ISSC 2014 / CIICT 2014, Limerick, June 2627

An Evaluation of the Goertzel Algorithm for
Low-Power, Embedded Systems

Stephen Brown, Joe Timoney, and Tom Lysaght

Department of Computer Science
National University of Ireland, Maynooth
IRELAND

Abstract — The Goertzel Algorithm provides an efficient mechanism for tone detection
in signal processing. However, on Wireless Sensor Network nodes, there is often not suf-
ficient processing power to implement this using floating-point arithmetic, so fixed-point
implementations are used. In this paper we compare the quality of the results for a typ-
ical audio application with different resolutions of fixed-point support using MATLAB.
‘We also provide performance figures based on implementing this on a representative sen-
sor node platform. Our results show that, for this application-space, 16-bit fixed-point
arithmetic provides the best tradeoff of accuracy against performance. No previous work
has addressed this specific aspect of implementating the Goertzel algorithm.

Keywords — Goertzel Algorithm, Performance, Fixed-Point, WSN.

I INTRODUCTION

The Goertzel algorithm[1] provides efficent tone
detection in a signal. It can be regarded as
the evaluation of a single bin of the FFT, or
as a narrow-band filter. It is suitable for use
in low power, embedded-systems where the FFT
is not viable or not necessary. Multiple tones
can be detected by running the algorithm mul-
tiple times, unlike the FFT which calculates for
all bins simultaneously. Examples include struc-
tural health monitoring[2], instrument tuning [3],
power metering[4] and active damping][5], voice [6]
and underwater communications|7], security appli-
cations such as fingerprint identification [10], and
mobile applications such as crowd counting [8] and
gesture sensing[9].

In low-cost systems without a FPU, fixed-point
arithmetic can be used as a high-speed alternative
to floating-point software emulation, as long as the
problems of overflow and underflow are avoided
(due to the restricted range of values that can be
represented)[11]. In general, fixed-point will suffer
from reduced accuracy due to the inability to rep-
resent the same range of values as a floating-point
representation of the same bit-width.

In this paper we address the issue of determin-

ing how best to implement the Goertzel Algorithm
on a low power, 8-bit CPU, representing a typi-
cal Wireless Sensor Network (WSN) node. There
are two questions: what accuracy can be achieved
for different bit-widths, and how to evaluate and
compare the results (in order to select the optimal
solution).

We present accuracy results from executing
fixed-point Goertzel in MATLAB, performance re-
sults from implementing the algorithm on an 8-bit
Atmel CPU, and a generic procedure for evalu-
ating the results. For the scenario presented, a
16-bit fixed-point representation provides the best
balance between performance and accuracy.

II RELATED WORK

The basic algorithm([1] is defined as:

Uni2=Unt1 =0

Ui = ar + 2cos(x)Upq1 — Ug42,k = N..1
C = agp + Uicos(z) — Uy
S = Uysin(x)

Where ay, is the k" sample, z is the target fre-
quency, C' is the signal amplitude at that fre-
quency, and S is the phase.

The Goertzel algorithm was introduced in the
1950s as an efficient technique for determining the
magnitude of a component at a known frequency.
It is still being used in applications today, a testa-
ment to its value. For example, in [19] it is applied
to dual tone multiple frequency DTMF[16][17] de-
tection using an FPGA device. This particular
application domain has been dominated by this
algorithm since the 1970s[18]. Other applications
included spectral analysis for violin tuning[3] and
it has formed the analytical basis for a number of
non-uniform spectral analysis techniques that have
been proposed in recent times. Furthermore, its
sample-by-sample analysis means that effectively
it is a "sliding” frequency analysis technique with-
out requiring buffering of the input data. This
makes it very attractive for real-time implementa-
tions on low complexity hardware.

IITI FiXED-POINT IMPLEMENTATION

The C-language fixed-point implementation uses
in-line functions to implement the basic arith-
metic operations requried for the Goertzel algo-
rithm. The simple add and subtract operations
can be performed using the normal C opera-
tors. The multiply and divide operations require
more complex code to minimise underflow, and to
multiple/divide the result to maintain the fixed-
point position. A sqrt function is also required:
this was implemented using an iterative 2-variable
approximation|[12].

On an 8-bit CPU there is no benefit to using
precisions that are not a multiple of 8. Most of
the load and store operations are 8-bit, as are the
mathematical operations. For completeness, how-
ever, we have evaluated the algorithm with fixed
points widths using fixed-point widths of 6-16 bits.

As the purpose of the experiments is to compare
the different implementations, rather than produce
an optimal system, no windowing function[13][14]
has been applied.

IV REsuLTS

The results shown here were collected using
MATLAB™4t0 compare the accuracy of the differ-
ent fixed-point sizes against floating-point, which
was used as a accuracy reference point (shown in
the figures as a width of 17).

a) FEzperimental Setup

Three test signals were used. A noise-free, single-
tone to evaluate the accuracy of each implemen-
tation; multiple noise-free tones to evaluate the
quality of separation; and a single tone with added
noise to evaluate robustness (shown in Fig. 1).

L
0 2000 4000

015
01F
0.05-
0 L

. . .
0 2000 4000 6000 8000 10000 12000
Frequency

0.2F ' B

. . .
6000 8000 10000 12000
Frequency
T
.

L L L h L L
5000 6000 7000 8000 9000 10000

Frequency

h L L L
0 1000 2000 3000 4000

Fig. 1: FFT of the Test Signals.

b) Accuracy Results

The results are presented here for the three differ-
ent test signals. Eqn. 1 was used to assess the
relative accuracy (RA) of the result produced by
the different algorithms (v;) compared to the dou-
ble implementation result (vy.s) at each bin value
i.

RA = 1.0—ﬁ[1.0—abs (Vref — v5)] (1)

i=1
Single Tone Signal

The comparative results for the different width
arithmetics are shown in Fig. 2. This shows the
output of the Goertzel Algorithm (Frequency axis)
for each of the different widths of fixed-point arith-
metic (Number of Bits axis); the double results
provide a baseline for comparison, and are shown
as a width of 17. Below 10-bits, artefacts become
obvious. Note that float provided almost identical
results to double, and so are not included.

10000

Frequency (Hz) 0 4

Number of Bits

Fig. 2: Single Tone Comparison.

An accuracy comparison is presented in Table 1.
The key factor here is that below 12 bits the ac-
curacy of results drops below 99%, and below 8
bits significant errors are introduced by the lack of
precision.

Table 1: Accuracy Results.

Arithmetic Accuracy
fized-point (4) 1.21E-12
fized-point (5) 9.06E-06
fized-point (6) 3.42E-04
fized-point (7) 1.31E-01
fized-point (8) 7.53E-01
fized-point (9) 8.34E-01
fized-point (10) 9.36E-01
fized-point (11) 9.77E-01
fized-point (12) 9.94E-01
fized-point (13) 9.98E-01
fized-point (14) 1.00E-+00
fized-point (15) 9.97E-01
fized-point (16) 9.97E-01
floating point 1.00

Multi-Tone Signal

The comparative results for the different widths
with three tones are shown in Fig. 3. The double
results again provide the baseline for comparison.
Note that below a width of 9 bits, significant afte-
facts are introduced.

o
3

S 9

o
°
2
=
=3
8
=

Frequency (Hz)

Number of Bits

Fig. 3: Three-Tone Comparison.

Single-Tone, Noisy Signal

The comparative results for the different arith-
metics for a single tone with added noise are shown
in Fig. 4. The double results again provide the
baseline for comparison. Note that below a width
of 8 bits, significant aftefacts are introduced.

Frequency (Hz)

Number of Bits

Fig. 4: Noisy, Single Tone Comparison.

¢) Performance Results

The basic performance of the add, subtract, multi-
ply, divide, and sqrt functions was measured on an
Atmegal28-RFA1! node using the 16-MHz clock
(providing single-cycle precision and accuracy), for
comparison against the full Goertzel function exe-
cution times. Some of the key results are shown in
Table 2. Note that these figures include the fetch
and store operations also, which have a significant
impact in an 8-bit architecture.

Table 2: Basic Execution times.

Operation Cycles micro-seconds
double.add 125 7.813
double.multiply 141 8.813
long.add 20 1.250
long. multiply 66 4.125
short.add 10 0.625
short.multiply 18 1.125

The Goertzel function add() is called once per
data sample (to process that sample) —and the
function getMag() is called once per block (to get
the magnitude of the response). The execution
time of the Goeetzel algorithm add_value() and
get_magnitude() functions was also measured on
the same system, as shown in Tables 3 and 4.

Table 3: Goertzel Function Execution times (16-
bit fixed-point)

Operation Cycles Execution Time
add() 68 4.25pus
getMag() 405 25.313pus

These show the strong motivation for using
fixed-point arithmetic on such a platform. The
figures are averaged over 4,000 calls to add() and

ISee http://www.atmel.com/Tmages/doc8266.pdf

Table 4: Goertzel Function Execution times
(floating-point)
Operation Cycles Execution Time
add() 450 28.125us
getMag() 1300 81.25us

200 calls to getMag(). Note that additional, com-
mon overheads reduce the difference between the
basic execution times of the raw arithmetic and
the execution times of the Goertzel function.

The total CPU cost (CPU in us-per-second) for
processing the Goertzel function can be described
by Eqn. 2, where sr is the sample rate and br is
the block rate.

CPU = sr*add() + br * getMag() (2)

Substituting the measured values from Table 3
into Eqn. 2 gives the CPU load for executing the
16-bit fixed-point Goertzel implementation. This
is shown in Eqn. 3 for a sample rate? (sr) of 20,480
and a block size of 256 samples—giving a block rate
(br) of 20,480/256.

CPU = 20,480 + 4.25 + (20, 480/256) = 25.31
= 87,040 + 30428
= 117,468[us/second)
=11.75%

(3)

The results clearly show the benefit of the 16-
bit fixed-point arithmetic. The slight reduction in
accuracy is not important in the context of the Go-
ertzel Algorithm, and produces a significant per-
formance improvement over the more accurate re-
sults. Using floating-point (emulated in software)
is not a feasible option on this platform with a
20kHz sampling rate as the CPU is not fast enough
to keep up with the data (greater than 100% util-
isation). The improved accuracy-speed factor for
8-bit fixed point does not compensate for the very
poor frequency resolution (as shown in Figs. 2-4).

V CONCLUSIONS AND FUTURE WORK

In this paper we present new results comparing
the accuracy the Goertzel Algorithm with different
precisions of fixed-point arithmetic. This is impor-
tant for 8-bit CPUs where the low bus bandwidth
imposes significant extra costs for wider values (i.e.
multi-byte arithmetic).

This work provides a methodology and results
for selecting an appropriate tradeoff between the
quality of the results against the speed of execu-
tion (compared to a double implementation). The

2Selected to provide 10Khz bandwidth, typical of low-
cost microphones, and also making the block size divisible
by a power of 2, providing faster arithmetic

conclusion of this paper is that for the scenario pre-
sented, a 16-bit fixed-point implementation of the
Goertzel algorithm provides the best tradeoff be-
tween performance and accuracy. Floating-point
implementations are not feasible at this sampling
rate.

Future work will include measurement of the ef-
fectiveness of these results in a real-world tone-
detection application on the Atmegal28-RFAl
WSN platform, a comparison when a high-
efficiency windowing function has been applied
(e.g. Dolph-Chebyshev[15]), and futher consider-
ation of the 8-bit fixed-point problems to see if
these can be overcome in order to realise the sig-
nificant performance benefits. The figures show
some promise for at least a partial 8-bit implemen-
tation which would be a very significant result for
8-bit systems allowing very high-speed processing
of multiple tones.

REFERENCES

[1] G. Goertzel “An Algorithm for the Evaluation
of Finite Trigonometric Series”, The American
Mathematical Monthly, 65(1):34-35, 1978.

[2] M. Bocca et al. “Structural Health Monitoring
in Wireless Sensor Networks by the Embedded
Goertzel Algorithm”. IEEE/ACM Second In-
ternational Conference on Cyber-Physical Sys-
tems, 206214, 2011.

[3] Z. J. Wang et al. “Electronic Assisting Violin
Tuner”. TENCON 2012 - 2012 IEEE Region
10 Conference, 1-6, 2012.

[4] R. Pena-Alzola et al. “Self-commissioning
Notch Filter for Active Damping in Three
Phase LCL-filter Based Grid Converters”.
Power Electronics and Applications (EPE),
2013 15th FEuropean Conference on, 1-9, 2013.

[5] K. Koziy et al. “A Low-Cost Power-Quality
Meter With Series Arc-Fault Detection Ca-
pability for Smart Grid”. [IEEE TRANS-
ACTIONS ON POWER DELIVERY, 28(3):
1584-1591, 2013.

[6] V. Gabale et al “Building a low cost low power
wireless network to enable voice communica-
tion in developing regions” SIGMOBILE Mob.
Comput. Commun. Rev., 16(2):2-15, 2012.

[7] D. Kohlsdorf et al “An Underwater Wearable
Computer for Two Way Human-dolphin Com-
munication Experimentation” Proceedings of

the 2013 International Symposium on Wear-
able Computers (ISW(C’13), 147148, 2013.

[8] P. G. Kannan et al “Low Cost Crowd Counting
Using Audio Tones” Proceedings of the 10th

ACM Conference on Embedded Network Sen-
sor Systems (SenSys ’12), 155-168, 2013.

9] S. Gupta et al “SoundWave: Using the
Doppler Effect to Sense Gestures” Proceedings
of the SIGCHI Conference on Human Factors
in Computing Systems (CHI’12), 1911-1914,
2012.

[10] T.Y. Tang et al “Efficient Implementation of
Fingerprint Verification for Mobile Embedded
Systems using Fixed-point Arithmetic” Pro-
ceedings of the 2004 ACM Symposium on Ap-
plied Computing (SAC’04), 821-825, 2004.

[11] M. Medina-Melendrez et al. “Overflow anal-
ysis in the fixed-point implementation of the
first-order Goertzel algorithm for complex-
valued input sequences”. Circuits and Systems,
2009. MWSCAS °09. 52nd IEEFE International
Midwest Symposium on, 620-623, 2009.

[12] M. V. Wilkes et al. “The Preparation of Pro-
grams for an Electronic Digital Computer”,
Addison-Wesley 1951.

[13] F. J. Harris. “On the Use of Windows
for Harmonic Analysis with the Discrete
Fourier Transform”. Proceedings of the IEEE,
66(1):51-83, 1978.

[14] A. H. Nuttall. “Some Windows with Very
Good Sidelobe Behavior”. IEEE TRANS-
ACTIONS ON ACOUSTIC, SPEECH, AND
SIGNAL PROCESSING, ASSP-29(1):84-91,
1981.

[15] P. Lynch. “The Dolph-Chebyshev Window:
A Simple Optimal Filter”. Monthly Weather
Review, 125:655-660, 1997.

[16] M. D. Felder et al. “Efficient Dual-Tone Mul-
tifrequency Detection Using the Nonuniform
Discrete Fourier Transform”. IEEFE Signal Pro-
cessing Letters, 5(7):160-163, 1998.

[17] R. Beck et al. “Finite-Precision Goertzel Fil-
ters Used for Signal Tone Detection”. I[EEE
TRANSACTIONS ON CIRCUITS AND SYS-
TEMS II: ANALOG AND DIGITAL SIGNAL
PROCESSING, 48(6):691-700, 2001.

[18] S. Fedorenko. “The Goertzel-Blahut Algo-
rithm is Closely Related to the Fast Fourier
Transform”. Problems of Redundancy in Infor-
mation and Control Systems (RED), 2012 XIII
International Symposium on, 20-21, 2012.

[19] A.Arif et al. “Design Options for DTMF de-
tection using Goertzel Algorithm on Reconfig-
urable Fabric”. Computer, Control €& Commu-
nication (IC4), 2013 3rd International Confer-
ence on, 1-5, 2013.

