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AD in Fortran
Part 1: Design

Alexey Radul, Barak A. Pearlmutter, and Jeffrey Mark Siskind

Abstract We propose extensions to FORTRAN which integrate forward and reverse
Automatic Differentiation (AD) directly into the programming model. Irrespective
of implementation technology, embedding AD constructs directly into the language
extends the reach and convenience of AD while allowing abstraction of concepts
of interest to scientific-computing practice, such as root finding, optimization, and
finding equilibria of continuous games. Multiple differentsubprograms for these
tasks can share common interfaces, regardless of whether and how they use AD in-
ternally. A programmer can maximize a functionF by calling a library maximizer,
XSTAR=ARGMAX(F, X0), which internally constructs derivatives ofF by AD, with-
out having to learn how to use any particular AD tool. We illustrate the utility of
these extensions by example: programs become much more concise and closer to
traditional mathematical notation. A companion paper describes how these exten-
sions can be implemented by a program that generates input toexisting FORTRAN-
based AD tools.

Key words: Nesting, multiple transformation, forward mode, reverse mode, TAPE-
NADE, ADIFOR, programming-language design

1 Introduction

The invention of FORTRAN was a major advance for numeric computing, allowing
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g(x;α,β ) =
β α

Γ (α)
xα−1e−β x

to be transcribed into a natural but unambiguous notation
✞

FUNCTION G(X,ALPHA,BETA)
G=BETA** ALPHA/GAMMA(ALPHA)* X** (ALPHA-1) * EXP(-BETA * X)
END

which could be automatically translated into an executableprogram. However, tran-
scribing

xi+1 = xi − f (xi)/ f ′(xi)

to FORTRAN in
✞

FUNCTION RAPHSN(F, FPRIME, X0, N)
EXTERNAL F, FPRIME
X = X0
DO 1690 I=1,N

1690 X = X-F(X)/FPRIME(X)
RAPHSN = X
END

requires that thecaller provide bothF andFPRIME. Manually coding the latter from
the former is, in most cases, a mechanical process, but tedious and error prone.

This problem has traditionally been addressed by arrangingfor an AD prepro-
cessor to produceFPRIME(Speelpenning, 1980; Wengert, 1964). That breakthrough
technology not only relieves the programmer of the burden ofmechanical coding of
derivative-calculation codes, it also allows the derivative code to be updated auto-
matically, ensuring consistency and correctness. However, thiscaller derivesdisci-
pline has several practical difficulties. First, the user must learn how to use the AD
preprocessor, which constitutes a surprisingly serious barrier to adoption. Second,
it makes it very difficult to experiment with the use of different sorts of derivatives
(e.g., adding a Hessian-vector product step in an optimization) in such called subpro-
grams, or to experiment with different AD preprocessors. Third, although prepro-
cessors might be able to process code which has already been processed in order to
implement nested derivatives, the maneuvers required by current tools can be some-
what arcane (Siskind and Pearlmutter, 2008a). Fourth, software engineering princi-
ples of locality and atomicity are being violated: knowledge of what derivatives are
needed is distributed in a number of locations which must be kept consistent; and
redundant information, which must also be kept consistent,is being passed, often
down a long call chain. We attempt to solve these problems, making the use of AD
more concise, convenient, and intuitive to the scientific programmer, while keep-
ing to the spirit of FORTRAN. This is done using theForward And Reverse Fortran
Extension Languageor FARFEL, a small set of extensions to FORTRAN, in concert
with an implementation strategy which leverages existing FORTRAN compilers and
AD preprocessors (Bischof et al., 1992; Hascoët and Pascual, 2004).

The remainder of the paper is organized as follows: Section 2describes FARFEL.
Section 3 describes a concrete example FARFEL program to both motivate and illu-
minate the proposed extensions. Section 4 situates this work in its broader context.
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Section 5 summarizes this work’s contributions. A companion paper (Radul et al.,
2012) describes how FARFEL can be implemented by generating input to existing
AD tools.

2 Language Extensions

FARFEL consists of two principal extensions to FORTRAN: syntax for AD and for
nested subprograms. We currently support only FORTRAN77, but there is no barrier,
in principle, to adding FARFEL to more recent dialects.

Extension 1: AD Syntax
Traditional mathematical notation allows one to specify

φ ′ =
d

dσ

( 1√
2πσ2

exp−1
2

(x− x̄
σ

)2)

By analogy, we extend FORTRAN to encode this as
✞

ADF( TANGENT(SIGMA) = 1)
PHI = 1/SQRT(2 * PI * SIGMA** 2) * EXP(-0.5 * ((X-XBAR)/SIGMA) ** 2)
END ADF(PHIPRM = TANGENT(PHI))

which computes the derivativePHIPRMof PHI with respect toSIGMAby forward AD.
For syntactic details see companion paper (Radul et al., 2012).

An analogous FARFEL construct supports computing the same derivative with
reverse AD:
✞

ADR( COTANGENT(PHI) = 1)
PHI = 1/SQRT(2 * PI * SIGMA** 2) * EXP(-0.5 * ((X-XBAR)/SIGMA) ** 2)
END ADR(PHIPRM = COTANGENT(SIGMA))

Note that with theADR construct, thedependentvariable appears at the beginning of
the block and theindependentvariable at the end—the variables and assignments in
the opening and closing statements specify the desired inputs to and outputs from
the reverse phase, whereas the statements inside the block give the forward phase.

These constructs allow not just convenient expression of AD, but also modularity
and encapsulation of code which employs AD. For instance, wecan write a general
scalar-derivative subprogramDERIV1 at user level
✞

FUNCTION DERIV1(F, X)
EXTERNAL F
ADF(X)
Y = F(X)
END ADF(DERIV1 = TANGENT(Y))
END

which could be used in, for example,
✞

FUNCTION PHI(SIGMA)
PHI = 1/SQRT(2 * PI * SIGMA** 2) * EXP(-0.5 * ((X-XBAR)/SIGMA) ** 2)
END
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PHIPRM = DERIV1(PHI, SIGMA)

DERIV1 can be changed to use reverse AD without changing its API:
✞

FUNCTION DERIV1(F, X)
EXTERNAL F
ADR(Y)
Y = F(X)
END ADR(DERIV1 = COTANGENT(X))
END

allowing codes written withDERIV1 to readily switch between using forward and
reverse AD.

To take a more elaborate example, we can write a general gradient calculation
GRADusing repeated forward AD:
✞

SUBROUTINE GRAD(F, X, N, DX)
EXTERNAL F
DO 1492 I=1,N
ADF( TANGENT(X(J)) = 1-MIN0(IABS(I-J),1), J=1,N)
Y = F(X)

1492 END ADF(DX(I) = TANGENT(Y))
END

(Note that theADF andADR constructs support implied-DO syntax for arrays.)
This can be modified to instead use reverse AD without changing the API:

✞

SUBROUTINE GRAD(F, X, N, DX)
EXTERNAL F
ADR(Y)
Y = F(X)
END ADR(DX(I) = COTANGENT(X(I)), I=1,N)
END

Although not intended to support checkpoint-reverse AD, our constructs are suffi-
ciently powerful to express a reverse checkpoint:
✞

C CHECKPOINT REVERSE F->G. BOTH 1ST ARG IN, 2ND ARG OUT
CALL F(X, Y)
ADR( COTANGENT(Z(I)) = . . ., I=1,NZ)
CALL G(Y, Z)
END ADR(DY(I) = COTANGENT(Y(I)), I=1,NY)
ADR( COTANGENT(Y(I)) = DY(I), I=1,NY)
CALL F(X, Y)
END ADR(DX(I) = COTANGENT(X(I)), I=1,NX)

This sort of encapsulation empowers numeric programmers toconveniently ex-
periment with the choice of differentiation method, or withthe use of various sorts
of derivatives, including higher-order derivatives, without tedious modification of
lengthy call chains.

Extension 2: Nested Subprograms
We borrow from ALGOL 60 (Backus et al., 1963) and generalize the FORTRAN

“statement function” construct by allowing subprograms tobe defined inside other
subprograms, with lexical scope.

For example, given a univariate maximizerARGMAX, we can express the idea of
line search as follows:
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✞

C MAXIMIZE F ALONG THE LINE PARALLEL TO XDIR THROUGH X
SUBROUTINE LINMAX(F, X, XDIR, LENX, N, XOUT)
EXTERNAL F
DIMENSION Y(50)

FUNCTION ALINE(DIST)
DO 2012 I=1,LENX

2012 Y(I) = X(I)+DIST * XDIR(I)
ALINE = F(Y)
END

BESTD = ARGMAX(ALINE, 0.0, N)
DO 2013 I=1,LENX

2013 XOUT(I) = X(I)+BESTD * XDIR(I)
END

Here we are using a library univariate maximizer to maximizethe univariate func-
tion ALINE , which maps the distance along the given direction to the value of our
multidimensional function of interestF at that point. Note thatALINE refers to vari-
ables defined in its enclosing scope, namelyF, X, XDIR, LENX, andY. Note that if
ARGMAXuses derivative information, AD will be performed automatically onALINE .

3 Concrete Example

We employ a concrete example to show the convenience of the above constructs. We
will also illustrate the implementation on this example in (Radul et al., 2012). Let
two companies, Apple and Banana, be engaged in competition in a common fashion
accessories market. Each chooses a quantity of their respective good to produce, and
sells all produced units at a price determined by consumer demand. Let us model
the goods as being distinct, but partial substitutes, so that availability of products of
A decreases demand for products of B and vice versa (though perhaps not the same
amount). We model both companies as having market power, so the price each gets
will depend on both their own output and their competitor’s.Each company faces
(different) production costs and seeks to maximize its profit, so we can model this
situation as a two player game. Let us further assume that thequantities involved
are large enough that discretization effects can be disregarded.

An equilibrium(a∗,b∗) of a two-player game with continuous scalar strategiesa
andb and payoff functionsA(a,b) andB(a,b) must satisfy a system of equations:

a∗ = argmax
a

A(a,b∗) b∗ = argmax
b

B(a∗,b) (1)

Equilibria can be sought by finding roots of

a∗ = argmax
a

A(a,argmax
b

B(a∗,b)) (2)

which is the technique we shall employ.1 Translated into computer code in the most
natural way, solving this equation involves a call to an optimization subprogram
within the function passed to an optimization subprogram, itself within the function
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passed to a root-finding subprogram. If said optimization and root-finding subpro-
grams need derivative information, this gives rise to deeply nested AD.

Note that in (2), the payoff functionB is bivariate but argmax takes a univariate
(in the variable of maximization) objective function. Thea∗ variable passed toB is
free in the innermost argmax expression. Free variables occur naturally in mathe-
matical notation, and we support them by allowing nested subprogram definitions.

We can use our extensions to code finding the roots of (2) in a natural style:
✞

C ASTAR & BSTAR: GUESSES IN, OPTIMIZED VALUES OUT
SUBROUTINE EQLBRM(BIGA, BIGB, ASTAR, BSTAR, N)
EXTERNAL BIGA, BIGB

FUNCTION F(ASTAR)
FUNCTION G(A)

FUNCTION H(B)
H = BIGB(ASTAR, B)
END

BSTAR = ARGMAX(H, BSTAR, N)
G = BIGA(A, BSTAR)
END

F = ARGMAX(G, ASTAR, N)-ASTAR
END

ASTAR = ROOT(F, ASTAR, N)
END

where we implement just the minimal cores of one-dimensional optimization and
root finding to illustrate the essential point — root finding by the Rhapson method:
✞

FUNCTION ROOT(F, X0, N)
X = X0
DO 1669 I=1,N
CALL DERIV2(F, X, Y, YPRIME)

1669 X = X-Y/YPRIME
ROOT = X
END

✞

SUBROUTINE DERIV2(F, X, Y, YPRIME)
EXTERNAL F
ADF(X)
Y = F(X)
END ADF(YPRIME = TANGENT(Y))
END

and optimization by finding the root of the derivative:
✞

FUNCTION ARGMAX(F, X0, N)
FUNCTION FPRIME(X)
FPRIME = DERIV1(F, X)
END

ARGMAX = ROOT(FPRIME, X0, N)
END

1 The existence or uniqueness of an equilibrium is not in general guaranteed, but our particularA
andB have a unique equilibrium. Coordinate descent (alternating optimization ofa∗ andb∗) would
require less nesting, but has inferior convergence properties. Although this example involves AD
through iterative processes, we do not address that issue inthis work: it is beyond the scope of this
paper, and used here only in a benign fashion, for vividness.
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On our concrete objective functions these converge rapidly, so for clarity we skip
the clutter of convergence detection.

This strategy impels us to compute derivatives nested five deep, in a more com-
plicated pattern than just a fifth-order derivative of a single function. This under-
taking is nontrivial with current AD tools (Siskind and Pearlmutter, 2008a), but
becomes straightforward with the proposed extensions—embedded AD syntax and
nested subprograms make it straightforward to code sophisticated methods that re-
quire complex patterns of derivative information.

4 Discussion

The FARFEL AD extensions hew to the spirit of FORTRAN, which tends to prefer
blocks rather than higher-order operators for semantic constructs. (In this, these ex-
tensions are syntactically quite similar to a set of AD extensions integrated with
the NAGware FORTRAN 95 compiler (Naumann and Riehme, 2005), albeit quite
different semantically. Unfortunately those NAGware extensions are no longer pub-
licly available, and the limited available documentation is insufficient to allow a
detailed comparison.) A reasonably straightforward implementation technology in-
volves changing transformed blocks into subprograms that capture their lexical
variable context and closure-converting these into top-level subprograms, render-
ing them amenable to processing with existing tools (Radul et al., 2012). Since
the machinery for nested subprograms is present, allowing them imposes little addi-
tional implementation effort. Moreover, as seen in the example above, that extension
makes code that involves heavy use of higher-order functions, which is encouraged
by the availability of the AD constructs, more straightforward. In this sense AD
blocks and nested subprograms interact synergistically.

These new constructs are quite expressive, but this very expressiveness can tax
many implementations, which might not support some combinations or usages. For
instance, code which makes resolution of the AD at compile time impossible (an
n-th derivative subprogram, say) would be impossible to support without a dynamic
run-time AD mechanism. This would typically not be available. Another common
restriction would be that many tools do not support reverse mode at all and even
those that do typically do not allow nesting over reverse mode, either reverse-over-
reverse or forward-over-reverse. It is the responsibilityof the implementation to
reject such programs with a cogent error.

The FARFEL extensions are implemented by the FARFALLEN preprocessor (Radul
et al., 2012), which generates input for and invokes existing AD tools. This lever-
ages existing AD systems to provide the differentiation functionality in a uniform
and integrated way, extending the reach of AD by making its use easier, more natu-
ral, and more widely applicable.

Such a prepreprocessor can target different AD systems (like ADIFOR (Bischof
et al., 1992) and TAPENADE (Hascoët and Pascual, 2004)), allowing easy porting of
code from one AD system to another. It could even mix AD systems, for example
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using TAPENADE to reverse-transform code generated by using ADIFOR in forward
mode, capturing their respective advantages for the application at hand. The effort of
implementing such retargetings and mixings could then be factored to one developer
(of the prepreprocessor) instead of many end users of AD.

A more important benefit of extending FORTRAN with AD syntax and nested
subprograms is that a host of notions become reusable abstractions—not just first-
order derivatives, but also their variations, combinations, and uses, e.g., Jacobians,
Hessians, Hessian-vector products, filters, edge detectors, Fourier transforms, con-
volutions, Hamiltonians, optimizations, integration, differential-equation solvers.
The interfaces to different methods for these tasks can be made much more uniform
because, as ourARGMAXdid, they can accept subprograms that just accept the vari-
ables of interest (in this case, the argument of maximization) and take any needed
side information from their lexical scope; and subprogramssuch asARGMAXcan ob-
tain any derivative information they wish from AD without having to demand it be
passed in as arguments. So different maximization methods can be tried out on the
same objective function with ease, regardless of how much derivative information
they require; and at the same time, different objective functions, that carry different
side information, can be maximized by the same maximizationsubprogram without
having to adjust it to transmit the needed side information.Essentially, derivatives
are requested where they are needed, and the implementationdoes the necessary
bookkeeping.

These modularity benefits are illustrated by our example program: the FARFEL

input is only 64 lines of code, whereas the amount of code it expands into, which
is comparable to what would need to be written by hand withoutthese extensions,
weighs in at a much more substantial 160 for TAPENADE and 315 for ADIFOR,
including the configuration data needed to run the AD preprocessors to produce
the needed derivatives. Manually performing the 5 nested applications of AD this
example calls for is a tedious, error prone, multi-hour effort, which must be un-
dertaken separately for each preprocessor one wishes to try.2 Existing AD tools do
already save the major labor of manually implementing derivative and gradient sub-
programs, and keeping them in sync with the subprograms being differentiated. The
further preprocessing step outlined above leverages thesetools into being even more
useful. For larger programs, the savings of implementationand maintenance effort
would be considerable.

The present suggestion is not, of course, limited to FORTRAN. Nested subpro-
grams have gained wide adoption in programming-language designs from AL-
GOL 60 and beyond, and have yielded proven gains in programmer productivity.
Their advantages for code expressiveness have led to functions with lexical scope
being used as a mathematical formalism for reasoning about computing (Church,
1941), to programming languages organized around the function as the primary
program construct (Jones, 2003), and to compilers that specialize in the efficient
representation and use of functions (Jones et al., 1993; Steele, 1978).

2 A detailed step-by-step discussion of the transformation of this example along with all interme-
diate code is available athttp://www.bcl.hamilton.ie/ ˜ qobi/fortran/ .
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Fig. 1 Performance com-
parison. Smaller is faster.
Numeric solution of (2)
with above FARFEL code,
N = 1000 iterations at each
level, FARFALLEN targeting
two FORTRAN-based AD
tools; for comparison, the
same computation is coded
in VLAD (Pearlmutter and
Siskind, 2008) and compiled
with STALINGRAD (Siskind
and Pearlmutter, 2008b).
Computer: Intel i7 870 @
2.93GHz, GFORTRAN4.6.2-
9, 64-bit Debian sid,-Ofast
-fwhole-program , single
precision. See (Radul et al.,
2012) for details.

CPU Time (seconds)

TAPENADE ADIFOR STALINGRAD
0

5

10

6.97

8.92

5.83

One can also addADF- andADR-like constructs to other languages that have pre-
processor implementations of AD, for example,C andADIC (Bischof et al., 1997).
One would not even need to add nested subprograms in the preprocessor, because
GCC already implements them forGNU C. Doing so would expand the convenience
(and therefore reach) of existing AD technology even further.

Retrofitting AD onto existing languages by preprocessing isnot without its limi-
tations, however. Efficient AD preprocessors must construct a call graph in order to
determine which subprograms to transform, along with a variety of other tasks al-
ready performed by the compiler. Moreover, optimizing compilers cannot be relied
upon to aggressively optimize intricate machine-generated code, as such code often
exceeds heuristic cutoffs in various optimization transformations. This imposes a
surprisingly serious limitation on AD preprocessors. (Together, these also imply
a significant duplication of effort, while providing room for semantic disagree-
ments between AD preprocessors and compilers which can leadto subtle bugs.)
This leads us to anticipate considerable performance gainsfrom designing an opti-
mizing compiler with integrated AD. Indeed, translating our concrete example into
VLAD (Pearlmutter and Siskind, 2008) and compiling with STALINGRAD (Siskind
and Pearlmutter, 2008b), our prototype AD-enabled compiler, justifies that suspi-
cion (see Fig. 1). We therefore plan to make aVLAD back-end available in version
2 of FARFALLEN.

5 Conclusion

We have defined and motivated extensions to FORTRAN for convenient, modular
programming using automatic differentiation. The extensions can be implemented
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as a prepreprocessor (Radul et al., 2012). This strategy enables modular, flexible
use of AD in the context of an existing legacy language and tool chain, without
sacrificing the desirable performance characteristics of these tools: only about 20%–
50% slower than a dedicated AD-enabled compiler, dependingon which FORTRAN

AD system is used.
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compiler. In H. M. Bücker, G. Corliss, P. Hovland, U. Naumann, and B. Norris,
editors,Automatic Differentiation: Applications, Theory, and Implementations,



AD in Fortran: Design 11

volume 50 ofLecture Notes in Computational Science and Engineering, pages
159–169. Springer, New York, NY, 2005. doi: 10.1007/3-540-28438-914.

Barak A. Pearlmutter and Jeffrey Mark Siskind. Using programming language
theory to make automatic differentiation sound and efficient. In Christian H.
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