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Airline overbooking in the multi-class case
J Coughlan

Dublin Institute of Technology, Dublin, Ireland

This paper presents an airline overbooking model at a class level for one service compartment±cabin. Class level demand
data is used to determine the number of bookings that can be taken for each class. The model is optimised through the use
of multi-dimensional search routines. The control level model developed is tested with data supplied by Ireland's national
airline, Aer Lingus. The model shows a signi®cant improvement over previous methods employed by Aer Lingus and
was subsequently adopted by the airline.
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Introduction

Airlines operate their passenger services on the basis of

advance reservations. The air travel market is very compe-

titive in Ireland, especially on the Ireland±UK routes and

new electronic systems of booking enable the customer to

make multiple reservations with different airlines. The

airline may ®nd that fewer passengers show up for a

¯ight than are expected from historical patterns. Tradition-

ally, the level of passengers who book but do not show up

is estimated from historical data, and the ¯ight is over-

booked in order to maximize revenue and reduce the

possibility of ¯ying with an empty seat.

Overbooking is the practice of intentionally selling more

reservations for a ¯ight than there are actual seats on an

aircraft.1 This reduces the number of vacant seats but may

also result in the rejection of passengers with con®rmed

bookings which costs the airline in terms of compensation

payouts. Also in a period of intensifying competition, the

loss of goodwill from this activity is not welcome.

Overbooking is an aspect of yield management that is

also used in other service businesses2,3 and falls under the

general area of Perishable Asset Revenue Management

(PARM).4 It has been described as economically inef®cient

and is often thought to be brought about by operational

imperfections in demand forecasting.5 In the single service

compartment case, for example, the economy cabin, the

airline is selling what is essentially the same seat for

different fares. This is also the case in the other service

compartments. Overbooking historically was carried out at

service compartment (cabin) level.6 This was achieved by

aggregating class level data and determining an overbook-

ing level at cabin level. Intuitively, individuals who book in

different classes should behave differently in terms of

booking patterns and cancellations and this causes distor-

tion in the aggregation to cabin level. The solution is to use

class level data and determine an overbooking level for

each class.

In the ®rst section of this paper, the choice of model will

be justi®ed, the assumptions presented and the model

developed. The solution methods will be presented, the

starting heuristic developed and the Aer Lingus model

explained, and ®nally, concluding remarks and future

research directions will be discussed.

The overbooking model

Historically, overbooking models have taken an incremen-

tal control approach.7±13 This allows a maximum number

of additional reservations to be taken based on the reserva-

tions already taken for that ¯ight and the historical patterns

for the ¯ight. However, several airlines use a level control

approach in which reservations are accepted until the total

number of reservations exceed speci®ed levels (authorisa-

tions).11 This paper takes a level control approach. This

required more detailed data about reservation and cancella-

tion behavior, although this data is now being collected by

the airlines. For the purposes of this paper, the data was

made available by Ireland's national airline Aer Lingus.

The advantage of a level control model is that for a given

length of time, the level control approach responds faster to

rapid changes in reservations.11

A revenue maximisation model was used. This involves

the calculation of the estimated number of bookings who

will show up in each class based on the bookings received

and the historical data on the bookings that failed to show

up in that class. Making a number of assumptions about the

distributions of how customers book and `no show', the

expected number of `show ups' can be calculated at class

level. This is then used to set an overbooking level for each
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class, called the `authorization'. If more passengers show

up than there are available seats, the extra passengers will

be denied boarding and the airline will incur a compensa-

tion cost. Also, if the service compartment (cabin) is not

full after the passengers who booked have boarded, then

passengers who turned up without a booking will be

boarded. These are known as `go shows'. It follows that,

in one cabin, `denied boardings' and boarded `go shows'

cannot occur together.

Assumptions

A general taxonomy of yield management is presented in

Weather®eld and Bodily4 and this paper uses these general

assumptions. However there are some speci®c assumptions

which are required for this model.

1. The model does not employ nesting of classes. Most

airlines use fare nesting in their yield management

models. Classes are ordered according to fare and nesting

allows the yield analyst to offer a prospective passenger

the opportunity of booking a seat in a higher fare class

than they originally requested if the requested fare class

is full and there is availability in the higher fare class.

Ireland is experiencing an unprecedented degree of

competition in the air travel market, particularly the

Dublin±UK market segment. In this competitive envir-

onment, if a particular fare class is not available, the

individual making the booking may go to a competitor

airline.

2. The different classes book over the same period. This is a

simpli®cation. Many airlines require different fare classes

to have different booking periods, whereas some classes

are allowed to book all the way through a booking

period. The case of purely sequential booking based on

rising fares per class was considered but was felt that this

was not how customers actually booked.14 The model

could be extended to look at this aspect.

3. The number of passengers seeking bookings is assumed

to be a normally distributed random variable. It is

reasonable to assume that the receipt of requests for

bookings over any given period will follow a Poisson

distribution. In the case, where booking periods are long

(assumption 2), it is reasonable to approximate the

number of requests for bookings by the normal distribu-

tion.

4. The `No Show' rate does not vary with time and is

independent of the number of bookings in that class. The

`No Show' rate for those passengers who book in the last

few days of the booking period is assumed to be equal to

the rate for those who book at the start of the period. This

is termed the `fortgetfulness property'.7

5. The number of `no shows' from any given booking level

is binomially distributed. The probability of x `No

Shows', out of b bookings, is assumed to be binomial.

That is,

P�X � x� � b

x

� �
rx�1ÿ r�bÿx

where p is the probability that any booking will result in

a `No Show', namely the No Show rate.

6. The number of `go shows' in any class is independent of

the number of `show ups' in that class. This assumption

is based on the independent of `Go Shows' and booking

demand. It can be argued that the two are dependent, but

in general it appears that the assumption of independence

is reasonable.

7. The probability of a booking resulting in a `No Show' is

independent of whether that booking is part of a group.

Group bookings in many cases will come not from actual

groups, but from a collection of individuals booked by an

agent. This means that group identi®cation is in itself a

major issue.15

Notation and terms

The following are used in the development of the model:

n � number of classes in the service compartment

c � total number of seats available in the service

compartment �cabin�
Let ti, the demand for class i, be an independent normally

distributed random variable with cumulative distribution

T ( ).

Let bi, the number of bookings in class i, be an inde-

pendent normally distributed random variable with p.d.f.

p�bI � mean: bi and standard deviation Fbi: Let si, the

number of `Show Ups', be an independent normally

distributed random variable with p.d.f. y�si�, means: si,

standard deviation Fsi and cumulative distribution S( ).

Let ri, be the no show rate in class i

Let g, the number of `Go Shows', be an independent

normally distributed random variable with p.d.f. q�g�,
mean: g, standard deviation Fg and cumulative distribution

Q( )

fi � fare in class i

ai � authorisation in class i: The authorisation is the

maximum number of bookings allowed for each class

d � number of `Show Ups' who are denied boarding

h � number of `Go Shows' who are permitted to board

m � denied boarding cost

sc � number of `Show Ups' at cabin level

Development of function

The revenue is generated from the number of `show ups' in

each class multiplied by the fare in that class. The `show
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ups' are calculated as follows, the number of bookings, bi,

is

bi � ti if 04 ti 4 ai

ai if ti > ai

�
If, E�bI � represents the expected bookings in class i, it

follows that

E�bI �
�ai

0

tTi�t�dt � ai

�1
ai

Ti�t�dt

Having now calculated the expected bookings in each class

from the demand in each class, an expression was devel-

oped for `Show Ups'. The number of `show ups' is the

number of bookings in a class multiplied by the `No Show'

rate

E�si� � E�bi� � �1:0ÿ ri�
It follows that the expected revenue is

rev �Pn
i�1

�ai

0

tTi�t�dt � ai

�1
ai

Ti�t�dt

 !
� �1:0ÿ ri� � fi

" #
However the capacity of the service compartment (cabin)

has to be taken into account. The total number of `show

ups' must be calculated and checked against the capacity to

see if there are too many `show ups' (denied boarding

situation) or if there are empty seats (`Go Shows' may be

boarded). The number of `show ups' at cabin level is the

sum of the class level `show ups'

sc �
Pn
i�1

si

The expression for the number denied boarding, if any, is as

follows

d � sc ÿ c if sc < c

0 otherwise

�
The expected number of `denied boardings' is as follows

E�d� �
�sc

0

�sc ÿ c�Sc�s�ds

Since those passengers who were denied boarding were

included in the revenue function above, their contribution

to the expected revenue must be subtracted. Also for each

of these passengers, a ®gure representing denied boarding

compensation, m, should be subtracted.

Because denied boarding occurs at the cabin level and

passengers pay different fares for seats, the calculation of

the contribution of the denied boarding cannot be made

exactly. In order to combat this, a weighted average fare, n,

is calculated. Once a booking shows up they get a seat in

the cabin, after the cabin is full, the remainder of the

bookings that show up are denied boarding. This model

does not take the fact that there could be available seats in

another cabin, as it is a single cabin model only. It could be

assumed that those passengers who booked last are more

likely to be late for the ¯ight and therefore the highest fare

is the fare to use. It is also possible that any other passenger

may be late. Therefore the contribution to be subtracted is

the weighted average of the fares of the `show ups'.

rev �Pai

i�1

tTi�t�dt � ai

�1
ai

Ti�t�dt� � �1:0ÿ ri� � fi�

ÿ
�sc

0

�sc ÿ c�Sc�s�ds� �m� n�
� �

The situation may also arise that the total `show ups' is less

than capacity and there will be empty seats. If there are `Go

Shows', then they will be allowed to board. As was the case

with `denied boardings', `go shows' are calculated at cabin

level. It may be assumed that `go shows' pay the highest

fare, but this is not always the case. `Go Shows' may be

individuals with open tickets (which may be at a number of

fares) or may be individuals with `stand-by' tickets (which

are relatively inexpensive). To overcome these possibili-

ties, a weighted average fare was calculated. Provided there

are empty seats on the plane (namely, cÿ sc > 0) then,

h � g if 04 g 4 �cÿ sc�
cÿ sc if g > �cÿ sc�

�
The expected number of boarded go shows, E�h�, for a

given number of `Show Ups' is:

E�h� �
�cÿsc

0

gQc�g�dg � �cÿ sc�
�1

cÿsc

Qc�g�dg

This must be integrated over all possible `Show Ups' in

order to calculate the expected boarded `go shows' for the

cabin

bgs �
�c

0

�cÿsc

0

gQc�g�dg � �cÿ sc�
�1

cÿsc

Qc�g�dg

 !
Sc�s�ds

combining to give,

rev �Pn
i�1

�ai

0

tTi�t�dt � ai

�1
ai

Ti�t�dt� � �1:0ÿ ri� � fi

 #"

ÿ
�sc

0

�sc ÿ c�Sc�s�ds� �m� n�
� �
�

�c

0

�cÿsc

0

gQc�g�dg�cÿ sc�
�1

cÿsc

Qc�g�dg

 !
Sc�s�ds

" #

Solution methods

Having developed the revenue function, a number of

optimisation techniques were available. Derivatives could

be sought and either by developing an iterative solution

procedure or by use of a package, the optima found. The

calculation of derivatives in this case is quite complicated

and a simpler approach was sought.
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Direct search methods were investigated. These methods

use the value of the function to ®nd a maximum (or

minimum) and are very robust although these could not

guarantee optimality, due to the relatively ¯at areas found

in the function (see Figure 1). Two methods were chosen to

be tested, Hooke and Jeeves16 and Nelder and Mead.16

Due to the ¯at areas of the function, a starting heuristic

was sought in order to speed up the solution time. A

number of different heuristics were developed and tested,

the ®nal one chosen was the following:

Step one

A cabin-level overbooking rate, w, was calculated by using

the historical demand and no show data for that ¯ight, as

follows

w �
Pn
i�1

�ti � �1:0� ri��Pn
i�1

ti

Using this method, a class with large demand but a low `no

show' rate would not dominate and neither would a class

with low demand but a large `no show' rate.

Step two

The above rate is used to ®nd an authorisation (total

number of bookings to accept) at cabin level.

Step three

The cabin level authorisation is allocated across the classes

using the Fare Mix Algorithm. The algorithm is based on

the principle that since EMSRi� j� is the additional revenue

that is expected to accrue when the jth seat is allocated to

fare class i, then

EMSRi�j� � fi � T �ti > j�
The EMSR of the jth seat in the ith fare class is the seat fare

multiplied by the probability of there being more than j

requests for seats in that class. The algorithm goes through

the seats in the cabin on an iterative basis and at each stage

allocates the seat to the class which shows the greatest

EMSR.

The Aer Lingus model

At the time of the development of the revenue model

above, Aer Lingus were using the following heuristic

procedure for overbooking. Their approach was based on

a cabin-level overbooking strategy. Class-level data was

collected and aggregated to cabin-level. The procedure was

as follows

Step one

Starting with a cabin-level authorisation of capacity, the

expected `show ups', `denied boardings' and empty seats

were calculated.

Step two

The total cost of ¯ying with this authorisation was calcu-

lated using the fares from the `show ups', an empty seat

cost and a denied boarding cost.

Step three

The cabin-level authorisation was incremented and steps

one and two repeated until the difference between the new

and old cost was less than a speci®ed tolerance.

The data

The data for testing the revenue function developed was

sourced from Ireland's national airline, Aer Lingus. The

data was from single-leg ¯ights and was adjusted for

special events. Special events occur during the year

which change the demand patterns for ¯ights. Day of

week effects, sporting events, national and school holidays

are all examples of special events which change the

demand patterns. The data was also adjusted for season-

ality.

Analysis of results

Extensive trials were carried out using real data from Aer

Lingus. The solution procedures employed were tested to

see if they were reaching the global optimum. As can beFigure 1 Graph of a sample two class case.
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seen from Figure 1, the solution area for the model in the

two class case shows ¯at areas, and also the model has

many local optima close to the global optimum. This led to

the development of the starting heuristic developed in the

previous section.

Through complete enumeration of the model for a

number of test cases of varying dimensions (no. of classes),

it was found that the model did not achieve the global

optimum in approximately 15% of cases. An ancillary

result of this test was that complete enumeration was not

a viable solution strategy due to the computation time

involved.

The two solution procedures were employed separately

and together to attempt to achieve the global optimum.

When used individually the method of Hooke and Jeeves16

outperformed Nelder and Mead,16 but not by a signi®cant

amount. The solution procedure was then applied to the

model in sequence and although this led to better results,

the increase in computation time was not justi®ed for the

magnitude of the increase achieved.

The model was tested for different levels of denied

boarding cost. The authorisations (allowed number of

bookings) per class were found to be more conservative

as the denied boardings cost increased.

The data contained in Table 1 is used to illustrate the

model developed. Table 2 shows the solution of the model

using each of the procedures employed. Upon further

investigation of this case, it can be seen that the direct

search methods are authorising higher bookings in the

classes with higher fares and reducing the authorisations

for lower fare classes. Further testing bore out this observa-

tion and it can be concluded that the Aer Lingus model was

more conservative than the model developed in this paper.

The average potential revenue improvement from the use of

this model was in the order of 1±2%.

Conclusions

The Aer Lingus model was found to be conservative in

comparison to the model developed. The model developed

also required estimation of one less parameter than the Aer

Lingus model because it implicitly brings in the cost of an

empty seat, whereas the Aer Lingus model has to explicitly

determine this parameter.

The solution procedures employed do not guarantee

optimality, an area which future research will address.

The model uses cabin level data for the `boarded go

shows' and the `denied boardings'. This is to be expected

because these activities occur at cabin level rather than at

class level. The model does not allow for `nesting' of

classes within the cabin and future research will concen-

trate this aspect of the problem. In conclusion, the expected

revenue model is currently in use by Aer Lingus for

overbooking. It achieves increases in revenue of the order

of 1±2% on average over the Aer Lingus model.
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