k,m1)

1: for i = 1 to ∆ do
2: Obj(i)= Sparse-opt(b1,

k
∆ i)+ Sparse-opt(b2, k − k

∆ i)
3: end for
4: i∗ = mini Obj(i)
5: y∗

1 = Sparse-opt(b1,
k
∆ i∗)

6: y∗
2 = Sparse-opt(b1, k − k

∆ i∗)

7: y∗ = [y∗

1

⊤,y∗

2

⊤]⊤

2.2 Matrix Update

Without loss of generality, let us assume that there are at least two columns per group. If there is
only a single column in a particular group, we can just apply Algorithm 3 to update the group. In
practice, we also update each feature as if it belonged to a group of unit size which helps in learning
smooth features. We optimize for the matrix W as shown in Algorithm 2.

Algorithm 2 Update(X,W ,H)

1: C = −XH⊤ +WHH⊤

2: Z = HH⊤

3: repeat
4: for g = 1 to G (randomly) do
5: for i,j in g do
6: Pick two random non-overlapping sets of rows A,B.
7: UA

i = C
A
i −WA

i Zii

8: UA
j = C

B
j −WB

j Zjj

9: Obtain new values of UA
i ,UB

j by Sparse-biopt. Denote the output by ti, tj .

10: CA = CA + (ti −WA
i )Z⊤

i

11: CB = CB + (tj −WB
j )Z⊤

j

12: end for
13: end for
14: until convergence

2.3 Sparse Projection onto the L1/L2 Constraint

We review the sparse projection method of Potluru et al. [11], which solves a linear optimization on
the intersection of a hyperplane and a hypersphere. Consider the following subproblem which arises
when solving (2):

max
y≥0

b⊤y s.t. 1
⊤y = k, ‖y‖2 = 1(5)

where dim(b) = m.

The following two algorithms Sparse-trans and Sparse-opt together compute the solution for any
given k.

For a given k†, we can compute the objective after running Algorithm 3. Note that the running time
of Algorithm 4 is O(n log n). We could have utilized a more efficient linear time algorithm [12].
However, the benefit of the presented projection is that it computes the full solution path over the
parameter k efficiently.

3 Experiments

Images from the ORL faces dataset were obtained (http://www.cl.cam.ac.uk/
research/dtg/attarchive/facedatabase.html). It consists of 400 images of size
112 × 92. We obtain a feasible solution to our problem by applying the Sparse-opt routine for
each column with b initialized to a random vector and k set to αg/dim(Ig) of the corresponding
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Algorithm 3 Sparse-trans(b)

1: Set a = sort(b) and p∗ = m. Obtain a mapping π such that ai = bπ(i) and aj ≥ aj+1 for all

valid i, j. Denote the cumulative sums as follows: s(p) =
∑p

i=0 ai and t(p) =
∑p

i=0 a
2
i .

2: Compute values of µ(p), λ(p) as follows:
3: for p = 1 to m− 1 do

4: λ(p) =
√

(t(p) + (p+ 1)a(p)2 − 2a(p)s(p)
5: µ(p) = −a(p)
6: obj(p) = (t(p)− a(p)s(p))/λ(p)
7: k(p) = (s(p)− (p+ 1)a(p))/λ(p)
8: end for

Algorithm 4 Sparse-opt(b, k†)

1: Run the Sparse-trans routine (Algorithm 3) on b if its output is not cached.
2: Find p∗ such that k† ∈ (k(p∗), k(p∗ +1)). the corresponding solution vector y∗ can be derived

as follows:

3: λ = −
√

(p∗+1)t(p)−s(p∗)2

(p∗+1−k†2)

4: µ = − s(p∗)+k†λ

λ

5: obj = −µs+t
λ

6: xi = −ai+µ
λ

∀i ∈ {0, · · · , p∗} and zero otherwise.
7: y∗π(i) = xi ∀i ∈ {0, · · · ,m− 1}

group sparsity parameter. Next, we ran our proposed algorithm on the dataset in 3 different settings.
The first two settings involved setting the average sparsity value across all features to 0.4, 0.6. In
the third run, we divided the features into 3 groups of sizes {5, 15, 5} with their group sparsity set
to {0.2, 0.5, 0.8} respectively. The resulting features are shown in Figure 1.

4 Conclusion and Future Work

We can learn structurally rich models via mixed norms by paying a small price computationally. This
enables one to specify models which are closer to user requirements. In this paper, we proposed to
solve the sparse NMF problem when the mean sparsity was provided on groups of features.

We used a two-column update strategy to learn the sparsity patterns. This can be extended to more
columns by using dynamic programming. Also, we would like to analyze the theoretical properties
of our algorithm in terms of convergence and running times and apply them to a wider variety of
datasets. We considered only the intersection of L1/L2 balls and it would be interesting to extend
it to more general norm-balls [12]. Finally, we would like to parallelize the updates in the multi-
core/GPU settings.
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